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Abstract 

In this paper, we introduce a new method of data 

transformation for finger vein recognition system. Our 

proposed method uses kernel mapping functions to map 

the data before performing Principal Component 

Analysis. Kernel Principal Component Analysis (KPCA) 

is a well-known extension of PCA which is suitable for 

finding nonlinear patterns as it maps the data nonlinearly.  

In this work we develop an extension of KPCA which is 

both faster and more appropriate than KPCA for finger 

vein recognition system. The proposed method is called 

Feature Dependent Kernel Principal Component Analysis 

(FDKPCA). In FDKPCA the data is mapped differently 

from KPCA resulting in lower-dimension feature space 

where more important and valuable features are selected 

and extracted.  Furthermore, extensive experiments reveal 

the significance of the proposed method for finger vein 

recognition systems. . 

Keywords:  Finger vein Recognition, Kernel PCA, and 

Spectral data transformation. 

1 Introduction 
Data transformation has been a wide area for 

researchers as several challenges can be addressed by 

transferring data into another space where finding 

genuine patterns and features is desired. There is an 

extremely large amount of literature on data 

transformation algorithms and methods. Principal 

Component Analysis (PCA)(Abdi, Hervé 2010) is one of 

the well-known methods for dimensionality reduction and 

feature extraction. PCA(Beng & Rosdi 2011) is a fast 

method having several usages in multiple areas and 

application especially in pattern recognition. However, 

PCA is a linear method which may be inefficient when 

dealing with nonlinear patters and data. To address the 

mentioned drawback of PCA, kernel PCA(Kim et al. 

2002) was developed which is known as a very well-

known and influential extension on PCA. In KPCA, PCA 

is performed in a kernel feature space which is non-

linearly related to the input data. More specifically, the 

whole input data space is mapped into another space 

(kernel space) having higher dimension than the input 

data dimension. It is enabled using a positive semi-

definite (psd) kernel function computing the inner 
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products within the new space (kernel feature space). 

Therefore, constructing the so-called kernel matrix or the 

inner product matrix is vital. Then, using the top 

eigenvalues and their corresponding eigenvectors will 

lead to kernel PCA data transformation method. Kernel 

PCA has widespread use in many different areas namely, 

in machine learning algorithms, data classification, and 

data de-noising. Such methods have been used in 

biometrics systems such as face and finger vein 

recognition. In 2010, R. Jenssen proposed Kernel Entropy 

Component Analysis(Jenssen 2010) KECA as a new 

extension on kernel PCA. In 2012(Shekar et al. 2011), 

KECA was proposed in face recognition system. It is 

believed that kernel PCA and kernel ECA(Hu & Yang 

2010) are more superior methods than PCA as the 

previous research shows these methods reach more 

accuracy rate and reliability in terms of data classification 

and image processing. Considering the way PCA, and 

KPCA are implemented on images for the purpose of 

classification and identification, where there are some 

samples available from each individual to train the system 

and the remaining samples to test, we propose FDKPCA 

to improve the performance of the mentioned algorithms. 

The mentioned methods have been proposed in both face 

recognition and finger vein recognition systems  

(Damavandinejadmonfared  2012).  

In this paper, we develop a new spectral data 

transformation method, which can be more stable and 

faster than KPCA as in FDKPCA the dimension of the 

feature space is dependent on the dimension of the input 

data, not the number of input data. It means no matter 

how many data to analyse, the dimension of kernel matrix 

(kernel feature space) is fixed. One promising 

biometric(Delac et al. 2005) is finger vein authentication 

which has been given considerable attention recently. We 

have conducted experiments on finger vein(Wu & Liu 

2011) database to be able to compare the outcome of the 

proposed method with KPCA. Experimental results show 

that not only the proposed method outperforms KPCA in 

finger vein system, but also it is more time efficient. 

 

The reminder of this paper is organized as follows: 

Section 2 illustrates some examples of spectral data 

transformation methods of importance. In section 3, 

Feature Dependent Kernel Principal Component Analysis 

(FDKPCA) is introduced. In section 4, Image acquisition 

and ROI extraction algorithms are explained. A finger 

vein recognition algorithm is proposed in section 5. 

Experimental results are presented in section 6. Finally, 

section 7 concludes the paper. 
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2 Spectral Data Transformation 

In this section, we explain the fundamentals of PCA, 

and KPCA with examples to comprehend spectral basic 

data transformation methods. 

2.1 Principal Component Analysis (PCA) 

A well-known spectral data transformation method is 

PCA. Let ],...,[ 1 NxxX  , where
d

t Rx   and

],...,1[ Nt  . As PCA is a linear method, the following 

transformation is sought assuming A is ][ dd   such that

d

t Ry  and ],...,1[ Nt  : 

AXYpca  where ],...,[ 1 Npca YYY  . Therefore, the 

sample correlation matrix of pcaY  equals to: 

 

   TTTT

pcapca AXX
N

AAXAX
N

YY
N

111
  (1) 

 

The sample correlation matrix of X is
T

N
XX1 . 

Determining A such that IYY T

pcapcaN
1 is the goal. 

Considering eigen-decomposition, we will have
TT

N
VVXX 1 ,where is a diagonal matrix of the 

eigenvalues
d ,..,1

in descending order having the 

corresponding eigenvectors
dvv ,...,1

as the columns of 

V Substituting into (1), it can be clearly observed that 

TVA 2
1

 leads to the goal such that XVY T

pca
2
1

 .  

Performing a dimensionality reduction from d to dl 
is often achieved by the projection of data onto a 

subspace spanned by the eigenvectors (principal axes) 

corresponding to the largest top l eigenvalues. Hence, it 

is also well-known that l -dimensional 
lpcaY  preserves the 

maximum amount of second order statistics in the 

dimensionality reduced data in comparison with the 

original d -dimensional data. 

2.2 Kernel Principal Component Analysis 

(KPCA) 
Kernel PCA is a non-linear version of PCA operating in a 

new feature space called kernel feature space. This space 

is non-linearly related to the input space. The nonlinear 

mapping function (kernel function) is given 

Fd  : such that   Ntxx tt ,...,1,  and

   ],...,[ 1 Nxx  . After performing such mapping in 

input data, PCA if implemented in F , we need an 

expression for the projection of 
iuP of onto a 

subspace of feature space principal axes, for example, top 

l principals. It can be given by a positive semi-definite 

kernel function or Mercer kernel, RRRk dd :

computes an inner product in the Hilbert space F : 

 

       .,, tttt xxxxk     (2) 

 

The  NN  kernel matrix K is defined such that 

element  tt , of the kernel matrix equals to  tt xxk ,
. 

Therefore,  TK is the inner product matrix (Gram 

matrix) in F . Then, Eigen-decomposing the kernel 

matrix we have TEDEK  where E is the 

eigenvectors 
Nee ,...,1

column wise and their 

corresponding eigenvalues are in D -
N ,...,1

. 

Williams in (C.K.I. Williams 2002) discussed that the 

equivalence between PCA and KPCA holds in KPCA as 

well (kernel feature space). Hence, we have: 

 

 
T

llupca EDP
i

2
1

  (3) 

 

Where 
lD is the top large l eigenvalues of K and 

lE is 

their corresponding eigenvectors stored in columns. It 

means that projecting  onto spanned feature space 

(principal axes) is given by
T

iiu eP
i

 . 

Considering the analogy in (3), T

llpca ED 2
1

 is the 

solution to the following optimization problem: 

 

   .1.1:
2

,,...,,
min

11

2
1

pca

T

ee

T

llpca KKED
NN


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 (4) 

 

Where
T

lllpca

T

pcapca EDEK  . Therefore, this 

procedure minimizes the norm of pcaKK  . 

3 Feature Dependent Kernel Principal 

Component Analysis (FDKPCA) 

Generally, in spectral data transformation methods, 

finding the most valuable principal axes (appropriate 

directions in the feature space) is of most importance. In 

PCA, for example, it is extracted linearly from the 

principal feature space. In KPCA, however, these axes 

are extracted from kernel feature space as discussed in 

previous subsection. We define Feature Dependent 

Kernel PCA as a k -dimensional data transformation 

method obtained by projecting input data onto a subspace 

spanned by principal kernel axes contributing to the 

feature dependent kernel space. Feature dependent kernel 

space is defined as follows: 

Let ],...,[ 1 NxxX  , where 
d

t Rx  and ],...,1[ Nt  . 

The nonlinear mapping function is given dd F :

such that   dtxx tt ,...,1,  where tx is an N

dimensional vector including all of the tht features from

N input data. Explaining this, we have

   ],...,[ 1 dxx   . The use of a positive semi-definite 
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kernel function or Mercer kernel computes an inner 

product in the new space
dF : 

 

       .,, tttt xxxxk 
   (5) 

 

The  NN  kernel matrix-we define that as 
FDKPCAK -

is now defined such that element  tt , of the kernel 

matrix is  tt xxk 
,

. Therefore, 
FDKPCAK  is the Gram 

matrix or the inner product matrix in
dF . The next stage 

in FDKPCA is to perform PCA on
FDKPCAK . Note that 

the kernel matrix given in FDKPCA feature space (

FDKPCAK ) is totally different from that of KPCA. Firstly, 

we explain KPCA feature space for the sake of clarity and 

then, FDKPCA feature space is introduced. 

Figure. 1. illustrates a brief flow diagram of reaching 

kernel feature space from the scratch. As it is shown in 

Figure. 1, N input data are first mapped into kernel space 

by and then the Gram matrix (kernel matrix) is 

calculated using inner product. Note that the dimension of 

kernel matrix is equal to the number of input data- N . 

Eigen-decomposition is the next step where all 

eigenvalues and their corresponding eigenvectors are 

extracted and reordered in a descending manner from the 

greatest to the smallest value. After finding the kernel 

axes in this space, the kernel matrix, which represents the 

input data, is projected onto the kernel feature vectors 

(eigenvectors). The drawback to KPCA is that the 

dimension of feature space and kernel matrix could 

become too high and as a result data transformation could 

be computationally expensive. In addition, finding the 

most optimized sub-space in kernel feature space could 

be challenging and sometimes inefficient. 

In FDKPCA feature space, the input data is projected 

onto a subspace spanned by principal kernel axes 

contributing to the feature dependent kernel space. In 

FDKPCA all features having the same dimension from all 

input data are firstly considered in separate vectors, and 

then mapped into kernel space which is called FDKPCA 

feature space. Finally, the kernel matrix (Gram matrix) 

using inner products which is a d -dimensional space is 

computed.  Note that the input data has the dimension of

d which means there is no growth of dimension while 

computing FDKPCA feature space. Having d -

dimensional FDKPCA feature space, the eigenvectors 

and their corresponding eigenvalues are decomposed in 

this step. The original input data is projected onto a sub-

space of FDKPCA feature vectors for the purpose of 

transformation and dimensionality reduction. In the 

FDKPCA feature space, the non-linear relations between 

data inputs are extracted in a feature wise manner which 

results in having both more efficiency and higher speed.  

 

 

 

Figure. 1. Flow diagram of reaching Kernel Feature Space 

 

4  Image Acquisition and Region of Interest 

(ROI) Extraction Algorithm 
Based on the proven scientific fact that the light rays 

can be absorbed by deoxygenated hemoglobin in the 

vein, absorption coefficient (AC) of the vein is higher 

than other parts of finger. In order to provide the finger 

vein images, four low cost prototype devices are 

needed such as an infrared LED and its control circuit 

with wavelength 830nm, a camera to capture the 

images, a micro-computer unit (MCU) to control the 

LED array, and a computer to process the images. The 

web-cam has an IR blocking filter; hence, it is not 

sensitive to the infrared (IR) rays. To solve this 

problem an IR blocking filter is used to prevent the 

infrared rays from being blocked.  

Three major steps are used to crop images optimally: 

first one is detecting the edge. In order to perform the 

cropping part, two horizontal lines are determined by 

finding the horizontal edges in original images. Two 

conditions should be satisfied to find the appropriate lines 

by edge detection algorithm: (1) the pairs of detected 

points should be located between 35% and 65% of the 

height of the captured image, and (2) among the detected 

pairs, the pair of the edge that are the widest will be 

chosen. Last step is to crop the images from 5% from 

right border and 5% percent from left border vertically. 

An example is shown in Figure. 2 a) and b). 
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(a) (b) 

 

Figure. 2. a) original image, b) cropped image 

5 Proposed Finger Vein Recognition 

Algorithm 
The flow diagram of the proposed finger vein 

recognition algorithm is shown in Figure. 3. First step is 

to extract the region of interest from the samples which 

was explained in section 4. After extraction the region of 

interest, the proposed FDKPCA is conducted on the data 

to find the optimal axes (eigenvectors) to project the data 

onto. Actually, based on the dimension of the input data, 

the number of experiments is assigned. It is because of 

the nature of PCA based algorithm as there are as many 

different dimensions as the dimension of the input data. 

for instance, if the dimension of the input images is 100, 

there are 100 different implementations on the same data 

using 100 different feature vectors to reduce the 

dimension and extract the features. And finally, Nearest 

Neighbor classifier is taken into account to classify the 

extracted features and make the final decision. Figure. 3. 

Indicated the flow diagram of the clustering algorithm. 

 

 

Figure. 3. Flow diagram of the proposed clustering algorithm for 

finger vein recognition 

6 Experimental Results  

In this section, the experiments are conducted to 

corroborate the performance of Feature Dependent Kernel 

Principal Component Analysis (FDKPCA) over Kernel 

Principal Component Analysis (KPCA). We used 

Gaussian kernel function as the mapping function in both 

KPCA and FDKPCA.  Finger vein database used in the 

experiments consists of 500 images from 50 individuals; 

10 samples from each subject were taken. In this 

experiment 4, 5, and 6 randomly selected samples are 

used to train and the remaining 6, 5, and 4 samples are 

used to test respectively. In each experiment, the accuracy 

is calculated using the first 200 components of the 

extracted features meaning that each experiment is 

repeated 200 times using the first 200 features to project 

the data onto, and also the dimension is reduced from 

100% to 0% in different experiments. The results are 

shown in Figure 4, 5, and 6.  

 

 

Figure. 4 Comparison of accuracies between KPCA and FDKPCA 

obtained using 4 images to train and 6 to test 

 

As it was expected, the more the number of training 

samples gets, the higher accuracy rate goes. It is observed 

that no matter how many samples to train and test and no 

matter how high the dimension of the feature vector is, 

using FDKPCA results in a higher accuracy rate in all 

experiments and all different feature vectors. The 

discrepancy between the obtained accuracies is very 

dramatic in the first half of the graphs. 

 

 

Figure. 5 Comparison of accuracies between KPCA and FDKPCA 

obtained using 5 images to train and 5 to test 

 

It can be explained by the nature of the FDKPCA 

which is able to find more valuable feature vectors in the  

Train samples 

 

Finger area 

extraction (ROI) 

Finger area 

extraction (ROI) 

 

Conducting 

FDKPCA on 

Samples to extract 

the features and 

reduce the 

dimensionality 

Data classification 

using Nearest-

Neighbor classifier 

Test samples 

 

Conducting 

FDKPCA on 

Samples to extract 

the features and 

reduce the 

dimensionality 
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lower dimension than KPCA. For example, FDKPCA 

reaches the accuracy of around 98% to 100% using less 

than 50 vectors to transfer the data while KPCA gets its 

highest accuracy which is around 90 %to 93% using the 

feature vectors with the dimension of more than 120. 

 

 

Figure. 6 Comparison of accuracies between KPCA and FDKPCA 

obtained using 6 images to train and 4 to test 

 

Experimental results reveal that not only is the 

proposed system (FDKPCA) more superior than KPCA 

for finger vein recognition, but also it can be considered 

much faster than KPCA as it reaches its peak in much 

lower dimension than KPCA. 

7 Conclusion 

In this research, we proposed a new method of 

dimensionality reduction and feature extraction 

(FDKPCA) which is a combination of the well-known 

Principal Component Analysis (PCA) and Kernel 

Principal Component Analysis (KPCA), which was 

proven to be faster and more accurate than PCA and 

KPCA in terms of finger vein recognition. We also 

proposed a new finger vein recognition algorithm using 

the FDKPCA method to extract the most valuable 

features from the samples and reduce the dimension of 

the data. In the proposed system, the images are 

automatically cropped first and then FDKPCA is 

performed for the purpose of feature extraction. Finally, 

Nearest Neighbour classifier is conducted to classify the 

extracted feature and make the final decision. Extensive 

experiments on our finger vein data reveal the 

significance of the proposed method in comparison with 

the traditionally used methods. 
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