
A Coloured Petri Net based Tool for Course of Action
Development and Analysis

Lin Zhang*       Lars M. Kristensen**       Chris Janczura*       Guy Gallasch**       Jonathan Billington**

* Systems Simulation and Assessment Group
Defence Science and Technology Organisation

Edinburgh, SA 5111, Australia
{Lin.Zhang,Chris.Janczura}@dsto.defence.gov.au

** Computer Systems Engineering Centre
School of Electrical and Information Engineering, University of South Australia

Mawson Lakes, SA 5095, Australia
{Lars.Kristensen,Guy.Gallasch,Jonathan.Billington}@unisa.edu.au

Abstract
This paper presents a Course Of Action Scheduling Tool
(COAST) to support operations planning in the Australian
Defence Force (ADF). COAST is a software tool based on
Coloured Petri Nets (CPNs or CP-nets) and Design/CPN. It is
developed with an underlying conceptual framework that
complements the ADF planning process. At the core of COAST
is a CPN model that formally specifies the execution of tasks in
a course of action. During planning, the CPN model is
instantiated with concrete tasks for execution and analysis.
COAST has a client-server architecture. The client provides a
graphical user interface for task instantiation and lines of
operation analysis. The server uses the instantiated CPN model
to conduct state space analysis for generating and analysing
lines of operation. 

Keywords: command and control, military operations
planning, computer tool support, courses of action, Coloured
Petri Nets.

1 Introduction
Military operations planning is one of the primary
functions performed by a military Headquarters (HQ).
For many staff, planning presents a major challenge due
to several factors including time pressure, ambiguity in
guidance, uncertainty, complex situations, and a
requirement for seamless collaboration both within and
externally to their organisations. The Australian Defence
Force (ADF) follows a systematic planning process to
manage these factors. The process stipulated in the ADF
doctrine (ADF 1999) includes four consecutive and
iterative steps: mission analysis, course of action (COA)
development, course of action analysis, and decision and
execution. In mission analysis, a military commander and
the staff attempt to analyse the intent of their superior
commander in the context of their environment to arrive
at an unambiguous understanding of their mission.  A
mission comprises a list of essential tasks that must be
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carried out to fulfil the mission. During COA
development, the commander and staff consider possible
options for the achievement of the mission, and these
options are called courses of action. Each COA is then
developed to include a number of action tasks that need to
be scheduled. A small number of COAs are analysed for
improvement through simulation and wargaming during
COA analysis. Finally, the commander decides on one
COA that is to be developed into a plan for execution.

A number of research projects have been carried out
within the Australian Defence Science and Technology
Organisation (DSTO) to support military planning. One
of the projects was devoted to modelling the ADF
planning process for the analysis of its efficiency when
applied to a particular military Headquarters (Kristensen
et al. 2002). To assist planning staff in mission analysis
and early stages of COA development, a decision support
tool based on Bayesian belief networks (Jensen 1996)
was developed (Falzon et al. 2001). This tool represents
elements of military forces for the determination and
analysis of critical elements that need to be exploited in
the case of a threat force or protected in the case of a
friendly force. The methods of affecting the identified
critical elements form the basis of COAs, and the tasks
designed to implement the methods become building
blocks of the COAs. However, a COA is considered
incomplete until the tasks are logically sequenced, and
scheduled in the constraint of assigned resources. The
orderings of tasks are called lines of operation.

The purpose of the COA Scheduling Tool (COAST) is to
support the sequencing and scheduling of tasks to form
lines of operation that are an implementation of suitable
and feasible COAs. A suitable COA is one that, when
executed, can achieve the commander’s mission. A COA
is feasible if the sequence of tasks in the COA can be
executed with the assigned forces and other resources.
The lines of operation developed with the assistance of
COAST form the basis for further quantitative analysis
using metrics such as probabilities of success and loss of
resources to compare and evaluate possible lines of
operation.

The execution, synchronisation, and timing of tasks in a
COA and their use of resources in a COA can be viewed
as a concurrent system. This means that the execution of



tasks in a COA is naturally represented using modelling
languages aimed at concurrent systems such as Coloured
Petri Nets (Jensen 1992).

The contribution of this paper is to present COAST and
show how CPNs and the supporting Design/CPN tool
(CPN Group 1996) have been used to engineer a tool
theoretically founded on formal methods, but where the
use of formal methods is transparent to its user. The
transparent use of CPNs is essential, as we wish planners
to use COAST without any knowledge of CPNs and their
analysis. The work presented in this paper and in (Falzon
et al. 2001) is part of an integrated modelling
environment (In-MODE) developed within DSTO for
military planning.

The idea of extracting CPN models from Design/CPN in
executable form to use them in the implementation of a
system was also used in (Mortensen 2000) to obtain the
implementation of an access control system. In
(Mortensen 2000) the CPN model was embedded into an
environment that allowed the CPN model to control the
sensors and actuators of the alarm system via a dedicated
network. For COAST, we have embedded the CPN model
in an environment for communicating with the COAST
client, i.e., the graphical user interface.

The COAST client provides a front-end that makes the
use of CPNs and state space analysis transparent to the
user. This is important since commanders and planners
are not expected to be able to use CPNs. The idea of
providing a transparent and application specific interface
to a CPN model was also considered in (Lindstrøm 2001)
where a web interface for simulation of CPN models was
considered. A main difference in our approach is that we
consider analysis of CPN models, whereas (Mortensen
2000 and Lindstrøm 2001) only consider execution of
CPN models.

The development of software tools to support military
planning is an active area of research. Most software
planning tools are focussed on supporting information
sharing, group authoring, workflow automation, and other
information management functions within a generic
planning process to enhance collaboration among staff.
Such tools can be referred to as collaborative planning
tools. Some attention has been given to the development
of decision support tools that aid the development,
representation and analysis of COA during planning
processes, and the effort up to 1988 was summarised in
(Andriole and Hopple 1988). Planning and planning aids
have been a subject of study in the area of artificial
intelligence. The programs of work reported in (Andriole
and Hopple 1988) represented an artificial intelligence
approach, and addressed tactical planning/replanning
problems with lesser degrees of ambiguity and
uncertainty than the ones that we consider in this paper.
Related work on developing decision support tools for
planning has also been reported in (Wagenhals et al. 1998
and Wagenhals 1999). The approach in (Wagenhals et al.
1998 and Wagenhals 1999) involved construction of a
timed influence network model of a mission using the
Situational Influence Assessment Module (SIAM) tool
(SAIC 1998). Subsequently, the influence network model
is used to form the basis of a timed CPN model of

sequenced and timed COAs. The CPN model of COAs
was then analysed, using state space techniques, to assess
the impact of sequencing and timing of events on the
mission objective. The work reported in (Wagenhals
1999), however, does not consider resource implications
of tasks or events. Another main difference between our
approach and (Wagenhals 1999) is that we have one CPN
model capable of executing any COA, whereas a CPN
model is generated for each influence net in (Wagenhals
1999). A CPN model capable of executing any influence
net was later presented in (Lindstrøm and Haider 2001)
together with discussion of the pros and cons of this CPN
model compared with the model in (Wagenhals 1999).

Other recent related work involves the development of a
Tool for Operational Planning, Force Activation and
Simulation (TOPFAS) to support North Atlantic Treaty
Organisation (NATO) operational planning (Thuve
2001). TOPFAS emphasises the use graphical tools to
visualise layouts of plans, layout of critical events in a
plan, COA, and geographical location of tasks. A key
output of the tool is a Statement of Requirements, which
is a detailed description of what is needed to conduct an
operation.

The remaining part of this paper is organised as follows.
Section 2 describes our conceptual framework and
approach to supporting COA development and analysis.
Section 3 provides an overview of the constructed CPN
model. Section 4 gives an overview of COAST focusing
on the software architecture and the tool components.
Section 5 presents the graphical user interface of COAST,
and Section 6 presents analysis algorithms used in the
COAST server. Finally, Section 7 gives the conclusions
and an outline of future work. The reader is assumed to
be familiar with the basic ideas of Petri nets.

2 Conceptual Framework
This section presents the conceptual framework
underlying COAST. The purpose of developing this
framework has been to identify and develop an
understanding of the central concepts in COA
development when going from a COA task specification
to the corresponding lines of operation. The development
of the framework is based on our earlier work in (Zhang
et al. 2000 and Zhang et al. 2001), the ADF doctrine, and
by studying tasks in representative COAs. The
formalisation of this framework using CPNs will be
presented in Section 3.

A key question that we intend for COAST to help answer
is this: given a list of tasks that are designed by military
planners developing a COA, is there one or more lines of
operations that when executed, will lead to the
achievement of a mission without violating the constraint
of given resources? The question is significant for two
reasons. Firstly, it helps to test the suitability of a
proposed COA. For instance, a positive answer to the
above question proves the logic in the proposed COA,
i.e., the execution of tasks logically leads to the
achievement of the mission. Secondly, the tool helps to
test the feasibility of a proposed COA. For instance, the
existence of an executable task sequence implies that



there is no conflict in resource requirements of tasks over
the period of execution. In a military operation that has
few tasks, human operators would be able to handle the
work of sequencing and scheduling with a degree of
confidence and rigour. But when the numbers of tasks
and resources become large as in the case of most
military operations, COAST would offer great assistance
to planning.

The key construct in our framework is tasks as they (for
our purposes) form the basic buildings blocks of a COA,
and it is tasks that are to be sequenced and scheduled to
form the lines of operation. According to the ADF
doctrine, every military operation must have a pre-
defined military end state to characterise its mission. A
military end state is defined as the set of desired
conditions beyond which the use of military force is no
longer required to achieve national objectives. The
keyword in this definition is condition, which we model
as an assertion that can be true or false. Accordingly, an
initial state represents the set of valid conditions at the
beginning of an operation under planning. A line of
operation specifies a possible way in which tasks can be
sequenced (executed) to reach a desired end state. In its
simplest form, a line of operation specifies the start-time
and end-time for each task.

Having introduced the concept of initial state and end
state, it follows that the tasks that are to be devised by
planners describe actions that need to be taken by military
forces to achieve the desired end state. It is however
important to note that the development of appropriate
tasks for the achievement of a desired end state is not
trivial, it requires sound judgement and enormous
military experience.

Given that tasks are devised to achieve a desired end
state, how does a software tool such as COAST deduce
the order of the tasks (apart from planner imposed
sequences)? We assert that tasks are related and can be
ordered by virtue of conditions, e.g., the execution of
certain tasks requires conditions that can be present only
when certain other tasks have been or are being executed.
A line of operation is deemed to have reached a desired
end state if the set of conditions that constitute the end
state are present. The other important factor that
determines if a task can be executed is the availability of
resources required for the task.

From the above it follows that we consider two factors
that determine whether there exist ordered sequences of
tasks that lead to the achievement of planning objectives:
cause-effect relationships among tasks in terms of
conditions, and resource requirements of tasks. To the
best of our knowledge, most planning tools address only
one of these two factors. In general, once a task
terminates some or all of its post-conditions will allow
other tasks (if any) to have these conditions as pre-
conditions for execution. Tasks can be executed in
sequence or concurrently provided the conditions and
resource constraints are satisfied.

The concept of tasks, conditions, and resources are
illustrated with an example task named Amphibious
Assault shown in Figure 1. The task is characterised by its

attributes: Task name, Pre-conditions, Post-conditions,
and Resources.  There are additional task attributes not
shown here, such as triggers, task duration, and
probability of success. There are two kinds of pre-
conditions for tasks: start and execute pre-conditions.
Start pre-conditions specify a set of pre-conditions that
has to be satisfied for the task to start executing. A start
pre-condition may be invalidated when the task starts.
An example of this is intelligence information. If a task
has the presence of certain intelligence information as a
start pre-condition, starting the task will usually make the
intelligence information outdated and hence invalid.
Execute pre-conditions are conditions that have to be
satisfied for the task to execute. If an execute pre-

condition of a task becomes invalid, the task will have to
be aborted. An example of this is a task that requires air
support to execute. If e.g., the task providing air support
fails, the task will have to be aborted.

There are three kinds of post-conditions (also referred to
as effects) for tasks: immediate, duration, and termination
post-conditions. Immediate post-conditions are conditions
that become valid when the tasks starts execution, and
remains valid until possibly the start of other tasks
invalidates them. Duration post-conditions are conditions
that remain valid only while the task is executing.
Termination post-conditions are conditions that become
valid upon a successful termination of the task.

As mentioned earlier, the construction process of lines of
operation is governed by the task conditions and task
resources being satisfied. The start and termination of
tasks affects the available resources and changes the
current set of valid conditions.

The execution of tasks may also fail and thereby fail to
establish some of its effect. The failure of a task may in
turn imply that the desired end state cannot be reached.
The failure of a task implies that its duration conditions
are no longer valid which may in turn mean that the
execute pre-conditions of other tasks are no longer valid
and hence such tasks will have to abort. A task has
special failure and abort conditions, which describes how
failure and abortion of the task affects its conditions. The
execution of tasks may also result in resources being lost.
Execution of tasks and the set of valid conditions may
also be affected externally from the environment.

A set of tasks can be start-synchronised meaning that
tasks in this set have to start execution at the same time.
One motivation behind this concept is that many tasks
require simultaneous start to achieve the maximum effect.
Similarly, a set of tasks can be end-synchronised meaning
that the tasks in this set will have to terminate at the same
time.

 
Amphibious 

Assault in Close 

            Resources 
• 5 FA18 
• 3 BN 
• 2 LPA                 

Pre-conditions 
• Point of Entry 

secured 
• Local sea surface  

control established 

• Sea mines cleared 
• Intel. info present 

Post-conditions 
• amphibious forces 

successfully 
landed 

 

Figure 1: Example of a task.



3 CPN Modelling
In this section we show how the conceptual framework
presented in the previous section has been formalised by
the construction of a CPN model - in the following
referred to as the CPN Task model. The CPN Task model
captures the possible executions of tasks in a COA given
the synchronisations between tasks in terms of conditions,
start- and end-synchronisations, and available resources.
The CPN Task model is complex and cannot be presented
in full in this paper. Our objective is to provide an
overview describing its structure and how it captures the
execution of tasks in a COA according to our conceptual
framework.

A key requirement to the CPN Task model was that it
should be able to capture the execution of tasks in any
COA. The reason behind this requirement is that we want
to extract the CPN Task model from Design/CPN in
executable form and embed it into COAST. Once
embedded in executable form in COAST, it will not be
possible to modify any of the Petri net structure (i.e.,
places, transitions, arcs, colour sets, and arc inscriptions)
of the CPN Task model, only the initial marking can be
changed. This requirement implies that tasks, start- and
end-synchronisations, resources, and conditions have to
be modelled as tokens of complex colour sets (types) that
are being manipulated by the CPN Task Model. This
ensures that the CPN Task model is highly parametric in
that only its initial marking depends on the COA to be
analysed. The CPN Task model may therefore be
considered a virtual machine for the execution of tasks in
a COA.

3.1 Overview
The hierarchy page of the CPN Task model is shown in
Figure 2. Each node in Figure 2 corresponds to a page
(module) of the CPN Task model and an arc between two
nodes specifies that the destination page of the arc is a
sub-page (sub-module) of the source page of the arc. The
CPN Task model is timed since capturing time taken to

execute tasks is important for obtaining and evaluating
lines of operation. The CPN Task model comprises 14
pages, which can be grouped into three sets.

Initialisation. The Initialisation page and its two sub-
pages are responsible for the initialisation of the CPN
model, i.e. the initial distribution of tokens on the places
of the CPN model according to the set of tasks, resources,
initial conditions, and start- and end-synchronisations.

Execution. Page Execute and its 9 sub-pages model the
execution of tasks. The sub-page Start models the start of
executing tasks. The Terminate page and its sub-pages
model the termination of tasks. The normal termination of
tasks is modelled by page Normal. The failure of a task
(which in turn causes termination of the task) is modelled
by page Failure and its sub-pages. The abortion of tasks
(as a consequence of other tasks failing or aborting) is
modelled by page Abort and its sub-pages.

Environment. Page Environment captures external
events (such as triggers) that may affect conditions and
the execution of tasks. These external events currently
include change of conditions and circumstances that
cause failure of tasks.

3.2 Modelling Execution of Tasks
Figure 3 shows page Execute which is the top-most page
modelling the execution of tasks, and Figure 4 lists the
definition of the most important colour sets (types) in the
CPN Task model. We explain both figures in more detail
below.

All tasks in the COA are initially present as tokens on the
place Idle (Figure 3) having the colour set Task (Figure
4). The colour set Task is a complex record colour set
with a field for each of the attributes of a task.  For
brevity, we have omitted some of the fields in the record
colour set. Altogether there are 22 fields in the Task
colour set. As an example, the name field is used to
specify the name of the task, and the startprecond field is
used to specify the set of start pre-conditions that must be
satisfied for the task to start execution. The colour set

Hierarchy#10010

TaskInterrupt#6

AbortEndSynch#9

Terminate#15

TaskFail#2

FailEndSynchronise#5

Abort#7

Failure#1

Synchronisation#10

Resources#11

Start#14

Normal#16

Initialisation#3Execute#13 Environment#21

Figure 2: Hierarchy page of the CPN model.



color Name = string;
color Bool = bool;
color NamexBool = product Name * Bool;
color Condition = union
                   CONDITION : NamexBool;
color Conditions = list Condition;
color SCondition = union
                    SCONDITION : Name;
color SConditions = list Scondition;
color Resource = union
                   RESOURCE : Name;
color Resources = list Resource;
color Task = record
            name           : Name *
            startprecond   : SConditions *
            exeprecond     : SConditions *
            startpostcond  : SConditions *
            durpostcond    : SConditions *
            termpostcond   : SConditions *
               . . .
            resources : Resources ;

Figure 4: Colour set declarations.

SConditions is declared as a list of SCondition and is used
for the specification of conditions for tasks.  As an
example, the pre-conditions of a task are specified by
listing the names of the conditions required to be valid for
the task to start. In a similar way, the field resources of
type Resources is used for the specification of resources
required for the task to start.

We have used strings (colour set Name) for the
identification of tasks, resources, and conditions. In this
way we avoid limiting the domain of tasks, resources, and
conditions to a fixed set. This is important since we want
to be able to handle COAs containing tasks that refer to
conditions and resources that are not known in advance.
We have used the union type constructor to ensure that
conditions and resources are different types.

The current set of available Resources and the current
state of Conditions are modelled by the accordingly
named places in Figure 3. The current state of the
conditions are represented by one token on place
Conditions of colour set Conditions. This token is a list
with an entry for each condition. A condition is modelled
by the colour set Condition which is a pair consisting of
the name of the condition and a Boolean. This Boolean is
used to specify whether the condition is currently valid
(true) or invalid (false). The current state of the
conditions is modelled as a list to make it simple to
inspect all conditions at once during start and termination
of tasks.  The current set of available resources is present
as a multi-set of tokens on place Resources with colour
set Resource.

The sub-pages of the substitution transition Start model in
more detail the start of executing a task. When a task
starts executing the corresponding token will be removed
from Idle and put on place Executing. At the same time,
the resources required by the task will be removed from
place Resources as these resources are now being used
and hence currently unavailable. Moreover, the state of
the current set of conditions is updated according to the
condition attributes of the task under execution. The sub-
pages of the Start substitution transition also model the
start synchronisation of tasks ensuring that tasks that are
start-synchronised will start at the same time.

The sub-pages of the substitution transition Terminate
model in more detail the termination of tasks. When a
task terminates, the corresponding tokens will be
removed from place Executing and put on place
Terminated. Also, the resources used by the task will be
returned (taking possible loss into account), and the
current set of conditions is updated according to the
condition attributes of the task.

The modelling of start and termination of tasks in the sub-
pages of Start and Terminate involves the use of rather
complex Standard ML (Ullman 1998) arc inscriptions,
and will not be described in detail in this paper.

4 COAST Overview and Architecture
The CPN Task model presented in the previous section
constitutes the semantic foundation of COAST. Figure 5
shows the client-server software architecture of COAST.
The COAST client is implemented in the JAVA
programming language whereas the COAST server is
implemented in Standard ML of New Jersey (SML/NJ)
(Ullman 1998). The core of the COAST client is the

Start
HS

Executing
Task

Terminate
HS

Terminated 

Task

Idle
Task

Conditions
Conditions

Resources
Resource

Figure 3: Page Execute.



graphical user interface (GUI) for the Plan Editor and the
Plan Analyser.  The Plan Editor allows the user to specify
tasks, resources, and synchronisations for a COA that is
to be developed and analysed. The Plan Analyser allows
the user to generate, visualise, and evaluate lines of
operations. The Plan Editor and Analyser will be
presented in more detail in Section 5. The core of the
server is the CPN Task Model and the State Space
Analysis Algorithms that constitute the computational
engine of COAST.  The server is implemented by
extracting the compiled CPN Task model and an
extended set of State Space Analysis Algorithms from the
Design/CPN tool embedded in the SML/NJ runtime
system. We will present the state space analysis
algorithms in more detail in Section 6.

Communication between the client and the server is based
on Comms/CPN (Gallasch and Kristensen 2001), a high-
level library supporting communication between CPN
models and external applications using TCP/IP. An SML
Session layer has been implemented on top of
Comms/CPN. This layer provides the service that allows
the client to invoke functions in the server and receives
corresponding results. The SML Session layer is
implemented by allowing the client to submit SML code,
to the server for evaluation. The fact that the server
contains the SML run-time system and interpreter is
exploited here. The received SML code is then evaluated
and executed by the server, and results are sent back to
the client. The Init layer is built on top of the SML
Session layer and implements the Remote Procedure Call
(RPC) mechanism that allows the client to initialise the
CPN Task model, i.e. to set its initial marking and
parameters according to the COA that is to be analysed.
The Analysis layer is similar, and implements the RPCs
that allow the client to conduct analysis of the COA by
invoking the analysis functions in the State Space
Analysis Algorithms component.

The advantage of the client-server architecture is that it
allows the computationally demanding analysis to be
executed on a powerful workstation while running the
GUI (client) on a less powerful PC. Another reason for
the choice of a client-server architecture was that most
potential users of COAST would be using PCs running
Windows. Design/CPN, used to create the CPN Task

model that provides the semantic foundation of our
approach, is only available on Unix-based systems. With
the client-server architecture, the client can be running on
a Windows-based PC and the server on a Unix-based
workstation. With the next generation of CPN Tools
(CPN Group 2002) it will become possible to also run the
server on Windows-based systems.

5 Graphical User Interface
A COA being developed and analysed with COAST
consists of four components. The first component is the
set of tasks associated with the COA.  Subsequently, all
potential lines of operation generated for this COA will
contain tasks that are a subset of this set.  The second
component is the task synchronisation information.  This
provides constraints upon the scheduling of tasks, by
specifying tasks that are to be start- and/or end-
synchronised. The third component is a pool of assigned
resources from which the tasks can draw in order to be
carried out.  The fourth component is the set of conditions
used as pre-conditions and post-conditions of tasks.

The COAST client provides a GUI that allows users to
interact with both the COAST Editor and Analyser in
order to input these four components and to develop the
corresponding lines of operation.  Figure 6 provides an
example of the details typically shown by the GUI during
COA editing.  As can be seen, the GUI consists of a main
window titled In-MODE/COAST, along with a menu bar
and four separate, movable and resizable sub-windows.
These sub-windows display details of the four
components of the COA: the upper left sub-window
contains the list of tasks, the upper right contains the
synchronisation information, the lower left contains the
assigned resources, and the lower right contains the list of
conditions.  As part of the COAST Editor, each of these
sub-windows has an associated Editor form.

The menu bar is used to initiate entry of COA
information into the tool, enables modification of an
existing COA, and provides ability to generate lines of
operation for a COA.  Briefly, the items on the menu bar:
Plans, Tasks, Synchronisations, Resources and
Conditions provide the basic functionality to manipulate
(create, load, edit, etc.) the elements from each of the four
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Figure 5: Software architecture of COAST.



Figure 6: Main GUI window of COAST.
components shown in Figure 6. The Analysis menu item
allows the desired End-State for any line of operation to
be specified, for the COA to be sent to the COAST server
for analysis, and for the viewing of generated lines of
operation.  Details of the generation of lines of operation
by the server and the viewing of such lines are described
in more detail in the next section.

Figure 7 illustrates the Task Editor form with our earlier
example task: Amphibious assault in Close being edited.
This same editor form is used when editing existing tasks
and also when creating new tasks from task templates or
from scratch. The information contained within the Task
Editor form can be divided into three parts.

The first part, at the top of the Task Editor form,
encompasses a number of attributes that could be
described as General Attributes.  As can be seen in Figure
7 there are two text fields to allow entry of a task name
(Name) and a comment (Comment) to describe the task.
Below these two fields are six other fields that take the
form of pull-down lists.  Duration is an integer specifying
the length of the task in hours.  Success Probability
allows the planner to specify the chance of success of this
task expressed as a percentage.  Environment specifies
the military environment to which this task belongs,
either Maritime, Air, Land or Joint.  Battlespace defines
the area in which the task will be acting, either in Close,
in Deep or in Rear.  Important tasks can be marked as
such using the Tags field – in this case the task is marked
with the DP (Decisive Point) tag.  The Trigger field
allows a trigger to be specified, such as a calendar date, to
trigger the execution of a task.  The values of these six
attributes can be changed using the associated pull-down
lists.

The second part is called Task Resources, which displays
and allows the editing of resource requirements for a task
to begin execution as well as any resource losses upon
successful task completion, interruption and failure.  A
set of four selections in the form of buttons is provided on
the left of this section.  They are labelled Required, Lost
if successful, Lost if interrupted, and Lost if failed.
Switching between these allows the editing of
corresponding resource requirements or losses.  This
section also contains two lists, called Task Resources and
Assigned Resources.  The Task Resources list contains
the list of resources associated with this task
corresponding to whichever of the four buttons that is
currently selected.  Figure 7 shows the Required field as
being currently selected.  The Assigned Resources list
corresponds to the pool of resources described earlier in
this section.  Between these two lists is a mechanism for
transferring resources from one to the other reflecting the
allocation of resources to tasks. The resources required
for any given task must be a subset of the resources
specified as Assigned Resources.  In addition, the
resource losses (on success, interruption or failure) for
any given task must be a subset of the resources required
for that task.

The third part called Task Conditions allows the pre-
conditions and post-conditions associated with this task to
be specified.

6 Lines of Operation Analysis
One of the primary aims of analysis is to support the
planner in obtaining the lines of operation for the COA
given the set of tasks, assigned resources, synchroni-
sations, and initial conditions. Another important aim is
to support the comparison between lines of operation by



Figure 7: Task Editor.

means of quantitative measures such as duration,
probability of success, and cost. For example, the
campaign duration, overall probability of success, and the
campaign cost in terms of the total loss of resources can
be calculated for each line of operation obtained in order
for the commander to make informed decisions. In this
paper we focus on how the possible lines of operation are
obtained.

An important aspect of the analysis is to support the
planner in identifying inconsistencies and deficiencies in
the set of tasks in the COA, and to determine whether the
COA is feasible, i.e. can be executed with assigned
resources. Problems in the COA will manifest themselves
by the absence of lines of operation leading to the desired
end state. Inconsistencies in a COA can for instance be
caused by conditions not having been established for
executing a certain essential task. If such inconsistencies
are detected, the planner will have to go back and modify
the COA, e.g. by adding new tasks, modify existing tasks,
and adding resources. The construction of a consistent
and feasible COA is therefore an iterative process.

The analysis in the COAST server is based on the state
space method of CPNs (Jensen 1992). The basic idea of
state spaces (also called reachability/occurrence graphs)
is to compute all possible executions of the CPN model
and represent these as a directed graph where the set of
nodes represents the set of reachable states and the arcs
correspond to transition occurrences. In terms of the CPN
Task model, the state space represents all possible ways
to execute the set of tasks in the COA given the assigned
resources and interactions between tasks in terms of

synchronisations, resources, and conditions. The structure
of the CPN Task model guarantees that the state space is
finite, i.e. has a finite number of nodes and arcs, for any
finite initial set of tasks, resources, and synchronisations.
Moreover, since tasks in a COA are only executed once,
the state space is an acyclic graph.

A path in the state space corresponds to the execution of a
set of tasks in the COA. The basic idea is to derive the
lines of operation for the COA from the paths in the state
space and return them to the COAST client. Figure 8
gives an example of how the lines of operations are
presented to the planner in a graphical form in the client.
In this example, a Gantt chart is used to visualize the
sequencing of tasks representing a single line of operation
returned from the server. Time markers have been placed
at 50-hour intervals, represented by vertical dashed lines.
Task names are listed in a column on the left, sorted in
ascending task start time order.  Each task is represented
by a rectangular bar, which is positioned according to the
task start time, and sized horizontally relative to the task
duration.

To obtain the lines of operation, the planner needs to
characterise the desired end states. This is done by
specifying a set of conditions that all must be satisfied for
a state to qualify as a desired end state. The generation of
the lines of operation is based on a breadth-first traversal
of the state space. The idea is to associate with each node
(state) of the state space the lines of operation that can
lead to this state. A line of operation is represented as the
start-time and end-time of each task. The lines of
operation for a given node (state) is computed from the



lines of operation associated with its immediate
predecessor states in the state space. The breadth-first
generation and the fact that the state space is acyclic,
ensure that the lines of operation have been fully
computed for the predecessor states of a given state S
before the lines of operation are computed for the state S.
The breadth-first generation also ensures that the shortest
lines of operation are obtained.

The breadth-first traversal starts from the initial state,
which has the empty lines of operation assigned to it.
When processing a state S during the breadth-first
traversal, the lines of operation for a successor state S' of
S are computed by adding the lines of operation
computed for S' until now (as it may have other
predecessors) and the lines of operation stored with S.
The lines of operation for S are extended before being
added to the lines of operation for S' in case the output
arc from S to S' corresponds to the start or termination of
a task.  Any duplicate lines of operations are removed
from the updated lines of operation stored with S'. This
removal of duplicates is required since the state space
represents all interleaved executions of the CPN Task
model, and hence two different paths in the state space
can represent the same line of operation in terms of start-
time and end-time for tasks. After S has been processed,
the lines of operation stored with S are deleted as they are
not required any longer. The breadth-first traversal is
truncated at states that qualify as desired end states
according to the set of conditions specified by the
planner. When the breadth-first traversal terminates the
lines of operation are obtained from the lines of operation
associated with the set of desired end states where the
breadth-first traversal was truncated.

The state space for a relatively simple COA with 11
tasks, 89 resources of different kinds, 16 conditions, 2
start-synchronisations, and 1 end-synchronisation had
only 144 nodes and 171 arcs, and could be generated in a
few seconds on a standard PC running Linux. The
generation of the lines of operation was also done in a
few seconds. A state space with 144 nodes and 171 arcs is
a small state space even for 11 tasks, and the main reason

for this is that the pre- and post-conditions of tasks puts
rather tight constraints on the possible interleavings of
tasks. This observation justifies that the often encountered
explosion in the number of reachable states caused by
representing all possible interleaved executions is not
going to be of major concern in analysing COAs and
obtaining the lines of operation. State spaces hence seem
to provide a feasible analysis approach.

7 Conclusions and Future Work
Planning in the defence context is a very important but
complex activity that requires the use of a military
commander's experience and intuition, supported by
suitable computer tools. The military planning process
commences with a mission statement by the commander,
which sets the highest-level objective for a military
campaign. To achieve this objective a set of strategies are
canvassed, which lead to the development of a number  of
COAs. These COAs are at a high-level of abstraction.
Each of these COAs specifies a set of tasks that need to
be sequenced in a manner that satisfies various
constraints (e.g. on resources), including the important
goal of achieving the desired outcome of the campaign.
Each COA can then be refined into a set of lines of
operation that specify the sequencing of tasks. These lines
of operation are then analysed and chosen for further
elaboration into a detailed plan.

This process can be seen to have similarities with the
notions of top down design (start with the most abstract
specification of the mission), utilising successive
refinement steps (see how to achieve the mission via
COAs, then determine the lines of operation, and
elaborate into a detailed plan), that are used in systems
and software engineering. This led us to consider the
application of formal methods to provide a rigorous
approach to the development of military plans.

In this paper we have presented COAST, a tool for COA
development based on CPNs. The specific benefits of
using CPNs lie in the capability to construct a highly
compact and highly parameterized CPN model where the

Figure 8: Visualisation of a line of operation.



COAs to be developed and analyzed are provided by
setting the initial marking (state) of the CPN model.
Moreover, CPNs allow models to be timed which is
necessary to obtain the lines of operation in the COA.
The specific benefit of using Design/CPN was that the
architecture of Design/CPN makes it possible to extract
the CPN model in executable form and embed it into
COAST. In effect this means that the process of
formalizing our conceptual framework for COA
development and COA task execution gives an
implementation of this framework that can be directly
used as the semantic foundation of COAST.

A prototype of COAST is now available, and has been
used to assess a military exercise. The paper shows how a
line of operation can be generated by COAST and
presented to the planner as a Gantt chart (a sequence of
time delineated tasks). This is just a first step. Further
feedback to the planner is envisaged, including presenting
problems with lines of operation, e.g. that are generated
but do not satisfy the desired properties of feasibility and
suitability.  We also believe that the approach presented
in this paper, and COAST, will be applicable in many
civilian domains such as emergency services planning
and deployment, foreign aid projects, developing logistics
for sporting events and large scale construction projects.
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