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Abstract

This paper introduces a Conceptual Data Model for
Data Warehouse including multidimensional aggrega-
tion. It is based on Entity-Relationships data model.
The conceptual data model gracefully extends stan-
dard Entity-Relationship data model with multidi-
mensional aggregated entities. The model has a clear
mathematical theoretic semantics grounded on stan-
dard ER semantics and the GMD logic-based multi-
dimensional data model. The aim of this work is not
to propose yet another conceptual data model, but to
find the most general and precise formalism consider-
ing all the proposals for a conceptual data model in
the data warehouse field, making therefore a possible
formal comparison of the differences of the models in
the literature, and to study the formal properties or
extensions of such data models.

1 Introduction

The goal of this work is to extend the standard
Entity-Relationship (ER) data model, as defined in
the database textbooks, with constructs which allow
the modeling of multidimensional aggregated entities
together with their interrelationships with the other
parts of the conceptual schema. An important as-
pect is that a formal model-theoretic semantics is to
be given to the conceptual data model by combin-
ing the well known first order semantics of standard
ER, as described for example, in (Borgida et al. 2003,
Calvanese et al. 1998)—with the model theoretic se-
mantics of the GMD logical multidimensional data
model (Franconi & Kamble 2003, 2004b). This work
is also based on a similar preliminary work done on
the use of Description Logics as a mean to give precise
semantics to a data warehouse conceptual data model
and to study its computational properties (Franconi
& Sattler 1999). This paper presents the formal as-
pects along with well defined model-theoretic syntax
and semantics of the conceptual data model intro-
duced in (Franconi & Kamble 2004a).

The proposed framework is a novel data warehouse
conceptual data model, CGMD–generalising concep-
tual multidimensional data models in the data ware-
house field. The aim of this work is not to propose
yet another data model, but to find the most gen-
eral, an elegant and precise formalism encompassing
all the proposals, for example, listed in (Phipps &
Davis 2002), for a conceptual data model in the data
warehouse field, making therefore a possible formal
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comparison of the different expressivities of the mod-
els in the literature.

The paper is organised as follows. Section 2 de-
scribes the CGMD model along with the required
extensions to the standard entity-relationships data
model. In Section 3 and Section 4, we present re-
spectively syntax and semantics of the CGMD model,
which are purely based on mathematical theory. Sec-
tion 5 reviews the related literature on multidimen-
sional conceptual models. Section 6 evaluates the
CGMD model against the criteria for a good concep-
tual multidimensional model. In Section 6, we present
comparison of the CGMD model with other multidi-
mensional models. Finally, in Section 8, we briefly
conclude the paper and outline the future work.

2 The CGMD Data Model

The CGMD model extends ideas of a data warehouse
conceptual data model first proposed in (Franconi
& Sattler 1999) where aggregations and dimensions
are first class citizens. It abstracts principles of data
warehouse and describes the multidimensional struc-
ture of the data of a business domain of an enterprise.

A CGMD model is based on an ER model. It
captures database schemata expressed in an entity-
relationship diagram and describes multidimensional
structure including dimensions with their hierarchi-
cally organised levels and the structure of aggrega-
tions. It extends standard ER schema with constructs
of aggregated entities together with their interrela-
tionships with the other parts of the schema. As
stated in (Agrawal et al. 1997), a “good” data ware-
house system should support user-definable multiple
hierarchies along the arbitrary dimensions. A CGMD
model is able to support user-definable multiple hier-
archies, and is able to express aggregations along the
arbitrary dimensions and levels.

2.1 The CGMD: an Extended Entity-
Relationship Model

This section describes the CGMD data model with
an ER model and presents the ER extensions. It also
presents methodology for data warehouse design from
the standard (operational) ER schema and the struc-
ture of aggregations.

We describe the model with an example of telephone
calls presented in Figure 1 (taken from (Franconi &
Sattler 1999)). Entities Calls, Day and Point, and
relationships such as Date, Dest and Source present
the base data. The cardinality constraints such as
(1,1) on the ”Date” relationship between ”Calls” &
”Day” entities, and the ”Source”/”Dest” (Destina-
tion) relationship between ”Calls” & ”Point” entities
express that the calls are issued on some dates from
some source points and receiving at some destination
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Figure 2: The Conceptual Schema for the Basic Multidimensional information for the base data considered in
Figure 1

points. The conceptual multidimensional data model
for this information (base data) we have obtained,
is exemplified in Figure 2. A basic multidimensional
entity such as Calls described in the diagram of the
figure 2 is using a standard star schema—i.e., it is
represented by means of a weak entity with respect
to its dimensions. In this example, this basic mul-
tidimensional entity may be useful for analysing the
nature of telephone calls by considering, among oth-
ers, the dimension related to the origin and the desti-
nation of the calls with respect to the type of phone
point (associated to consumer or business customers).
So, the entity Calls represents a basic cube whose
dimensions are Date, Dest and Source (identifying
relationships) which are restricted to the basic levels
Day, Point, and gain Point (associated entities) re-
spectively. This part of the diagram makes still use
of standard constructs.

Level building: For building the aggregation level
hierarchies for each dimension, we consider the fol-
lowing:

• discriminator of an entity (Elmasri & Navathe
2000)

• generalisation/specialisation hierarchy: creating
a single entity of all subclasses (possibly disjoint)
of a superclass.

• one-to-many relationship

• partial relationship

• many-to-many relationship: converting into one-
to-many relationships which are then converted
into levels as suggested in (Moody & Kortink
2000).

Taking these constraints into account, Figure 3
presents the multidimensional conceptual schema in-
cluding level hierarchies for each dimension. Outer

boxes indicate levels; and inner boxes are their ele-
ments. The bold arrows (from lower level to higher
level) denote hierarchy. The levels “Pointtype” and
“Customertype” are created from the partitions of
”Point” entity. An entity Point is partitioned (ac-
cording to an attribute ”type”—a discriminator (El-
masri & Navathe 2000)) into four basic points and
two higher level points. Pointtype aggregates four
basic point types (partitions) namely, Cell, Land
Line, Direct Line & PABX, and Customertype ag-
gregates higher level two (partitions) points types
(partitions) viz Consumer and Business. Thus,
first three constraints namely, discriminator, general-
isation/secialisation, one-to-many relationships hold.
Similarly, Date dimension multiple hierarchies (for in-
stance, hierarchy including the levels DAY, Month,
Qtr, Year) are created. The Holiday-Nonholiday level
aggregates all holidays and non-holidays. However,
in this case, Holiday or Nonholiday is an optional
level as the relationship between Day and Holiday or
Nonholiday is partial, hence, partial relationships. In
running example, we do not have many-to-many rela-
tionships, however, handling them is straightforward
as suggested in (Moody & Kortink 2000).

Aggregation:

We now perform the analysis of telephone calls along
the arbitrary dimensions. For example, a query
“Analyse telephone calls by day and point type?” is a
bi-dimensional cube along the Date and the Source di-
mensions involving the level Day and the level Point-
type respectively. A conceptual schema for this query
includes the definition of the basic cube (Figure 2)
and the definition of the aggregation along the defi-
nitions of associated levels, i.e., a new aggregated en-
tity Calls-by-Day-and-Pointtype denoting aggre-
gations according to the basic level Day and the level
Pointtype along the dimensions Date and Source re-
spectively. Figure 4 presents the conceptual schema
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Figure 3: The Multidimensional Conceptual Schema for the data considered in Figure 1.

for this aggregated cube (query) in the variant of an
Entity-Relationship model. This particular way of
presenting aggregation (entity) is adapted from UML
(Unified Modeling Language) syntax.

Now consider a multidimensional aggregated view,
for example, “analysis of telephone calls by week
day and customer type”, composing telephone calls
along the Date and the Source dimensions involv-
ing levels Weekday and Customertype respectively.
The conceptual schema for this aggregated view in-
cludes the definition of the basic cube and the defi-
nition of aggregation, i.e., a new aggregated entity,
say Calls-by-Weekday-and-Customertype (along
with the definitions of the level Weekday and the
level Customertype) denoting aggregations accord-
ing to the level Weekday and the level Customertype
along the Date and the Source dimensions respec-
tively. Figure 5 presents the conceptual schema in the
variant of an ER model. This bi-dimensional aggre-
gated view is actually computed from an aggregated
cube of Figure 4. This indicates that the aggregations
can be computed from pre-computed aggregations.

2.2 Extensions to the ER Model

As described above, a first extension to the standard
ER Model can be seen with simple aggregated
entities—i.e., non-dimensional aggregations—
Weekday and Customertype, which represent
dimensional levels built from the basic dimensional
entities Day and Point respectively. A simple aggre-
gation aggregates the collection of objects that are in
the extension of the aggregated entities. So, in our
example, since entities Mon,...,Sun form a partition
of the entity Day, the Weekday entity denotes exactly
seven objects, one for all the Mondays, one for all the
Tuesdays, etc. On the other hand, the aggregated
entity Customertype denotes exactly two objects,
one aggregating all customer phone points and the
other aggregating all business phone points. In this,
by interleaving partitioning and simple aggregations,

we are able to construct level hierarchies starting
from some basic dimensional level. Obviously, the
functional dependencies exist among the levels of a
hierarchy, as analysed by (Golfarelli et al. 1998).

A second extension to the standard ER model is
the multidimensional aggregated entity exem-
plified in Figure 5 by the entity Calls-by-Weekday-
and-Customertype and in Figure 4 by the en-
tity Calls-by-Day-and-Pointtype. The entity
Calls-by-Weekday-and-Customertype denotes all
the cells of a cube whose coordinates are the week-
days of the date of the calls, and the customer types
of the originators of the calls. Such an entity (i.e., ex-
tension) holds the necessary constraints enforced for
a cube by the GMD-based semantics (Franconi &
Kamble 2003, 2004b).

A multidimensional aggregated entity is an en-
tity itself in the ER diagram, and it can have
attributes (for instance, total no of calls and aver-
age duration in Figure 5 or Figure 4, and can be
computed with associated aggregation functions, i.e.,
sum(no of calls) and average(duration) respec-
tively) and can be part of further relationships or
constraints.

3 Syntax of the CGMD Data Model

The basic constructs of the ER schema are entities,
relationships. and attributes. Entity is drawn as a
rectangle around the entity symbol (entity name),
whereas relationship between the entities is drawn as
a diamond around the symbol (relationship name).
An attribute is drawn as a circle or oval outside or
around the attribute symbol (attribute name). ER-
roles are the edges (links) between entities and re-
lationships and are labeled with number restrictions
called cardinality constraints. An is-a link constraint
is drawn as an arrow from more specific entity (sub-
class) to more general entity called superclass (respec-
tively from more specific to more general relation-
ship). The disjoint-total constraint is drawn with a
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circle having ”d” inside, connecting subclasses with
the edges and a superclass with a double-lined ar-
row from the circle to a superclass. Weak entities
are represented as double-lined rectangles, whereas
identifying relationships are denoted by double-lined
diamonds. Aggregated entity (simple aggregation) is
drawn as rectangle attached with diamond, whereas
multidimensional aggregated entity is drawn as shad-
owed rectangle attached with diamond.

Formally, the syntax of an Extended Entity-
Relationship (EER) model is as follows.

Definition 1 (EER schema) An EER schema is
constructed over the signature S = < E ,R,A,U ,V ,�
, card, {| · |} > where

• E is a finite set of entity names,

• R is a finite set of relationship names, each as-
sociated with an arity k,

• A is a finite set of attribute names,

• U is a finite set of ER-role names,

• V is a finite set of domain names,

• �⊆ E ×E ∪ R×R is a binary relation over E
and R

• card is a function such that card(E,R,U) =
< cmin(E, R, U), cmax(U) >∈ N × N where
cmin(E,R,U) ≤ cmax(E,R,U) for each E ∈ E,
R ∈ R, U ∈ U .

• {| · |} models aggregation over E.

An EER schema E over the signature S is

• a finite set of entities E ∈ E,

• a finite set of relationship constraints R of an
arity k such that R

.
= [U1 : E1, . . . ,Uk : Ek]

where R ∈ R, Ei ∈ E and Ui ∈ U for each i,
1 ≤ i ≤ k,

• a finite set of attribute constraints Ai ∈ A such
that E

.
= {A1 : V1, . . . ,An : Vn} where Ai ∈ A,

Vi ∈ V, E ∈ E is in E for each i, 1 ≤ i ≤ n,

• a finite set of is-a link constraints between two
entities E1 and E2 such that E1 � E2, (respec-
tively between two relationships R,S such that
R � S),

• a finite set of disjoint-total constraints between
more specific entities E1 . . .En and a more gen-
eral entity E such that E1 � E, . . . , En � E
where Ei 6= Ej for i 6= j, i ≤ n; j ≤ n, E, Ek ∈ E
for each k, k = 1, . . . , n



• a finite set of aggregation links between entities,
each aggregation link in E is drawn as an edge
with attached diamond at one end

• a finite set of simple aggregations G ∈ E involving
n entities F1, . . . ,Fn (each being connected with
an aggregation link to G)

• a finite set of aggregations G involving (con-
necting) n relations D1,. . . ,Dn and n entities
L1,. . . ,Ln and a weak entity F.

Before giving the formal semantics of the EER model,
we describe intuitively the components of the EER
Schema. An entity denotes a set of objects called
instances that have common properties. The elemen-
tary properties are modelled with attributes whose
values belong to one of several predefined domains
such as Integer, Real, String, or Boolean. The prop-
erties that are due to relations to other entities are
modelled through the participation of the entities in
the relationships. A relationship denotes a set of tu-
ples called its instances, each of which represents an
association among different combination of instances
of the entities that participate in the relationship.
Each entity can participate in a relationship more
than once. Such participation is represented by an
ER-role. Each ER-role is assigned a unique name.
Number of ER-roles associated to a relationship is
called the arity of that relationship. The cardinal-
ity constraints (number restrictions) are associated
to ER-role in order to restrict the number of times
participation of each instance of an entity via that
ER-role in instances of the relationship. The min-
imum cardinality is either 0 (zero) or 1 (one) and
maximum cardinality is either 1 or ∞. An is-a link
is modelled by � and is used to denote the inclusion
between two entities (respectively between two rela-
tionships) and therefore more specific entity (respec-
tively relationship) inherits properties of more general
entity (respectively relationship).

Weak entity is a dependent entity which is identi-
fied by considering the primary keys of participation
of other entities via relationships (called weak rela-
tionships) to which it is connected via ER-roles, each
having minimum and maximum cardinalities equal to
1. Each instance of weak entity is a composition of
instances of participating entities (one instance per
entity).

A fact is represented as weak entity (aggregated
fact as aggregated weak entity). The dimensions are
represented as relationships (weak relationships) and
levels are represented as entities (also including aggre-
gated entities). An entity (level) directly connected
to a (weak) relationship (dimension) is called a ba-
sic level for that dimension. A roll-up link between
two levels (entities) is modeled by a roll-up function ρ
which maps lower level elements (instances) to higher
level elements (instances). Simple aggregation is rep-
resented by an aggregated entity which is a composi-
tion of entities (to which it is connected with lines).
i.e., Simple aggregation involves a finite set of enti-
ties on which it is based on. An n-dimensional ag-
gregation is represented by an aggregated weak en-
tity connecting n relationships (dimensions), n enti-
ties (levels) by connecting them via n circles (one per
relationship and per entity), and a weak entity (fact
on which aggregation is based on) connecting to it
(with line), i.e., an n-dimensional aggregation is rep-
resented by an aggregation (aggregated weak entity)
involving n dimensions (each being a relationship), n
levels (each being an entity or aggregated entity) and
a fact (weak entity) on which aggregation is based
on. That is an n-dimensional aggregation involves n
dimensions, n levels (one per dimension) and a fact

it is based on. Each instance of n-dimensional ag-
gregation is called a cell which is a composition of n
elements (instances) of n levels (one element/instance
per level) of n dimensions involved in the aggregation.
In rest of the paper, we will many times use only ”ag-
gregation” to refer multidimensional or n-dimensional
aggregation.

4 Semantics of the CGMD Data Model

The semantics of an EER Schema is given in terms
of legal data warehouse states, i.e., data warehouses
which conform to the constraints imposed by the
schema. We consider as a starting point the ER
semantics introduced in (Calvanese et al. 1998), re-
casted to cope with multidimensional information.
For we consider GMD, the logical multidimensional
data model introduced in (Franconi & Kamble 2003).
GMD abstracts notions such as levels, multiple
level hierarchies, dimensions, facts, cells, aggregation,
cube, coordinates and measures. A central element
in GMD is a cube. A cube defined on all specified
dimensions with their basic levels is called a basic
cube, otherwise, it is called an aggregated cube. A
cube is computed from a cube. An aggregated cube
is computed from a cube on which the aggregation
is based on. The GMD introduces a notion of data
warehouse state. A data warehouse state is a collec-
tion of cells (with their dimensions and measures). A
data warehouse state is legal if it satisfies the above
cube conditions.

Definition 2 (EER Semantics) A data warehouse
state I = < ∆, Γ, ·I > over the signature <
E ,R,A,U ,V ,�, card, {| · |} > with respect to the EER
schema E is constituted by

• ∆ a nonempty finite set assumed to be different
from all domains,

• Γ a finite set of (concrete) domains

• ·I an interpretation function such that

– VI ⊆ Γ for each V ∈ V, where VI is
disjoint from any other WI such that W ∈ V

– EI ⊆ ∆ for each E ∈ E, where EI is
disjoint from any other E’I such that E’∈ E

– AI ⊆ ∆ × V I for each A ∈ A, and for
some V ∈ V

– RI ⊆ ∆ × . . . × ∆ = ∆k for each k-ary
relationship R ∈ R such that a tuple r ∈
RI is of the form [U1:e1,. . . ,Uk:ek], where

ei ∈ EI
i , for each i ∈ {1, . . . , k}.

A tuple r ∈ RI over ∆ can be viewed as a function
that maps each ER-role Ui to ei ∈ Ei and is denoted
by [U1:e1,. . . ,Uk:ek], i.e., r[Ui] = ei ∈ Ei for each
i, i = 1, . . . , k.

The elements of EI ,AI , and RI are called instances
of E, A, and R, respectively.

A data warehouse state I = < ∆, Γ, ·I > is said to be
legal for an EER schema E, if it satisfies the follow-
ing:

• EI
1 ⊆ EI

2 for each is-a link in E between two
entities E1,E2 in E such that E1 � E2

Similarly RI
1 ⊆ RI

2 for each is-a link between
relationships R1,R2 i E such that R1 � R2



• AI(e) ∈ VI for each e ∈ EI , where A ∈ A is an
attribute of E with domain V ∈ V.

Similarly, AI(r) ∈ VI for each r ∈ RI , where
A ∈ A is an attribute of R with domain V ∈ V

• RI ⊆ EI
1 × . . . × EI

k for each relationship R in
E connected to entities E1,. . . ,Ek in E

• cmin(E, R, U) ≤ #{r ∈ RI | r[U ] = e} ≤
cmax(E, R, U)
for each U ∈ U , associated to R ∈ R and
E ∈ E in E, for each e ∈ EI , and cardi-
nality constraint card(U) = (min, max) asso-
ciated with ER-role U where cmin(E, R, U) =
min and cmin(E, R, U) = max

• for each disjoint-total construct in E where E is
a superclass and E1,. . . ,En are subclasses (parti-
tions), the following must hold:

EI
i ⊆ EI for each i = 1, . . . , n and

EI
i ∩ EI

j = ∅ for each i 6= j, and

EI ⊆ EI
1 ∪ . . . ∪ EI

n

• for two connected levels Li, Lj (each one being
an entity or simple aggregation) in E there must
be a (possibly partial) roll-up function ρLi,Lj

such
that

ρLi,Lj
(x) = y for each x ∈ LI

i and y ∈ LI
j Li,

Lj ∈ E,

We define reflexive transitive closure of roll-up
function ρ∗

Li,Lj
(from Li to any higher level Lj if

there is a level Lk along the path between Li and
Lj)
inductively as follows:

ρ∗
Li,Li

= id

ρ∗
Li,Lj

=
⋃

k ρLi,Lk
◦ ρ∗

Lk,Lj
for each k such

that Li � Lk

where

(ρLp,Lq
∪ ρLr ,Ls

)(x) = y

iff

{

ρLp,Lq
(x) = ρLr ,Ls

(x) = y, or
ρLp,Lq

(x) = y and ρLr,Ls
(x) = ⊥, or

ρLp,Lq
(x) = ⊥ and ρLr,Ls

(x) = y

• for each fact F ∈ F (being a weak entity) in E

with p dimensions D1, . . . ,Dp (each one being an
identifying relationship) and corresponding p lev-
els L1, . . . ,Lp (each one being an entity or sim-
ple aggregation) in E for i = 1, . . . , p, Mj ∈ A,
Vj ∈ V for j = 1, . . . , m,

the following holds (GMD cube conditions):

1. ∀f. F(f) → ∃l1, . . . , ln. D1(f) = l1∧L1(l1)∧
. . . ∧ Dn(f) = ln ∧ Ln(ln)

2. ∀f, f ′, l1, . . . , ln. F(f) ∧ F(f ′) ∧
D1(f) = l1 ∧ D1(f

′) = l1 ∧ . . . ∧
Dn(f) = ln ∧ Dn(f ′) = ln → f = f ′

• for each aggregation G in E involving n dimen-
sions D1, . . . ,Dn and n levels R1, . . . ,Rn (one
per dimension) and a fact F:

G
.
= F {D1 |R1 , . . . ,Dn |Rn

}

where F
.
= E {D1 |L1

, . . . ,Dp |Lp
} such that

n ≤ p

the following must hold:

∀g. GI(g) ↔
g = {|f | FI(f)∧

∧

h=1,...,p(ρ
∗

Lh,Rh
(DI

h(f)) = DI
h(g))|}

for each n ≤ p, {| · |} denotes aggregation.

Each aggregated cell is an aggregation of cells whose
coordinates roll-up to the coordinates associated with
an aggregated cell on which it is based on.

Thus, a particular EER diagram denotes a set of data
warehouse states. According to GMD, a particular
EER schema is a set of legal data warehouse states,
if they (data warehouse states) satisfy the cube (to-
gether with the aggregated cube) conditions imposed
by the GMD schema, i.e., the set of all possible data
warehouse states which conform to the constraints im-
posed by the GMD schema, conform to the diagram
it self —i.e., they are legal data warehouse states. If a
diagram is inconsistent, then no data warehouse may
conform to it.

5 Related Work

Several proposals on a conceptual model exist in the
data warehouse field. The only proposals by (Gol-
farelli et al. 1998, Sapia et al. 1998, Tryfona et al.
1999, Husemann et al. 2000, Zepeda & Celma 2006)
address the conceptual model in a real fashion. The
proposals by (Perez et al. 2005, Berenguer et al. 2005)
address UML model (Perez et al. 2005) based on
star schema, and propose the quality indicator met-
rics (Berenguer et al. 2005) for the conceptual model,
although their work is based on UML modeling.

In (Golfarelli et al. 1998), a Dimensional Fact
Model (DFM) is constructed from an operational ER
schema based on requirement analysis. The con-
struction methodology is well defined. It is rela-
tional and is based on star schema. DFM does not
support generalisation/speciaisation hierarchies and
many-to-many relationships. In the similar manner,
Zepeda and Celema (Zepeda & Celma 2006) pre-
sented a Model Driven Architecture (MDA) for pro-
ducing candidate multidimensional schemas from op-
erational ER schema based on requirement analysis.
Each of the candidate schema is based on star schema.
However, a model supports generalisation hierarchies
and many-to-many relationships. A mapping is pre-
sented for transformation of candidate (multidimen-
sional) ER schema to cube, dimensions, levels, and
measures. In both DFM and MDA, no aggregation is
defined at conceptual schema level.

In (Kimball 1997, 1996), a multidimensional mod-
eling manifesto using multidimensional view of enter-
prise data has been proposed; it is a relational im-
plementation in the form of “star schema”. This ap-
proach is not conceptual in the sense that it is not
independent of the implementation.

A multidimensional conceptual model called Mul-
tiDimER model based on ER model has been pro-
posed in (Malinowski & Zimanyi 2006). The model
is based on star and snowflake schema. The features



such as generalisation/specialisation hierarchies, com-
posite attributes, aggregations, etc have not been con-
sidered in this model. The model is well defined. It
is based on the ER model and its logical representa-
tions. A conceptual model proposed by (Abello et al.
2006) is based on UML and its extensions, empha-
sizing on part-hole relationships for aggregation but
does not support aggregations at the schema level.

None of these proposals addresses conceptual
structure of aggregation. They only derive basic
multidimensional schema from the given ER schema.
Moreover, all these models need to specify design
methodology such as information analysis, require-
ment analysis and specifications, etc (Golfarelli et al.
1998, Husemann et al. 2000) manually. The only pro-
posal by (Franconi & Sattler 1999) for data ware-
house conceptual model presents the structure of
multidimensional aggregation; and it automates the
construction of multidimensional conceptual schema
from an ER diagram. The CGMD model is purely
conceptual and addresses all the issues from data
warehouse construction to aggregations and view
management. The CGMD takes care of all con-
straints of the standard ER model in addition to mul-
tidimensional constraints. This shows CGMD is syn-
tactically and semantically richer than the other mod-
els.

6 Evaluation of the CGMD model

In this section, we evaluate the CGMD data model
according to certain criteria found for a multidimen-
sional conceptual model in the literature. We also
compare CGMD with other models. For evalua-
tion, we consider some criteria listed in (Blaschka
et al. 1998), nine requirements introduced in (Peder-
sen & Jensen 1999), and several requirements found
in (Abello et al. 2001) for a data warehouse mul-
tidimensional model. We also consider some addi-
tional requirements which are also important for a
data warehouse multidimensional conceptual model.
All these requirements are randomly listed below.

1. Implementation independent (Blaschka et al.
1998):

2. Explicit Separation of Structure and Con-
tents (Blaschka et al. 1998):

3. Explicit hierarchies (Blaschka et al. 1998, Peder-
sen & Jensen 1999): A model should support the
explicit hierarchy in the dimension.

4. Symmetric treatment for dimensions and mea-
sures (Blaschka et al. 1998, Pedersen & Jensen
1999): A model should allow measures to be
treated as dimensions and vice versa.

5. Multiple hierarchies in dimension (Pedersen &
Jensen 1999):

6. Dimension/level attributes (Abello et al. 2001):
A model should specify the attributes that do
not define hierarchies.

7. Support for aggregation (Pedersen & Jensen
1999): A model should be able to provide mean-
ingful aggregations.

8. Complex Measures (Blaschka et al. 1998): A
model should support multiple and complex mea-
sures for the same fact (cube).

9. Handling different levels of granularity (Pedersen
& Jensen 1999):

10. Support for non-onto hierarchies (Pedersen &
Jensen 1999): A model should support non-onto
(unbalanced) hierarchies, i.e., hierarchies with
paths of different lengths.

11. Support for non-strict hierarchies (Pedersen &
Jensen 1999): A model should support non-strict
hierarchies.

12. Support for many-to-many relationships (Peder-
sen & Jensen 1999):

13. Generalisation/specialisation hierarchies (Abello
et al. 2001): A model should support genenalisa-
tion/specialisation (is-a) relationships.

14. Handling change over time (Pedersen & Jensen
1999):

15. Handling uncertainty

16. Multi-cube/fact schema (Abello et al. 2001): A
model should support multiple cubes/facts in
schema.

Since in CGMD one cube/fact is based on an-
other, it (CGMD) allows

17. Summarisability: A model should support sum-
marisation (Lez & Shoshani 1997).

18. User defined Aggregation functions (Abello et al.
2001): A model should support user defined ag-
gregation functions.

19. Drill-across (Abello et al. 2001): A model should
allow to drill-across (sharing dimensions).

20. Dimensionless aggregation

21. Measureless aggregation

22. Aggregation from aggregation (view over view)

The CGMD model fulfills all the above require-
ments 1–22 except requirements 4, 12 and 14. Re-
quirements 4 and 12 are partially supported, how-
ever, requirement 4 can be fully supported if the
measure is used as coordinate. The requirement 14
is not supported as no syntactical provision is made
for changing dimensions/levels in CGMD. In addi-
tion, the CGMD model supports aggregations at any
higher level (ignoring intermediate levels). This is one
of the important characteristics of the CGMD model.

7 Comparison of CGMD with other models

In this section, we evaluate other models against the
same requirements listed in Section 6, and compare
them with the CGMD model which is already evalu-
ated in Section 6.

We consider the models proposed in (Golfarelli
et al. 1998, Sapia et al. 1998, Tryfona et al. 1999,
Husemann et al. 2000) for comparison as they are
conceptual models in true sense. However, models
proposed in (Tsois et al. 2001, Abello et al. 2001, Pei
2003, Jensen et al. 2004), and (Trujillo et al. 2001) (an
object oriented model— extension of (Trujillo et al.
2000)) are also taken into consideration for compari-
son because they are current state-of-the-art models,
and are also conceptual in some way or other. Ta-
ble in Figure 6 presents summary of comparison of
these models. As before, if a model meets a particu-
lar requirement/feature/functionality fully, then it is
denoted by ”

√
”. If a model supports the requirement

partially then it denoted by “p”, and if a model does
not support it at all then it is denoted by “x”.



Requirement 1 (Implementation independent) is par-
tially supported by a model of (Abello et al. 2001),
since it is a multi-star schema based on concepts
of star model. Remaining models (Kimball 1996,
Golfarelli et al. 1998, Jensen et al. 2004, Pei 2003),
can not be considered implementation independent
as they are either relational (Kimball 1996) or based
on star schema ((Golfarelli et al. 1998)), a relational
model or designed for a specific domain (Jensen et al.
2004, Trujillo et al. 2001, Pei 2003) implementation,
for example, clinical domain (Jensen et al. 2004), and
thus provide no support.

Requirement 2 (Explicit Separation of Structure
and Contents), requirement 3 (Explicit hierarchies),
requirement 5 (Multiple hierarchies) and require-
ment 8 (Complex measures) are met by all of the
models (except star schema (Kimball 1996) for re-
quirement 3), thus provide full support. Star schema
does not support explicit hierarchy, and consequently
does not support the requirement 3.

Requirement 6 (Dimension/level attributes). Only
one model (Jensen et al. 2004) does specify the at-
tributes that do not define hierarchies, hence pro-
vides no support. Remaining models specify the non-
dimension attributes, thus provide full support.

Requirement 4 (Symmetric treatment for dimensions
and measures), only one model (Jensen et al. 2004)
captures this feature by means of derivation mech-
anism, thus providing full support. Some mod-
els (Abello et al. 2001, Tryfona et al. 1999) do not
consider measure explicitly as dimensions but condi-
tionally if the measure is used to identify a cell, thus
providing partial support. Remaining models (Gol-
farelli et al. 1998, Sapia et al. 1998, Husemann et al.
2000, Tsois et al. 2001, Trujillo et al. 2001, Pei 2003),
do not consider this feature in the framework and thus
provide no support.

Requirement 7 (Support for correct aggregation) is
met by a very few models (Abello et al. 2001, Jensen
et al. 2004) either by derivation through some op-
erations (Abello et al. 2001) or by restricting hierar-
chies to strict, covering and onto through some deriva-
tions so that data will not be double counted, thus
provide full support. Only one model (Tsois et al.
2001) does not support this requirement because of
including many-to-many relationships between facts
and dimensions and among the hierarchies. Remain-
ing models partially support this feature either by re-
stricting the dimension/hierarchies and aggregation
functions (Golfarelli et al. 1998) or hierarchies to
strict, onto and covering, and restricting aggregation
functions (Sapia et al. 1998, Husemann et al. 2000,
Tsois et al. 2001, Trujillo et al. 2001, Pei 2003).

Requirement 9 (different levels of granularity) A very
few models (Tsois et al. 2001, Abello et al. 2001)
captures different levels of granularity (i.e., measures
at different levels of granularity) either by aggrega-
tion (Tsois et al. 2001) or by specialising the cells
depending on whether the measure is derived or not.
Only one model (Jensen et al. 2004) captures this fea-
ture partially through some derivation. Rest of the
models do not capture this feature, and hence pro-
vide no support.

For Requirement 10 (Support for non-onto hierar-
chies), only three models (Trujillo et al. 2001, Tsois
et al. 2001, Jensen et al. 2004) fully support this fea-
tures. Remaining models provide no support.

Requirement 11 (Support for non-strict hierarchies)
is fully supported by only two models (Jensen et al.
2004, Tsois et al. 2001). Remaining models provide
no support.

Requirement 12 (Support for many-to-many relation-
ships). A model of (Tsois et al. 2001) supports many-
to-many relationships between facts and dimensions
but does not support many-to-many relationships be-
tween hierarchies. Only four models (Tryfona et al.
1999, Trujillo et al. 2001, Abello et al. 2001, Jensen
et al. 2004) of the other models support both many-
to-many relationships between facts and dimensions
and between hierarchies. Rests do not support many-
to-many relationships.

Requirement 13 (Generalisation/specialisation hier-
archies). Support provided by (Sapia et al. 1998,
Tryfona et al. 1999, Abello et al. 2001, Trujillo et al.
2001, Jensen et al. 2004) is considered partial, because
generalisation/specialisation is considered in the hier-
archy but is rather kept to distinguish the contents,
thus providing partial support. Remaining models do
not support this feature.

Requirement 14 (Change over time in data) and Re-
quirement 15 (Uncertainty in data) are supported by
a model (Jensen et al. 2004) by attaching a time tag
attribute to dimension values for probabilistic mea-
surements of occurrences of facts and dimension val-
ues. A model of (Abello et al. 2001) supports require-
ment 14 only by changing the schema with appropri-
ate time tags, but does not support requirement 15.
Remaining models do not support both features.

Requirement 16 (Multi-cube/fact schema). Only one
model (Abello et al. 2001) allows multiple stars in a
single schema. However, which dimensions/levels be-
long to which star schema are not clearly reflected in
this model in any way, thus providing partial support.
Remaining models do not meet this feature, thus pro-
vide no support.

Requirement 17 (Summarisability). The only mod-
els such as (Abello et al. 2001) and (Jensen et al.
2004) provide full support, either by applying some
algebraic operations to make part-whole relationships
between levels and then applying aggregation func-
tions (Abello et al. 2001) or by computing weight-
ing factor between facts and dimensions and makes
full covering relationship between levels in the ag-
gregation path (Jensen et al. 2004). Some models
such as (Trujillo & Palomar 1998, Trujillo et al. 2000,
2001), (Golfarelli et al. 1998), and (Tryfona et al.
1999) specify possible functions that can be applied
in order to support summarisation, but do not pro-
vide with a specific operation application, thus pro-
vide only partial support. Remaining models do not
support summarisation.

Requirement 18 (user defined aggregation function).
The only model of (Abello et al. 2001) supports this
feature since it based on UML which allows user de-
fined operations. Rest of the models provide no sup-
port.

Requirement 19 (Drill-across). The only model of
(Abello et al. 2001) allows drill-across because of shar-
ing multi-star dimensions, thus, providing full sup-
port. Some models such as Star (Kimball 1996) (con-
stellation) and DFM (Golfarelli et al. 1998) share di-
mensions but limit drilling mechanism and hence pro-
vide partial support. Remaining models provides no
support.

Requirement 20 (Dimensionless aggregation) and Re-
quirement 22 (aggregation from aggregations) are
not met by any of the other models. Require-
ment 21 (measureless aggregation) is partially sup-
ported by only two models star (Kimball 1996) and
DFM (Golfarelli et al. 1998) by exploring the possi-
bility of having factless (measureless) fact but they
do not address or reflect aggregation in any way.
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Figure 6: Comparison between CGMD and other Multidimensional Models

8 Conclusions and Future work

There are several proposals on multidimensional mod-
eling and data warehouse design. So far, there is no
consensus on modeling and design method yet (Rizzi
& Abello 2006). The CGMD data model gives uni-
form way of modeling multidimensional concepts,
data warehouse design and aggregations. Thus, gen-
eralising the design of data warehouse and provid-
ing the uniform way for view management. It is a
framework where to translate and compare concep-
tual properties and expressive power of different ex-
pressivities of the models and related extensions. The
CGMD model is to help cost effective design of the
data warehouse, update propagation and view man-
agement of multidimensional data. Our future work is
based translation of CGMD into Description Logic–a
language for reasoning mechanism.
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