
A Maturity Model for Computing Education

Christof Lutteroth Andrew Luxton-Reilly Gillian Dobbie John Hamer

Department of Computer Science
The University of Auckland

38 Princes Street, Auckland 1142, New Zealand
Email: {lutteroth,andrew,gill,j.hamer}@cs.auckland.ac.nz

Abstract

We propose a maturity model for computing edu-
cation which is inspired by the Capability Maturity
Model (CMM) used in software engineering. Similar
to CMM, the Computing Education Maturity Model
(CEMM) can be used to rate educational organisa-
tions according to their capability to deliver high-
quality education on a five level scale. Furthermore,
CEMM can be used in order to improve an institu-
tion’s capability by implementing the best practises
and organisational changes it describes.

Keywords: Education, CMM, quality, maturity

1 Introduction

In this paper we draw an analogy between process im-
provement in software development and process im-
provement in computing education. Teaching and
software development have a lot in common. Both
are complex activities, both undergo a development
life cycle, and we would like both to be of high quality,
despite finding this difficult to measure.

In both domains, a main ingredient of success is
good structure and the use of best practises, i.e. a
process that helps us to structure and do things right.
From a teaching perspective, the process of education
is even more relevant than a development process for
software engineers: a skilled software engineer may
neglect good software development practises but still
produce a good product at the end. The process by
which software is developed is not directly visible in
the quality of the end product. Teachers, however,
can influence the end product of their work only indi-
rectly. The actual learning outcomes are, ultimately,
not up to them but up to the students. All a teacher
can do is perform the process of teaching the best he
can, and that is why the process is of such an impor-
tance: it is the only tool we have.

What exactly do we mean when we speak of a pro-
cess for computing education? In our analogy, soft-
ware development projects correspond to courses as
they are taught, in contrast to a course as an abstract
concept. Somehow a course has to be defined: what is
taught, when is it taught, how is it taught and what is
the measure of success (e.g. exam marks)? All these
questions are very familiar to lecturers, and it helps
to have most of them answered before the course is
taught. Now, the same what, when and how—but of
course with a different context—have to be answered

Copyright c©2007, Australian Computer Society, Inc. This
paper appeared at Ninth Australasian Computing Education
Conference (ACE2007), Ballarat, Victoria, Australia, Febru-
ary 2007. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 66. Samuel Mann and Simon, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

for a software development project, and constitutes
what is commonly understood as software develop-
ment process. Software development is not the only
analogy one can draw; a course is similar to other pro-
cesses as well. However, in the context of computing
education it seem particularly appropriate to refer to
processes of software engineering.

If processes are so important for the quality of the
product—and many disciplines agree in this matter—
then we should spend time and effort on improv-
ing them. In manufacturing, for example, we find
a long tradition of process management and process
improvement. This is why meta-processes have been
created that aim at improving the quality of the pro-
cesses themselves. The point that we want to make is
that for education, and in particular computing ed-
ucation, quality improvement concepts exist as well
and can make a big difference for a teacher’s success.
In this paper we show how such a meta-process can
be created for computing education along the lines
of the Capability Maturity Model (CMM), a meta-
process for software development.

We acknowledge that many factors affecting edu-
cational success are of a human nature: good teach-
ers make a difference, and teaching and learning are
greatly influenced by the personal interactions be-
tween teachers and students. Nevertheless, the ben-
efits and support provided by a high-quality educa-
tional process should not be underestimated. Process
can benefit both students and teachers. Furthermore,
the maturity model for education which we propose in
this paper should not be misunderstood as an attempt
to dictate any particular approach to teaching. Our
approach is descriptive rather than prescriptive, and
the intention is to provide best practises and improve-
ment strategies to support teachers in their work. The
aim is essentially the same as for CMM: to narrow the
variance of quality by applying common sense process
management and quality improvement concepts.

We use CMM as an inspiration but not as a strict
guideline. Thus, we are interested in the general in-
sights and concepts, and not in the many details (such
as the differences between the different versions of
CMM and its successor CMMI). Education is cov-
ered in neither CMM nor CMMI, and we believe that
the context of academia in contrast to the context of
industry requires us to deal with CMM and related
material in a constructive yet selective and critical
manner. It is not possible to create a maturity model
for education by strict analogy.

Section 2 motivates our maturity model. We
present an overview of CMM in Section 3 before de-
scribing our approach in Section 4. Section 5 revisits
a model of major factors in software engineering and
transfers it to the domain of education. Section 6
provides an analysis and discussion of our work. In
Section 7 we discuss related work, and Section 8 de-
scribes further work we intend to do on this topic.



Our conclusions are offered in Section 9.

2 Motivation

Reflective practise plays an essential role in improving
an individual’s professional activities (Schön 1987).
As educators, we use reflective practise to examine
our own teaching, and refine the approaches we use
in the classroom. Harris (1998) reports that “effective
teaching is linked to reflection, enquiry and continu-
ous professional development and growth.”

As professional educators, we should reflect on our
processes and practise at a variety of levels. A teach-
ing portfolio can be an excellent aid to reflective prac-
tise at an individual level. Course portfolios play
a similar role for courses, assisting us to engage in
reflective practise about courses. However, there is
no comparable tool used to reflect upon process and
practise at a departmental level.

2.1 Individual reflection

Teaching computing is difficult. A large (and grow-
ing) body of research shows that individual staff are
trying to improve student outcomes, but with lim-
ited success (Robins et al. 2003). Although those in-
terested in CS Education may have developed more
formal processes to evaluate and improve their own
teaching performance, for most staff the cycle of
teaching occurs on a more ad hoc basis.

Teaching staff generally have few processes in place
to analyse and improve teaching performance. Stu-
dent evaluations are reasonably common, but other
formal processes are rare. One such process is the
maintenance and evaluation of a teaching portfolio.

A teaching portfolio is an important tool used by
reflective educators. It provides a means of exhibiting
professional proficiency (i.e. it can be used for sum-
mative feedback), but is also frequently used to afford
insight into an individual’s professional practise (i.e.
it can also be used for formative feedback) (Seldin
2004). The reflective practise exemplified by teach-
ing portfolios is clearly focused at an individual level.

2.2 Course reflection

Although reflection on individual teaching practise
plays an important role in the scholarship of teach-
ing, reflection on the course itself is also valuable. A
course portfolio can be used as a tool to reflect on a
course and guide future improvement. Cerbin (1994)
describes a course portfolio as consisting of four core
elements:

1. a teaching statement;

2. an analysis of student learning;

3. an analysis of student feedback; and

4. a course summary.

Course portfolios are intended to form part of an
ongoing process that critically analyses the course in
detail. The reflection required for a course portfolio
overlaps with that of a teaching portfolio, and the
development of one portfolio can provide leverage for
effective reflection on the other.

Ideally instructors should reflect upon ev-
ery assignment, chapter, or lab experiment
in their course. In reality, instructors may
write down their personal reflections only
once a week or for every major section of
the course. (Reeves et al. 1998)

Our experience indicates that course portfolios are
not as widely used as teaching portfolios, and critical
reflection at the level of courses is not as common as
individual reflection.

2.3 Departmental reflection

The problems faced by computing educators are com-
pounded when department processes fail to provide
adequate support. Although reflective practise is of-
ten demonstrated at an individual level, and occasion-
ally directed at courses, it is rare to see any critical
reflection on departmental processes, although such
processes have significant impact on both courses and
individuals.

There is a need for a framework within which we
can position current teaching practise at both an in-
dividual and departmental level. Such a framework
would encourage educators to examine their own pro-
cesses more critically and might suggest avenues for
improvement at a strategic level.

Using a model of process maturity would act to
support critical reflection at both an individual and
departmental level. The reflection engendered by pro-
cess analysis would complement the development of
teaching portfolios and course portfolios. We intend
to show here how the Capability Maturity Model used
to describe software development processes can be
adapted for use in the education domain, providing a
framework for positioning current academic processes
and reflecting upon current practise.

3 The Capability Maturity Model (CMM)

The Capability Maturity Model (CMM) (Institute
1995) was originally developed in the 1980s by the
U.S. Department of Defence Software Engineering
Institute (SEI) at Carnegie Mellon University as a
method for objective evaluation of contractors for mil-
itary software projects. It has been continuously re-
vised since then.

There are numerous instances of large software
systems suffering unexpected cost increases, schedule
delays, and even complete failure. As a consequence,
the U.S. military and other organisations were look-
ing for a way to rate the reliability of the software
development work a contractor could offer. The orig-
inal CMM and its successors were, and are still, used
for many government projects.

The idea behind CMM is that a high-quality pro-
cess yields a high-quality product at the end. As a
consequence, CMM aims at providing objective mea-
sures for the quality of software development pro-
cesses and strategies for their improvement. CMM
tries to define the key elements of an effective process
and outlines how to improve suboptimal processes,
i.e. the evolution from an “immature” process to a
“mature, disciplined” one. It describes key practises
for meeting goals for cost, schedule, functionality, and
product quality. The CMM standard is relatively
heavy-weight, being several hundred pages strong.

CMM ranks software developing organisations ac-
cording to a hierarchy of five maturity levels, with
the first being the least mature and the fifth being
the most mature. The five levels are: initial, repeat-
able, defined, managed, and optimising. Each ma-
turity level defines a certain capability of producing
quality software, key process areas (KPAs) that state
what is done in order to achieve the respective level
of quality, and key practises which specify how it is
done. A software developing organisation ranked at
a certain maturity level can improve over time and
reach the next level of maturity. However, a new level
has to be well established before the next level can



be achieved, so that it is not possible to skip levels.
This is because each level builds on the preceding ones
and adds features to the process rather than replacing
them.

In 1997 development of CMM was halted in favour
of its successor, Capability Maturity Model Integra-
tion (CMMI) (Chrissis et al. 2003). CMMI provides a
structured view of process improvement across an or-
ganisation, i.e. not just the organisational parts con-
cerned with software development. It provides mod-
els for four different disciplines—Systems Engineer-
ing, Software Engineering, Integrated Product and
Process Development, and Supplier Sourcing—and is
intended to provide a framework for the integration
of other models that might emerge. It further aims at
creating appraisal and training products for process
quality. For our education maturity model we solely
refer to the much better known CMM, which provides
all the necessary core concepts and ideas. In the fol-
lowing we will describe all the five maturity levels and
summarise some of the criticism of CMM.

3.1 Initial development process

This level is the lowest possible and (tragically) the
level most software developing companies fall into. It
is also known as “ad hoc,” “chaotic” or “heroic” level.
It refers to a process which is informal and poorly con-
trolled, and thus “chaotic.” An organisation of this
level does not provide a stable environment for devel-
oping and maintaining software, so constant changes
of the process make it unpredictable, i.e. “ad hoc.”
The organisation’s performance relies on the capabil-
ities of individuals (“heroes”), who may do or not do
their work well. Thus, the performance varies greatly
with their innate skills, knowledge, and motivation.
This all leads to unpredictable cost, schedule, func-
tionality, and product quality.

3.2 Repeatable development process

Level two refers to an organisation in which a good
performance is repeatable. A project management
system is in place, and planning and management of
new projects is based on experience with similar ear-
lier ones. Thus, successful practises from those earlier
projects can be repeated. Such an organisation has
established policies for managing a software project
and procedures to implement those policies, i.e. ef-
fective management processes for software projects
are institutionalised. Key process areas of this level
are management activities like requirements manage-
ment, project planning, project tracking and over-
sight, quality assurance, and configuration manage-
ment.

3.3 Defined development process

On level three, the process used in an organisation
is standardised and documented. The organisation
uses effective management as well as effective software
engineering practises, and software engineering and
management processes are integrated. The process is
characterised and fairly well understood. Organisa-
tions on this level have formed a dedicated Software
Engineering Process Group (SEPG) that takes care
of all the process-related activities, i.e. process defini-
tion, adaption and development. Furthermore, such
an organisation provides a training program about
the process so that everybody can acquire the knowl-
edge and skills required to fulfil the roles the process
assigns to them. The standard process of an organi-
sation can be tailored to the unique characteristics of
a project, and the result of this adaption is called the
project’s defined software process.

In summary, this level adds engineering processes
and organisational support for process management.
Key process areas include: process focus, process defi-
nition, training program, integrated software manage-
ment, software product engineering, intergroup coor-
dination, and peer reviews.

3.4 Managed development process

On level four the products as well as the process are
quantitatively controlled. This means that the pro-
cess is instrumented with well-defined and consistent
measurements, and there exist quantitative quality
goals for both the software products and the process.
An organisational measurement program exists that
measures productivity and quality for all the impor-
tant activities, and the surveyed data is collected in
an organisation-wide software process database. Pro-
cesses on this level are predictable because the pro-
cess is measured and controlled so that it operates
within measurable, well-defined limits. Thus, we ide-
ally achieve a predictably high quality. The focus of
this level is on product and process quality, and key
process areas are quantitative process management
and software quality management.

3.5 Optimising development process

On level five process improvement is institutionalised.
The whole organisation is focused on continuous pro-
cess improvement. The collected data on the effec-
tiveness of a process is used to analyse the cost bene-
fit of new technologies and proposed process changes.
Furthermore, data is analysed for causes of defects,
so that known types of defects can be prevented from
recurring. Weaknesses are identified and respective
improvements are undertaken proactively. Commu-
nication within the company ensures that innovation,
once identified, is disseminated, and experience is ex-
changed also between projects. Key process areas are
defect prevention, technology change management,
and process change management.

3.6 Criticism

CMM has received a degree of criticism over the years.
First of all, one has to observe that CMM has failed
to take over the world, and commercially there are
more successful methodologies, e.g. IBM’s Rational
Unified Process (Kruchten 2001), which try to provide
a framework and guidelines for high-quality software
development. CMM is neither a recipe nor guaran-
tee for success: an organisation operating on level
one may be more successful than one operating on a
higher level, although this is considered less likely, es-
pecially for larger organisations. There is little valida-
tion of the cost savings provided by CMM below the
fourth level since this is where quantitative measure-
ment starts, and unfortunately there are only very
few organisations on this level. The vast majority of
software developing organisations is considered to be
still on level one.

Many critics accuse CMM of having too much bu-
reaucratic overhead, and it is therefore often thought
to be only suited for organisations that exhibit a high
degree of bureaucracy anyway, such as government
agencies or large corporations. CMM may influence
an organisation to focus on perfectly completed pa-
perwork rather than on productive tasks like appli-
cation development or sensitivity to client needs and
the market. A highly-regulated process may stand
in the way when entering a market with some kind
of product is more important than functionality and
high quality. The main criticism objects that CMM



promotes process over substance, i.e. predictability
over the actual service provided to end users.

4 The Computing Education Maturity
Model (CEMM)

CMM is used to rate the maturity of software develop-
ing organisations. Our proposed Computing Educa-
tion Maturity Model (CEMM) aims to do the same for
educational organisations. The basic building block
of CEMM, however, is the course. This is possible
because courses, as an abstract entity in an educa-
tional organisation’s curriculum, are (ideally) well-
specified and (usually) adhere to fixed time and cost
constraints. Whenever the course is held, these in-
variants will typically stay the same. Consequently,
the course unit is a stable enough concept to be rated.
In contrast, software development projects are more
often unique events without such invariants and thus
the only stable concept to be rated in CMM remains
the organisation itself.

Like CMM, CEMM rates an education process ac-
cording to a hierarchy of five levels. We retain the
names of the levels, and the generic concepts and
ideas of each level are essentially the same, transfer-
ring them into the new domain. On the course level,
the absence or presence of a process for a course and
its characteristics determine the maturity level of that
course. On a higher organisational level, maturity
is determined by the maturity of individual courses
and the way in which all those processes affecting the
quality of the organisation are standardised and inte-
grated. In the following sections we will discuss the
different maturity levels.

4.1 Initial education process

The initial level of maturity is like the one in CMM:
informal and poorly controlled. This means that the
process is neither understood nor reflected upon. A
typical cause for this are changes of requirements, as
would be the case for a new course that has never been
held before, or for a lecturer who decides to change
large parts or all of a course. Such drastic changes
invariably lead to instability and frequently result in
a rather chaotic and stressful environment. Course
preparation and material is made on demand, i.e. ad-
hoc, and because of the instability there is hardly any
reviewing at all. Time pressure also plays a role here,
with the last lecture slides often being created the
hour before the lecture starts. Unsurprisingly, this
results in a lot of mistakes in material like handouts
and slides. For reflective activities like evaluation of
feedback or grades there is usually no time left. The
reuse of the created material is low and constrained to
the personal teaching activity of the lecturer. Like in
CMM, the success of courses depends on the skills and
initiative of “hero lecturers,” who are able to perform
despite the lack of structural support.

4.2 Repeatable education process

On level two, courses can be taught again as they
were taught before, and previous successes can be
repeated. Planning and implementation of courses
are based on previous experience, and the plan for a
course is used to track its progress. The educational
organisation has established policies for important
aspects concerning the management of courses, and
procedures to implement those policies. For exam-
ple, there should be policies about helping students
to catch up with missed lectures, on how students
can seek assistance, and how cheating is dealt with.
Courses have well-defined prerequisites, requirements

and intended outcomes that fit well with the other
courses offered. Course materials like slides, assign-
ments, lab sheets and exam questions exist and can
be reused not only by the lecturer who created them
but also by others. A transition is made from per-
sonal resources to resources that can be shared with
others. Changes to course material are controlled; i.e.
checks are made to ensure they are in harmony with
the course plan and other constraints, and managed
with a version control system.

4.3 Defined education process

On level three, the course concepts and materials have
been improved in several iterations, so that they have
reached a certain level of stability. Courses are well-
documented and come with a rich collection of ma-
terial, for the students as well as for the lecturers.
There exist scripts or textbooks for all the topics cov-
ered in a course, which potentially give students the
possibility of achieving the aims of a course solely by
guided self-study. There exist sets of slides and other
materials that may be appropriate for a course, such
as source code examples. Students can find learning
material and important course information on a well-
defined location on the Internet. If material cannot be
made available online (e.g. textbooks), references and
instructions are provided on how it can be acquired
by students. For the lecturers there exist collections
of proven lab exercises, assignments and exam ques-
tions. Material is of high quality and can be reused by
different lecturers. It is accessible in a shared repos-
itory which is an official organisational resource, and
maintained collectively by all lecturers. The quality
of the material is ensured by the systematic applica-
tion of reviewing techniques, e.g. peer reviews. Lec-
turers teaching (or having taught) the same or related
courses communicate and work together and organise
themselves in working groups.

4.4 Managed education process

On level four, the educational organisation has es-
tablished a measurement program. Data about
each course—assignment, exam and teaching evalu-
ation results—are collected and stored in a central
database. The data is fine-grained and not unneces-
sarily aggregated, e.g. the data set will contain scores
for the individual items of a test. Statistical meth-
ods are applied on a regular basis in order to ver-
ify course practises and manage quality, e.g. controls
check whether the variance of grades is within a cer-
tain range. Intervention policies are defined and trig-
gered when controlled quality parameters do not fall
within well-defined acceptable limits. For example, a
lecturer may contact a student who fails an assign-
ment, to propose a meeting and offer advice.

4.5 Optimising education process

On level five, changes to the process are carefully
managed and reflect best practice as informed by
the community of scholars engaged in education re-
search. Qualitative and quantitative research meth-
ods are used to gain insight into the process and lead
to improvements in the process itself.

Statistical methods are used in order to control
and change the process itself. Changes of the pro-
cess are carefully managed, i.e. identification and im-
plementation of process improvements is institution-
alised. This may be, for example, in the form of pro-
cess improvement meetings at the end of each course
iteration. Statistical methods can be of great help
in, for example, the selection of exam questions and



analysis of course results. Consequently, improve-
ment meetings need to discuss descriptive statistics
that illustrate the characteristics of the collected data
effectively. Defects have to be identified and anal-
ysed, so that people get to know what went wrong
and why. Knowledge about defects is used to prevent
recurrences, and knowledge about weaknesses used
for proactive process improvement.

5 Sneed’s Square revisited

Every industrial software project has some key fac-
tors that have to be balanced against each other
by means of careful project management. Sneed’s
“devil’s square,” shown in Figure 1, illustrates this
balancing act with a simple model of how these fac-
tors influence each other.

Figure 1: Sneed’s “devil’s square”

Four factors are considered:

1. the quality of the software that is developed;

2. the quantity of the software, i.e. the amount of
functionality covered by it;

3. the time required to develop the software; and

4. the development cost.

In the figure these factors are represented as axes
pointing outward. On the top two axes the outward
orientation represents positive change, and on the
bottom two the outward orientation represents nega-
tive change. The values for each factor are given by a
square, with the area of the square (or, for better il-
lustration, the circumference) being the productivity
of the developing organisation. The productivity is
considered invariant over the project duration. The
square can be thought of as a thread that is looped
around movable pins on the axes. If we want to in-
crease the quality or quantity of the developed soft-
ware, then the pins on the quality or quantity axes
are pulled outward. Since the pins are constrained
by the thread, which has a constant length, this will
inevitably pull the pins for time and cost into the
square: if we want to increase quantity or quality,
then development will take longer and/or cost more.
Hence the devil’s square models the antagonistic ef-
fects of the four factors.

When teaching a course we face a balancing act
similar to that of the devil’s square, and, as in soft-
ware development, changes to the different factors
have to be managed carefully in order to preserve the
structural integrity of the course. We illustrate this
by means of a similar model, the education square,
which is depicted in Figure 2. The education square
models four factors:

Figure 2: Education square (similar to Sneed’s
“devil’s square”)

1. the breadth of coverage of important topics in a
course (quantity);

2. the students’ depth of understanding of the
taught subject in the course (quality);

3. the time required to develop the material for the
course, teach the course and for students to learn
the material; and

4. the cost of the course for both the lecturers and
students.

The mechanism of the model is the same as the
devil’s square. The area within the square is the
productivity of the department. In order to increase
breadth of coverage of material and depth of under-
standing, with the same productivity, there must be
more time and/or more cost. If it is possible to
increase the productivity of a department, perhaps
when moving up maturity levels, it is possible to in-
crease the breadth of coverage and depth of under-
standing without increasing the time and cost input.

What the education square does show us is that
in order to improve the maturity of a department we
have to use the experiences of each course iteration to
incrementally change this balance for the better. Such
changes, however, should not be made thoughtlessly
but have to be controlled and managed well.

6 Analysis and discussion

In this section we address these questions:

• Will CEMM defined for computing education
suffer from the same shortcomings as the CMM
used in the software industry?

• How will the CEMM be used in practise?

• What is the cost of introducing and maintaining
CEMM at Department level?

6.1 Possible shortcomings in CEMM

The main criticism levelled at the CMM is the over-
head in following the process. One overhead is doc-
umentation preparation, and another the measure-
ments that must be taken.

In computing education, it is recognised as good
practise to handout a course outline at the beginning
of a course and submit a course audit at the end of
the course. The course outline enables students to
gain an understanding of what the course is about
and what is expected from them. Completing the
course audit allows the lecturer to reflect on what



they have done in the course, and document the suc-
cess of teaching techniques they used in the course.
The latter information is useful to anyone who takes
on lecturing the course the following year or anyone
who intends to use the same techniques in their own
courses. Course material such as slides, course hand-
books, exams and tests, and text books, which are
already designed for and used for courses would be
included in the documentation. In a well organised
department, all this material is kept in a content man-
agement system. The documentation required in the
CEMM fits naturally with the education process as
it is already undertaken in many computing depart-
ments.

Measurement in the software industry is fraught
with problems. For example, how do we measure pro-
ductivity, how do we measure the size of a system,
and how do we compare the measurements. In addi-
tion to this, measurement might not be accepted by
employees as they may have fears that the surveyed
data might be used against them. In computing edu-
cation, there are measurements that we deal with on
a regular basis. We grade students, we have incoming
and outgoing GPAs, we have pass rates. Collecting
these measurements are a basic requirement in com-
puting education. These measurements can be used
in CEMM.

6.2 CEMM in practise

What are the benefits to individuals and organisa-
tions from using CEMM?

Some lecturers and departments operate at level
one. Individual lecturers prepare new material each
year a course is taught and do not reflect on or learn
lessons from previous years. At the department level,
teaching is distributed on an ad-hoc basis with no
reflection on previous years.

In our experience, individual lecturers and depart-
ments are more likely to be operating at level two.
Lecturers place course outlines, lectures, assignments
and lab specifications on the web. This resource is
available for use the following year. Departments ask
lecturers what courses they would like to lecture and
typically the same person will lecture the same mate-
rial each year.

What is required to lift individuals and depart-
ments to level three? A process by which the mate-
rial is collected in a repository in a format such that
it could be used by anyone in the department. The
resource would need to be seen to be “owned” by the
department rather than by the individual lecturer.

In order for individuals and departments to move
to level four, it is necessary to measure and collect
the measurements. Some of this may be going on
now, but to be at this level it is necessary to have a
process that collects this information. Many Univer-
sities currently have the tools in place to collect this
information, but they often do not utilise these tools
to their full potential.

To get to level five there must be a process
that uses this information for improving the teaching
within the department, and the promotion of depart-
mental reflection.

There are small gains to be made for the individ-
uals lecturer. They gain from:

• reusing material that they prepare;

• being able to measure and document the im-
provement in their teaching practise;

• maintaining statistics that can be used when ap-
plying for tenure, grants and promotion;

• sharing of practise with other lecturers in the de-
partment.

There are larger gains to be made for the depart-
ments. They gain from:

• reusing material and best practise between
courses;

• being able to measure and document the im-
provement in their teaching practise;

• maintaining statistics that can be used at faculty
level;

• sharing of best practise across the department.

6.3 Cost of CEMM

What is the cost of moving from level to level for a
department?

The cost is mainly one of cultural change. Com-
puting education has advanced a long way over the
past twenty years, from chalk-and-talk through over-
head transparencies to the web. As we pointed out
above, much of the documentation that is needed is
already prepared and many of the measurements are
already taken, so the implementation of the process
is simply one of using the material that is available in
the management and maintenance of the process.

However, in many departments there is still a feel-
ing of ownership with respect to not only the material
prepared for courses but also for courses themselves.
Convincing staff to give up this ownership to the de-
partment could require quite a large shift.

7 Related work

The idea of a CMM for education is not new. For
example, Jalote (2003) points out a general strategy
for its realisation as a means to overcome the lack
of quality standards in the education sector. He ad-
dresses the need but says hardly anything about how
such a model should look like.

An e-learning Maturity Model (eMM) (Marshall
& Mitchell 2004, 2003, 2002) was proposed which
is based on the Software Process Improvement and
Capability dEtermination (SPICE) model (ISO/IEC
1998). SPICE can be seen as the ISO answer to SEI’s
CMM, and uses basically the same five levels of ma-
turity plus an additional level zero for processes that
are performed incompletely or not at all. It groups
process activities into five areas, and eMM defines
five corresponding areas for the domain of e-learning.
Benchmarks and best practises for e-learning were ex-
amined and used in order to compile a set of practises
that would fit into the five areas. Unlike CMM, the
maturity levels are used for the evaluation of each
practise and not just the whole organisation. The re-
sult is a framework for e-learning maturity evaluation,
which has been applied to the e-learning systems of
several New Zealand universities (Marshall & Mitchell
2005). While we believe that the aims of eMM with
respect to an educational organisation are similar to
the ones of CEMM, its domain is a different one and
thus not entirely suitable for our purpose. However,
some practises, e.g. from the process areas evalua-
tion and organisation, could be reasonably applied in
CEMM as well.

Neuhauser (2004, 2005) presents the Online
Course Design Maturity Model (OCDMM), which is
also a maturity model for e-learning, based on CMM.
This model describes different states of adoption of
e-learning technology, which form five maturity lev-
els. The difference between the levels is mainly the
degree to which e-learning technology is successfully



used. Like eMM, OCDMM targets specifically the
domain of e-learning and is very different from our
approach. Only some aspects of OCDMM are of di-
rect relevance to CEMM, e.g. the proposed measures
for the success of a course.

Kajko-Mattsson et al. (2001) propose the Correc-
tive Maintenance Maturity Model (CM3) for Main-
tainers Education and Training, a maturity model
for workforce development of software maintenance
engineers. Their maturity model is based on two ed-
ucational processes from industry and several generic
process models, among them CMM. It defines three
levels of maturity: initial, defined and optimal. This
maturity model looks at continuing education in an
industry environment, which is radically different
from that of an educational organisation. In contrast
to our domain, education is not the main focus of the
context of CM3. Therefore, even though both ma-
turity models deal with education, they are hardly
comparable.

Frailey & Mason (2002) describe how the Software
Engineering Body of Knowledge (SWEBOK) (Abran
et al. 2004) was used in order to direct workforce de-
velopment at a company and curriculum planning at
a university. SWEBOK is an attempt of the IEEE to
categorise and summarise the knowledge a software
engineer should have after four years of practise. The
common use of SWEBOK enabled the company to
find appropriate university courses for their employ-
ees, and the collaboration resulted in the creation of
certificate programs that were inspired in their struc-
ture by CMM. While this study is not directly related
to our work, it shows that standards like SWEBOK
and CMM can be useful for educational organisations
as well as industry.

People CMM (Curtis et al. 2001) is a maturity
model for workforce management and development
that was created by the SEI. It addresses the impor-
tance of continuing education for the improvement
of a software organisation’s maturity according to
CMM. It describes “best practises” from human re-
sources, knowledge management and organisational
development, fitting them into the hierarchy of the
five CMM maturity levels. Although the model is
tailored to the industry context, its practises for mo-
tivation, communication and the realisation of poten-
tial synergies within an organisation may inspire sim-
ilar practises in the educational context. Motivation
of students is a major factor for education, as can
be communication among students, between students
and lecturers, and among lecturers. The practises de-
scribed in our model rely on collaboration between
the staff and, on a higher level, between the organi-
sational units of an organisation. This is a basis on
which further synergies may evolve. Fostering a “cul-
ture of excellence” is one of the aims of People CMM,
and also something that we as educators hope to in-
still into the students we teach.

To the best of our knowledge, CMM has not been
applied to the general domain of teaching comput-
ing, with the exception of the work presented here.
As discussed above, other maturity models for edu-
cation either focus on professional development in an
industrial context, or on e-learning as a very particu-
lar sub-domain. Neither of these approaches are ap-
plicable to CS education in general, but may inspire
analogous best practises.

8 Future work

In this paper we have proposed CEMM. The next
step is to validate the proposed model. We will do
this by introducing the process into a computing de-
partment and collecting data at both the individual

lecturer and department level. Computing depart-
ments are technically savvy, and we believe it may
be more challenging to introduce an education matu-
rity model to other departments. The next step is to
work with another department and analyse whether
the CEMM would be a good fit or whether it needs
to be changed. Ultimately, we want to undertake a
university-wide study, analyse the model at this level
and study its effect.

9 Conclusion

We described a maturity model for computing educa-
tion that is based on the well-known Capability Ma-
turity Model created by SEI. Although our approach
is new and has not yet been validated, the model in-
corporates best practises which are either based on
common sense or have been successfully applied to
other domains with similar motivations. Other best
practises are supported by CS education literature, or
are founded on our personal experience as lecturers.
We find that certain key practises of CMM like rig-
orous documentation and use of a measurement pro-
gram seem even better suited for our purpose, as they
occur naturally in the context of education. This mit-
igates the negative impact of bureaucratic overhead
on our model, the main criticism about CMM. We
plan to continue the research on CEMM and further
elaborate and validate this maturity model.

References

Abran, A., Bourque, P., Dupuis, R. & Moore, J.
(2004), Guide to the Software Engineering Body of
Knowledge-SWEBOK, IEEE Press.

Cerbin, W. (1994), ‘The course portfolio as a tool for
continuous improvement of teaching and learning’,
Journal on Excellence in College Teaching 5(1), 95–
105.

Chrissis, M., Broekman, B., Shrum, S. & Konrad, M.
(2003), CMMI: Guidelines for Process Integration
and Product Improvement, Addison-Wesley Profes-
sional.

Curtis, B., Hefley, W. E. & Miller, S. A. (2001), Peo-
ple Capability Maturity Model (P-CMM) Version
2.0, Addison-Wesley Professional.

Frailey, D. & Mason, J. (2002), Using SWEBOK for
education programs in industry and academia, in
‘CSEE&T’02: Proceedings of the 15rd Conference
on Software Engineering Education and Training’,
IEEE Press, pp. 6–10.

Harris, A. (1998), ‘Effective teaching: a review of
the literature’, School Leadership & Management
18(2), 169–183.

Institute, S. E. (1995), The Capability Maturity
Model: Guidelines for Improving the Software Pro-
cess, Addison-Wesley Professional.

ISO/IEC (1998), Software process assessment, Tech-
nical Report TR 15504:1998, ISOSPICE.

Jalote, P. (2003), ‘Needed: a capability maturity
model for engineering education’, The Economic
Times India .

Kajko-Mattsson, M., Forssander, S. & Olsson, U.
(2001), Corrective maintenance maturity model
(CM3): maintainer’s education and training, in
‘ICSE’01: Proceedings of the 23rd International
Conference on Software Engineering’, IEEE Press,
pp. 610–619.



Kruchten, P. (2001), What is the rational unified pro-
cess?, Technical report, Rational Software Canada.

Marshall, S. & Mitchell, G. (2002), An e-learning ma-
turity model, in ‘Proceedings of EDUCAUSE’02:
19th Annual Conference of the Australian Society
for Computers in Learning in Tertiary Education’.

Marshall, S. & Mitchell, G. (2003), Potential indi-
cators of e-learning process capability, in ‘Proceed-
ings of EDUCAUSE’03: 20th Annual Conference of
the Australian Society for Computers in Learning
in Tertiary Education’.

Marshall, S. & Mitchell, G. (2004), Applying SPICE
to e-learning: an e-learning maturity model?, in
‘ACE’04: Proceedings of the Sixth Conference
on Australasian Computing Education’, Australian
Computer Society, Inc., Darlinghurst, Australia,
Australia, pp. 185–191.

Marshall, S. & Mitchell, G. (2005), E-learning pro-
cess maturity in the New Zealand tertiary sector,
in ‘Proceedings of EDUCAUSE’05: 22th Annual
Conference of the Australian Society for Comput-
ers in Learning in Tertiary Education’.

Neuhauser, C. (2004), ‘A maturity model: Does it
provide a path for online course design?’, The Jour-
nal of Interactive Online Learning 3(1).

Neuhauser, C. (2005), A five-step maturity model
for on-line course design, in ‘Proceedings of the
19th Annual Conference on Distance Teaching and
Learning’.

Reeves, J., Hugo, K., Heussner, R., Hala, A., Sarli-
oghu, B., Bialek, S. & Courter, S. (1998), Course
portfolios: A systematic mechanism to document
teaching and learning, in ‘Proceedings of the 28th
ASEE/IEEE Frontiers in Education Conference’,
IEEE, Tempe, AZ.

Robins, A., Rountree, J. & Rountree, N. (2003),
‘Learning and teaching programming: A review
and discussion’, Journal of Computer Science Ed-
ucation 13(2), 137–172.

Schön, D. A. (1987), Educating the reflective practi-
tioner: toward a new design for teaching and learn-
ing in the professions, Jossey-Bass, San Francisco.

Seldin, P. (2004), The teaching portfolio: a prac-
tical guide to improved performance and promo-
tion/tenure decisions, 3rd edn, Anker Pub. Co.,
Bolton, Mass.


