
A Technology to Expose a Cluster as a Service in a Cloud
Michael Brock and Andrzej Goscinski

School of Information Technology, Deakin University
Pigdons Road, Waurn Ponds, Victoria 3217

{mrab, ang}@deakin.edu.au

Abstract
Clouds refer to computational resources (in particular,
clusters) that are accessible as scalable, on demand, pay-
as-you-go services provided in the Internet. However,
clouds are in their infancy and lack a high level
abstraction. Specifically, there is no effective discovery
and selection service for clusters and offer little to no ease
of use for clients. Here we show a technology that
exposes clusters as Web services in the form of a Cluster
as a Service for publishing via WSDL, discovering,
selecting and using clusters. .
Keywords: Cluster as a Service, WSDL Publishing and
Selection, Dynamic Brokering, Clouds.

1 Introduction
Cloud computing is made possible through the
combination of virtualization, Service Oriented
Architecture (SOA), and Web and RESTful services.
Virtualization allows any computer platform to be
supported regardless of hardware and software. By
abstracting cluster and server software, it improves the
efficiency, availability, access and use of resources and
applications. Virtualization enables the use of idle cycles
of resources of datacenters, which are in 80% unused.
SOA forms an architectural basis for the cooperation of
clients, services, and registries (Papazoglou and van den
Heuvel 2007). Web and RESTful services provide a high
level abstraction and highly interoperable communication
subsystem. Scalable data centers offer dynamic and huge
hardware provisioning. The end result is an inexpensive,
Internet accessible on demand environment where clients
use computing resources on a pay-as-you-go basis as a
utility and are freed from hardware and software
provisioning issues.

For clients to access resources they must be
discovered. Clouds and their computational resources are
not easy to discover and it is difficult to select and use
services. An analysis of the three main clouds (EC2
(Amazon 2007), Azure (Microsoft 2009), and AppEngine
(Google 2009), has found that they and their
services/resources are difficult to discover and offer little
to no ease of use unless the user is a software developer.

Clusters are a basic component of clouds. However, it
is difficult to discover clusters and select a cluster that
satisfies client requirements. This implies that clients
have to access every cluster from a list provided by a
registry to learn about their state and characteristics. It is

Copyright © 2010, Australian Computer Society, Inc. This
paper appeared at the 8th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2010), Brisbane,
Australia. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

also not easy to use cloud clusters as they are not exposed
at a high level of abstraction (Jha et al. 2009).

This paper presents an outcome of our project that
addresses some of these problems. It shows a technology
that exposes a cluster as a service that offers a high level
abstraction of clusters in the form of Cluster as a Service
(CaaS). The proposed technology is based on the
Resources Via Services (RVWS) framework (Brock and
Goscinski 2008a; Brock and Goscinski 2008b). The
technology proposed in this paper allows efficient
exposing and publishing via WSDL documents of Web
services exposing clusters, their discovery and selection
of a requested cluster and makes its use easier. As the
WSDL document is the most commonly requested and
recorded object of a Web service, the inclusion of
cluster’s state and other information in the WSDL
document makes the internal activity of the Web services
exposing this cluster publishable.

It is important to mention that this paper does not
address cloud SLAs (Service Level Agreements),
business and provisioning models, security and reliability
(network and computer system outages), although they
are seen as critical aspects of clouds.

The rest of this paper is structured as follows. Section
2 discusses three well known clouds and concludes that
they and their services/resources are difficult to discover
and do not support service selection and ease of use well.
Section 3 introduced a high level abstraction and
architecture of the CaaS Technology. Section 4 discusses,
following a brief characterization of the RVWS
framework, the logical design of CaaS. All components
responsible for the publication of clusters, their discovery
and selection, and actual use are discussed extensively.
Section 5 presents a proof of concept in the form of
implementation and experiments carried out to
demonstrate the way a cluster is published, found and
used. Section 6 provides a conclusion.

2 Related Work
While the use of Web services has made cloud services
interoperable, Web services are natively stateless, and can
complicate the exposure of resources that depend heavily
on state. The WSRF framework (Czajkowski et al. 2004)
makes Web services stateful but the state itself is not
publishable. The lack of published state forms a major
obstacle: if the state of the Web service is not published,
clients cannot learn if the Web service is ready for
requests or not. Furthermore, while the standards behind
the publication of Web services are extensive, their
practice is limited greatly to static parameters such as the
publication of Web service functionality, communication
patterns, and provider contact details. Finally, the use the
clouds are not easy and require clients to have good
knowledge of them.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

3

Virtualization lays the foundation for sharable on
demand infrastructure, on which three basic cloud
abstractions are offered on demand:
• Infrastructure as a Service (IaaS) – makes basic

computational resources (e.g., storage, servers)
available,

• Platform as a Service (PaaS) – makes offering that
enable easy development and deployment of scalable
applications, and

• Software as a Service (SaaS) – allows complete end
user applications to be deployed, managed, and
delivered over the Web.

The big four clouds, EC2 (Amazon 2007), Azure
(Microsoft 2009), AppEngine (Google 2009) and
Salesforce.com (Salesforce 2009) that represent these
three basic cloud abstractions, only provide basic support.

Initially, EC2 was basically hardware as a service; it
was for the user of EC2 to create the entire software stack
starting with an operating system. Just recently, the
Amazon announced their cluster services, i.e. Auto-Scale,
Load-balance, and CloudWatch, moving the cloud to the
PaaS category. However, features such as Auto-Scale,
require involvement of the EC2 client. Before one can use
Auto-Scale, one has to create multiple instances of
Amazon images for Auto-Scale to utilize.

AppEngine is a PaaS cloud where clients are able to
construct services and deploy them to AppEngine for
execution without having to rebuild the software stack.
However, AppEngine is very restricted in what language
and technology can be used to build the services. At the
time of writing, AppEngine only supports the Java and
Python programming languages.

Both AppEngine and EC2 offer cluster like data
processing in the form of MapReduce (Dean and
Ghemawat 2004) and Hadoop (Apache 2009)
respectively. In AppEngine, services are created to use
Google’s MapReduce framework while EC2 offers
virtual servers with Hadoop installed. However, both
MapReduce and Hadoop are restrictive because they are
specialized for distributed data processing.

Salesforce is a SaaS cloud: specifically, CRM software
as a service. Instead of maintaining hardware and
software licenses, use of the software hosted on
Salesforce servers for a minimal fee is offered. However,
Salesforce is still primitive. The software cannot be
customized and discovery of required software is only
keyword based.

These approaches appear to have no means of
discovery. At this time Windows Azure is seen as the
only cloud that offers discovery. An underlying
component to Azure is the .NET Services Bus. When a
service is hosted in Azure, it is able to register a URI to
the Bus so that clients can discover the service. As the
Bus does the location resolution, clients are able to use
the service no matter where the service is moved. While
the Bus offers discovery, its solution is still not
satisfactory. The only element that can be registered is a
URI. All other elements such as attributes on activity and
limitations are not published.

In summary, these four clouds provide some form of
service management. However, they require, with the

exception of Azure, new and dedicated programming
environments. Furthermore, clients must be heavily
involved in configuration of virtual servers and execution
of their applications in the same manner as programmers
did years ago when they used a command driven Unix
system (Chaganti 2008; VCL 2008). Clients face difficult
problems of resource discovery and automatic services
selection; dynamic sharing toward efficient management
of resources; QoS and reputation of providers and clients;
and fault tolerance. What is needed is an approach to
simplify the publication of clusters, their discovery and
actual use. Clients should be able to easily place required
files and executables on the cluster, and get the results
back without knowing any cluster specifics. A solution is
in the proposed Cluster as a Service, a high level
abstraction of clusters within clouds.

3 Cluster as a Service
Our Cluster as a Service (CaaS) Technology belongs to
the category of PaaS clouds. The purpose of the CaaS
Technology is to expose a cluster as a dynamically
changing stateful service, manage the discovery and
selection of clusters, the specification of cluster jobs1, the
upload of required files, the monitoring of execution and
the download of result files. The CaaS Technology does
not require any special development environment; it
supports development, deployment and execution of
applications that traditionally could be executed on a
standalone cluster. The CaaS abstraction and technology
is applicable to both public and private clouds.

This section discusses the CaaS technology in detail.
In particular, as this the technology is immersed in the
RVWS framework, the framework is briefly introduced.
That is followed by the presentation of the CaaS high
level abstraction, architecture, behavior, and the use of a
stateful WSDL document.

3.1 RVWS Basics
While Web services have simplified resource access, it is
not possible to know if the resource behind the Web
service is ready for a request. In fact, it is out right
impossible to easily find Web services that satisfy the
client requirements. To do so requires clients to research
extensively the services themselves before they are used.

To address these issues, we proposed our Resources
Via Web Service (RVWS) framework. Diagram 1 shows
an overall vision of RVWS in relation to clients and
clouds. A key element of RVWS is the discovery of
services and resources using state and characteristic
attributes published to Web service WSDL documents.

The automatic service discovery allows for both a
single service (e.g., a cluster) discovery and selection, and
an orchestration of services to satisfy computation
workflow requirements. The SLA (Service Level
Agreement) reached by the client and cloud service
provider specifies attributes of services, in particular
clusters, that form the client’s request or workflow. This

1 It is good to recall the difference between processes and jobs.
Jobs contain programs, data and even configuration and/or
management scripts. A process is a program that is in execution.
When clients use a cluster, they submit jobs and one or more
processes are created to execute the job.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

4

is followed by the process of services’ selection using
brokers. Thus, selection is carried out automatically and
transparently.

Diagram 1: Dynamic Discovery and Selection

There are two categories of dynamic attributes
addressed in the RVWS framework (Brock and Goscinski
2008a), (Brock and Goscinski 2008b): state and
characteristic. State attributes cover the current activity of
the service and its resources thus indicating if a given
service is ready for client requests. Characteristic
attributes cover the operational and physical limitations
of the service, the resources behind it, quality of service
(QoS), price and even information about the providers of
the services.

To keep stateful Web services current to their
resources, a Connector (Brock and Goscinski 2008a) is
used to detect changes in resources and then pass them on
to the Web service. The Connector has three logical
modules to keep the stateful Web service current:
Detection, Decision and Notification. The Detection
module routinely queries for attribute information from
the resource. Any changes in the attributes are passed to
the Decision module that decides if the attribute change is
large enough to warrant a notification thus preventing
excessive communication with the Web service. If
notification is needed, the updated attributes are passed
on to the Notification module. Once the attribute changes
have been assessed, this module informs the stateful Web
service that updates its internal state. When Clients
requests the stateful WSDL document, the Web service
returns the WSDL document with the values of all
attributes at the request time.

Through the extensible nature of the WSDL document,
it is possible to include additional information (state and
characteristics) by encapsulating it in its own section. All
information of service resources is kept in a new WSDL
section called the Resources section. For each resource
behind the Web service, a ResourceInfo element exists.
Each ResourceInfo section has a resource-id attribute and
two child sections, the state section and the characteristic
section. When the Connector learns of the resource for
the first time it publishes the resource to the Web service.

While the stateful WSDL document eliminates the
overhead incurred from manually learning the attributes
of the service and its resource(s), the issues behind

discovering needed services are still unresolved.
To help ease the discovery of services with stateful

WSDL documents, a Broker was proposed (Brock and
Goscinski 2009). The Broker is able to transparently
contact other known Brokers if it cannot satisfy a Client
request.

When publishing to the Broker, the Provider sends
attributes of the Web service. The provider is even able to
publish attributes about itself, e.g., name, price. After
providing attribute information about the Web Service,
the Broker gets the stateful WSDL document from the
Web service. After getting the stateful WSDL document,
the Broker has the complete attribute set that is stored
across three stores: the Service, Resources and Provider
stores. As the Web service changes, it is able to send a
notification to the Broker (and also to the client if
necessary) that then updates the relevant attribute in the
relevant store.

When seeking desired services, the Client submits to
the Broker three groups of attribute values for Service,
Resource, and Provider. The Broker compares each
attribute group on the related data store. Then, after
getting matches, the Broker applies filtering. As the
Client using the Broker could be anything from a human
operator behind a web browser to another software unit,
the resulting matches have to be filtered to suit its needs.
Finally, the filtered results are returned to the Client.

3.2 CaaS – High Level of Abstraction
Clouds represent a high level of abstraction of a large
distributed system achieved through layers of
virtualization and abstraction. One of highest levels of the
abstraction hierarchy is the concept of a service. This
implies that cloud should offer a simple high level
interface that allows clients to discover, select and access
cloud resources (storage, CPU cycles) exposed as
services easily and transparently.

An attempt of forming a hierarchical model of
abstraction to address stateless Web service, stateful Web
services based on the WSRF framework that do not
expose state directly, and stateful Web services based on
the RVWS framework that exposes dynamically changing
state directly was presented in (Brock and Goscinski
2008a, Brock and Goscinski 2008b).

A proposal of creating a higher-level abstraction for
grids to provide an explicit support for usage modes was
introduced in (Jha et.al 2009). However, the authors have
not moved beyond a general description of their vision.

This section shows a layer of abstraction that takes
advantage of the hierarchy presented in (Brock and
Goscinski 2008a, Brock and Goscinski 2008b) that sits
within the cloud abstraction. The relationship among
existing stateless Web service standards and frameworks,
and the level of abstraction provided by the CaaS, an
example of the PaaS cloud, that offers an interface for
clients are shown in Diagram 2.

The CaaS provides the highest level of abstraction that
hides all hardware and software features of cloud clusters.
Clients only receive minimum operational amount of data
(service location, invocation interface, current state and
characteristics information) and are provided Web pages
to deploy, run, and control execution of their jobs.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

5

Diagram 2: CaaS Abstraction

3.3 CaaS Architecture and Behavior
The exposure of a cluster via a Service is intricate and
comprises several services running with and on top of a
physical cluster. Diagram 3 shows the complete solution
with a cluster, RVWS and the proposed CaaS service.

Diagram 3: Complete CaaS System

A typical cluster is comprised of four elements, nodes,
fast networks, data storage and middleware. As the focus
of this paper is abstraction, only cluster middleware is
addressed here. Cluster middleware, a basic level of
virtualization of clusters, is comprised of multiple
components to manage the cluster and provide a single
system image (Goscinski et al. 2002) thus preventing the
process running on the cluster from needing to know the
cluster organization.

With all the services in the middleware and the
changes in node load, there is a lot of information to
consider when finding a cluster. As time progresses, the
amount of free memory, disk space and CPU usage of
each cluster node changes dramatically. Furthermore,
information about how quickly the scheduler can take a
job and start it on the cluster is vital in choosing a cluster.
Currently used Web services (stateless and even WSRF

stateful) do not take this changing information into
account.

Thus while the Broker makes information about a
cluster known (location and service invoking
information), easing the use of a cluster was still left
open. Clients could find required clusters but they still
had to manually transfer their files, invoke the scheduler
and get the results back. All three tasks require
knowledge of the cluster and are conducted using work
demanding tools.

To make information about the cluster publishable the
RVWS framework was used to create a Cluster
Connector and Publisher Web service. The role of the
Publisher Web service was to show current cluster
dynamic attribute information via a stateful WSDL
document. To make the Publisher Web service (and the
cluster behind it) discoverable, our Broker was used.

The role of the CaaS Service is to (i) find (using the
Broker) matching clusters based on client requirements,
(ii) provide easy and intuitive file transfer tools so clients
can upload jobs and download results, and (iii) offer an
easy to use interface for clients to use the cluster.

It may be required that data for cluster jobs be stored
in a designated location (a directory) within the storage.
As clients to the cluster cannot know any of this
information, it is for the CaaS service to abstract the
transfer of data files to the point where clients appear to
operate the cluster storage as one of their own storage
systems. Finally, the CaaS Service communicates with
the cluster’s scheduler, thus freeing the client from
needing to know how the scheduler is invoked when
submitting and monitoring jobs.

Figure 1: Publisher Web Service WSDL

3.4 Publisher Web Service Stateful WSDL
Through the extensible nature of the WSDL schema
(Christensen 2001, Papazoglou 2008), it is possible to
include additional information (specifically, state and
characteristics) into existing WSDL documents. This is
possible by encapsulating the additional information in its
own WSDL section.

RVWS
State Exposure through WSDL

Simplified Notification
Brokering

WSRF
State Management

Addressing
Notifications

Stateless Web Services
WSDL, SOAP, XML

State and Characteristics Information
Cluster

Connector

Current WSDL Broker Stateful Web
Service

CaaS

Client Interface
Discovery, Selection, Access Services

Client

Cloud

<definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <resources>
 <resource-info resource-identifier="resourceId">
 <state element-identifier="elementId">
 <cluster-state element-identifier="cluster-state-root">

 <cluster-node-name free-disk="" free-memory="" native-os-name=""
native-os-version="" processes-count=""
processes-running="" cpu-usage-percent=""
element-identifier="stateElementId" memory-free-percent="" />

 …Other Cluster Node State Elements…
 </cluster-state>
 </state>

 <characteristics element-identifier="characteristicElementId">
 <cluster-characteristics node-count=""

element-identifier="cluster-characteristics-root">

 <cluster-node-name core-count="" core-speed="" core-speed-unit=""
hardware-architecture="" total-disk="" total-memory=""
total-disk-unit="" total-memory-unit=""
element-identifier="characteristicElementId" />

 <supported-software>
 <software version="" type="" version="" />

 …Other Supported Software Elements…
 </supported-software>

 …Other Cluster Node Characteristic Elements…
 </cluster-characteristics>
 </characteristics>
 </resource-info>
 </resources>

 <types>...
 <message name="MethodSoapIn">...
 <message name="MethodSoapOut">...
 <portType name="CounterServiceSoap">...
 <binding name="CounterServiceSoap" …>...
 <wsdl:service name="CounterService">...
</wsdl:definitions>

CRPIT Volume 107 - Parallel and Distributed Computing 2010

6

All information of service resources is kept in a new
WSDL section called Resources. The core significance of
RVWS is its combination of the WSDL of Web services
with dynamic attributes. Figure 1 shows the resources
section added to the WSDL of the cluster Web service.

Both the state and characteristics elements contain
several description elements; each with a name attribute
and (if the provider wishes) one or more attributes of the
service. Attributes in RVWS use the {name: op value}
notations. An example attribute is {cost: <= $5}. As well
as showing the attributes in the stateful WSDL document,
the attribute information has to be organized so Clients
viewing the stateful WSDL document immediately
understand what each attribute means.

For the CaaS service to properly support the role of
cluster discovery, extensive information about clusters
and their individual nodes needs to be published to the
WSDL document of the Cluster Web Service and
subsequently to the Broker. Table 1 shows attributes of
each node in a cluster.

4 CaaS Service Design
This section discusses the CaaS Service design. In
particular, it shows the CaaS components, user interfaces,
and their behavior. The CaaS service carries out three
main tasks: Cluster Discovery and Selection, Job
Management and File Management. Given the size and
number of tasks, the CaaS service was modularized.
Diagram 4 shows the structure of the service.

Diagram 4: CaaS Service Design

The modules inside the Web service are only accessed
through an interface. The use of the interface means the
Web service can be updated over time without requiring
clients to be updated nor modified.

Invoking an operation on the CaaS Service Interface
(discovery, selection, etc) invokes other operations on
other modules. Thus, to describe the role each module
plays in the CaaS service, the following sub-sections
outline the various tasks the CaaS service carries out.

4.1 Cluster Discovery and Selection
The dynamic attribute information only relates to clients
that are aware of them. Human clients know what the
attributes are, owning to the section being clearly named.
Software clients designed pre-RVWS ignore the
additional information as they follow the WSDL schema
that we have not changed.

When discovering services, the client must submit to
the Broker three groups of attribute values (1 in Diagram
5); Service, Resource, and Provider. Thus to start
discovery, clients provide cluster requirements in the
form of attribute values, such as the number of nodes, to
the CaaS Service Interface (1). Next, the CaaS Service
Interface invokes the Cluster Finder module (2) that
communicates with the Broker (3). The Broker returns (if
any) an array of service matches which offer clusters that
match the supplied requirements.

Diagram 5: Discovering suitable Clusters

To address the granularity of the Broker results, the
Cluster Finder module invokes the Results Organizer
module (4) that takes the Broker results and returns a
summarized version. After getting the organized results,
the results are returned to the client via the CaaS Service
Interface (5-6). The organized results instruct the client
what clusters exist and how each cluster matches up to
the requirements. After reviewing the results, the client is

Result OrganiserCluster Finder

CaaS Service Interface

Dynamic Broker

Client

1. 6.

2. 5.

3.

4.

Table 1 Cluster Attributes

Type Attribute Name Attribute Description Source

C
ha

ra
ct

er
is

tic
s

core-speed Speed of each core

Cluster
Node

core-speed-unit Unit for the core speed (e.g.: GigaHertz)
total-disk Total amount of physical storage space
total-disk-unit Storage amount unit (e.g.: Gigabytes)
total-memory Total amount of physical memory
total-memory-unit Memory amount measurement (e.g.: Gigabytes)
supported-software-name Name of a single piece of software installed on the cluster
supported-software-type Type of software installed on the cluster (eg: operating system)
supported-software-version Version of a single piece of software installed on the cluster (eg: 6.1.0)
node-count Total number of nodes in the cluster Generated

S
ta

te

free-disk Amount of free disk space
Cluster
Node

free-memory Amount of free memory
os-name Name of the running operating system
os-version Version of the running operating system
cpu-usage-percent Overall percent of CPU used. As this metric is for the node itself, this value

becomes averaged over cluster core Generated
memory-free-percent Amount of free memory on the cluster node

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

7

informed enough to choose a cluster.
The automatic selection of services is performed to

optimize a function reflecting client requirements. Time
critical and high throughput tasks benefit by executing a
computing intensive application on multiple clusters
exposed as services of one or many clouds.

4.2 Job Submission
After selecting a required cluster, all executables and data
files have to be transferred to the cluster and the job
submitted to the scheduler for execution, as shown in the
Diagram 6 workflow.

Diagram 6: Job Submission

All required job execution parameters, data files,
executables, scripts, software libraries (if any) and are
uploaded to the CaaS Service (1). Once the file upload is
complete, the Job Manager is invoked (2). As the CaaS
Service still has the required job files, the first task the
Job Manager resolves is the transfer of all files to the
cluster by invoking the File Manager (3). The File
Manager makes a connection to the cluster data storage
and commences the transfer of all files (4). Upon
completion of the transfer (4), the outcome is reported
back to the Job Manager (5). On failure, a report is sent
and the client can decide on the appropriate response.

If the file transfer was successful, the Job Manager
invokes the scheduler on the cluster (6) with the
execution parameters given in (1). If the outcome of the
scheduler (6) is successful, the client is then informed via
the CaaS Service Interface (7-8). The information
conveyed includes the response from the scheduler, the
job identifier the scheduler gave to the job and any other
information the scheduler provides.

4.3 Job Monitoring
Diagram 7 outlines the workflow the client takes when
querying about his or her job after submitting it.

Diagram 7: Job Monitoring

The client first contacts the CaaS Service Interface (1)
that then invokes the Job Manager module (2). No matter
what the operation is (check, pause or terminate), the Job

Manager only has to communicate with the Scheduler (3)
and reports back a successful outcome to the Client (4-5).

4.4 Result Collection
The final role of the CaaS Service is addressing jobs that
have terminated or have completed their execution
successfully. In either case, data/error files meant for the
client need to be transferred to the client, Diagram 8.

Diagram 8: Job Result Collection

Clients start the result/error file transfer by contacting
the CaaS Service Interface (1) that then invokes the File
Manager (2) to retrieve the files from the cluster’s data
storage (3). If there is a transfer error, the File Manager
attempts to resolve the issue first before informing the
client. If the transfer of files (3) is successful, the files are
returned to the CaaS Service Interface (4) and then the
client (5). When returning the files, URL link or a FTP
address is provided so the client can retrieve the files.

4.5 User Interface
Users access systems based on their interfaces and how
easy they are to use. Thus, to ease the use of CaaS
service, a series of Web pages has been designed. Each
page in the series covers a step in the process of
discovering, selecting and using a cluster.

Diagram 9: Cluster Discovery – Cluster Specification

Diagram 9 shows the Cluster Specification Web page
to start cluster discovery. In Section A, the client is able
to specify attributes about the required cluster. Section B
allows the client to specify any required software the
cluster job needs. Once all attributes have been specified,
the attributes are then given to the CaaS service, which
performs a search for possible clusters and the results are
displayed in a Select Cluster Web page, Diagram 10. A
match is indicated by showing a tick in the cell or a value
of an attribute. The client can choose a cluster or go back
to refine the discovery.

Job Manager

CaaS Service
Interface

Scheduler

Example Cluster

Client

1. 5.

2. 4.

3.

Number of Nodes: 50

Amount of Memory: 50 GB

Free Memory: 50 GB

Disk Free: 50 GB

Section A: Hardware

CPU: Pentium 4 64bit GHz3.2

Section B: Software

Operating System: Windows XP w/ Service Pack 2

Discover ->

CRPIT Volume 107 - Parallel and Distributed Computing 2010

8

Diagram 10: Cluster Discovery – Cluster Selection

Next, the client goes to the Job Specification page,
Diagram 11. Section A allows specifying information
about the job. Section B allows the client to specify and
upload all data files and job executables. If the job is
complex, Section B also allows specifying a job script.
Section C allows specifying an estimated time the job
would take to complete.

Diagram 11: Job Execution – Job Specification

Once submitted, the Cluster Web service attempts to
submit the job. The outcome of the submit attempt is
shown in the Job Monitoring page, Diagram 12. Section
A tells the client whether the job is submitted
successfully. Section B offers commands to allow the
client to refresh the displayed information, pause the job,
and even halt it.

Diagram 12: Job Execution – Job Monitoring

When the job is complete, the client is able to collect
the results from the Collect Results page Diagram 13.
Section A shows the outcome of the job. Section B allows
the client to easily download the output file generated
from the completed/aborted job via HTTP or using an
FTP client.

Diagram 13: Job Execution – Result Collection

5 Proof of Concept
This paper proposes a new technology. Thus, it is
important to demonstrate that it is feasible. This proof of
concept is provided by showing the CaaS implementation
and experiments carried out.

5.1 CaaS Implementation
The CaaS service was implemented using Windows
Communication Foundations (WCF) of .NET 3.5 that
uses Web services. The CaaS is shown in Diagram 14.

Diagram 14: Cluster Service Implementation

Each module presented in Section 4 is implemented as
its own Web service. An open source library for building
SSH clients in .NET called sharpSsh (Gal 2005) was used
in the implementation of the Job and File Managers. As
schedulers are mostly command driven, the commands
and outputs were wrapped into a Service.

One final implementation change we made was adding
automatic hostfile generation. This is to prevent over
allocation of cluster nodes to the job. For example, if we
only ask for 2 nodes, a host file containing two nodes will
be generated to prevent the cluster from allocating more
than two nodes.

5.2 Environment
The experiments were carried out on a single cluster
exposed via CaaS; communication was carried out only
through the CaaS service interface. To manage all the
services and databases needed to expose and use the
cluster via CaaS, VMware virtual machines were used
extensively. Diagram 15 shows the complete test
environment with the contents of each virtual machine.

All virtual machines have 512 MB of virtual memory
and all (expect the client VM) ran the Windows Server

Job Name: Travelling Sales Man

Job Owner Joe Bloggs

Executible My_exec.exe

Section A: Identification

Section B: Job File Specification

Data files:

Proven.dat
Control.dat
Recent.dat

Add Remove Clear

Submit ->

Browse...

Script: my_script.pl Browse...

custom_set.dat Browse...

Section C: Execution Specification

Estimated Tme: 3d 14h

<- Change Clusters

Output Filename: out.dat

Outcome: Submitted Successfully

Job ID: cj404

Section A: Submission Outcome

Collect Results ->

Section B: Job Control

Report: Delegating Submission request…. Request Accepted.
Job has been started.

Refresh Pause Halt

Outcome: Completed Successfully

Time Finished: 16:59

Section A: Execution Outcome

Finish

Section B: Results Download

Report: After a total of 2 days and 7 hours, your job has
completed execution.

HTTP: http://download.clustera.org/cb404/out.dat

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

9

2003. The client virtual machine ran Ubuntu 9.04. All
Windows virtual machines run .NET 2.0; the CaaS virtual
machine runs .NET 3.5.

Diagram 15: Complete CaaS Environment

The first virtual machine is the Publisher Web service
virtual machine. It contains the cluster Connector, the
Publisher Web service and all required software libraries
to make their execution possible. The Broker virtual
machine contains the Broker and its database. The CaaS
virtual machine houses the CaaS Server and a temporary
data store. To improve reliability, all file transfers
between the cluster and the client are cached.

5.3 Cluster and Job Specifications
The cluster used in the proof of concept consists of 20
nodes plus two head nodes (one running Linux and the
other running Windows). Each node in the cluster has a
two Intel Cloverton Quad Core CPUs running at 1.6 GHz,
8 Gigabytes of memory, 250 Gigabytes of data storage
and all nodes are connected via Gigabit Ethernet and
Infiniband. The head nodes are the same except they have
1.2 Terabytes of data storage.

For our tests, an mpiBLAST application was used.
mpiBLAST is a distributed application used to find gene
sequences in genome databases: a common testing
bioinformatics. When running mpiBLAST, at least two
files are needed: the database and a sequence file. To
simplify testing, we placed the database on the cluster and
only uploaded the sequence file.

5.4 Experiments and Results

5.4.1 Publication
Due to space limitations, the process of publishing a
cluster and learning of its dynamic attributes via the
Broker are omitted. However, this idea was well tested
and the outcomes documented in (Brock and Goscinski
2009a).

5.4.2 Discovery and Selection
Diagram 16 shows the workflow behind the cluster‘s
discovery. The required cluster information was
submitted to the CaaS Service (1). We requested a cluster
with at least 20 nodes, each with at least 6 Gigabytes of
free memory and all nodes running a Linux system. The
CaaS Service then contacted the Broker with the specified

requirements (2). The Broker queries its database for
matches (3) and returns the results to the CaaS Service
(4). The cluster matches are returned in (4). If
‘information overload’ is in place, the CaaS through its
Results Organizer takes the matches, tabulates them and
returns to the client (5).

Diagram 16: Cluster Discovery

5.4.3 Job Submission
Diagram 17 shows the workflow behind submitting a job
to the cluster. First, the cluster job is specified and
submitted to the cluster (1). During submission,
parameters such as the name of the job and its required
execution time are specified. Along with the job
parameters, our job script file and data files contained in a
zip file are also submitted. To improve reliability, all files
are kept in a temporary file store (2). Once all the files
have been transferred, the CaaS service transfers the files
to the chosen cluster (3). After all files are transferred, the
scheduler is invoked and the outcome returned to the
client (4).

Diagram 17: Job Submission

Diagram 18: Result Collection

5.4.4 Collection
The final experiment commences once the Job
Monitoring Web page (Diagram 12) reports that the job
has finished. Using the Web browser, a request to collect

CRPIT Volume 107 - Parallel and Distributed Computing 2010

10

the results is to be made (1 in Diagram 18) and the CaaS
Service retrieves the result file to be stored in the File
Store (2-3).

Once the file is transferred, it is expected that the CaaS
Service show the Result Collection page (Diagram 13)
and provide hyperlinks to download the result files over
HTTP (4). After downloading the results files,
confirmation is sent to the CaaS service (5) that removes
the file from the File Store and instructs the cluster to
remove its copy (6).

5.4.5 Results
Experiment 1: Discovery: As stated in Section II, cluster
clients still have to discover clusters first. This is a
problem as there is no discovery system for clusters.
Hence, our first experiment was to see if a cluster was
easily discovered through our CaaS Technology.

Diagram 19 shows the cluster discovery page
populated with the requirements for our first mpiBLAST
job. For this experiment, we only needed four cluster
nodes, each with 8 Gigabytes of memory and did not
have more than 10% utilization of their CPUs.

Diagram 19: Specifying Cluster Requirements

After specifying our requirements, the Web page
passed the requirements to the CaaS Service for
processing. As stated in Section III, the Dynamic Broker
is first queried with the requirements and the results then
processed by the Results Organiser. Diagram 20 shows a
formatted version of the organized results.

Diagram 20: Cluster Match Results

While the Web page was designed to have ticks, it was
decided late in development to use numbers instead. The
reason for this was the numbers gave a clearer view on
how each requirement was satisfied by each cluster.

Overall, this experiment was a complete success. We
had our cluster exposed via the Publisher Web service,
and easily discovery the cluster through the CaaS Service.
This is a significant contribution as a discovery service
now exists to allow human operators to easily locate a
required cluster.
Experiment 2: Job Submission: As stated in Section II,
clusters can vary in how they are built. Specifically, not
all clusters run the same middleware. Hence this
experiment was carried out to see if the middleware
specifics could be hidden.

Even though our cluster consisted of 20 nodes, only 19
were active at the time of testing. Furthermore, for this
test, we only wanted to use two cluster nodes. Thus, a

successful outcome of this test had to show only two
cluster nodes being used and not the whole cluster.

Diagram 21 shows the Job Specification Web page
where our first mpiBLAST job was specified. For this
test, we specified an mpiBLAST launch script, a
sequence file to compare against a mouse database and
the name of an output file was specified.

Diagram 21: Specifying the Job

After completing the Job Specification Web page, our
script and test file were uploaded to the CaaS VM and
then transferred to the cluster. After all files were
transferred, the scheduler (GridEngine) was invoked.
Diagram 22 shows the resulting Job Monitoring Web
page.

Diagram 22: Monitoring the Progress of the Job

As the hostfile for our job was generated dynamically,
we could not tell its contents during the submission
process. After the completion of Experiment 4, the
contents of the host file would be checked.
Experiment 4: Results Collection: Just as how clients
need to be able to easily upload their jobs to clusters, they
need to be able to download any result or error files.

To know when our job finished, the Job Monitoring
Web page was refreshed a few times before indicating
that the second job had completed (Diagram 23).

Diagram 23: Completion Notification

Diagram 24 shows the Results Collection Web page

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

11

with a hyperlink to our result file. By clicking the link,
we were able to download our results just like any other
file on the Web.

With the completion of this experiment, our CaaS
Technology with its Web pages, as a whole was proven
successful. We were able to expose a cluster via Web
services, discover it, run multiple jobs without any
clashes, and easily get result data back. All of this was
done with no computing expertise at all.

Diagram 24: Collecting Job Results

With the completion of the job execution, we needed
to examine the hostfile used to influence how the job was
scheduled to the cluster. As Figure 2 shows, only two
nodes were listed. This is a significant advancement as
not only was the cluster made easy to use, but the client
was also reserved the nodes available at the time of his or
her request.

Figure 2: Hostfile Contents

6 Conclusion
We have achieved the goal of this project by the
development of a technology for building a Cluster as a
Service (CaaS) using the RVWS framework. Through the
combination of dynamic attributes, Web service’s WSDL
and Brokering, we successfully created a Service that
quickly and easily published, discovered and selected a
cluster, allowed to specify a job and execute it, and
finally got the result file back.

The proposed technology forms a bridge between the
dynamic attribute and Web service based Resources Via
Services (RVWS) framework and a high level abstraction
of clusters in clouds in the form of a CaaS was specified.
This outcome could have significant impact on cloud
computing.

7 References
Amazon (2007) Amazon Elastic Compute Cloud.

Accessed 1 August 2009, http://aws.amazon.com/ec2/.
Amazon (2009) EC2StartersGuide,

https://help.ubuntu.com/community/EC2StartersGuide
Apache (2009) Hadoop, Accessed 1 August 2009,

http://hadoop.apache.org
M. Brock & A. Goscinski (2008a) Publishing Dynamic

State Changes of Resources Through State Aware

WSDL. Int. Conf. on Web Services (ICWS) 2008.
Beijing.

M. Brock and A. Goscinski (2008b) State Aware WSDL.
Sixth Australasian Symposium on Grid Computing and
e-Research (AusGrid 2008). Wollongong, Australia,
82, 35-44, ACM.

M. Brock and A. Goscinski (2009) Attributed Publication
and Selection for Service-based Distributed Systems.
Int. Workshop on Service Intelligence and Computing
(SIC 2009). Los Angeles, IEEE.

P. Chaganti 2008. Cloud Computing with Amazon
Services, http://ibm.com/developerswork/architecture/
library/ar-cloudaws3/

E. Christensen, F. Curbera, G. Meredith and S.
Weerawarana (2001) Web Services Description
Language (WSDL) Version 1.1. Updated 15 March
2001, Accessed, http://www.w3.org/TR/wsdl.

K. Czajkowski, et al. (2004) The WS-Resource
Framework. 5 March 2004.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

J. Dean and S. Ghemawat (2004) MapReduce: Simplified
Data Processing on Large Clusters. Sixth Symposiuym
on Operating System Design and Implementation, San
Francisco, CA, December, 2004.

T. Gal (2005) sharpSsh - A Secure Shell (SSH) library for
.NET. Updated 30 October 2005, Accessed 1 March
2009, www.codeproject.com/KB/IP/sharpssh.aspx.

Google (2009) App Engine. Accessed 17 February 2009,
http://code.google.com/appengine/.

A. Goscinski, M. Hobbs and J. Silcock (2002) GENESIS:
An Efficient, Transparent and Easy to Use Cluster
Operating System. Parallel Computing, Vol. 28 (2002),
No. 4, April, 557-606.

S. Jha, A. Merzky, G. Fox (2009) Using Clouds to
Provide Grids Higher-Levels of Abstraction and
Explicit Support for Usage Models, Version: 1.0, GFD-
I.150.

Microsoft (2009) Azure. Accessed 5 May 2009,
http://www.microsoft.com/azure/default.mspx.

M. Papazoglou and W-Jan van den Heuvel (2007)
Service oriented architectures: approaches,
technologies and research issues, The VLDB Journal
(2007) 16:389–415.

M. Papazoglou (2008) Web Services: Principles and
Technology, Prentice Hall.

Salesforce (2009) Accessed August 1 2009,
www.salesforce.com

VCL (2008) http://vcl.ncsu.edu/.

west-lin (mrab) 1005 $cat hostfile
west-07
west-16
west-19
west-12

CRPIT Volume 107 - Parallel and Distributed Computing 2010

12

