
A Portal for Grid-enabled Physics

Brett Beeson1 Steve Melnikoff1 Srikumar Venugopal2 David G. Barnes1

1School of Physics
The University of Melbourne
Parkville, VIC 3010, Australia

Email: {bbeeson, stevexm, barnesd}@physics.unimelb.edu.au
2 GRIDS Laboratory and NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne
Parkville, VIC 3010, Australia
Email: srikumar@cs.mu.oz.au

Abstract

This paper presents the motivation for development
and implementation of a computational portal for the
processing of astrophysical and high energy physics
data on global Grids. The requirements for the por-
tal, its design, and choices leading to the utilisation
of Globus, Gridbus Broker and GridSphere as the
middleware, resource broker and portal framework re-
spectively are discussed, along with implementation
details and potential future directions for the project.

1 Introduction

Theoretical astrophysics and experimental particle
physics are major clients of high performance com-
puting (HPC) facilities worldwide. They are also key
application drivers and early adopters for grid tech-
nology and distributed computing paradigms. The
codes for both are typically numerically intensive and
must process, access, or generate massive data sets.

Virtual Observatories (VOs) are one of the lead-
ing applications of compute and data grid technology.
They deliver a new paradigm for undertaking exper-
imental astronomy, and in particular offer exciting
possibilities for completely integrating observational
astronomy and theoretical astrophysics. Experimen-
tal particle physics is also placed to be an important
application of grids. The Belle Analysis Data Grid
(Winton et al. 2003) project is developing a global
data grid to access and process terabytes of data from
the KEK B-meson factory in Japan, searching for the
violation of the fundamental Charge-Parity, or CP,
symmetry.

Making globally distributed computational re-
sources — from VO data centers to remote instru-
mentation and experimental facilities — readily avail-
able to individual scientists and large-scale collabora-
tions, is part of the vision brought forward by the
Grid computing community over the last few years.
Communities with common objectives can come to-
gether as virtual organizations (Foster, Kesselman &
Tuecke 2001) in order to pool their resources and co-
ordinate research among their members. However,
this requires establishment of standards for common
access to resources and tools to harness the power of

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Australasian Workshop on Grid Computing
and e-Research, Newcastle, Australia . Conferences in Re-
search and Practice in Information Technology, Vol. 44. Paul
Coddington and Andrew Wendelborn, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

the distributed infrastructure. There has been suc-
cess in specific areas, such as the development of low-
level Grid middleware. However, the complexity of
composing and deploying applications on a Grid is
still daunting and a familiar, easy to use environment
to access these resources is required for scientists to
make use of Grids for their day-to-day research.

Portal-based computing is a strategic enabler for
the new and rapidly developing e-Science (or e-
Research) methodology. Grid portals address the gap
between current Grid computing technology and re-
liable production systems which scientists can make
part of their everyday research toolkit. They have
been described as a “problem solving environment
that allows scientists to program, access and execute
distributed Grid applications from a conventional
web browser and other desktop tools” (Gannon, Fox,
Pierce et al. 2003). In addition, science application-
oriented Grid portals can be an interface between
legacy, single CPU programs and their redeployment
in a Grid computing environment. By presenting an
integrated web browser based interface, sophisticated
and powerful Grid tools which have been daunting to
employ are made easily available. Portals provide a
standard architecture that the user or developer can
extend to suit their particular situation. The end re-
sult is scientists focusing on doing science, and on the
products of their research activities.

A portal for Grid-enabled physics, in particular
astrophysics and high energy particle physics, would
provide an ideal environment to host user-level ser-
vices, such as simulation, or handling analysis job
configuration (including parameter sweep support),
submission to Grid resources, task progress moni-
toring, and input and output data management and
archiving. Built as a general tool, a physics portal
needs to support a wide range of existing codes (par-
allel and serial), and ideally be extensible in the sense
that users could upload their own code libraries or
configuration routines. This environment would also
offer a path to integration with observational astron-
omy data by using International Virtual Observatory
Alliance standards to describe input and output for-
mats, enabling generic VO tools to parse and manip-
ulate the results of simulations as easily as they can
direct observational data.

In Section 2, we expand on the above requirements
that motivated our development of a Grid-enabled
portal for physics. In following sections, we describe
our technology choices (§ 3) and design (§ 4) to meet
these requirements, and comment on its implemen-
tation (§ 5) as well as future directions (§ 6) for the
portal.



2 Requirements

Our Grid-enabled portal for physics experiments had
several basic requirements. Primarily its function is
to allow users to easily run applications over grid re-
sources. A second, key, goal of this project is to not
only create a functional portal, but also one that ad-
vances the Grid computing effort by creating reusable
components that integrate existing technologies. To
elucidate these points, we describe a typical use-case
in the form of steps that a user would take when con-
nected to the portal, its associated requirements, and
their generalization.

1. Authentication. Using a standard web-
browser, the user logs in to the portal with a
username and password. New users can request
an account by contacting the site’s administrator
and presenting valid authentication credential(s).
Once the user’s authenticity is established, access
to Grid resources is delegated on their behalf, by
uploading a Grid credential, or by configuring the
portal to access a credential repository.

2. Job selection and configuration. The por-
tal then presents options for a particular appli-
cation to be run. For instance our first-deployed
code is the magneto-hydrodynamic (MHD) as-
trophysics code ZeusMP, a multi-processor ver-
sion of Zeus2D (Stone & Norman 1992). Choos-
ing ZeusMP, specific parameters are then dis-
played for the user to set. They may opt for a
collapsing star simulation, to explore the effects
of differing values of a star’s initial mass. The
portal creates a number of seperate jobs, each
with a different set of initial conditions, i.e. ini-
tial mass. Additional parameters can be set to
a range, such that the entire parameter space is
available for study.

3. Resources Selection and Job Execution.
Ideally, the user should not be required to specify
any resources leaving the portal backend to ob-
tain these automatically from a registry such as a
possible list of common computational and stor-
age resources available to the members of a sin-
gle virtual organisation. However, the user may
want to specify a set of resources he/she is in-
terested in utilising, such as a particular data re-
source to access. Additionally he/she may spec-
ify a deadline by which the results of the exe-
cution are required. The portal backend then
creates the individual jobs from the user descrip-
tion and maps them to resources in such a way
that the user’s deadline is met. It submits the
job(s) for processing and and monitors system
loads in order to efficiently utilise resources and
to ensure that the job execution happens within
the allocated time.

4. Monitoring. Often these jobs will take hours
to run. Users may want to monitor progress
immediately, via the portal,or alternatively, dis-
connect and return later if the jobs are likely to
be long-lived. For which, the portal (and web)
server must be able to be restarted without drop-
ping queued jobs. Users may have several ex-
periments running simultaneously and should be
able to choose which to monitor. The end re-
sult is that at some point a user can return and
verify whether one or more of their experiments
have finished.

5. Output. An error log displays exceptions for the
user to examine. Successful jobs will store their

results in a grid storage location such as MyS-
pace (Qin, Davenhall, Noddle & Walton 2003)
or on the web server machine. The user will
be presented with an interface to browse files,
and, for common file formats, such as FITS
and HDF, server-side visualisation tools could be
made available within the portal too. Depending
on these results, the user may alter a number of
configuration parameters and re-run the simula-
tion. But once satisfied with the results, perti-
nent data can be downloaded to a local machine,
or stored in a more permanent location on the
Grid, if required. Because the resulting output
files may be very large, it is important to pro-
vide some rudimentary information — through
basic visualisation or statistical information —
to check data quality or validity before initiating
large data transfers.

Thus,from the above requirements it can be seen
that we needed to pay special attention to the follow-
ing aspects of portal development:

Security. Since the user delegates authority to the
portal and the portal potentially has many users, se-
curity is an important concern. Ideally users’ authen-
tication credentials will not be stored on disk of the
web server — a very public machine — but rather on a
different machine with extra security. All connections
to the web server should be made via Secure Sock-
ets Layer (SSL) to protect usernames and passwords.
The portal itself should run with special permissions
to reduce damage if it is compromised. Portal user
accounts need only relate to the portal and not to sys-
tem accounts. The usual drawback of enhanced secu-
rity is in reduced ease-of-usage. Our portal tries to
strike a balance by having the users delegate their cre-
dentials a single time. Subsequent uses of the portal
simply require a password to activate the credentials.
Such a system allows users to connect to the portal
from any machine with a web browser without hav-
ing their credentials stored on their local workstation.
No other software should be required. For example,
visualisation services should not require downloading
software, other than, perhaps, an embedded Java ap-
plet.

Resource Brokering Grid resource brokers
(GRBs) undertake the tasks for resource discovery,
job scheduling, execution and monitoring and job
output retrieval among others. Linking the portal
with a GRB backend has the advantage of keeping
the portal development free to focus on presentation
of content to the users and leaving the complexity
of resource allocation and scheduling to the broker.
Grid middleware and standards are still in the pro-
cess of evolution and by keeping the portal free from
the vagaries of the underlying infrastructure, the cost
of code maintenance is reduced. Also, portal users
are able to take advantage of any new scheduling
algorithms that may have been introduced by the
GRB developers.

Output Visualization Visualization of simulation
and analysis data is of most interest to the end-users
who, in this case, are physicists. The visualization
requirements will vary with the stream of research
that is being conducted. For example, astronomy
researchers will want to look at the 3D visualizations
of the collapsing star simulation described above
while high-energy physicists will want to look at
histograms generated by analysis of data obtained
from particle accelerators. The portal should be
customizable to accomodate these varying needs.



There are a number of extra requirements needed
to make our portal a valuable addition to the Grid
community and not an ad hoc and limited solution
specific to a domain. For example, we need to reuse
existing components where possible, and certainly
any portal framework should make use of existing
and relevant standards. Much of the current Grid
software is in the beta stage, so any software must
also be carefully selected to ensure it is well sup-
ported and likely to remain available and supported
in the long term. A benefit of using beta software
is, of course, the ability to give feedback during its
development. This not only helps tailor it to any
specific needs, but also improves Grid software as a
whole.

3 Technology Choices

One of our primary aims is to reuse existng software
components and to develop our own reusable compo-
nents too. In this section we outline which technolo-
gies we choose to achieve this goal.

3.1 Grid Middleware

The Globus Toolkit (GT) (Foster & Kesselman 1997)
provides functionality to glue together distributed re-
sources to form computational grids and to create
Grid-based applications. It provides a secure, uni-
form interface for resource access and provides file
transfer,remote job submission and meta-data query
services and is one of the most widely-used middle-
ware packages for the Grid. Typically a choice of
Globus implies the need to interoperate with version
2.4 installations of the toolkit; we have found that GT
version 3.0.2 clients work well with version 2.4 ser-
vices. The GT is also the chosen Grid middleware for
many international Grid and eScience projects such
as the UK eScience Project, LHC Grid, International
Virtual Observatory and the Griphyn project. As
astronomy and high energy physics communities in
Australia are already part of some of these collabo-
rations, it makes sense for us to adopt Globus as the
standard for our implementation. GT is increasingly
being developed in Java, which is also well suited
for building complex web applications. Java pro-
vides for stable and rapid development and includes
a good Application Programming Interface (API) for
security. Java Remote Method Invocation (RMI) is
an easy-to-use method for communicating between
seperate processes. We employ it to seperate the web
server process from the job submission process, allow-
ing us to restart the web server without interrupting
users’ jobs. We also prefer Java-based frameworks for
structured development and easy use of the Globus
Toolkit.

3.2 Resource Brokers

Most of the tasks that we have envisaged for Grid
execution within astro and particle physics consist
of running the application over combinations of var-
ious parameters as was shown in the use-case. This
is known as the parameter-sweep model (Abramson,
Sosic, Giddy & Hall 1995) of computation and the
independent nature of the jobs produced within this
model makes them suitable for execution on grids
which may be prone to fluctuating loads and dynam-
ically appearing and disappearing resources. Nim-
rod/G (Buyya, Abramson & Giddy 2000) is a re-
source broker for the parameter-sweep model of com-
putation wherein jobs are created by combining val-
ues within the parameter space of an application. The

Gridbus Broker (Venugopal, Buyya & Winton 2004)
extends the computation-centric Nimrod/G model to
distributed data-intensive applications by introduc-
ing data-oriented scheduling and the concept of dy-
namic parameters. The Gridbus Broker has a service-
oriented architecture that discovers services at run-
time and uses them to shortlist suitable resources for
execution and to refine the parameter search space.
The Broker was written in Java for easy integration
with web application containers such as Tomcat, and
can be used standalone or as a library through a well-
defined Java API.

The Gridbus Broker has been utilised in the analy-
sis of data generated by the Belle High Energy Physics
experiment. It was able to schedule jobs to resources
based on their availability and their proximity to the
sources of data. The scheduler minimizes the cost
and time involved in transmission of the data while
guaranteeing shortest job turnaround time. Large
repositories of data that have been replicated selec-
tively through a distributed infrastructure are the
norm in many scientific grid collaborations. The data
requirements within high energy physics and astro-
physics communities are well-known (Winton 2003).
We found the ability of the Gridbus Broker to ac-
cess remote data catalogs for scheduling and execut-
ing jobs, essential for the usability of this portal.

3.3 Web Technologies

Servlets are a viable choice for reusable web applica-
tions, and, therefore, we looked at a number of differ-
ent frameworks built on top of servlets. This choice of
framework was a time consuming effort, as one must
find, install and test each. Time well spent though,
since the framework choice has an extensive impact
on subsequent development.

Struts1 was used to construct a prototype of the
portal interface. Struts has a wide user-base and
is relatively easy to use. Although it strictly en-
forces seperation of content and code, we still found
it difficult to create reusable components. Moreover,
generic functionality such as file uploading, are not
part of the basic Struts framework and had to be writ-
ten by us. We concluded from the results of the proto-
type development that decoupled, individual compo-
nents were needed to create a flexible, reusable portal.

Portlets provide a standard technique for creat-
ing web applications for deployment in a container
portal. Each application is self-contained and is dis-
played in a sub-window of the portal. The portlet
framework allows for communication between portlets
without the need for tight inter-portlet coupling.
Java Specification Request (JSR) 168 (Abdelnur,
Chien, Hepper et al. 2003) defines the standard for
portlets, and several systems implement it, including
Apache Jetspeed2 and GridSphere (Novotny, Russell
& Wehrens 2003). Since portlets are in their infancy,
many of the portlet containers are incomplete and
function more as proof of concept vehicles. As well
as meeting our technical requirements, we needed a
system with good user support and longevity. In sum-
mary, the portlet container requirements were that it:

• implement JSR 168 and not extend functionality
in a non-portable way,

• be well designed, following software engineering
principles,

• be relatively easy to install and get started,

• be robust in a production environment,

1http://jakarta.apache.org/struts
2http://portals.apache.org



• come with source code, to allow for modification
and bug fixes,

• be well supported, preferably providing direct
contact details for development programmers,

• be long-lived, with a clear plan for future devel-
opment,

• come with generic portlets for functions such as
file uploading, and

• enable rapid development.

GridSphere was our choosen, preferred portlet
container. It is based on the popular Apache Tom-
cat3 web-application container. Jetspeed was another
possibility which we explored, but anecdotal evidence
suggests it is too immature at this point for deploy-
ment in a working environment. Several other portlet
containers were examined but either they, too, were
immature or didn’t have sound user support.

Unfortunately JSR 168 does not provide all the
functionality we needed, particularly with respect
to inter-portlet communication. GridSphere has ex-
tended JSR 168, but this means some parts of our
code will be non-portable. Another drawback of Grid-
Sphere was the slow development cycle, even on fast
machines. This was accentuated because we were
learning a system which involved much trial and er-
ror. New code had to be compiled, deployed and
then the Tomcat server needed to be restarted. The
ApacheAnt4 build system, which is used by Grid-
Sphere, allowed us to semi-automate this process.

4 Design

Having selected GridSphere and Gridbus Broker
we needed to design a functional system which is
reusable, secure and extensible. We outline the ma-
jor design choices here, beginning with an overview
of the whole system and then examining the various
components.

A schematic of the portal system is shown in Fig-
ure 1, and a component-oriented diagram is shown in
Figure 2. At the core of the system is the web server
machine, and at a simple level, the user is aware only
of this machine. It runs a web server with Tomcat and
GridSphere together providing the portlet container.
GridSphere handles user sessions, but between ses-
sions it cannot run background jobs. Instead, it uses
a background process, Gridbus Server — based on
Gridbus Broker — to handle submission and control
of jobs. This allows the user to exit the portal and
return later whilst her jobs continue to execute. In
addition, GridSphere can be restarted without affect-
ing users’ jobs. The Gridbus Server uses Globus to
submit jobs to various resources. Credential manage-
ment is handled by generic GridSphere portlets which
pass the necessary information to the Gridbus Server.

GridSphere and Java allow us to use services and
interfaces to decouple individual components. Portal
services can be used by any portlet, and they provide
a simple interface to subsystems which provide se-
curity, job submission and monitoring. Each service
is defined by a Java interface which can be imple-
mented in several different ways without affecting the
portlets. For instance, the job submission services can
use Nimrod/G or Gridbus Broker without the portlet
being aware of the difference.

Plan files encode application requirements for an
experiment using Nimrod/G’s simple declarative pro-
gramming language which is also supported by the

3http://jakarta.apache.org/tomcat
4http://ant.apache.org

Gridbus Broker. A plan file specifies the parameter
values, the input files if present, the program(s) to
be executed and the output files to be copied back if
necesssary. They are created by application-specific
portlets after which generic portal components treat
all plan files alike. Therefore we can can add new ap-
plications just by creating a new portlet which writes
a plan file based on the application’s parameters.
Thus, by hiding the plan file format from the user, a
further layer of abstraction is provided and increases
the ease-of-use of the portal.

An experiment is a set of related jobs created us-
ing a single work-flow plan. A single instance of the
Broker is created for each experiment. The portal
needs to support multiple users and multiple user ex-
periments, as well as persistence across user logins.
Using Java RMI we created a Gridbus Broker server
which runs as a standalone process (see figure). The
portal communicates with the server via a set of RMI
remote objects which are delegates for the real ob-
ject in the server. Using this system we can restart
the web server and monitor the state of jobs using
other applications. Without it, a shutdown of the
web server would terminate all the on-going users’
jobs.

By choosing Globus, Java and GridSphere we can
utilise existing tools of credential management. We
employed MyProxy5 to store user credentials and to
delegate proxies for user resources. The server runs
in a seperate process, possibly on a seperate ma-
chine. Users can specify a MyProxy server to use,
or use one associated with the portal. The portal
uses GridSphere credential management portlets to
interact with MyProxy via a network socket. There
are portlets to upload credentials, map credentials to
resources and to obtain a short-term delegation proxy
to use on those resources. Once the delegated proxy
is obtained, the portlet passes it to Gridbus Server to
use.

Users need to see output (that is, stdout and
stderr) as well as the data files from the jobs. The
Broker uses Globus Resource Allocation and Manage-
ment (GRAM) batch submission to reduce the gate-
keeper’s load. This increases reliability as the GRAM
job handle can be used to retrieve job status and out-
put even in the case of Broker failure. If standard
out is required (for example, if a job fails) we ask
GridbusBroker to fetch it in order to display it in
HTML to the user. Data files are copied back to the
web-server using Global Access to Secondary Storage
(GASS). Other protocols can be used, as specified in
the plan file so we can easily add other storage loca-
tions such as MySpace. Files must be stored in a user-
specific, experiment-specific directory for the user to
browse. We provided a generic file browsing portlet
which uses existing tools to provide data visualisation
to users. We plan to also provide the distributed vol-
ume renderer (Beeson, Barnes & Bourke 2003) and
the Remote Visualisation Service6 which use remote
machines to perform visualisation, reducing the load
on the web-server and allowing us to visualise large,
remote datasets.

5 Implementation and Experiences

GridSphere provided a solid foundation for our portal
implementation but had a steep learning curve. Im-
plementing the infamous “Hello World” in a portlet
is not a trivial exercise! To a large extent, this is the
nature of such containers. The software engineering

5http://grid.ncsa.uiuc.edu/myproxy
6RVS, under development by the Australian Virtual Observa-

tory



Figure 1: Schematic of the Grid-enabled physics portal system.

Figure 2: Components of the Grid-enabled physics portal system.



Figure 3: Portlets developed and used in the Grid-enabled physics portal system.

focus, good documentation and user forums of Grid-
Sphere are indispensible to its users. But, once famil-
iar with GridSphere, there are many useful elements
available to the programmer. These include mes-
sage passing between portlets, persistence support via
databases and user session support. GridSphere uses
the Model-View-Controller (MVC) paradigm which
is already popular and widespread. A key element of
our portal was reusability: MVC enforces the sepa-
ration of form and content which greatly facilitates
this reusability. The portlets we developed (or used,
in the case of GridPortlets) for deployment in Grid-
Sphere are shown in Figure 3. We found Tomcat to
be a good, stable server platform with a wide user
base. GridSphere is specifically designed for Tomcat
and the two work together well. When using Tomcat
there is a known problem which affects the restart
of modified and redeployed web applications. Often
the whole container must be restarted, which is time-
consuming and error-prone. This problem is exaca-
bated by the extra layer of GridSphere. The resulting
slow development cycle significantly impacted our de-
velopment speed.

An advantage of developing complex web applica-
tions in Java is the good support via build and test
tools. We used Junit, Cactus and Ant to provide
testing, container-based testing and building support.
Such tools are really essential due to the complex
build and deploy system. They were all easy to use
and alleviated some of the problem concerning slow
development mentioned above. Figure 4 shows the
completed portal, with job submission, monitoring
and file management portlets active. Behind the user
interface lies the system which performs the work —
Gridbus Server, Gridbus Broker, Globus and MPI.
Gridbus Broker uses Globus middleware to submit
jobs to remote machines, although it allows for other
grid middleware. Globus calls are complex and not al-
ways robust. Gridbus Broker provided an invaluable
abstraction from Globus: its simple interface meant
that Globus-specific problems could be handled at a
low level. We found it essential to allow Globus calls
to fail and then retry, rather than failing on the first
attempt.

We feel we made a good decision to use RMI in
Gridbus Server to communicate between processes.
The alternative was a web service, but in our ex-
perience development of web services is extremely
slow and error prone, particularly for stateful services.
RMI was a quick and elegant solution and most of the
code can be reused when we create a web service.

The atomic unit of computation within the Grid-
bus Broker is called a job. Monitoring of executing
code is limited to whether a job is waiting, running
or finished. Depending on the code being run, jobs
can be very long, and so the user may often want to
know how far through an individual job is, not just
that it is executing. To an extent, we can create more,

smaller jobs, but really there needs to be some feed-
back system. The core problem is that each code is
different but we handle them generically. We must
accept this limitation since by design we choose not
to modify existing codes.

6 Future Directions and Conclusion

As well as adding more applications (beyond
ZeusMP) there are a number of enhancements which
would provide a more flexible and user-friendly sys-
tem. We describe these possiblities here.

When a new application is deployed using the por-
tal, it requires the user to set a number of parameters.
We use the plan file to record these parameters. Cur-
rently users must write the plan file which is easy
but time-consuming. A better alternative would be
an HTML form for the user to fill out. The form
would then be processed to create a suitable plan file.
For simple applications, this would suffice, but many
applications have numerous related parameters. A
better user-interface could be provided, using a Java
applet for example.

The portal interface to the broker has been made
as independent of the actual broker as possible. We
would like to add support for other resource brokers
such as Nimrod/G in order to take advantage of their
capabilities. A significant portion of scientific work-
loads is in the form of tasks linked together to form
workflows. We would like to add support for Grid
workflow systems (Yu & Buyya 2004) so that such
workloads can be realised through the portal. We en-
visage presenting the user with a choice of resource
brokers and workflow management systems so that
he/she can select one depending on his requirements.

It is important to store the data generated by the
resource broker (or a workflow management system)
during job execution so that in case of failure of the
broker, the user can study this data and restart the
execution from the point of failure. This data would
also be valuable as a record of Grid performance and
also for accounting purposes. Currently, the Grid-
bus broker lacks this capability as the data lasts only
for an instance of the broker. Nimrod/G is based on
a SQL database and provides better job persistence.
We plan to actively engage developers wherever possi-
ble so that this requirement is fulfilled for all resource
brokers and workflow systems that interface to the
portal.

To conclude, the portlet approach to Grid comput-
ing provides scientists with a productive environment
and a rich tool set for large-scale, distributed data
processing. As has been presented here, for astro-
physics and high energy physics data, legacy analy-
sis software can be redeployed within this framework.
And, as these frameworks mature, web-based appli-
cation tools, like GridSphere, will occupy a central
place in the development of global research networks.



Figure 4: The portal user interface, showing job submission, monitoring and file management portlets.

Following which, scientists may well have most of the
tools for real e-Science work, bringing worldwide com-
puting resources to their local laboratory.

7 Acknowledgements

We thank a number of people for their ideas, con-
tributions and effort in developing the portal: Slavisa
Garica, Colin Enticott, Lyle Winton, Andrew Melatos
and Rajkumar Buyya.

References

Abdelnur, A., Chien, E., Hepper, S. et al. (2003),
JSR-000168 Portlet Specification.
*http://jcp.org/aboutJava/
communityprocess/final/jsr168/index.
html

Abramson, D., Sosic, R., Giddy, J. & Hall, B. (1995),
Nimrod: A Tool for Performing Parametised
Simulations using Distributed Workstations, in
‘Proc. of 4th IEEE Symposium on High Perfor-
mance Distributed Computing’, IEEE CS Press,
Los Alamitos, Calif., USA, Virginia.

Beeson, B., Barnes, D. G. & Bourke, P. D. (2003), ‘A
distributed-data implementation of the perspec-
tive shear-warp volume rendering algorithm for
visualisation of large astronomical cubes’, Publ.
Astron. Soc. Aust. 20, 300–313.

Buyya, R., Abramson, D. & Giddy, J. (2000), Nim-
rod/G: An Architecture for a Resource Manage-
ment and Scheduling System in a Global Com-
putational Grid, in ‘Proc. 4th Int. Conf. on High
Performance Computing in Asia-Pacific Region
(HPC Asia 2000)’, IEEE, IEEE CS Press, Los
Alamitos, Calif., USA.

Foster, I. & Kesselman, C. (1997), ‘Globus: A Meta-
computing Infrastructure Toolkit’, The Inter-
national Journal of Supercomputer Applications

and High Performance Computing 11(2), 115–
128.

Foster, I., Kesselman, C. & Tuecke, S. (2001), ‘The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations’, Lecture Notes in Computer Sci-
ence 2150.

Gannon, D., Fox, G., Pierce, M. et al. (2003), Grid
Portals: A Scientist’s Access Point for Grid
Services.
*http://www.extreme.indiana.edu/
\~gannon/ggf-portals-draft.pdf

Novotny, J., Russell, M. & Wehrens, O. (2003), Grid-
Sphere: A Portal Framework for Building Col-
laborations, in ‘Proceedings of the 1st Interna-
tional Workshop on Middleware in Grid Com-
puting’, Rio de Janeiro, Brazil.

Qin, C. L., Davenhall, A. C., Noddle, K. T. & Wal-
ton, N. A. (2003), MySpace: Personalized Work
Space in AstroGrid. Proceedings of UK e-Science
All Hands Meeting 2003, 2-4th September, Not-
tingham, UK.

Stone, J. M. & Norman, M. L. (1992), ‘ZEUS-2D: A
radiation magnetohydrodynamics code for astro-
physical flows in two space dimensions. I - The
hydrodynamic algorithms and tests’, Astroph. J.
Supp. 80, 753–790.

Venugopal, S., Buyya, R. & Winton, L. (2004), A
Grid Service Broker for Scheduling Distributed
Data-Oriented Applications on Global Grids, in
‘Proc. of the 2nd International Workshop on
Middleware in Grid Computing(MGC 2004)’,
ACM Digital Library, Toronto, Canada. to be
published.

Winton, L. (2003), ‘Data Grids and High Energy
Physics: A Melbourne Perspective’, Space Sci-
ence Reviews 107, 523–540.



Winton, L. et al. (2003), ‘Australian Belle Analysis
Data Grid’.
*http://roberts.ph.unimelb.edu.au/epp/
grid/badg/

Yu, J. & Buyya, R. (2004), A Novel Architecture for
Realizing Grid Workflow using Tuple Spaces, in
‘Proc. of the 5th International Workshop on Grid
Computing(GRID 2004)’, IEEE CS Press, Los
Alamitos, Calif., USA, Pittsburgh, USA.


