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Abstract

The area of imbalanced datasets is still relatively new,
and it is known that the use of overall accuracy is
not an appropriate evaluation measure for imbalanced
datasets, because of the dominating e�ect of the ma-
jority class. Although, researchers have tried other
existing measurements, but there is still no single
evaluation measure that work well with imbalanced
dataset. In this paper, we introduce a novel mea-
sure as a better alternative for evaluating imbalanced
dataset. We provide a theoretical background for the
new evaluation technique that is designed to cope
with cost biases, which changes the previous view
about class independent evaluation methods cannot
deal with costs, such as ROC curves. We also provide
a general guideline for the ideal baseline performance
when building classi�ers with a known misclassi�ca-
tion cost.
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1 Introduction

Since the workshop at AAAI 2000 (Provost (2000)) ,
the imbalanced dataset problem has received an in-
creasing attention for the past few years. This area
of research focuses on datasets with skewed class dis-
tribution and that the minority class is the class of
interest. Imbalanced datasets can occur in many do-
mains, such as medical, information technology, bi-
ology, and �nance. With imbalanced datasets, the
conventional way of maximizing overall performance
will often fail to learn anything useful about the mi-
nority class, because of the dominating e�ect of the
majority class. Consider a problem where 99% of the
data belongs to one class, and only 1% is rare class
examples. A learner can probably achieve 99% accu-
racy with ease, but still fail to correctly classify any
rare examples. Conventional approaches can produce
misleading results on imbalanced dataset, so it is im-
portant to know that one needs to take a more lo-
calized approach at all levels when dealing with an
imbalanced dataset.

Evaluation is the key to making advances in data
mining, and it is especially important when the area is
still at the early stage of its development. Imbalanced
dataset community has criticized the use of non-class
independent evaluation measures, such as the overall
accuracy, for reporting experimental results on im-
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Predicted class

Actual
Class

+ve -ve

+ve
True
Positive(TP)

False
Negative(FN)

-ve
False
Positive(FP)

True
Negative(TN)

Table 1: Confusion matrix for a 2-class problem

balanced datasets. The non-class independent evalu-
ation fails because the results only re�ect the learn-
ing performance of the majority class, and the more
skewed the class distribution is the worse the e�ect
will be. Therefore, when we evaluate the performance
on imbalanced datasets, we want to focus on individ-
ual classes.

There are many evaluation measures in data min-
ing, some of the most relevant ones to imbalanced
datasets are: precision, recall, F-measure, Receiver
Operating Characteristic (ROC) curve, cost curve
and precision-recall curve. The commonality shared
between them is that they are all class independent
measurements. In particular, ROC curve is well re-
ceived in the imbalanced dataset community and it is
becoming the standard evaluation method in the area.
Provost et al. (1998) have argued that reporting ac-
curacy can be misleading, but ROC curve can help
explore di�erent tradeo� among di�erent classi�ers
over a range of operating conditions. However, using
ROC curve is hard to compare di�erent classi�ers for
di�erent misclassi�cation cost and class distributions

In this paper, we demonstrate a generalize form,
base on di�erent cost bias, of computing the area
under ROC curve (AUC), which we will refer to as
weighted-AUC. We will describe the related evalua-
tion measurements for imbalanced dataset in related
works and present the details of the weighted-AUC
in section 3. We show that weighted-AUC is a better
alternative when evaluating imbalanced datasets. In
section 4, we will de�ne what the ideal baseline per-
formance should be when the misclassi�cation cost is
given. Next, we present some experimental results
comparing the normal AUC and weighted AUC. Fi-
nally, we will discuss some issues related to weighted-
AUC in the discussion section.

In the rest of the paper, minority or positive may
be used to refer to the rare class and majority or nega-
tive for reference to the common class. The examples
in this paper will be restricted to two-class problems.

2 Related Works

In imbalanced datasets, not only is the class distri-
bution is skewed, the misclassi�cation cost is often
uneven too. The minority class examples are often
more important than the majority class examples.
The cost of misclassify a minority class example is



2(a) Predicted class

Actual
Class

+ve -ve
+ve 0 1
-ve 1 0

2(b) Predicted class

Actual
Class

+ve -ve
+ve 0 5
-ve 1 0

(a) Equal cost case (b) Uneven cost case

Table 2: Cost Matrix Examples

far greater than misclassify a majority class exam-
ple, for example, fraud detection or cancer diagno-
sis. We will brie�y discuss some relevant evaluation
measurements, starting with confusion matrix, which
is closely related to many evaluation techniques and
can be found in most data mining textbooks. Ta-
ble 1 shows a confusion matrix for outcome of a two
class problem. As an example, using this table, we
can de�ne the overall accuracy as TP+TN

TP+FP+TN+FN .
Confusion matrix is useful when accessing the perfor-
mance without taking cost in to consideration. It is
used as a basis for various measures, such as precision
and recall.

Precision, recall and F-measure In information
retrieval, if there is Z number of relevant documents
in the database, and a system can returns X number
of documents in which only Y number of them are
relevant. We can compare di�erent system perfor-
mance with precision and recall, which are de�ned as
eq.1 and 2. They can also be de�ned using confusion
matrix terms.

Precision =
X

Y
or

TP

TP + FP
(1)

Recall =
Y

Z
or

TP

TP + FN
(2)

F-measure is a common evaluation metrics that
combines precision and recall into a single value, usu-
ally with equal weighting on both measures.

F −measure =
2×Recall × Precision

Recall + Precision
(3)

Cost matrix Sometimes, the costs are known for
the problem at hand, i.e. the misclassi�cation cost of
a positive or negative example. In this case, we can
use the known cost to penalize the resulting confusion
matrix to arrive at a meaningful performance assess-
ment. A cost matrix looks the same as a confusion
matrix, except it show the cost of misclassi�cation.
Table 2(a) shown an general equal cost case, where
2(b) shows an uneven cost matrix of 1 to 5, which
is quite normal for imbalanced datasets. When eval-
uating, the cost is multiplied on top of a confusion
matrix to re�ect the true performance.

The disadvantage of using confusion matrix-based
evaluation is that they are only looking at the perfor-
mance on a �spot�, which means we cannot tell how
di�erent class distribution or di�erent cost will a�ect
the performance. So researchers may prefer to visu-
ally see the performance over a range of situations
using one of the graphical evaluation tools, such as a
ROC curve.

ROC and AUC Receiver Operating Character-
istic (ROC) curve is a common evaluation tech-
nique, originated from radio signal analysis (Green
and Swets (1966)) and introduced to machine learn-
ing by Spackman (1989) and made popular in data
mining by Provost and Fawcett (1997). ROC curve
presents the tradeo� between the true positive rate

and the false positive rate; as a learner captures more
positive example, it will generally misclassify more
negative examples as positive examples. If we have
a two class problem, a ROC curve can be plotted by
varying the probability threshold, from 0 to 1, for
predicting positive examples. The true positive rate
is the same as recall and the false positive rate equals
to FP

FP+TN .
A ROC curve is consider to be good if it is closer

to the top left corner, and the straight line connect-
ing (0,0) and (1,1) represents a random classi�er with
even odds. The advantage of use ROC is that one can
visually see for what region a model is more superior
compare to another.

The area under the ROC curve (AUC) is often
used to summaries a learner's performance into a sin-
gle quantity, which represents the performance of a
learner in general across di�erent prediction cost, and
the larger the AUC the better. However, ROC-based
measures still lack support for tasks involving uneven
cost matrix. In addition, it is interesting to know that
all the confusion matrix-based measures can be seen
as a single point on the ROC curve.

Cost curve Cost curve was introduced by Drum-
mond and Holte (2000), and they have also provided
a detailed comparison between ROC curve and cost
curve in Drummond and Holte (2004). Basically, cost
curve looks at how classi�ers perform across a range
of di�erent misclassi�cation cost. It can be seen as
di�erent slope line tangent to the ROC curve, there-
fore every ROC curve has a corresponding cost curve.
This view of a slope line bears similarity to the dis-
cussion about baseline performance in section 4.

Precision and recall (PR) curve Information
retrieval experts use PR curve in similar fashion as
ROC curve � except that because the axes are di�er-
ent and the ideal classi�er is toward the upper right.
An example is shown in �gure 7. Davis and Goadrich
(2006) provided a comparison between PR curve and
ROC curve.

All the graphical evaluation tools provide di�erent
perspectives to access a learner's performance, and
the advantage is to have a better understanding of the
learner's behavior under a range of circumstances.

However, the measurements described in this sec-
tion are designed to work well for di�erent purpose;
for example, ROC is well suited for ranking prob-
lems with a goal to achieve best resources utilization,
whereas cost curve is suitable to locate best method
for certain operating cost constraint. Therefore, we
realized there is a need to design an appropriate eval-
uation method for dealing with imbalanced dataset,
hence we propose a general approach that can take
cost bias into account at evaluation

3 Weighted AUC

An imbalanced dataset often has di�erent cost matrix
than a balanced dataset, this is generally due to the
nature of the imbalanced dataset, e.g. detection oil
spill on satellite images, scanning for scam websites,
or detecting cancer. The misclassi�cation of a rare



Figure 2: Weighted-AUC example: new weight vector after 50% weight transfer

Figure 1: Compare classi�ers with ROC curve when
conventional AUC is the same.

occurring case in these situations can be very costly,
much more expensive than a false alarm. Hence, there
is a tendency for the imbalanced datasets to bias its
cost towards positive examples. Therefore, one may
require the learners to achieve a certain performance
level by presetting the cost matrix. As an example,
say detecting cancers from x-ray scans, the learners
built must able to achieve a standard recall rate in
order to be declare useful, otherwise it will not be
used no matter how high the precision is. So if the
target recall is 90%, then comparison of performances
should only consider the area above the 90% TP rate
on the ROC curve. In section 4, we provide more
detail discussion about the relationship between cost
matrix, class distribution and baseline performance.

The rationale for the weighted-AUC measurement
is based on the notion that when one is dealing with
imbalanced datasets, a learner that performs well in
the higher TP rate region is preferred over ones that
does not. In another word, a false negative is worse
than a false positive. So, in the ideal case, the learner
should be able to catch every positive example, i.e.
100% recall/TP rate. With this ideal in mind, if one
wants a 100% recall learner, then the best choice will
be the one that has the lowest FP rate at the 100%
TP rate line.

Generally, where the cost is all equal and two
learners have the same AUC, as in �gure 1, one can
not say classi�er A is better than classi�er B. How-
ever, in an imbalanced dataset situation, one can vi-
sually see that classi�er A is more appropriate, be-
cause at higher TP rate region classi�er A has smaller
FP rate than classi�er B. So, classi�er A is preferred
over classi�er B even though they have the same AUC
value. Therefore, the problem with conventional AUC
is that it does not consider cost bias, because we sum

up the areas with equal weights of 1, which is a fair
assumption when we have equal cost.

We propose a skewed weight distribution method
that allows one to compute AUC with a cost bias.
We refer to this approach as weighted-AUC. When
the cost is uneven and biased towards the rare class,
instead of summing up areas with equal weights, we
want to give more weights to the areas near the top of
the graph. So we create a skew weight vector by dis-
tributing more weights towards the top of the ROC
curve, while keeping the total weights unchanged.
The idea is to pass certain percentage of weights from
the bottom areas towards the upper areas of the ROC
curve. In �gure 2, we present the resulting weight vec-
tor after a 50% weight shift is performed. Originally
all weights were 1, but now 50% of area G is passed
to area F, and 50% of the new area F's weights is
again passed to area E and so on. The weight shift-
ing process stops at the top, area A, which has the
most weight. We can de�ne the new weights more
formally with eq 4. If we have N number of areas to
sum:

W (x) =


α, x = 0
W (x− 1)× α+ (1− α), 0 < x < N
W (x−1)×α+(1−α)

1−α , x = N

(4)
Where α is the percentage of weight to transfer to

the next area towards the top. α ranges from 0, no
weight transfer, to 1, a total weight transfer. When α
is 0, the resulting weighted-AUC is equal to the con-
ventional AUC; when α is 1, only the area at the top
is considered. W (0)is the weight for the bottom area.
The new weight of an area is de�ned as a recursive for-
mula using the weight of the previous area. This new
weight vector is used to compute a new AUC value
by adding up the areas times their corresponding new
weight.

weighted− AUC =
N∑
i=0

area(i)×W (i)

If the cost is known, we can use the cost ratio
between the positive and negative classes to set the
weight transfer rate, α.

α = 1− cost ratio

The maximum and minimum of weighted-AUC is
the same as original AUC, 1 and 0. The advantage
and disadvantages of weighted-AUC is similar to the



Figure 3: The ideal baseline performance

conventional AUC, except weighted-AUC is enhanced
with the ability to adjust to di�erent cost bias. This
challenges the traditional view of ROC and AUC,
where they were considered to be cost inconsiderate
evaluation measures (Drummond and Holte (2004)).

4 Ideal Baseline Performance

If the misclassi�cation cost is known then one can de-
�ne the baseline performance for the learners. Sup-
pose the cost is same as in table 2(b), and if we as-
sume the future class distribution is balanced, then
the baseline performance is shown in �gure.d. For
example, if we need to classify 100 positive and 100
negative examples, with the cost of 1 to 5, when we
classify everything as positive, the cost is 100. In or-
der to match the same cost of 100, we can only a�ord
to miss out 20 positive cases (1/5 = 20%), while we
correctly classify all negative examples, meaning zero
FP rate. Following this reasoning, we can set the
baseline performance by drawing a straight line con-
necting (80% TP rate, 0% FP rate) and (100% TP
rate, 100% FP rate). A classi�er is worth considering
if it can achieve a performance above this line.

We have assumed equal class distribution in the
above case for simplicity sake, but when we have
an imbalanced class distribution, the baseline per-
formance may need to be adjusted because the fu-
ture distribution could also be skewed. If we use
the training data class distribution as an estimate
for the future class distribution, then the adjust-
ment to the baseline performance is done by divid-
ing the cost ratio over class distribution ratio. For
example, if we have an imbalanced dataset with 100
positive and 400 negative examples, then with the
cost of 1 to 5, the adjusted baseline should equal
to(1/5)/(100/400) = 0.8. This means if we correctly
classify every negative examples, then we can a�ord
to miss 80 positive examples. The adjusted base-
line performance will then go through (20%,0%) and
(100%,100%).

It is important to know that when setting the
misclassi�cation cost, one should take the estimated
class distribution into consideration, because they are
closely related. If the class distribution ratio were to
be less than the cost ratio, then the adjusted baseline
performance will actually bias towards the negative
class. Therefore, when one tries to set the cost ratio
for an imbalanced dataset, where the rare class exam-
ple is more important, one should generally consider
have the smaller cost ratio than the estimated class
distribution ratio.

It is interesting to note that the concept of cost
curve is also about creating slopes, but instead of
drawing slopes based on cost, the cost curve draws
the slope lines tangent to a ROC curve to re�ect the
performance of a particular operating point.

Figure 4: ROC curve for nb and svm learning on
'anneal-2' dataset
We can see that nb touches the 100% TP rate much
early than svm does, even though svm performs bet-
ter at lower FP rate, and when working with imbal-
anced dataset, it is more desirable to have a learner
that touches 100% TP rate at that lowest FP rate.
So nb should be considered as having a better ROC
curve for imbalanced datasets with cost bias towards
the minority class.

5 Experiments

After introducing the background theoretical motiva-
tions for a weighted AUC, it would not be complete
without looking at some real numbers from experi-
ments. So, we have conducted an experiment to com-
pare the normal AUC value and the weighted-AUC
values. Four di�erent learners were used in our exper-
iment: Naïve Bayes(nb), Decision tree(j48 ), Support
vector machines(svm), and k-nearest neighbour(3nn,
we set the k to 3). The datasets are from UCI data
repository (A. Asuncion, 2007) and we took multi-
class problems and turned them into binary classi�-
cation problems by treating one of the class as the
positive class and use the rest of the classes as nega-
tive class. The process created 98 datasets.

When we compare the AUC value along side with
weighted-AUC, it is clear that the more superior
learner under AUC evaluation is not necessary bet-
ter under weighted-AUC assessment. Table.3 shows
both AUC and weighted-AUC values for a sample of
20 datasets out of 98 datasets across 4 di�erent learn-
ers. We only shown 20 because it is su�cient to point
out the di�erence between normal and weighted AUC.
We have used 0.1 for the α, meaning we will transfer
10% of the weights.

The datasets in bold are where learners' perfor-
mance ranking di�ers when evaluated under di�erent
metrics. To demonstrate, we look at the �rst occur-
rence of con�icting performance ranking, which hap-
pened with `anneal-2 ' dataset. For this dataset, when
ranking the learning performance by the original AUC
values, the learners' rank were j48, nb and svm, and
follow by 3nn. However, when we look at weighted-
AUC for the same dataset and learners, the ranking
changed to nb, j48, svm, and 3nn. So nb becomes the
best learner out of the four. If we take a closer look at
the ROC curves, as shown in �gure.4, where we try to
compare nb and svm, since they has the same normal
AUC value, but di�erent weighted-AUV value. We
can see that nb does have a much better ROC curve
for imbalanced dataset than svm, because it touches
100% TP rate much earlier than svm, which is not
shown by the normal AUC.



Dataset
anneal-1
anneal-2
anneal-5

audiology-age
audiology-age_and_noise

audiology-cochlear_unknow
audiology-poss-noise

autos-2
balance-scale-B
balance-scale-L
balance-scale-R
breast-cancer

cleveland-heart-50_1
credit-rating
german_credit

Glass-buildwind�oat
Glass-buildwindnon�oat

heart-statlog
hepatitis

horse-colic.ORIG

normal AUC
nb j48 smo 3nn
0.99 0.64 0.94 0.82
0.97 1 0.97 0.89
1 0.99 1 1

0.98 0.98 0.95 0.92
0.99 0.96 0.92 0.63
0.91 0.92 0.89 0.81
0.98 0.78 0.9 0.87
0.65 0.81 0.63 0.81
0.33 0.5 0.5 0.35
0.99 0.84 0.92 0.98
0.99 0.84 0.92 0.98
0.7 0.61 0.58 0.64
0.91 0.77 0.83 0.85
0.9 0.89 0.86 0.75
0.79 0.65 0.67 0.61
0.76 0.81 0.57 0.87
0.7 0.76 0.5 0.84
0.9 0.79 0.83 0.84
0.86 0.67 0.77 0.76
0.79 0.5 0.71 0.61

weighted-AUC
nb j48 smo 3nn
0.9 0.61 0.85 0.75
0.97 0.9 0.88 0.86
0.98 0.89 0.9 0.9
0.96 0.89 0.86 0.89
0.94 0.87 0.84 0.6
0.89 0.88 0.82 0.78
0.94 0.73 0.83 0.81
0.64 0.77 0.63 0.78
0.33 0.5 0.5 0.35
0.99 0.81 0.83 0.97
0.99 0.81 0.83 0.97
0.69 0.6 0.58 0.63
0.9 0.73 0.77 0.81
0.89 0.88 0.78 0.72
0.78 0.63 0.65 0.6
0.75 0.78 0.58 0.82
0.69 0.73 0.5 0.8
0.89 0.76 0.77 0.79
0.83 0.64 0.73 0.74
0.78 0.5 0.68 0.59

Table 3: Compare normal AUC with weighted-AUC for UCI datasets.
We show a sample of the 98 datasets we have, and we highlight the datasets in bold to show where learners'
performance ranking di�ers under di�erent evaluation methods, i.e. normal and weighted AUCs.

Figure 5: Same weighted-AUC example

Figure 6: Cost curve

6 Discussion

There is an interesting similarity between cost curve
and weighted-AUC, in which they are both designed
to work with cost. However, cost curve is for visual-
izing performance over a range of costs, whereas the
purpose of weighted-AUC is to use a biased weight
vector to give an appropriate summarized quantity
without sacri�ce the advantage of graphical evalua-
tion methods. Weighted-AUC is a compromise be-
tween a single value and a graphical view. The
same weight vector idea can be applied on di�erent
graphical evaluation methods, such as cost curve and

Figure 7: Precision-Recall curve

precision-recall curve. For a cost curve, as shown in
�gure 6, the weight shifts towards the right side of the
graph if the cost bias is towards the positive class.
For the same cost preference, the weight also shifts
towards the right side for a precision-recall curve, as
shown in �gure 7.

Some may argue, weighted-AUC will still have
the same problem as the conventional AUC when
the learners have equal weighted-AUC value, but
have di�erent ROC curves. This phenomena is illus-
trated in �gure 5, where classi�er A and classi�er C
have the same weighted-AUC. However, the purpose
of weighted-AUC is to achieve cost bias evaluation,
which means we can separate classi�er A and B. It
is alright to have two di�erent learners both perform
equally well under the same cost constraint.

When using weighted-AUC, one needs to set the
a for the percentage of weight to transfer. This ad-
justable parameter allows the �exibility of adapting
to di�erent cost bias when the cost is known. In the
case of unknown cost, one can always use the class
distribution ratio as an estimate for the cost ratio.
Weighted-AUC can be considered as a generalized
form of AUC in terms of di�erent cost biases.

Based on the concept of weighted-AUC, it can pro-
vide new insights for previous researches. For exam-
ple, in a study by Weiss and Provost (2001), where
they experimentally show that when conventional
AUC is used as performance measure, then a balanced



class distribution should be used for training. This
�nding conforms with the concept of weighted-AUC,
which equates that the conventional AUC as having
zero weight shift; this translate to assuming zero cost
bias or a balanced class distribution. Therefore, be-
cause the conventional AUC was used in the evalua-
tion for their experiment, so only balanced class dis-
tribution will give the best results under the conven-
tional AUC. It is like having a normally distributed
graph and you want to �nd another bell-shaped graph
that will yield the maximum overlap between the two,
which will inevitably land you on another normally
distributed graph with the same

7 Conclusion

We have introduced a new evaluation method for
imbalanced datasets, called weighted-AUC. One can
think of it as an enhanced version of AUC, a measure
that is already gaining popularity in the imbalanced
dataset community. We have shown why weighted-
AUC is a better alternative under cost biased situa-
tions. A discussion for setting misclassi�cation cost,
baseline performance for imbalanced datasets is pro-
vided as a general guideline when dealing with imbal-
anced datasets. In the end of discussion section, we
have also presented an example of how weighted-AUC
can give new sights for researches in the data mining
area. In the future, when one is dealing with imbal-
anced datasets, we recommend the use of weighted-
AUC in place of conventional AUC in order to give a
better cost-biased comparison.
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