
A Method and Tool Support for Model-based Semi-automated Failure
Modes and Effects Analysis of Engineering Designs

Yiannis Papadopoulos, David Parker Christian Grante
Department of Computer Science Volvo Car Corporation
University of Hull G�tenborg
HU6 7RX, U.K. SE-40531, Sweden

{y.i.papadopoulos,d.j.parker}@hull.ac.uk cgrante@volvocars.com

Abstract

Limitations in scope but also difficulties with the
efficiency and scalability of present algorithms seem to
have so far limited the industrial uptake of existing
automated FMEA technology. In this paper, we describe a
new tool for the automatic synthesis of FMEAs which
builds upon our earlier work on fault tree synthesis. The
tool constructs FMEAs from engineering diagrams (e.g.
developed in Matlab-Simulink) that have been augmented
with information about component failures. To generate a
system FMEA, the tool first generates a “forest” of
interconnected system fault trees by traversing the system
model. This “forest” is then mechanically translated into a
simple table of direct relationships between component
and system failures, effectively a system FMEA. We
describe the architecture of the tool and demonstrate its
application on a steer-by-wire prototype. We also discuss
its performance and show that this approach could lead to
efficient ways of generating useful analyses from design
representations. .

Keywords: model-based FMEA, fault tree synthesis, steer-
by-wire systems, automated safety analysis.

1 Introduction and background

Failure Modes and Effects Analysis (FMEA) is a classical
system safety analysis technique which is currently
widely used in the automotive, aerospace and other safety
critical industries. In the process of an FMEA, analysts
compile lists of component failure modes and try to infer
the effects of those failure modes on the system. System
models, typically simple engineering diagrams, assist
analysts in understanding how the local effects of
component failures propagate through complex
architectures and ultimately cause hazardous effects at
system level.

Although there is software available that assists engineers
in performing clerical tasks, such as forming tables and
filling in data, the intelligent part of an FMEA process
remains a manual and laborious process. Thus, one of the
main criticisms of FMEA (Hawkins et al., 1996) is that

Copyright © 2004, Australian Computer Society, Inc. This
paper appeared at the 9th Australian Workshop on Safety
Related Programmable Systems (SCS'04), Brisbane.
Conferences in Research and Practice in Information
Technology, Vol. 47. Tony Cant, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

the time taken to perform the analysis can often exceed
the period of the design and development phases and
therefore the analysis de facto becomes a mere
deliverable to the customer and not a useful tool capable
of improving the design. Difficulties naturally become
more acute as systems grow in scale and complexity.

To address those difficulties, a body of work is looking
into the automation and simplification of FMEA. To
mechanically infer the effects of component failures in a
system, several approaches have been proposed which
use quantitative or qualitative fault simulation. The reader
is referred, for example, to the work of Lehtela (1990),
Bull and Burrows (1996), Price and Taylor (2002) and Xu
et al. (2002). The application of these approaches have
been demonstrated successfully mainly in the domains of
electronic and electrical circuits. Despite substantial
progress in the development of this technology, though,
fault simulation requires domain modelling and is
therefore restricted to domains for which models and
simulators have been developed to facilitate the
generation of an FMEA. Thus, limitations in scope but
also difficulties with the efficiency and scalability of
algorithms seem to have so far limited the industrial
uptake of automated FMEA technology. The problem
therefore persists and hence there is scope for new
approaches to the synthesis of FMEAs. One of the
challenges for research is to find a generic solution, i.e.
one that is applicable on (so called) mechatronic systems
that bring together diverse technologies, i.e. mechanical,
hydraulic, electrical, and programmable electronic.

In this paper, we propose a new approach to the synthesis
of FMEAs which builds upon recent work towards
automating fault tree analysis (Papadopoulos et al.,
2001). In this approach, FMEAs are built from
engineering diagrams that have been augmented with
information about component failures. The approach is
only semi-automatic, i.e. some annotations must be added
to the system model before an FMEA can be generated.
However, the effort required to make these annotations is
compensated by gains in terms of scope. Indeed, the
proposed approach is generic, i.e. not restricted to an
application domain, and potentially applicable to a range
of widely used engineering models.

The proposed approach and the FMEA synthesis tool are
extensions to an earlier tool for the automatic synthesis of
fault trees described in Papadopoulos and Maruhn (2001).
In section 2 of this paper we outline this approach, in
section 3 we present the architecture of the tool and in
section 4 we discuss an application of this tool in the

early stages of the design of an embedded vehicle control
system.

2 Approach

In the proposed approach, FMEAs can be constructed
from models developed at various stages of the design
life-cycle. The models that provide the basis for the
analysis should identify the topology of the system, i.e.
the system components and the material, energy or data
transactions among those components. Models can also
be hierarchically structured and record in different layers
the decomposition of subsystems into more basic
components. We should note that this type of structural
models include piping and instrumentation diagrams,
functional block diagrams, data flow diagrams and other
models commonly used in many areas of engineering
design.

The first step in the analysis of such models is the
establishment of the local failure behaviour of
components in the model as a set of failure expressions
which show how deviations of component outputs can be
caused by internal malfunctions and deviations of
component inputs. Input and output deviations referenced
in these failure expressions are described qualitatively
and typically represent extreme conditions such as the
omission or commission of parameters or qualitative
deviations from correct value (i.e. hi-low) and expected
timing behaviour (i.e. early-late)1. Collectively, a set of
failure expressions that logically explain all possible
deviations at all output ports of a component provides a
model of the failure behaviour of the component under
examination. This model can be developed once and then
stored in a library. For simple components, e.g. sensors
and actuators, such models could be re-used across
different applications to simplify the manual part of the
analysis and the overall application of the proposed
technique.

Once these local failure analyses have been inserted in
the system model, the structure of the model is then used
to automatically determine how local failures propagate
through connections in the model and cause functional
failures at the outputs of the system. This global view of
failure is initially captured in a set of fault trees which are
automatically constructed by traversing the model of the
system backward moving from the final elements of the
design, i.e. the actuators, towards system inputs and by
evaluating the failure expressions of the components
encountered during this traversal.

The fault trees synthesized using this approach show how
functional failures or malfunctions at the outputs of the
system are caused by logical combinations of component
failures. These fault trees may share branches and basic
events in which case they record common causes of
failure, i.e. component failures that contribute to more

1 For discussion of qualitative failure modes and their
application in computer system and software hazard
analysis, in particular, the reader is referred to McDermid
et al. (1995) and Ministry of Defence, U.K. (2000).

than one system failures. Thus, in general, the result of
the fault tree synthesis process is a network of
interconnected fault trees which record logical
relationships between component and system failures as
this is illustrated in figure 1. The top events of these fault
trees represent system failures. Leaf nodes represent
component failure modes while the body of intermediate
events (and intervening logic) records the propagation of
failure in the system and the progressive transformation
of component malfunctions to system failures. One
difficulty here is that in large and complex systems fault
trees tend to grow very large which means that the
structure of the fault tree (i.e. intermediate events and
logic) is typically too difficult to inspect and interpret
meaningfully2.

In the final step of the proposed process, this complex
(and often impossible to interpret) body of fault
propagation logic is removed from the analysis by an
automated algorithm which translates the network of
interconnected fault trees into a simple table of direct
relationships between component and system failures. In
a similar way to a classical FMEA, this table determines
for each component in the system and for each failure
mode of that component, the effect of the failure mode on
the system. The table shows whether, and how, each
failure mode causes one or more system failures (i.e. top
events of fault trees) by itself or in conjunction with other
events. The concept is illustrated in figure 2.

Component failures

System failures

Global
propagation
of failure
in the system

System
failures

Fault tree
synthesis
algorithm Component

failures & local fault
propagation from
inputs to outputs

Figure 1: A network of automatically created

fault trees

2 This is to a large extent true for all fault trees whether
manually or automatically constructed. In manual fault
tree analysis, though, experienced safety analysts may be
able to use their knowledge in order to structure large
fault trees in a more comprehensible and useful manner.

Multiple Failure System FMEA
Component
failure

Direct
effects on
the system

Effects caused in
conjunction wit h
(other events)

C1 F1 -
C2 F1 -
C3 - F1 (C4)
C4 - F1 (C3)
C5 F1,F2 -
C6 - F1,F2 (C7)

FMEA synthesis algorithm

F1 F2

Network of Interconnected System Fault Trees

C1 C2 C3 C4 C5 C6 C7 C8 C9

C7 - F1,F2 (C6)
C8 F2 -
C9 F2 -

 Figure 2: Synthesised fault trees and FMEA

Note that in a classical manual FMEA only the effects of
single failures are typically assessed. Thus, one advantage
of generating an FMEA from fault trees is that fault trees
record the effects of combinations of component failures
and this useful information can also be transferred into
the FMEA.

To accommodate this additional information, the resultant
FMEA tables are split into two, one containing the direct
effects on the system, i.e. those effects caused by single
component failures, and the other containing further
effects, i.e. those effects caused by two or more
component failure modes. This allows separate, easy
access to the most critical information, the single points
of failure. Perhaps more importantly, the FMEA shows
all functional effects that a particular component failure
mode causes. The latter is particularly useful as a failure
mode that contributes to multiple system failures (e.g. C5
in the example of figure 2) is potentially more significant
than those that only cause a single top event. Precisely
because it records the effects of combinations of
component failures, this type of FMEA can, in practice,
help analysts not only to locate problems in the design,
but also to determine the level of fault tolerance in the
system, i.e. to determine whether the system can tolerate
any single or any combination of two, three or more
component failures.

3 Tool

To enable the practical and useful application of the
above concept in engineering design, we have developed
a tool that generates FMEAs from models developed in
Matlab Simulink. Simulink was chosen as a modelling
environment because it is both a widely used engineering
tool and a tool for which in the past we have developed
an automated fault tree synthesis algorithm. It should be
noted, however, that the applicability of the proposed
technique is not restricted to Simulink models. Any
model that provides the topology of the system, i.e.
components and connections, is suitable for this type of
analysis. In Papadopoulos and Petersen (2003), for
example, we have demonstrated synthesis of fault trees
from models of marine system designs developed in
Simulation X.

3.1 Architecture and Algorithms

Three major extensions to the original fault tree synthesis
tool were made to enable the construction of FMEAs.
Firstly, the fault tree synthesis algorithm was improved to
allow the simultaneous synthesis of more than one
interconnected system fault trees. In a single step of
execution, the tool generates a complete set of system
fault trees with top events that represent all possible
deviations of system parameters at all outputs of a
system. The second significant extension made was the
addition of a minimal cut-set calculation algorithm. The
cut-sets of the synthesised fault tree trees are calculated
by applying a depth-first, bottom-up traversal strategy, in
the course of which the logic of each tree is progressively
established and then simplified using classical Boolean
reduction techniques (Semanderes, 1971). The final
significant addition to the original tool was that of an
FMEA synthesis algorithm that processes all cut-sets to
establish direct relationships between component failures
and system failures in two FMEA tables (i.e. direct
effects, and effects caused in conjunction with other
events).

The architecture of the tool is illustrated in figure 3. The
first component of the tool is a graphical user interface
that analysts can use to annotate components with the
failure annotations required for the fault tree synthesis.
This data becomes part of the Simulink model and is
automatically saved and retrieved by Matlab every time
the model is opened or closed by a user. Failure
annotations reference only attributes of the corresponding
components (i.e. failure modes and deviations at
component input or output ports). This means that such
annotations can, in principle, be re-used within the same
model or across different models with the obvious benefit
of simplifying the manual part of the analysis.

Once a model has been annotated, it is saved by Matlab in
the format of a Simulink model file. The second
component of the FMEA tool is a parser that interprets
such files, and reconstructs the enclosed annotated
models for the purposes of fault tree synthesis. The
synthesis itself is performed by the third component of
the tool, the fault tree synthesis algorithm.

 Matlab Simulink

Algorithms

Display
of FMEA

FMEA

Web-browser

Matlab
model

Model Parser
Fault Tree Synthesiser
Cut-set Calculator
FMEA synthesiser

GUI for
annotation of
components
with failure data

Figure 3: Architecture of the FMEA tool

To generate fault trees, the algorithm performs a
backward traversal from each output of the model, in the
course of which it evaluates the failure expressions
contained in the local analyses of the components
encountered during the traversal. The resultant network of
fault trees is then logically reduced into minimal cut-sets.
Finally, an FMEA synthesis algorithm operates on these
cut-sets, and in a single traversal of the cut-sets generates
the two FMEA tables. In the current implementation of
the algorithm, the synthesis of the FMEA is separated
from the display of tables. Indeed, an FMEA store is first
created in memory and then an HTML generator is used
to parse this store and create web pages containing the
tables of data. The advantages of this medium include
easy distribution and display and the ability, through
hyperlinks, to navigate different aspects of the
information.

3.2 Scope and performance

Substantial engineering work was performed to enable
application of the general concept that we outlined above
on realistic system models. The tool was designed, for
example, to recognise and handle circular paths in the
model that create circular references to the same failure
logic in fault trees. When such circles (e.g. representing

control loops) are encountered, the failure logic contained
in the circle is only incorporated once in the trees. At the
same time, a note is made by adding a special node in the
trees which does not affect the rest of the failure logic but
clearly warns about the earlier existence of circular logic
at this point.

To deal with hierarchical models effectively, the
synthesis algorithm was designed to perform traversals
both across the vertical and horizontal axis of the design
hierarchy. Indeed, the current implementation allows the
annotation of hierarchical structures at all levels of the
design. Failure analyses at sub-system level are important
as they help to collectively capture the effect of failure
conditions that do not necessarily require examination at
basic component level. If, for example, a subsystem as a
whole is susceptible to some environmental disturbance
like electromagnetic interference, then the effects of this
condition can be directly specified with a failure
annotation at subsystem level. This annotation, for
example, could define that all outputs of the subsystem
are omitted in the event of electromagnetic interference.
Such annotations would typically complement other
annotations made at the level of the enclosed components
to describe aspects of failure behaviour at this level (e.g.
the mechanical and electrical failure modes of each
component). In general, when examining the causes of a
failure at an output of a sub-system, the fault tree
synthesis algorithm creates a disjunction between any
failure logic specified at sub-system level and logic
arising from the enclosed lower levels. Thus, by enabling
causes of failure to be described at both component and
sub-system level, it becomes possible to avoid repetition
of data that would otherwise be required to describe
factors affecting entire sub-systems.

The FMEA tool is also designed to handle complications
caused in the traversal of the model and the fault tree
synthesis by the multiplexing and de-multiplexing of
flows that often exist in Simulink models. It also
recognises and handles relayed control signals (triggers)
and the propagation of failure between components that
communicate remotely using implicit protocols (Data-
store/Data-read pairs, for example). Such features are
essential to make this technique applicable on complex
models and render the tool useful in industrial contexts of
application. They have been achieved by incorporating
into the tool syntactical and semantic information about
Matlab-Simulink components. The tool, for example, can
recognise “Data-read” components which are used in
Simulink models to read data flows generated remotely
by corresponding “Data-store” components. When such
components are encountered during the fault tree
synthesis, a global search is performed to locate the
remote “Data stores” from which potential deviations of
system parameters may originate.

The speed and performance of the FMEA tool are also
crucial in achieving scalability and industrial
applicability. We have not had a chance yet to perform a
rigorous performance evaluation of the proposed
algorithms. First applications indicate, though, that this
approach can lead to fast and efficient ways of generating
useful safety analyses from system design

representations. An indication of the present performance
of the tool is that it is taking a little more than a minute in
an average personal computer to generate an FMEA from
an architectural model of a steer-by-wire system that
contains more than a hundred components and generates
several thousand cut sets (see also case study in section
4). This result refers to an FMEA that records the effects
of up to four simultaneously occurring component
failures modes. When this limit is set at two, the time
dramatically decreases, obtaining timings in the order of a
few seconds. To the best of our knowledge, these speeds
compare favourably with other results reported in the
literature of automated FMEA where systems have been
reported to take hours even when considering only the
effects of single component failures. Direct comparisons,
however, are not possible because the proposed approach
leads only to semi-automatic synthesis of FMEAs, while
most other work aims to fully automate the process.

The speed of the tool currently seems sufficient to deal
with relatively complex design problems in which
annotated components are in the order of hundreds.
Problems may arise, though, in large systems that contain
thousands of annotated components and may result in a
failure logic that is composed of millions of cut-sets3. The
most susceptible part of the tool to problems of scale is
the calculation of cut-sets, a computationally expensive
operation, and a problem where a lot of contemporary
research is focused. To further improve the speed of the
tool in this area, we are currently considering using a
recently proposed minimal cut-set calculation algorithm
(Sinnamon and Andrews, 1997). The algorithm pre-
processes fault trees, converting them into Binary
Decision Diagrams, using ordering rules to determine the
position of failure modes in the hierarchy of the tree. We
hope that the improvements in efficiency that could be
achieved by using this algorithm will further improve the
scalability of the proposed techniques and ultimately
enable their application in problems of industrial scale.

4 Case study

The method and tool are currently being evaluated by
Volvo cars in a case study of medium complexity (i.e.
hundreds of components) performed on a Matlab-
Simulink model of an advanced steer-by-wire prototype
system for cars. Note that classical FMEA is typically
applied towards the end of the design life-cycle when
details about the components of the system and their
failure modes are available. Volvo, however, is using the
tool in a rather different way, in order to drive the design
of this system from the early stages of its development.

In this project, an FMEA was performed on an abstract
functional model of the system. The objectives of the
experiment were two-fold: first, to evaluate whether
application of the technique could assist the early

3 One way to simplify the analysis of complex hierarchical
models, which at low levels incorporate thousands of
components, is to perform the annotation at a higher level of
abstraction where there are a smaller number of components or
subsystems to annotate.

identification of potential design flaws; second, to
evaluate whether the analysis of a functional model could
point out critical functions and guide the design of such
functions. Satisfaction of these two objectives would
mean that:

• expensive design iterations needed to correct errors
late in the design could be avoided

 • an effective top-down design approach could be
established in which the design of critical functions
(and safety measures for these functions) could be
driven by the result of FMEAs performed on
increasingly more detailed models of the system

The functional model was developed in Matlab Simulink
and was deliberately designed without any degraded or
fallback modes, in order to test whether the results from
the analysis could help in the systematic identification
and design of such modes. The model identifies input,
processing and actuator functions and how the interaction
among these basic functions results in the provision of
system functions such as the control of steering, the
generation of driver feedback in the form of torque on the
steering wheel, and the ability to send and receive
information from and to controls in the steering wheel,
e.g. the horn.

The model was annotated with information about the
local behaviour of functions and then sixteen
interconnected fault trees and an FMEA were
automatically constructed by the safety analysis tool. Two
qualitative failure modes were considered during the
analysis, the omission and the commission of functions.
Given the exploratory nature of the analysis, it was
considered that it would be beneficial (for simplicity and
ease) to aggregate value and timing failures into a single
category of coarse commission failures. Omission failures
were, therefore, used to represent the loss of functions,
while the definition of commission failures was
broadened to encompass conditions in which functions
are provided in the wrong temporal context or at incorrect
value. It could be argued that this reduction in the
granularity of the analysis could have a negative impact
on the quality of results. On the other hand, the abstract
nature of the design model meant that detailed analysis of
value and timing failures at this stage would have added
very little value to the analysis, hence we opted for the
simplification.

The resultant FMEA shows how omission and
commission failures of input, processing and actuator
functions in the model of the steer-by-wire system cause
system level effects, i.e. omission or commission of
steering, driver feedback and other functions. A
classification of the severity of those effects into marginal
and catastrophic helped to identify the criticality of
causes, i.e. failures of input, processing and actuator
functions, and this in turn provoked decisions about the
design of these basic functions. For example, wherever
the analysis indicated that the omission of a function had
only marginal effects while the commission had
catastrophic effects, a design recommendation was made
to design the function in a way that it fails silent. This in
turn led to the identification of several degraded modes in

which non-critical steer-by-wire functions may fail silent
with only marginal effects on the system. A hierarchical
state-chart was then constructed to show how graceful
transition to such modes could be achieved. Driven by
these results, a design iteration is currently underway to
incorporate new degraded modes in an improved version
of the system model. A more detailed description of the
case study is beyond the scope of this paper. However, to
illustrate the useful application of the method, we discuss
an example based on a small and manageable fragment of
model. Figure 4 illustrates a simple standby-recovery
system in which function P processes the value generated
by input function I. When omission at the output of P is
detected, a redundant function S is initiated to replace P.
The following expressions describe the failure logic of
functions I, P and S (note that this logic has been
simplified for the purposes of the example, e.g. there is
no analysis of commission failures).

I: Omission-pvalue = Failed(I)
P: Omission-output = Omission-input or Failed(P)
S: Omission-output = Omission-monitor and (Omission-

input or Failed(S))

From the above expressions and the structure of the
model, the safety analysis tool generates the fault trees
and FMEA illustrated in figure 5. The FMEA shows that
a failure of the input function I causes omission of both
the normal and standby outputs of the system and is,
therefore, a critical failure. On the other hand, a single
failure of P causes only omission of normal output and
can, therefore, be seen as less critical. Finally, failure of S
does not have any direct effect on the system. It becomes
significant only in conjunction with failure of P which in
this design provides the condition that precisely triggers
the need to deploy S in the first place.

The FMEA indicates that input function I is the critical
element in this design, representing a hazardous
dependency between the two redundant processing
functions P and S. Failure of I is, indeed, a direct cause of
a critical system failure (omission of the standby output)
and should, therefore, be made unlikely by design. On the
other hand, the analysis shows that an independent failure
of either P or S cannot cause a critical system failure.
Emphasis in the design should, therefore, be placed on
how to protect these two functions from common cause
failures such as those caused by electromagnetic
interference.

Figure 4: Example model

 Network of System Fault Trees

I Failed Omission-normal -
 Omission-standby

P Failed Omission-normal Omission-standby
 (Failed(S))

S Failed - Omission-standby
 (Failed(P))

SEVERITY OF EFFECTS ON THE SYSTEM:

Omission-normal Marginal
Omission-standby Critical

Equivalent FMEA

Component Failure Direct effects on Effects in
 mode the system conjunction with

(other events)

 Omission-standby

Omission-monitor (S)

Omission-output (P)

Omission-pvalue (I)

Failed (I) Failed (P) Failed (S)

Omission-normal

Figure 5: Fault trees and FMEA for the example

The above example demonstrates the ability of the
synthesis tool to detect hazardous dependencies in the
model, i.e. component failures that may cause
simultaneous failure of hypothetically independent
system functions. This may seem a trivial task in this
example largely because the source of the dependency is
very close to the affected functions but also because the
model and associated failure logic are very simple.
However, in reality, hazardous dependencies are not
always as simple to detect especially those originating
from remote energy and data sources which are deeply
hidden in the hierarchy of complex designs. The detection
of such dependencies is, indeed, a hard task which
justifies, we believe, the provision of useful automated
support to designers and analysts.

5 Conclusion

Safety analysis processes must evolve to deal with the
difficulties posed by increasing complexity in technology
and tighter integration of functions in the design of
computer-based safety critical systems. Integrated
safety-directed design processes need to emerge that can
be effectively driven by the results of the assessment. In
the context of such integration, classical safety analysis
techniques like FMEA should ideally be automated (at
least to some extent and without loss of effectiveness) to
enable fast and cost effective iterations of system
modelling and safety analysis that can meet the tight
constraints of modern production.

In this paper, we proposed a concept and a tool for the
model-based synthesis of FMEAs in which FMEAs are
semi-automatically constructed from engineering design
models that have been augmented with information about
the local propagation of failures. In theory, the proposed
process is largely automated and could be easily iterated
to enable the continuous assessment of evolving designs.
The potential benefits from application of this technique
are substantial and include simplifying the analysis,
easing the examination of effects of design modifications
on safety and keeping the safety analyses consistent with
the design.

There is not yet sufficient project experience to judge the
practicability of this approach. However, early experience
suggests that it is relatively easy to produce the required
failure annotations, and that some re-use of this
information is possible. The technique, therefore, is likely
to give economic benefits. There are, however, many
issues still to be addressed and many areas for potential
improvement. For instance, to improve the value of the
analysis, we need to obtain evidence that the local failure
propagation specified by analysts, especially that of
complex programmable modules, is no worse than
assumed in the given failure annotations. The verification
of such assumptions becomes naturally more important at
the late stages of the design process when the design is
finalised. Model checking and hazard directed testing are
two methods that we currently consider as potential ways
of verifying such assumptions.

There is also a broad issue of how to make safety a more
controlled facet of the design so as to enable early
detection of potential hazards and direct the design of
preventative measures. The Volvo experience suggests
that the proposed technique is applicable on abstract
functional models and results could guide the refinement
of abstract designs. However, the problem is largely
unexplored, and further work is needed in this direction.
In the context of our plans for future work, we currently
explore ways for combining this work on model-based
safety analysis with recent advances on evolutionary
computation (Densig, 1997) (Papadopoulos and Grante,
2003) in order to achieve decision support in the
allocation of safety and reliability requirements in the
course of the evolution of a system design.

6 Acknowledgements

The authors would like to thank Volvo Cars Corporation
for funding this work. In particular, we would like to
thank Johan Wedlin and Mats Willanders for their
comments and support in the development of these ideas.

7 References

Bull, D. R., Burrows, C. R., Edge, K. A., Hawkins P. G.
and Woollons D. J. (1996): A tool for FMEA of
hydraulic systems, IMECE '96, Int’l Mechanical
Engineering Congress and Exposition, Atlanta,
Georgia.

Denzig, B., F., Altiparmak and Smith A. E. (1997):
Efficient Optimisation of All-Terminal Reliable
Networks Using an Evolutionary Approach, IEEE
transactions on Reliability, R46:18-26.

Hawkins, P. G., Atkinson, R. M., Woollons, D. J., Bull,
D. R. and Burrows, R. (1996): An approach to
FMEA using multiple models' IFMAA’96, Int’l
Functional Modelling Application Association Conf.,
Athens.

Lehtela, M. (1990): Computer-Aided FMEA of
Electronic Circuits, Microelectronics and Reliability,
30(4):761-773.

McDermid, J.A., Nicholson, M., Pumfrey, D.J. and
Fenelon, P., (1995): Experience with the application
of HAZOP to computer-based systems, COMPASS
'95:10th Annual Conference on Computer Assurance,
pp. 37-48, Gaithersburg.

Ministry of Defence, U.K. (2000): Defence Standard 00-
58: Hazard and Operability Studies on Systems
Containing Programmable Electronics, Issue 2 dated
19 May 2000.

Papadopoulos, Y. and Grante, C. (2003): Techniques and
tools for automated safety analysis & decision
support for redundancy allocation in automotive
systems, COMPSAC’03, 27th IEEE Int’l Conf. on
Computer Software and Applications, pp. 105-110,
Dallas, Texas.

Papadopoulos, Y., McDermid, J., Sasse, R. and Heiner G.
(2001): Analysis and synthesis of the behaviour of
complex programmable systems in conditions of
failure, Reliability Engineering and System Safety,
71:229-247.

Papadopoulos, Y. and Maruhn M. (2001): Model-based
automated synthesis of fault trees from Matlab-
Simulink models, DSN’01, Int’l Conf. on
Dependable Systems and Networks, pp. 77-82,
Götenborg.

Papadopoulos, Y., Petersen, U. (2003): Combining ship
machinery system design and first principle safety
analysis, IMDC’03, 8th Int’l Marine Design Conf.,
pp. 1:415-426, Athens.

Price, C. J. and Taylor, N. (2002): Automated multiple
failure FMEA, Reliability Engineering and System
Safety, 76:1-10.

Semanderes S. N. (1971): ‘ELRAFT’, a computer
program for the efficient logic reduction analysis of
fault trees, IEEE Transactions on Nuclear Science,
NS-18:481-487.

Sinnamon, R. M., Andrews, J. D. (1997): New
approaches to evaluating fault trees, Reliability
Engineering and System Safety, 58:89-96.

Xu, K., Tang, L. C., Xie, M., Ho, S.L., Zhu, M. L.,
(2002): Fuzzy assessment of FMEA for engine
systems, Reliability Engineering and System
Safety,75:17-29.

