
A Method and Tool Support for Model-based Semi-automated Failure 
Modes and Effects Analysis of Engineering Designs   

Yiannis Papadopoulos, David Parker                    Christian Grante  
Department of Computer Science                Volvo Car Corporation  
University of Hull      G�tenborg 
HU6 7RX, U.K.      SE-40531, Sweden 

{y.i.papadopoulos,d.j.parker}@hull.ac.uk  cgrante@volvocars.com 

 

Abstract 

Limitations in scope but also difficulties with the 
efficiency and scalability of present algorithms seem to 
have so far limited the industrial uptake of existing 
automated FMEA technology. In this paper, we describe a 
new tool for the automatic synthesis of FMEAs which 
builds upon our earlier work on fault tree synthesis. The 
tool constructs FMEAs from engineering diagrams (e.g. 
developed in Matlab-Simulink) that have been augmented 
with information about component failures. To generate a 
system FMEA, the tool first generates a “forest” of 
interconnected system fault trees by traversing the system 
model. This “forest” is then mechanically translated into a 
simple table of direct relationships between component 
and system failures, effectively a system FMEA. We 
describe the architecture of the tool and demonstrate its 
application on a steer-by-wire prototype. We also discuss 
its performance and show that this approach could lead to 
efficient ways of generating useful analyses from design 
representations. .    

Keywords: model-based FMEA, fault tree synthesis, steer-
by-wire systems, automated safety analysis. 

1 Introduction and background 

Failure Modes and Effects Analysis (FMEA) is a classical 
system safety analysis technique which is currently 
widely used in the automotive, aerospace and other safety 
critical industries. In the process of an FMEA, analysts 
compile lists of component failure modes and try to infer 
the effects of those failure modes on the system. System 
models, typically simple engineering diagrams, assist 
analysts in understanding how the local effects of 
component failures propagate through complex 
architectures and ultimately cause hazardous effects at 
system level.  

Although there is software available that assists engineers 
in performing clerical tasks, such as forming tables and 
filling in data, the intelligent part of an FMEA process 
remains a manual and laborious process. Thus, one of the 
main criticisms of FMEA (Hawkins et al., 1996) is that 
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the time taken to perform the analysis can often exceed 
the period of the design and development phases and 
therefore the analysis de facto becomes a mere 
deliverable to the customer and not a useful tool capable 
of improving the design. Difficulties naturally become 
more acute as systems grow in scale and complexity.  

To address those difficulties, a body of work is looking 
into the automation and simplification of FMEA. To 
mechanically infer the effects of component failures in a 
system, several approaches have been proposed which 
use quantitative or qualitative fault simulation. The reader 
is referred, for example, to the work of Lehtela (1990), 
Bull and Burrows (1996), Price and Taylor (2002) and Xu 
et al. (2002). The application of these approaches have 
been demonstrated successfully mainly in the domains of 
electronic and electrical circuits. Despite substantial 
progress in the development of this technology, though, 
fault simulation requires domain modelling and is 
therefore restricted to domains for which models and 
simulators have been developed to facilitate the 
generation of an FMEA. Thus, limitations in scope but 
also difficulties with the efficiency and scalability of 
algorithms seem to have so far limited the industrial 
uptake of automated FMEA technology. The problem 
therefore persists and hence there is scope for new 
approaches to the synthesis of FMEAs. One of the 
challenges for research is to find a generic solution, i.e. 
one that is applicable on (so called) mechatronic systems 
that bring together diverse technologies, i.e. mechanical, 
hydraulic, electrical, and programmable electronic.  

In this paper, we propose a new approach to the synthesis 
of FMEAs which builds upon recent work towards 
automating fault tree analysis (Papadopoulos et al., 
2001). In this approach, FMEAs are built from 
engineering diagrams that have been augmented with 
information about component failures. The approach is 
only semi-automatic, i.e. some annotations must be added 
to the system model before an FMEA can be generated.  
However, the effort required to make these annotations is 
compensated by gains in terms of scope. Indeed, the 
proposed approach is generic, i.e. not restricted to an 
application domain, and potentially applicable to a range 
of widely used engineering models.  

The proposed approach and the FMEA synthesis tool are 
extensions to an earlier tool for the automatic synthesis of 
fault trees described in Papadopoulos and Maruhn (2001). 
In section 2 of this paper we outline this approach, in 
section 3 we present the architecture of the tool and in 
section 4 we discuss an application of this tool in the 



early stages of the design of an embedded vehicle control 
system.   

2 Approach 

In the proposed approach, FMEAs can be constructed 
from models developed at various stages of the design 
life-cycle. The models that provide the basis for the 
analysis should identify the topology of the system, i.e. 
the system components and the material, energy or data 
transactions among those components. Models can also 
be hierarchically structured and record in different layers 
the decomposition of subsystems into more basic 
components. We should note that this type of structural 
models include piping and instrumentation diagrams, 
functional block diagrams, data flow diagrams and other 
models commonly used in many areas of engineering 
design.  

The first step in the analysis of such models is the 
establishment of the local failure behaviour of 
components in the model as a set of failure expressions 
which show how deviations of component outputs can be 
caused by internal malfunctions and deviations of 
component inputs. Input and output deviations referenced 
in these failure expressions are described qualitatively 
and typically represent extreme conditions such as the 
omission or commission of parameters or qualitative 
deviations from correct value (i.e. hi-low) and expected 
timing behaviour (i.e. early-late)1. Collectively, a set of 
failure expressions that logically explain all possible 
deviations at all output ports of a component provides a 
model of the failure behaviour of the component under 
examination. This model can be developed once and then 
stored in a library. For simple components, e.g. sensors 
and actuators, such models could be re-used across 
different applications to simplify the manual part of the 
analysis and the overall application of the proposed 
technique.   

Once these local failure analyses have been inserted in 
the system model, the structure of the model is then used 
to automatically determine how local failures propagate 
through connections in the model and cause functional 
failures at the outputs of the system. This global view of 
failure is initially captured in a set of fault trees which are 
automatically constructed by traversing the model of the 
system backward moving from the final elements of the 
design, i.e. the actuators, towards system inputs and by 
evaluating the failure expressions of the components 
encountered during this traversal.  

The fault trees synthesized using this approach show how 
functional failures or malfunctions at the outputs of the 
system are caused by logical combinations of component 
failures. These fault trees may share branches and basic 
events in which case they record common causes of 
failure, i.e. component failures that contribute to more 
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than one system failures. Thus, in general, the result of 
the fault tree synthesis process is a network of 
interconnected fault trees which record logical 
relationships between component and system failures as 
this is illustrated in figure 1. The top events of these fault 
trees represent system failures. Leaf nodes represent 
component failure modes while the body of intermediate 
events (and intervening logic) records the propagation of 
failure in the system and the progressive transformation 
of component malfunctions to system failures.  One 
difficulty here is that in large and complex systems fault 
trees tend to grow very large which means that the 
structure of the fault tree (i.e. intermediate events and 
logic) is typically too difficult to inspect and interpret 
meaningfully2. 

In the final step of the proposed process, this complex 
(and often impossible to interpret) body of fault 
propagation logic is removed from the analysis by an 
automated algorithm which translates the network of 
interconnected fault trees into a simple table of direct 
relationships between component and system failures. In 
a similar way to a classical FMEA, this table determines 
for each component in the system and for each failure 
mode of that component, the effect of the failure mode on 
the system. The table shows whether, and how, each 
failure mode causes one or more system failures (i.e. top 
events of fault trees) by itself or in conjunction with other 
events.  The concept is illustrated in figure 2. 
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Figure 1: A network of automatically created          

fault trees 
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 Figure 2: Synthesised fault trees and FMEA 

Note that in a classical manual FMEA only the effects of 
single failures are typically assessed. Thus, one advantage 
of generating an FMEA from fault trees is that fault trees 
record the effects of combinations of component failures 
and this useful information can also be transferred into 
the FMEA.  

To accommodate this additional information, the resultant 
FMEA tables are split into two, one containing the direct 
effects on the system, i.e. those effects caused by single 
component failures, and the other containing further 
effects, i.e. those effects caused by two or more 
component failure modes. This allows separate, easy 
access to the most critical information, the single points 
of failure. Perhaps more importantly, the FMEA shows 
all functional effects that a particular component failure 
mode causes. The latter is particularly useful as a failure 
mode that contributes to multiple system failures (e.g. C5 
in the example of figure 2) is potentially more significant 
than those that only cause a single top event. Precisely 
because it records the effects of combinations of 
component failures, this type of FMEA can, in practice, 
help analysts not only to locate problems in the design, 
but also to determine the level of fault tolerance in the 
system, i.e. to determine whether the system can tolerate 
any single or any combination of two, three or more 
component failures. 

3 Tool  

To enable the practical and useful application of the 
above concept in engineering design, we have developed 
a tool that generates FMEAs from models developed in 
Matlab Simulink. Simulink was chosen as a modelling 
environment because it is both a widely used engineering 
tool and a tool for which in the past we have developed 
an automated fault tree synthesis algorithm. It should be 
noted, however, that the applicability of the proposed 
technique is not restricted to Simulink models. Any 
model that provides the topology of the system, i.e. 
components and connections, is suitable for this type of 
analysis. In Papadopoulos and Petersen (2003), for 
example, we have demonstrated synthesis of fault trees 
from models of marine system designs developed in 
Simulation X. 

3.1 Architecture and Algorithms  

Three major extensions to the original fault tree synthesis 
tool were made to enable the construction of FMEAs. 
Firstly, the fault tree synthesis algorithm was improved to 
allow the simultaneous synthesis of more than one 
interconnected system fault trees. In a single step of 
execution, the tool generates a complete set of system 
fault trees with top events that represent all possible 
deviations of system parameters at all outputs of a 
system. The second significant extension made was the 
addition of a minimal cut-set calculation algorithm. The 
cut-sets of the synthesised fault tree trees are calculated 
by applying a depth-first, bottom-up traversal strategy, in 
the course of which the logic of each tree is progressively 
established and then simplified using classical Boolean 
reduction techniques (Semanderes, 1971). The final 
significant addition to the original tool was that of an 
FMEA synthesis algorithm that processes all cut-sets to 
establish direct relationships between component failures 
and system failures in two FMEA tables (i.e. direct 
effects, and effects caused in conjunction with other 
events).  

The architecture of the tool is illustrated in figure 3.   The 
first component of the tool is a graphical user interface 
that analysts can use to annotate components with the 
failure annotations required for the fault tree synthesis. 
This data becomes part of the Simulink model and is 
automatically saved and retrieved by Matlab every time 
the model is opened or closed by a user. Failure 
annotations reference only attributes of the corresponding 
components (i.e. failure modes and deviations at 
component input or output ports). This means that such 
annotations can, in principle, be re-used within the same 
model or across different models with the obvious benefit 
of simplifying the manual part of the analysis.  

Once a model has been annotated, it is saved by Matlab in 
the format of a Simulink model file. The second 
component of the FMEA tool is a parser that interprets 
such files, and reconstructs the enclosed annotated 
models for the purposes of fault tree synthesis. The 
synthesis itself is performed by the third component of 
the tool, the fault tree synthesis algorithm. 
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Figure 3: Architecture of the FMEA tool 

To generate fault trees, the algorithm performs a 
backward traversal from each output of the model, in the 
course of which it evaluates the failure expressions 
contained in the local analyses of the components 
encountered during the traversal. The resultant network of 
fault trees is then logically reduced into minimal cut-sets. 
Finally, an FMEA synthesis algorithm operates on these 
cut-sets, and in a single traversal of the cut-sets generates 
the two FMEA tables. In the current implementation of 
the algorithm, the synthesis of the FMEA is separated 
from the display of tables. Indeed, an FMEA store is first 
created in memory and then an HTML generator is used 
to parse this store and create web pages containing the 
tables of data. The advantages of this medium include 
easy distribution and display and the ability, through 
hyperlinks, to navigate different aspects of the 
information. 

3.2 Scope and performance 

Substantial engineering work was performed to enable 
application of the general concept that we outlined above 
on realistic system models. The tool was designed, for 
example, to recognise and handle circular paths in the 
model that create circular references to the same failure 
logic in fault trees. When such circles (e.g. representing 

control loops) are encountered, the failure logic contained 
in the circle is only incorporated once in the trees. At the 
same time, a note is made by adding a special node in the 
trees which does not affect the rest of the failure logic but 
clearly warns about the earlier existence of circular logic 
at this point.  

To deal with hierarchical models effectively, the 
synthesis algorithm was designed to perform traversals 
both across the vertical and horizontal axis of the design 
hierarchy. Indeed, the current implementation allows the 
annotation of hierarchical structures at all levels of the 
design. Failure analyses at sub-system level are important 
as they help to collectively capture the effect of failure 
conditions that do not necessarily require examination at 
basic component level. If, for example, a subsystem as a 
whole is susceptible to some environmental disturbance 
like electromagnetic interference, then the effects of this 
condition can be directly specified with a failure 
annotation at subsystem level. This annotation, for 
example, could define that all outputs of the subsystem 
are omitted in the event of electromagnetic interference. 
Such annotations would typically complement other 
annotations made at the level of the enclosed components 
to describe aspects of failure behaviour at this level (e.g. 
the mechanical and electrical failure modes of each 
component). In general, when examining the causes of a 
failure at an output of a sub-system, the fault tree 
synthesis algorithm creates a disjunction between any 
failure logic specified at sub-system level and logic 
arising from the enclosed lower levels. Thus, by enabling 
causes of failure to be described at both component and 
sub-system level, it becomes possible to avoid repetition 
of data that would otherwise be required to describe 
factors affecting entire sub-systems.  

The FMEA tool is also designed to handle complications 
caused in the traversal of the model and the fault tree 
synthesis by the multiplexing and de-multiplexing of 
flows that often exist in Simulink models. It also 
recognises and handles relayed control signals (triggers) 
and the propagation of failure between components that 
communicate remotely using implicit protocols (Data-
store/Data-read pairs, for example). Such features are 
essential to make this technique applicable on complex 
models and render the tool useful in industrial contexts of 
application. They have been achieved by incorporating 
into the tool syntactical and semantic information about 
Matlab-Simulink components. The tool, for example, can 
recognise “Data-read” components which are used in 
Simulink models to read data flows generated remotely 
by corresponding “Data-store” components. When such 
components are encountered during the fault tree 
synthesis, a global search is performed to locate the 
remote “Data stores” from which potential deviations of 
system parameters may originate. 

The speed and performance of the FMEA tool are also 
crucial in achieving scalability and industrial 
applicability. We have not had a chance yet to perform a 
rigorous performance evaluation of the proposed 
algorithms. First applications indicate, though, that this 
approach can lead to fast and efficient ways of generating 
useful safety analyses from system design 



representations. An indication of the present performance 
of the tool is that it is taking a little more than a minute in 
an average personal computer to generate an FMEA from 
an architectural model of a steer-by-wire system that 
contains more than a hundred components and generates 
several thousand cut sets (see also case study in section 
4). This result refers to an FMEA that records the effects 
of up to four simultaneously occurring component 
failures modes. When this limit is set at two, the time 
dramatically decreases, obtaining timings in the order of a 
few seconds. To the best of our knowledge, these speeds 
compare favourably with other results reported in the 
literature of automated FMEA where systems have been 
reported to take hours even when considering only the 
effects of single component failures. Direct comparisons, 
however, are not possible because the proposed approach 
leads only to semi-automatic synthesis of FMEAs, while 
most other work aims to fully automate the process.  

The speed of the tool currently seems sufficient to deal 
with relatively complex design problems in which 
annotated components are in the order of hundreds. 
Problems may arise, though, in large systems that contain 
thousands of annotated components and may result in a 
failure logic that is composed of millions of cut-sets3. The 
most susceptible part of the tool to problems of scale is 
the calculation of cut-sets, a computationally expensive 
operation, and a problem where a lot of contemporary 
research is focused. To further improve the speed of the 
tool in this area, we are currently considering using a 
recently proposed minimal cut-set calculation algorithm 
(Sinnamon and Andrews, 1997). The algorithm pre-
processes fault trees, converting them into Binary 
Decision Diagrams, using ordering rules to determine the 
position of failure modes in the hierarchy of the tree. We 
hope that the improvements in efficiency that could be 
achieved by using this algorithm will further improve the 
scalability of the proposed techniques and ultimately 
enable their application in problems of industrial scale.  

4 Case study  

The method and tool are currently being evaluated by 
Volvo cars in a case study of medium complexity (i.e. 
hundreds of components) performed on a Matlab-
Simulink model of an advanced steer-by-wire prototype 
system for cars.  Note that classical FMEA is typically 
applied towards the end of the design life-cycle when 
details about the components of the system and their 
failure modes are available. Volvo, however, is using the 
tool in a rather different way, in order to drive the design 
of this system from the early stages of its development.  

In this project, an FMEA was performed on an abstract 
functional model of the system. The objectives of the 
experiment were two-fold: first, to evaluate whether 
application of the technique could assist the early 
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identification of potential design flaws; second, to 
evaluate whether the analysis of a functional model could 
point out critical functions and guide the design of such 
functions. Satisfaction of these two objectives would 
mean that: 

• expensive design iterations needed to correct errors 
late in the design could be avoided 

 • an effective top-down design approach could be 
established in which the design of critical functions 
(and safety measures for these functions) could be 
driven by the result of FMEAs performed on 
increasingly more detailed models of the system   

The functional model was developed in Matlab Simulink 
and was deliberately designed without any degraded or 
fallback modes, in order to test whether the results from 
the analysis could help in the systematic identification 
and design of such modes. The model identifies input, 
processing and actuator functions and how the interaction 
among these basic functions results in the provision of 
system functions such as the control of steering, the 
generation of driver feedback in the form of torque on the 
steering wheel, and the ability to send and receive 
information from and to controls in the steering wheel, 
e.g. the horn. 

The model was annotated with information about the 
local behaviour of functions and then sixteen 
interconnected fault trees and an FMEA were 
automatically constructed by the safety analysis tool. Two 
qualitative failure modes were considered during the 
analysis, the omission and the commission of functions. 
Given the exploratory nature of the analysis, it was 
considered that it would be beneficial (for simplicity and 
ease) to aggregate value and timing failures into a single 
category of coarse commission failures. Omission failures 
were, therefore, used to represent the loss of functions, 
while the definition of commission failures was 
broadened to encompass conditions in which functions 
are provided in the wrong temporal context or at incorrect 
value. It could be argued that this reduction in the 
granularity of the analysis could have a negative impact 
on the quality of results. On the other hand, the abstract 
nature of the design model meant that detailed analysis of 
value and timing failures at this stage would have added 
very little value to the analysis, hence we opted for the 
simplification.  

The resultant FMEA shows how omission and 
commission failures of input, processing and actuator 
functions in the model of the steer-by-wire system cause 
system level effects, i.e. omission or commission of 
steering, driver feedback and other functions. A 
classification of the severity of those effects into marginal 
and catastrophic helped to identify the criticality of 
causes, i.e. failures of input, processing and actuator 
functions, and this in turn provoked decisions about the 
design of these basic functions. For example, wherever 
the analysis indicated that the omission of a function had 
only marginal effects while the commission had 
catastrophic effects, a design recommendation was made 
to design the function in a way that it fails silent. This in 
turn led to the identification of several degraded modes in 



which non-critical steer-by-wire functions may fail silent 
with only marginal effects on the system. A hierarchical 
state-chart was then constructed to show how graceful 
transition to such modes could be achieved. Driven by 
these results, a design iteration is currently underway to 
incorporate new degraded modes in an improved version 
of the system model. A more detailed description of the 
case study is beyond the scope of this paper. However, to 
illustrate the useful application of the method, we discuss 
an example based on a small and manageable fragment of 
model. Figure 4 illustrates a simple standby-recovery 
system in which function P processes the value generated 
by input function I. When omission at the output of P is 
detected, a redundant function S is initiated to replace P. 
The following expressions describe the failure logic of 
functions I, P and S (note that this logic has been 
simplified for the purposes of the example, e.g. there is 
no analysis of commission failures). 

I:   Omission-pvalue = Failed(I) 
P: Omission-output = Omission-input or Failed(P)  
S: Omission-output = Omission-monitor and (Omission-

input or Failed(S)) 

From the above expressions and the structure of the 
model, the safety analysis tool generates the fault trees 
and FMEA illustrated in figure 5. The FMEA shows that 
a failure of the input function I causes omission of both 
the normal and standby outputs of the system and is, 
therefore, a critical failure. On the other hand, a single 
failure of P causes only omission of normal output and 
can, therefore, be seen as less critical. Finally, failure of S 
does not have any direct effect on the system. It becomes 
significant only in conjunction with failure of P which in 
this design provides the condition that precisely triggers 
the need to deploy S in the first place. 

The FMEA indicates that input function I is the critical 
element in this design, representing a hazardous 
dependency between the two redundant processing 
functions P and S. Failure of I is, indeed, a direct cause of 
a critical system failure (omission of the standby output) 
and should, therefore, be made unlikely by design. On the 
other hand, the analysis shows that an independent failure 
of either P or S cannot cause a critical system failure. 
Emphasis in the design should, therefore, be placed on 
how to protect these two functions from common cause 
failures such as those caused by electromagnetic 
interference.   

 
Figure 4: Example model 
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Figure 5: Fault trees and FMEA for the example 

 
The above example demonstrates the ability of the 
synthesis tool to detect hazardous dependencies in the 
model, i.e. component failures that may cause 
simultaneous failure of hypothetically independent 
system functions. This may seem a trivial task in this 
example largely because the source of the dependency is 
very close to the affected functions but also because the 
model and associated failure logic are very simple. 
However, in reality, hazardous dependencies are not 
always as simple to detect especially those originating 
from remote energy and data sources which are deeply 
hidden in the hierarchy of complex designs. The detection 
of such dependencies is, indeed, a hard task which 
justifies, we believe, the provision of useful automated 
support to designers and analysts.  

5 Conclusion 

Safety analysis processes must evolve to deal with the 
difficulties posed by increasing complexity in technology 
and tighter integration of functions in the design of 
computer-based safety critical systems. Integrated    
safety-directed design processes need to emerge that can 
be effectively driven by the results of the assessment. In 
the context of such integration, classical safety analysis 
techniques like FMEA should ideally be automated (at 
least to some extent and without loss of effectiveness) to 
enable fast and cost effective iterations of system 
modelling and safety analysis that can meet the tight 
constraints of modern production.  



In this paper, we proposed a concept and a tool for the 
model-based synthesis of FMEAs in which FMEAs are 
semi-automatically constructed from engineering design 
models that have been augmented with information about 
the local propagation of failures. In theory, the proposed 
process is largely automated and could be easily iterated 
to enable the continuous assessment of evolving designs. 
The potential benefits from application of this technique 
are substantial and include simplifying the analysis, 
easing the examination of effects of design modifications 
on safety and keeping the safety analyses consistent with 
the design.  

There is not yet sufficient project experience to judge the 
practicability of this approach. However, early experience 
suggests that it is relatively easy to produce the required 
failure annotations, and that some re-use of this 
information is possible. The technique, therefore, is likely 
to give economic benefits. There are, however, many 
issues still to be addressed and many areas for potential 
improvement. For instance, to improve the value of the 
analysis, we need to obtain evidence that the local failure 
propagation specified by analysts, especially that of 
complex programmable modules, is no worse than 
assumed in the given failure annotations. The verification 
of such assumptions becomes naturally more important at 
the late stages of the design process when the design is 
finalised. Model checking and hazard directed testing are 
two methods that we currently consider as potential ways 
of verifying such assumptions.  

There is also a broad issue of how to make safety a more 
controlled facet of the design so as to enable early 
detection of potential hazards and direct the design of 
preventative measures. The Volvo experience suggests 
that the proposed technique is applicable on abstract 
functional models and results could guide the refinement 
of abstract designs. However, the problem is largely 
unexplored, and further work is needed in this direction. 
In the context of our plans for future work, we currently 
explore ways for combining this work on model-based 
safety analysis with recent advances on evolutionary 
computation (Densig, 1997) (Papadopoulos and Grante, 
2003) in order to achieve decision support in the 
allocation of safety and reliability requirements in the 
course of the evolution of a system design.     
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