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Abstract

With the ubiquity of data collection in today’s society,
protecting each individual’s privacy is a growing con-
cern. Differential Privacy provides an enforceable def-
inition of privacy that allows data owners to promise
each individual that their presence in the dataset will
be almost undetectable. Data Mining techniques are
often used to discover knowledge in data, however
these techniques are not differentially privacy by de-
fault. In this paper, we propose a differentially pri-
vate decision forest algorithm that takes advantage of
a novel theorem for the local sensitivity of the Gini
Index. The Gini Index plays an important role in
building a decision forest, and the sensitivity of it’s
equation dictates how much noise needs to be added
to make the forest be differentially private. We prove
that the Gini Index can have a substantially lower
sensitivity than that used in previous work, leading to
superior empirical results. We compare the prediction
accuracy of our decision forest to not only previous
work, but also to the popular Random Forest algo-
rithm to demonstrate how close our differentially pri-
vate algorithm can come to a completely non-private
forest.

Keywords: Differential Privacy, Decision Forest, Data
Mining, Machine Learning, Privacy.

1 Introduction

Data collection and analysis plays an ever-growing
role at in all facets of society, whether it be economic,
medical, political, militaristic, academic or anything
in between. For some of these areas, people’s pri-
vacy is a concern that needs addressing. This most
often occurs when data is collected about individu-
als, with some of the data being “sensitive” – that is,
data that an individual would not like becoming pub-
lic knowledge. Regardless of individuals’ motivations
for a desire for privacy, it is considered a basic human
right by many, including the U.N. (UN General As-
sembly 1948), and is codified in many country’s laws.
It is therefore vital that when a company, govern-
ment agency, or any other party is performing data
collection and analysis, they have methods for guar-
anteeing the privacy of those individuals whose data
is being used. In many situations, individuals may
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simply refuse to offer their data for collection if they
do not have a privacy guarantee.

Differential privacy (Dwork 2006, Dwork et al.
2006, Dwork 2007, 2008, 2011, Dwork & Roth 2014,
McSherry & Talwar 2007, McSherry 2009) is one
such method for guaranteeing individuals’ privacy.
It does so by making a promise to each individual
who supplies information to a dataset: “Any infor-
mation that could be discovered about you with your
data in the dataset could also, with high probability,
be discovered without your data in the dataset”. In
other words, the output of any query Q performed on
dataset D will be indistinguishable from the output
of the same query Q performed on dataset D′, where
D′ differs from D by at most one record (the record
of any individual). The privacy guarantees made by
differential privacy are far greater than those made
by other popular privacy-preservation methods, such
as k-anonymity (Sweeney 2002, LeFevre et al. 2005)
or other generalization or noise addition techniques
(Fung et al. 2010, Fletcher & Islam 2015). We define
differential privacy in full in Section 2.1.

If the output of Q is to be restricted in some way
to enforce differential privacy, the next question is
“How do we enforce differential privacy while still out-
putting useful knowledge?”. It is this question that
we will answer, by querying the dataset in a way that
allows us to produce a high quality, differentially pri-
vate Decision Forest. A Decision Forest is the term
used for a collection of different Decision Trees, which
are a common type of classifier used in Data Mining.
Decision Trees work by iteratively selecting attributes
in the dataset that can most accurately classify a
“class attribute”1. When an attribute is selected,
the records in the dataset are split up according to
what value they have for the chosen attribute2. For
each of these partitions, the process is then repeated
until a termination condition is met. Common ter-
mination conditions include a maximum number of
times a partition will be split, a minimum number of
records remaining in a partition, or when a partition
can classify the class attribute with 100% accuracy.
Our proposed Decision Forest will be based off CART
(Breiman et al. 1984), and is explained in more detail
in Section 2.2.

1.1 Problem Statement

Dataset D is a two-dimensional matrix of rows and
columns, where each row (i.e. record) r ∈ D de-

1The class attribute is the attribute that the user wishes to
accurately predict the value of for future records, where the value
is not known.

2The process is slightly different for continuous attributes that
lack discrete values, but we will be focusing on discrete (i.e. cate-
gorical) attributes in this paper. Note that methods exist to “dis-
cretize” continuous attributes (Kotsiantis & Kanellopoulos 2006).
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scribes a single individual, and each column is an
attribute a in the set of attributes A. Each r pos-
sesses one discrete value v ∈ a;∀a ∈ A. We sym-
bolize that record r has value v for attribute a by
writing ra = v. The subset Dav ⊆ D is the subset
in which ra = v;∀r ∈ Dav . A subset with multi-
ple value requirements is denoted similarly, with each
requirement separated by a comma (see Figure 1).

Each r also has a class value c, from the class at-
tribute C. The aim of a decision forest is to correct
predict rC (the class value c of record r) for records
r ∈ B : B ∩D = ∅, where B and D are drawn from
the same population.

A user is given limited access to D, in which they
are allowed to query D in an ϵ-differentially private
way. For any given query Q, the value of ϵ can be
equal to or less than the amount provided to the user
by the data owner. We define this amount as the total
privacy budget β, and will be dividing β into smaller
parts for each query Q.

Our aim is to build τ decision trees (0 < τ < ∞)
by only submitting ϵ-differentially private queries Q
to D, and without exceeding our total budget β. The
decision trees should be of acceptably high quality so
that meaningful knowledge can be discovered.

1.2 Our Contributions

Our contributions can be summarized as the follow-
ing:

• We present a differentially-private decision forest
algorithm (referred to as DPDF).

• We output all the rules in the forest, including
their confidence and support.

– We also output the confidence and support
of every subset of the rules (i.e. increasingly
more general versions of the final rules, by
removing the antecedents one at a time).

• We propose and prove a theorem for the worst-
case local sensitivity3 of the Gini Index.

• We demonstrate that the prediction accuracy of
our DPDF is close to the accuracy of a standard
Random Forest classifier (Breiman 2001), even
for low ϵ values.

We also provide a URL to our publicly available
code for DPDF.4 In Section 2 we provide some nec-
essary background on differential privacy, the CART
algorithm and the prediction accuracy measure. In
Section 3 we propose our differentially private deci-
sion forest algorithm and discuss the important com-
ponents of it. In Section 4 we discuss another tech-
nique that is similar to ours, DiffPID3 (Friedman &
Schuster 2010), and how it differs from our technique.
In Section 5 we empirically compare our technique
to DiffPID3, using Random Forest (Breiman 2001)
as a benchmark of prediction accuracy on various
datasets. In Section 6 we conclude the paper.

2 Background

2.1 Differential Privacy

While differential privacy has many applications be-
yond those used in this paper (McSherry & Talwar

3Sensitivity is an important component of Differential Privacy,
described later.

4Our code can be found at http://csusap.csu.edu.au/∼zislam/
or you can email us.

2007), and can be phrased more generally to encom-
pass those applications, we phrase the below defini-
tions in a way that is more specific to our scenario,
with dataset D.

Definition 1 (Differential Privacy (Dwork 2006)). A
query Q : Q(D) → Y satisfies ϵ-differential privacy if
for all datasets D and D′ differing by at most one
record,

Pr(Q(D) = y ∈ Y ) ≤ eϵ×Pr(Q(D′) = y ∈ Y ) . (1)

This definition allows a data collector to make a
strong promise to each individual in D: that for any
query Q, the output observed is 1

exp(ϵ) as likely to

occur even if they had not been in D. It does not
promise that a malicious user cannot find out any
information about them, but it does promise that
any information they can find, they could have found
without the individual even being in D. For example,
there might exist a strong pattern that the malicious
user knows (by using secondary information outside
D) an individual matches, and that pattern would
exist in D with or without the individual.

In order for Definition 1 to be possible for query
Q to achieve, there must be a randomized compo-
nent in Q, preventing any output y from being 100%
likely. Two mechanisms are commonly used to inject
randomness into queries: the Laplace Mechanism and
the Exponential Mechanism. Before we define these
mechanisms, we first need to define the “sensitivity”
of Q:

Definition 2 (Sensitivity (Dwork et al. 2006)). A
query Q has sensitivity ∆(Q), where:

∆(Q) = max
K,K′

|Q(K)−Q(K ′)| (2)

and K and K ′ are any datasets that differ by at most
one record.

Using Definition 2, we now define:

Definition 3 (The Laplace Mechanism (Dwork et al.
2006, Dwork & Roth 2014)). A query Q satisfies ϵ-

differential privacy if it outputs y+Lap(∆(Q)
ϵ ), where

y ∈ Y : Q(D) → Y and Lap(x) is an i.i.d. ran-
dom variable drawn from the Laplace distribution with
mean 0 and scale x (i.e. variance 2x2).

Note that the Laplace Mechanism requires Y →
R. For non-real outputs, we can use the Exponential
Mechanism:

Definition 4 (The Exponential Mechanism (Mc-
Sherry & Talwar 2007)). Using a utility function
u(Q, y) : u → R where u has a higher value for
more preferable outputs y ∈ Y , a query Q satisfies
ϵ-differential privacy if it outputs y with probability

proportional to exp ( ϵu(Q,y)
2∆(u) ). That is,

Pr(Q(D) = y) ∝ exp

(
ϵ× u(Q, y)

2∆(u)

)
. (3)

We will later take advantage of two more theorems
that have been proven about differential privacy:

Definition 5 (The Composition Theorem (McSh-
erry & Talwar 2007)). The application of queries Qi,
each satisfying ϵi-differential privacy, satisfies

∑
i ϵi-

differential privacy.

Definition 6 (The Parallel Composition Theorem
(McSherry 2009)). Let Di be a disjoint subset of
dataset D. Let Qi(Di) satisfy ϵ-differential privacy;
then

∑
i Qi(Di) also satisfies ϵ-differential privacy.
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2.2 CART

The structure of our decision trees will follow a similar
structure to CART (Breiman et al. 1984). CART uses
a recursive process in which attributes A (describing
the records in D) are used to classify class attribute
C. For any given attribute a ∈ A, the records in D
are split into disjoint subsets Dav defined by which
value v ∈ a they have. We define each Dav ’s ability
to correctly classify a record’s class value c ∈ C using
the Gini Index (Breiman et al. 1984):

GD,C(a) = −
∑
v∈a

|Dav |
|D|

(
1−

∑
c∈C

(
|Dav,c|
|Dav |

)2
)

.

(4)
The Gini Index is a measure of how often a randomly
chosen record r ∈ D would be incorrectly predicted
to have class value c : c ̸= rC if the predicted class
value was randomly drawn from the distribution of
class labels in D.

The attribute a with maximum GD,C(a) is chosen
to split D into disjoint subsets Dav ; ∀v ∈ a, and the
process is repeated with each Dav being considered as
it’s own dataset D. The recursive process terminates
when one of the following conditions are met:

• All records in D have the same class value c.

• All attributes have been used previously in the
current recursion chain (an attribute can only be
used once, since records in Dav cannot be further
split by a).

• |Dav | is below a user-defined minimum size. This
is often done to prevent over-fitting to the train-
ing data.

• The depth of Dav in the tree has reached a
user-defined maximum (i.e. the current recur-
sion chain has repeated the maximum number of
times). This is often done to limit computational
complexity and limit the complexity (length) of
the decision rules (the number of attributes re-
quired to predict the class attribute).

The output of this recursive algorithm is a decision
tree T . An example of a decision tree can be seen in
Figure 1. A tree T can be considered as a graph, and
in this context (and no longer in the context of the
recursive algorithm) the subsets Di are often called
“nodes”, where i represents all the attributes in A
(and the values of those attributes) that were used to
define the subset Di. The first node (i.e. subset) D
is known as the “root node” (at d = 1 in Figure 1),
and the final nodes Di are known as “leaf nodes” (at
d > 1 in Figure 1 if no more nodes exist lower in the
chain).

2.3 Prediction Accuracy

The success of a decision tree T made with CART is
usually measured with the prediction accuracy mea-
sure, and we use this measure in our paper. Predic-
tion accuracy works by taking each record r ∈ B : r /∈
D; ∀r ∈ B (i.e. records not used in the tree-building
process5) and following the logic of T into the disjoint
subset Dav

that matches the value rav , starting from
the first attribute used to split D (called the “root
node”) until the final split at the end of the recur-
sion chain (called the “leaf node”). Note that it is

5B is often called the “testing data”, as opposed to the “training
data” D used to “train” the tree about the patterns in D.

v∈a∈A w∈a∈A x∈a∈A

v∈b∈A w∈b∈A
v∈d∈A w∈d∈A

{|D
av,c
|;∀c∈C}

{|D
c
|;∀c∈C}

{|D
aw,c
|;∀c∈C} {|D

ax,c
|;∀c∈C}

{|D
aw,bv,c

|;∀c∈C} {|D
aw,bw,c

|;∀c∈C} {|D
ax,dv,c

|;∀c∈C} {|D
ax,dw,c

|;∀c∈C}

d=1

d=2

d=3

Figure 1: An example of a decision tree. Each arrow
lists the value of an attribute that the records are
being filtered according to. D is a dataset, with Di
being a subset of the dataset meeting the criteria i;
C is the set of class values; A is the set of attributes,
with each attribute having a set of values; d is the
depth of the tree.

only possible for r to match one root → leaf recur-
sion chain in T . We then predict that rC = c, where
c is the most common class value in the leaf that r
matched. After repeating this for all r ∈ B, the per-
centage of cases where our prediction was correct is
called the “prediction accuracy” of T .

To calculate prediction accuracy for a forest F ,
the predicted class value for a record r from each tree
T ∈ F is tallied, and an algorithm is used to select the
most appropriate class value to predict overall. This
is known as “voting”, and various voting algorithms
have been developed over the years (Breiman 2001,
Islam & Giggins 2011).

3 A Differentially Private Decision Forest

In order to make a decision tree (and from there a
decision forest), we need to consider what information
we require about D. In order to make the decision
tree differentially private, we then need to query D in
a way that returns to us all the information we need,
without distorting the answers too much.

We break down the tree-building process into the
following queries:

P1(Di) = {|Di,c|; ∀c ∈ C} (5)

and

P2(Di) = a′ ∈ A : GDi,C(a
′) = max

a∈A
(GDi,C(a)) ,

(6)
where Di ⊆ D, and i represents all the attributes
in A (and the values of those attributes) that define
what records are in Di. These two queries are all that
is required to recursively build the tree described in
Section 2.2.

To make these queries differentially private, we
add uncertainty to the output of each query in the
following way:

Q1(Di) = {|Di,c|+ Lap(
1

ϵ
); ∀c ∈ C} (7)

and

Q2(Di) = a′ ∈ A :

Pr(GDi,C(a
′) = max

a∈A
(GDi,C(a)))

∝ exp

(
ϵ×GDi,C(a)

2∆(G)

)
. (8)
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In words, Q1(Di) outputs a histogram of the fre-
quencies of each class value c in Di, with Laplace
noise added to each class count using Definition 3.
The scale of the Laplace distribution is equal to 1

ϵ for
several reasons: when outputting a count of records,
the sensitivity of the count is always ∆ = 1 (Dwork
et al. 2006); and when outputting a histogram, the
sensitivity remains equal to one because each bin of
the histogram is disjoint – adding or removing one
record can only affect one bin in the histogram (see
Definition 6).

In words, Q2(Di) outputs the attribute with the
best Gini Index result with a certain probability, as
described in Definition 4. The probability of any at-
tribute a ∈ A being outputted is dependent on the
Gini Index of a, the sensitivity of the Gini Index, and
ϵ. Since ∆(G) and ϵ are unchanging for all a, we
can see that an attribute with a good Gini Index is
exponentially more likely to be outputted than an at-
tribute with a poor Gini Index. High ∆(G) and low ϵ
both reduce this likelihood; we discuss how we reduce
∆(G) to a much lower value than that suggested by
Definition 2 in Section 3.1.

The next question is how to divide the total pri-
vacy budget β amongst Q1(Di) and Q2(Di) for all
i. Recall that a Di exists for every v ∈ a, for ev-
ery a used to split the previous Di in the recursive
algorithm described in Section 2.2, until each recur-
sion chain has met one of the termination conditions
listed in Section 2.2. Figure 1 provides an illustration
of this. As per the Composition Theorem (Definition
5), we know that the ϵ we use for each query will be
summed together, until it totals β and our connection
to the dataset is severed by the data owner. We also
know that for each depth level d, each Di is disjoint,
and

∑
i |Di| = |D| for each d (i.e. all records will

belong to one and only one Di for each d). We can
therefore treat each Di on the same depth level in a
similar way to how we treat bins in a histogram, and
that adding or removing one record can only affect
one Di. This allows us to apply the Parallel Compo-
sition Theorem (Definition 6) and ask Q1 and Q2 in
a way that returns the output for each Di, and only
subtract ϵ from β once for Q1 and once for Q2.

Given the above, each query we use is given the
following ϵ budget:

ϵ =
β

2δ − 1
(9)

where 0 < δ < ∞ is the maximum depth we allow
d to reach. We multiply δ by two because we are
asking two queries per depth level: Q1 and Q2. We
subtract one because upon reaching the end of a re-
cursion chain (a leaf in the tree), we only need to ask
Q1 (to get the final distribution of class values).

We also expand our algorithm to be capable of
producing multiple trees. Decision forests are known
to often produce higher prediction accuracy than a
single decision tree (Breiman 2001, Islam & Giggins
2011). The reason for this depends on the decision
forest algorithm used, but is essentially because each
tree will select different attributes a at different points
in the tree, leading to different rules that might have
better accuracy. For our algorithm, we guarantee that
each tree will be different by requiring the first at-
tribute chosen (the root) to be different for each tree.
The noisy output of Q2 also provides potential for dif-
ferent attributes to be chosen at other points in the
trees.

When calculating the prediction accuracy of forest
F in this paper, we use a simple voting technique

of taking the weighted average of the predicted class
values of record r, where the weight of each tree T ’s
prediction is defined by the confidence6 of the most
common class value in the leaf that record r fits into.
This is repeated for each record r in the testing data
B. Any other voting technique can easily be used
though, as long as it can be calculated using only
the distribution of class values in Di (unless some of
budget β remains for more queries).

After defining the number of trees τ to build, the
first time each tree (after the first tree) asks Q2, the
attributes chosen as roots of the previous trees are re-
moved. There will therefore be τ different attributes
used as the root attributes of the τ trees. The trees
are completely independent beyond that.

We adjust the budget ϵ given to each query to
account for τ :

ϵ =
β

τ(2δ − 1)
(10)

where 1 < τ < ∞.
We provide the full algorithm for DPDF in Algo-

rithm 1.

3.1 The Local Sensitivity of the Gini Index

The sensitivity seen in Definition 2 is sometimes re-
ferred to as the “global sensitivity” of query Q, due to
it making no assumptions about the data and simply
returning the worst possible difference between any
two datasets K and K ′ that differ by one record. By
using the output of query Q1(Di), we learn informa-
tion about Di that allows us to greatly reduce the
sensitivity of Q2(Di). We provide a theorem for the
local sensitivity ofGD,C(a) (and therefore ofQ2(Di)),
and its proof, below:

Theorem 1 (Local Sensitivity of the Gini Index).
The sensitivity of the Gini Index ∆(GD,C(a)) when
applied to data with known size |D| is

∆(GD,C(a)) = 1−
(

|D|
|D|+ 1

)2

−
(

1

|D|+ 1

)2

. (11)

It is independent of a and C, and therefore we can
abbreviate ∆(GD,C(a)) to ∆(GD).

Proof. From Equation 2 we see that in order to maxi-
mize ∆(GD,C(a)) we must produce a maximum and a
minimum GD,C(a) such that both outputs are possi-
ble by only changing one record inD. Using Equation
4, we reduce the problem to

max |
∑
c∈C

(
|Dav,c|
|Dav |

)2

−
∑
c∈C

( |D′
av,c|

|D′
av
|

)2

| (12)

and will then extrapolate to all v ∈ a.

For D, we can write
∑

c∈C

(
|Dav,c|
|Dav |

)2
in a more

general way: ∑
i

(
xi

y

)2

(13)

where
∑

i xi = y. For D′, if we assume that we
are considering v : ra = v, where r is in D′ but

6“Confidence” is the percentage of records in Di that have the
most common class value.
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not in D, and that x1 = c : rC = c we can write∑
c∈C

(
|D′

av,c|
|D′

av
|

)2
as

(
x1 + 1

y + 1

)2

+
∑
i=2

(
xi

y + 1

)2

. (14)

That is, the class count x1 and the total y were in-
creased by one because r was added to D′. It is pos-
sible that x1 = 0 for D, which we write as(

1

y + 1

)2

+
∑
i=2

(
xi

y + 1

)2

. (15)

Remembering that
∑

i xi = y, we can separate the
numerators and denominators of Equations 13, 14 and
15 and see that

(y + 1)2 − y2 >

(
(x1 + 1)2 +

∑
i=2

(xi)
2

)
−
∑
i=1

(xi)
2

>

(
1 +

∑
i=2

(xi)
2

)
−
∑
i=1

(xi)
2 (16)

which means the denominator is guaranteed to in-
crease by more than the numerator (and thus result
in a smaller number) when adding r to D, and Equa-
tion 15 will always be smaller than Equation 14. Thus
we maximize Equation 12 by using Equations 13 (for
D) and 15 (for D′).

By taking advantage of the fact that

2∑
i=1

(
xi

y

)2

>
>2∑
i=1

(
xi

y

)2

(17)

and (
y

y

)2

>

(
x1

y

)2

+

(
x2

y

)2

(18)

where
∑

i xi = y, we can see that the worst-case sce-
nario (i.e. where Equation 12 is maximized) is when
|Dav,c| = |Dav | (i.e. all records in Dav have the same
class value c) and D′ = D ∪ r where rC ̸= c. That is,

max

(∑
c∈C

(
|Dav,c|
|Dav |

)2
)

=

(
|Dav |
|Dav |

)2

(19)

and

min

(∑
c∈C

( |D′
av,c|

|D′
av
|

)2
)

=

(
|Dav |

|Dav |+ 1

)2

+

(
1

|Dav |+ 1

)2

, (20)

meaning that Equation 12 is equal to

|
(
|Dav |
|Dav |

)2

−

((
|Dav |

|Dav |+ 1

)2

+

(
1

|Dav |+ 1

)2
)
| .

(21)
If Equation 21 is the maximum difference for v ∈

a, then it is also the maximum difference ∀v ∈ a,

meaning the weighted average performed in the Gini
Index (Equation 4) can be simplified:

−
∑
v∈a

|Dav |
|D|

(
1−

∑
c∈C

(
|Dav,c|
|Dav |

)2
)

= −

(
1−

∑
c∈C

(
|Dc|
|D|

)2
)

. (22)

From Equations 19 and 20, we know that Equation
12 (and therefore Equation 22) is optimal when all
records in D have the same class value. Therefore
when considering Equation 22 for D, we get

−

(
1−

(
|D|
|D|

)2
)

= −(1− 1) = 0 , (23)

and when considering Equation 22 for D′, we get

−

(
1−

(
|D|

|D|+ 1

)2

−
(

1

|D|+ 1

)2
)

. (24)

Combining the solutions for D and D′ (Equations 23
and 24), we arrive at

∆(GD,C(a)) = max
D,D′

|GD,C(a)−GD′,C(a)|

= |0−

(
1−

(
|D|

|D|+ 1

)2

−
(

1

|D|+ 1

)2
)
| , (25)

noting that the above proof holds for the alternate
case where one record is removed from a dataset by
considering |D| = |D′| − 1.

Using Theorem 1 we can calculate the global sen-
sitivity of the Gini Index, where the size of D is not
known (recalling that the sensitivity is when ∆(G) is
maximal):

∆(G) = max
0<|D|<∞

(1−
(

|D|
|D|+ 1

)2

−
(

1

|D|+ 1

)2

)

= 1−
(

1

1 + 1

)2

−
(

1

1 + 1

)2

= 0.5 .

If |D| is known, even a modest size of |D| = 100
heavily reduces the sensitivity of the Gini Index:

∆(GD) = 1−
(

100

100 + 1

)2

−
(

1

100 + 1

)2

= 0.0196 .

This drastically reduces the amount of noise added to
the outputs of queries using the Exponential Mecha-
nism (Definition 4) where the Gini Index (Equation
4) is the utility function u.

For DPDF, we can calculate |D| using the sum
of the class value frequencies we learned with query
Q1(D):

|D| =
∑

f∈Q1(D)

|f | (26)

Using this logic, we define a minimum number of
records in D before the recursion chain is terminated
(as explained in Section 2.2). For our experiments we
set the minimum size of D to 100, thus making the
upper limit of the sensitivity of Q2 equal to ∆(GD) =
0.0196.
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3.2 Pruning the Tree

Aside from calculating |Di|, there is another advan-
tage to using query Q1(Di) at every Di node, and
not just in the leaf nodes where we need the class
value distribution for predicting rC ; ∀r ∈ B (where B
is the testing data). By knowing the class distribu-
tion in every Di node in every root → leaf recursion
chain, it allows us to compare the leaf nodes to their
parent nodes (the node above them in the chain) and
assess their quality. By “quality”, we mean “ability
to correctly classify records r in B”. If a parent node
has higher quality than it’s average child node (as-
suming that all the child nodes are leaf nodes), we
perform what is known as “pruning”.

Pruning is a component of many decision tree (and
forest) algorithms, where leaf nodes are removed if
they do not increase the prediction capabilities of the
tree (Breiman et al. 1984, Quinlan 1993). The longer
the root → leaf chains are, the more complicated
they are, and the more they divide the records into
smaller subsets, potentially over-fitting the tree to the
training data D at the expense of prediction accuracy
on the testing data B. If a leaf node is not actively
helping the tree, it is more beneficial to remove the
leaf. Some pruning techniques achieve pruning by us-
ing a validation set B′ : B′ ∩ B = ∅ and B′ ∩D = ∅,
such as CART’s minimal cost complexity pruning
(Breiman et al. 1984) and reduced error pruning
(Quinlan 1993). However these techniques reduce
the size of the training dataset D, which would in-
crease the amount of relative noise added by Q1 and
Q2. Since this is something we want to avoid, we
instead perform pruning using the information we
have already gathered during the tree-building pro-
cess, specifically with Q1.

Since all values v ∈ a need to be handled, instead
of removing individual bad leaf nodes, we measure
the average quality of all leaf nodes ∀v ∈ a and com-
pare that to their parent node (which they all have in
common). If

G(Q1(Di)) ≥
∑
v∈a

|Di,av |
|Di|

G(Q1(Di,av )) (27)

where Di,av∀v ∈ a are leaf nodes, we remove all of
Di’s leaf nodes, causing Di to become a leaf node
instead. In the above equation, a is the attribute used
to split Di. Also recall that Q1(Di) is the distribution
of class values in Di, which is the only information
required to calculate the Gini Index G.

The reason that Equation 27 can possibly be true
is that our tree building algorithm always splits a
node Di until a termination condition is met, even
if all possible attributes to choose from have lower
Gini Index results than Di. Even if some attributes
are better, the noisy output of Q2(Di) might cause a
poor attribute to be chosen. By allowing these situa-
tions to potentially occur, we help DPDF avoid get-
ting stuck in a local optima – even if a child node y
has worse Gini Index than it’s parent node x, the child
node z of y could still beat x’s Gini Index! Including
this pruning step in our algorithm then checks if ei-
ther of these situations occurs, and retracts the tree
to the global optima within the space explored by T .

3.3 Outputting the Rules and Subrules

Not only does possessing the output of Q1(Di);∀i
allow us to perform pruning, but it also allows us
to have many more rules than would be possible if
we only had the class distribution of the leaf nodes.

By a “rule”, we mean the attributes chosen along a
root → leaf chain, leading to the prediction of a cer-
tain class value c with a certain confidence. Depend-
ing on what sort of knowledge the user is searching
for, these rules can be extremely valuable, allowing
the user to see humanly-readable patterns in the data.
The alternative is that tree T (or forest F ) merely
acts as a “black box” classifier, where records r ∈ B
are inputted and a predicted class value is outputted,
with no information on why.

Not only does DPDF output the root → leaf
rules, but also all root → node subsets of the root →
leaf rules. This is only possible because we know
what the predicted class value is for every node Di,
and the confidence of that prediction. Given that the
user has a very strict privacy budget β with which to
learn about dataset D, the more information we can
gain from our queries – and the more we can recycle
that information for multiple purposes – the better.

4 Related Work

Attempts at differentially private decision trees have
been made in the past, most notably the Differen-
tially Private ID3 algorithm (DiffPID3) by Friedman
& Schuster (2010).

DiffPID3 uses a similar algorithm to our method,
with some very important exceptions:

• Instead of getting the distribution of class values
in each Di, Q1 just returns a noisy count of |Di|.

– This places limitations on DiffPID3’s abil-
ity to prune the tree (Friedman & Schuster
2010).

– It also does not allow for the first termina-
tion condition we use at each Di subset (i.e.
node): “All records in Di have the same
class value c”, listed in Section 2.2. This
increases the computation time of the al-
gorithm by a small amount, both because
it causes the algorithm to spend time mak-
ing redundant nodes, and also because it
increases the amount of pruning that needs
to be done.

• They provide an extension to their algorithm to
handle continuous attributes, however only at
heavy cost to the budget β. Their results suggest
a more feasible solution will need to be developed
to handle continuous attributes with realistic β
values.

• They do not discuss extending their algorithm
beyond a single tree, while our algorithm builds
τ distinct trees.

• They divide the privacy budget less efficiently,
with ϵ = β

2δ , which makes a non-trivial difference
at common values of δ.

• Most importantly of all, they use the global sen-
sitivity of the Gini Index (∆(G) = 0.5), adding
a huge amount of unnecessary noise to their tree
and reducing the prediction accuracy of the tree,
as seen in Section 5.

We demonstrate in Section 5 that our improve-
ments over their algorithm have a substantial positive
effect on the prediction accuracy of the classifier.
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Algorithm 1 The proposed Differentially Private Decision Forest (DPDF)

1: procedure DPDF(D, C, A, β, τ , δ)

2: ϵ = β
τ(2δ−1)

3: Aroot = {} ◃ Aroot will be used as a global variable
4: F = {}
5: for t = 1, . . . , τ do
6: T = BuildTree(D, C, A, ϵ, δ, 1, True) ◃ The forest is composed of trees
7: T = PruneTree(T )
8: F = F ∪ T
9: end for
10: return F
11: end procedure

12: procedure BuildTree(D, C, A, ϵ, δ, d, root)
13: T = {} ◃ The start of a tree, or a subtree
14: NC

D = {|Dc|+ Lap( 1ϵ );∀c ∈ C ∈ D} ◃ i.e. Q1(D), the noisy frequency of each class value in D
15: |D| =

∑
fc∈NC

D
fc

16: if d ≤ δ and |D| ≥ 100 and fc
|D| < 1; ∀fc ∈ NC

D and |A| > 0 then

17: ∆(GD) = 1− ( |D|
|D|+1 )

2 − ( 1
|D|+1 )

2 ◃ The worst-case local sensitivity

18: a = SplittingAttribute(D, C, A, ϵ, ∆(GD), root)
19: A = A− {a} ◃ We cannot split on an attribute twice in a root → leaf chain
20: for all v ∈ a do ◃ Recall that A is public knowledge
21: Dav = {r : ra = v, ∀r ∈ D} ◃ Note that Dav must remain on the server to preserve privacy
22: T = T ∪ BuildTree(Dav , C, A, ϵ, δ, d+ 1, False) ◃ Attach a subtree to the tree
23: end for
24: end if
25: return {T,NC

D} ◃ The tree is composed of nodes, each composed of a subtree and a Class Histogram
26: end procedure

27: procedure SplittingAttribute(D, C, A, ϵ, ∆(GD), root)
28: if root then
29: A = A−Aroot ◃ Two trees cannot have the same root attribute
30: end if
31: a′ = Using the Exponential Mechanism, return a′ ∈ A :

Pr(GDi,C(a
′) = maxa∈A(GDi,C(a))) ∝ exp

(
ϵ×GDi,C

(a)

2∆(G)

)
◃ i.e. Q2(D)

32: if root then
33: Aroot = Aroot ∪ {a′} ◃ Recall that Aroot is global
34: end if
35: return a′

36: end procedure

37: procedure PruneTree(T )
38: for all Parent Nodes P ∈ T do ◃ A Parent Node is any node with Child Nodes
39: Child Nodes HP = {All Child Nodes of P}
40: if All Nodes i ∈ HP are Leaf Nodes then ◃ A Leaf Node is a Node with 0 Child Nodes
41: |HP

i | = The sum of all Class Counts in HP
i ◃ Each Node in HP has a NC

D

42: |P | =
∑

i∈HP
|HP

i |
43: if

∑
i∈HP

|HP
i |

|P | ×G(HP
i ) < G(P ) then ◃ We only need NC

D to calculate the Gini Index

44: Remove HP from P ◃ P is now a leaf node
45: PruneTree(T with updated P )
46: end if
47: end if
48: end for
49: return T
50: end procedure
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5 Experiments and Results

Using six datasets from the UCI Machine Learning
Repository (Bache & Lichman 2013), we compare
the prediction accuracy of our proposed algorithm,
DPDF, to DiffPID3 (Friedman & Schuster 2010). We
implement the main version of DiffPID3 (Friedman
& Schuster 2010) (that uses the Exponential Mecha-
nism), and avoid datasets with continuous attributes
so that DiffID3 is not disadvantaged by its expen-
sive usage of the privacy budget β for continuous at-
tributes. As a benchmark to demonstrate the po-
tential the chosen datasets have for classification, we
provide the prediction accuracy results of the popu-
lar Random Forest algorithm developed by Breiman
(2001). We build the Random Forest using all of the
default parameter settings in sci-kit learn 0.15.2 (Pe-
dregosa et al. 2011). All reported prediction accu-
racies for all algorithms are the average prediction
accuracy results of performing 10 iterations of strat-
ified 10-fold cross-validation. This involves randomly
dividing each dataset into 10 equal partitions in a way
that keeps the class distribution in each partition as
close to the whole dataset as possible. Nine of the
partitions are then combined to make D and are used
to build the classifier (whether it is DPDF, DiffPID3
or Random Forest). The final partition is used as the
testing data B. This is repeated with all 10 com-
binations of nine partitions, so that each partition is
used as B once. Ten iterations of this cross-validation
process are performed, with the partitions being ran-
domly generated each time. This means that 100 pre-
diction accuracy results are produced, and the aver-
age of these are what we report in all our figures.

We test two parameter settings for our DPDF:
where τ = 1 and where τ = 4. For all experiments
with DPDF or DiffPID3, δ = 5. We use 5 values of β
for our experiments: 0.1, 0.25, 0.5, 1.0 and 2.0. Note
that no privacy preservation of any kind is applied to
Random Forest.

The datasets used are all publicly available and
have the following names in the UCI Machine Learn-
ing Repository: “Car Evaluation” (Figure 2), “Chess
(King-Rook vs. King)” (Figure 3), “Connect4” (Fig-
ure 4), “Mushroom” (Figure 5), “Nursery” (Figure 6),
and “Tic-Tac-Toe Endgame” (Figure 7). The number
of records in each dataset ranges from 958 to 67557;
the number of attributes ranges from six to 42; the
number of class values ranges from two to 18.

For most datasets, our algorithm halves the dif-
ference between DiffPID3’s prediction accuracy and
Random Forest’s prediction accuracy. The biggest
improvement over DiffID3 is seen with the Nursery
dataset, where DPDF with τ = 1 beats DiffPID3 by
almost 25 percentage points, and comes within 7 per-
cent percentage points of Random Forest. With the
Tic-Tac-Toe and Connect4 datasets, we can see some
overlap between DiffPID3 and DPDF when τ = 1,
however in both cases, DPDF always beats DiffPID3
when τ = 4, indicating the benefit of having multiple
trees. Interestingly, sometimes τ = 1 beats τ = 4;
this may be due to the lower ϵ value available to each
query Q when τ = 4, leading to more noisy outputs.
In Table 1, we demonstrate the difference between
the size of ϵ for DiffPID3 and DPDF when τ = 1 and
τ = 4, for each of the five β values we are testing.

As expected, the prediction accuracy of DiffPID3
and DPDF (for both τ = 1 and τ = 4) generally
increases as the budget β increases. In a few situa-
tions this does not happen, notably for the Connect4
dataset. However in this dataset, Random Forest pro-
duces a worse prediction accuracy than all the differ-
entially private algorithms at all β values, suggest-

Technique
Privacy Budget β

0.1 0.25 0.5 1.0 2.0

DiffPID3 0.010 0.025 0.050 0.100 0.200

DPDF, τ = 1 0.011 0.028 0.056 0.111 0.222

DPDF, τ = 4 0.003 0.007 0.014 0.028 0.056

Table 1: The size of ϵ per query, depending on the
technique used and the total privacy budget β. In
the example shown, the depth of the trees is δ = 5.
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Figure 2: A comparison of our technique (DPDF) to
DiffPID3 using the Car dataset, with Random Forest
included as a benchmark. We test two parameter
settings for DPDF: τ = 1 and τ = 4.

ing that the noisy outputs of DiffPID3 and DPDF
helped the tree-building process. This may be due
to the trees in Random Forest getting stuck in local
optima, or simply that decision trees are not a good
choice for data mining the Connect4 dataset. Pre-
diction Accuracy behaving in this way when applying
privacy-preservation techniques has been explored by
previous work (Fletcher & Islam 2014).

Overall, it appears that for most datasets (except
Tic-Tac-Toe, perhaps because it is by far the smallest
dataset and thus has the noisiest outputs), DPDF
produces a decision forest of acceptable quality for
most data mining needs. This is true even when β
is very low; as low as β = 0.1, where each query Q
has ϵ = 0.003 when τ = 4. The user also has the
complete list of rules and sub-rules from F , including
the class distribution of each rule. This means the
user can easily remove any rules or sub-rules with
low confidence, leaving them with a shorter list of
high quality rules.

6 Conclusion

The success of DPDF at even very low β values pro-
vides the user with some valuable options – instead
of using their entire allocated privacy budget β on a
single run of DPDF, they can instead use only a frac-
tion of it. The rest of the budget could be spent on
anything the user wishes. This might include some
preliminary queries on D in order to tune the δ and τ
parameters, which would be an interesting direction

CRPIT Volume 168 - Data Mining and Analytics 2015

106



0 . 1 0 . 2 5 0 . 5 1 . 0 2 . 0
0 . 1 4

0 . 1 6

0 . 1 8

0 . 2

0 . 2 2

0 . 2 4

P
re

d
ic

ti
o

n
 A

c
c

u
ra

c
y

R a ndom  Fore s t

Di!P ID3

Accura cy  v s .  E ps ilon for C he s s

Figure 3: A comparison of our technique (DPDF) to
DiffPID3 using the Chess dataset, with Random For-
est included as a benchmark. We test two parameter
settings for DPDF: τ = 1 and τ = 4. Note that there
are 18 class values, so randomly guessing would give
a prediction accuracy of 5.55%; hence the low Predic-
tion Accuracy.
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Figure 4: A comparison of our technique (DPDF) to
DiffPID3 using the Connect4 dataset, with Random
Forest included as a benchmark. We test two param-
eter settings for DPDF: τ = 1 and τ = 4.
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Figure 5: A comparison of our technique (DPDF) to
DiffPID3 using the Mushroom dataset, with Random
Forest included as a benchmark. We test two param-
eter settings for DPDF: τ = 1 and τ = 4.
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Figure 6: A comparison of our technique (DPDF) to
DiffPID3 using the Nursery dataset, with Random
Forest included as a benchmark. We test two param-
eter settings for DPDF: τ = 1 and τ = 4.
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Figure 7: A comparison of our technique (DPDF) to
DiffPID3 using the Tic-Tac-Toe dataset, with Ran-
dom Forest included as a benchmark. We test two
parameter settings for DPDF: τ = 1 and τ = 4.

for future research. It could include multiple runs
of DPDF, each with different parameters. It could
include completely different data mining algorithms,
such as clustering (as long as it is differentially pri-
vate). The strong mathematical properties of differ-
ential privacy allow the data owner to guarantee the
individuals in the dataset that their presence in the
dataset is almost completely undetectable, no matter
how a user decides to divide their β budget. Our novel
theorem on the local sensitivity of the Gini Index will
be useful to any future classification algorithms that
wish to perform differentially private data mining.
We provide the code required to implement DPDF,
so that data miners and fellow researchers may take
advantage of it.
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