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Abstract 
The decomposition of complex systems into manageable 
parts is an essential principle when dealing with complex 
technical systems. However, many safety and reliability 
modelling techniques do not support hierarchical 
decomposition in the desired way. Fault Tree Analysis 
(FTA) offers decomposition into modules, a breakdown 
with regard to the hierarchy of failure influences rather 
than to the system architecture. In this paper we propose a 
compositional extension of the FTA technique. Each 
technical component is represented by an extended Fault 
Tree. Besides the internal basic events and gates, each 
component can have input and output ports. By 
connecting these ports, components can be integrated into 
a higher-level system model. All components can be 
developed independently and stored in separate files or 
component libraries. Mathematically, each Component 
Fault Tree represents a logical function from its input 
ports and internal events to its output ports. As in 
traditional FTA, both qualitative and quantitative 
analyses are possible. Known algorithms e.g. based on 
Binary Decision Diagrams (BDDs) can still be applied. 
The Windows based safety analysis tool UWG3 has been 
developed to prove this concept in practice. It allows 
creating component libraries in an exchangeable XML 
format. We have carried out some case studies in order to 
show that the new concept improves clearness and 
intuitive modelling while maintaining the same results as 
traditional FTA.1 
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1 Introduction 
Today's technical systems typically consist of hardware 
and software and have grown too complex that a single 
person is able to understand them as a whole. 
Hierarchical decomposition is the underlying principle in 
understanding complex systems. In hierarchical models, a 
system consists of components, which are recursively 
refined into sub-components. A set of rules allows 
determining the properties of the whole system based on 
the properties of its components and its architecture. 
Models that allow this proceeding are called 
compositional models. Many design models used in 
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industry or in academic research provide compositional 
semantics (Harel 1987, Clarke and Wing 1996).  

For many technical systems, safety and reliability are 
important quality aspects. Therefore, there is a strong 
demand for techniques and models that help the 
developer to achieve and to assess these properties. Some 
of these techniques are Fault Tree Analysis (FTA) (IEC 
61025, DIN 25424, Vesely 1981), Event Tree Analysis, 
or Reliability Block Diagrams (RBDs). Some of them 
also allow the examination of a technical system from the 
component perspective, similarly to design models. The 
components, however, are not necessarily the same that 
have been identified during the design process. We will 
examine this in the case of Fault Trees.  

In FTA causal chains leading to some failure are depicted 
as a tree. The system failure to be examined is the root of 
the tree; the basic influence factors are the leaves. This 
tree structure inherently describes a hierarchical 
breakdown, but with regard to the hierarchy of failure 
influences rather than to the system architecture. A notion 
of modules does exist in FTA; it is used with the meaning 
of independent subtrees. This partition merely represents 
a property of the influence chains. The modules generally 
do not correspond to the technical components that have 
been identified during system development. Technical 
Components are often influenced by other components 
and thus are no modules. So there is no way to assign to 
each technical component a separate and reusable entity 
in FTA. As a consequence it is not possible to utilise 
several developers to construct partial FTA models for 
later integration into an overall system model. Moreover 
the integration of Fault Trees with the models obtained 
from the system design phase or the automatic generation 
of Fault Trees from design artefacts is not directly 
possible. Another issue is that the tree structure is 
sometimes insufficient to model failure propagation paths 
since common cause failures influence the top-event by 
more than one path. Therefore they must be split into 
several "repeated events" in order to preserve the tree 
structure. 

To overcome these drawbacks we propose to extend the 
traditional Fault Trees with a notion of components that 
are connected via ports. These components need not be 
modules in the sense of independent subtrees. They can 
be partitioned according to the real components of the 
technical system. It is possible to elaborate and store them 
independently. It is only when the analysis is started that 
all the component models involved need to be available. 
In previous work (Mäckel, Liggesmeyer 2000), we 
extended the trees to Directed Acyclic Graphs (DAGs), 



which allow the resolution of common failure 
dependencies and negate the need for repeated events. 

In a co-operation between the Hasso-Plattner-Institute, 
Siemens and DaimlerChrysler, we implemented this 
extended FTA technique in the safety and reliability 
analysis tool UWG3. This tool has proven its intuitive 
effectiveness in several case studies and some first 
industrial applications. 

In Section 2 of this paper we give a short overview over 
classical FTA, the traditional notion of hierarchy and 
present some of the resulting drawbacks. We also present 
our previous work on extending the tree topology to a 
Directed Acyclic Graph. In Section 3 we introduce our 
new component concept that extends classical Fault 
Trees. We intuitively develop it step by step and finally 
give a formal definition. In Section 4 we present our tool 
UWG3 and report about its practical application. Section 
5 gives some concluding remarks and provides an outlook 
on our future projects. 

2 State of the Art and Previous Work 

2.1 Traditional Fault Tree Analysis 
FTA is an analysis technique for safety and reliability 
aspects that uses a graphical representation to model 
causal chains leading to failures. It was first invented in 
1961 for the Minuteman Launch Control System, then 
further developed and defined in international standards 
(DIN 25424, IEC 61025) and other literature as the 
NUREG Fault-Tree-Handbook (Vesely 1981). The 
concept is to start with a failure event or hazard state and 
to trace its influences back until the basic influence 
factors are reached. The resulting influence hierarchy is 
depicted as an upside-down tree with the failure event 
(referred to as "top-event") at its root. Mainly two 
connectives are used to express how influences contribute 
to a consequential failure: 

- the AND connective, indicating that all 
influence factors must apply simultaneously, and 

- the OR connective, indicating that at least one of 
the influence factors must apply to cause the 
failure 
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Fig. 2-1: Simple Fault Tree 

Fig. 2-1 provides an example of the Fault Tree graphical 
notation. In this example, we imagine some Controller 
System that has a redundant structure consisting of a 
Main Controller and an Auxiliary Controller. The whole 
system is unavailable if both Controllers are unavailable 
at the same time. Further, each Controller is down if 
either its corresponding CPU is down or the Power Unit 
is down (or both). 

The Fault Tree is the parse tree of the corresponding 
propositional logic formula: 

SystemDown=(MainCPUDown ∨  PowerUnitDown) ∧  
(AuxCPUDown ∨  PowerUnitDown) 

SystemDown is the top-event; the four events on the 
bottom line are called basic events. The boxes 
representing the propositional logic connectives are called 
gates (the term stems from integrated logic circuits). 

The analyses to be performed on this Fault Tree can be 
either qualitative or quantitative. Qualitative analyses 
show, for instance, which combinations of failures must 
occur together to cause a top-level failure. Quantitative 
analysis, on the other hand, calculates the probability of 
the top event occurring from the probabilities of the basic 
events. It is important to know that most calculation rules 
for the probabilistic analysis depend on the assumption 
that all events are stochastically independent of each 
other. Many modern analysis algorithms make use of the 
efficient coding of Boolean formulae by Binary Decision 
Diagrams (BBDs) (Bryant 1986, Doyle and Dugan 1995, 
Coudert and Madre 1993) and of corresponding 
manipulation techniques.  

Besides AND and OR Fault Trees allow the use of 
Exclusive-OR (sometimes denoted XOR), NOT, 
INHIBIT, and n-out-of-m-VOTER gates. However, we 
will confine ourselves to AND and OR for the following 
discussion. We point out that the presence of NOT gates 
has no impact on our concept. 

2.2 Generation of Fault Trees 
Fault trees are usually generated manually. Highly 
skilled, experienced engineers analyse the system. Con-
siderable knowledge, system insight and overview are 
necessary to consider various failure modes and their con-
sequences at a time. This manual work is error-prone, 
requires substantial effort, and is still often incomplete, 
since no single person can comprehend the whole system. 
These disadvantages can be avoided by the automation of 
Fault Tree generation. During the development of a 
system, documents are produced that contain information 
about the system's behaviour and structure (e.g. formal 
specifications, circuit designs and source code). These 
documents implicitly contain information about 
misbehaviours and can be used to partly automate the 
Fault Tree generation. Because of this we have focused 
on the automatic generation of Fault Trees for hardware 
and software units (Liggesmeyer and Rothfelder 1998, 
Liggesmeyer and Mäckel 2001), and tools for integration 
and analysis (Mäckel and Rothfelder2001). 

Fault trees of complex systems are often very large – 
especially generated ones. Ideally, the modularity of 



complex systems should be reflected by a corresponding 
structure of the Fault Tree. The known module concept 
for Fault Trees is often not appropriate to do so. This is 
due to the fact that, in practice, many causes are 
contained in several subtrees. For this reason, the 
precondition of statistical independence of the causes in 
standard Fault Trees is no longer true. Neglecting this 
circumstance leads to incorrect results during calculation 
of reliability characteristics. Currently, this problem is 
handled by marking multiple occurrences of causes as 
repeated events. 

2.3 Cause Effect Graphs 
In some cases two (or more) branches of the Fault Tree 
depend on the same basic failure event. For instance, 
looking at the example from Fig. 2-1 we may ask the 
question if each Controller has a Power Unit on its own 
or if there is a common Power Unit feeding both of them 
(see Fig. 2-2). 

In the latter case the independence of basic events is no 
longer given. The calculation algorithm must know about 
the repeated events; otherwise it will produce incorrect 
results.  
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Fig. 2-2: Repeated Event 

Practical experience (Mäckel and Rothfelder 2001) shows 
that Fault Trees usually contain a large number of 
repeated events. There are computation methods, based 
on minimal cut sets (Kececioglu 1991) or on BDDs, that 
can handle repeated events correctly. Depending on the 
FTA tool either the user marks events as repeated or the 
tool considers events that have the same name as repeated 
events. In either case there is some danger of confusion 
(since in large systems it is possible that events 
accidentally have the same name) or of inconsistencies. 
Sometimes the user even wishes to give the same name to 
equal failures in different technical components. 

Apart from repeated events, the fact that Fault Trees 
contain only one top-event (IEC 61025) is also a 
restriction. In practice, it is often important to analyse 
cause-effect relations between various top-events that 
represent different failure modes of the same technical 
component. 

To overcome both problems, we previously defined a 
generalized form of Fault Trees (Mäckel and Rothfelder 
2001). We call these diagrams Cause Effect Graphs 
(CEGs). CEGs are Directed Acyclic Graphs (DAGs or 
Acyclic Digraphs). The following differences exist 
between Fault Trees and CEGs: 

• Repeated events are represented only once (see 
Fig. 2-3 in comparison to Fig. 2-2). This reduces 
the size of the graph and improves readability 
and maintainability. It is much easier to keep the 
Fault Tree consistent during modifications. 
Furthermore, CEGs may also be read bottom-up. 
It is easy to determine all the effects a specific 
cause is correlated with. This is not directly 
possible in standard Fault Trees, because it 
would be necessary to identify all instances of 
the causes.  

• CEGs may contain several top-events (see Fig. 
2-4). This permits to take into account different 
undesired events during system optimisation. 
Further, it is possible to analyse relations 
between different top-events within a system. 
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Fig. 2-3: Cause Effect Graph 

Although the logical structure of the above example is no 
longer a tree but a DAG, it is still possible to represent 
the corresponding Boolean formula by a BBD and to 
calculate the top event probability by the standard 
algorithms. 

To give an example for the simplification obtained, a 
CEG for an automotive system contained 200 instead of 
the 9000 elements that are contained in the corresponding 
standard Fault Tree representation. There were about 150 
instances of just one specific repeated event. 

By allowing more than one top-event it is possible to 
examine several failure modes and their common 
influences at a time. A cause that is connected to several 
top-events is usually an appropriate starting point for 
system optimisation. Some kinds of analyses that have 
traditionally been carried out by Event Tree Analysis can 
now be performed using CEGs. 
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The transition from trees to DAGs is a precondition and 
support for the new component concept presented in this 
paper. As we will see, the top events of CEGs will appear 
there as output ports of the corresponding Component 
Fault Trees. In the following we will use the terms Fault 
Tree and Cause Effect Graph interchangeably. 

2.4 Hierarchy and Modules in Fault Trees 
As stated before, complex Fault Trees or CEGs need to 
be partitioned both for editing and for efficient computer 
analysis. The goal is to generate separate Fault Trees for 
different system components, e.g. electronic components 
and software, and then to combine the Fault Trees in 
order to get a valid analysis result for the system.  

Today, the usual principle for handling complexity in 
Fault Trees is division into independent subtrees, called 
modules. A module is a subtree that is not influenced by 
other parts of the Fault Tree and influences other parts of 
the tree only by its root (DIN25424, Kohda et al 1989).  

Modularisation is a recursive process as subtrees might 
themselves contain independent subtrees. In particular the 
whole Fault Tree and every basic event are independent 
modules. 

Traditionally, the top-event probability of each module is 
calculated and then the whole module is replaced by a 
virtual simple event, located where the subtree root was 
before. This virtual event has the subtree root probability 
assigned to it. This continues until the top-event 
probability of a Fault Tree has been calculated. So for 
probabilistic analysis the output of the root gate of a 
module is handled like a basic event. 

Identification of modules in Fault Trees is a formal 
procedure that only refers to the tree structure and not to 
the system architecture. Due to repeated events and 
influences between technical components, it is often 
necessary for events belonging to different technical units 
to be members of the same module. Thus, system 
architecture components do not necessarily correspond 
directly to Fault Tree modules. 

The refinement of a system into components by its 
architecture is a different kind of hierarchy and, as we 
have seen, not necessarily related to the refinement into 
modules. In summary, we find two distinct refinement 
hierarchies in Fault Trees: 

1. the backward refinement of the cause-effect 
relations as indicated by the tree  

2. the refinement by architectural components. 
(Mäckel and Rothfelder 2001).  

In Section 3 we introduce a method for decomposing a 
Cause Effect Graph based on architectural components.  

3 Fault Trees with Hierarchical Components 

3.1 Informal Introduction 
To introduce our component concept intuitively, we start 
by revisiting the CEG example from Fig. 2-3. The events 
shown can be related, for instance, to three different 
technical units: 

1. The Main Controller 

2. The Auxiliary Controller 

3. The Power Unit 

In the following we will call these technical units 
components. The whole system to be modelled is equally 
considered as a component and we say that the 
component "Controller System" contains the sub-
components "Main Controller", "Auxiliary Controller" 
and "Power Unit". In Fig. 3-1 we show the component 
borders by dotted lines.  
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Fig. 3-1: Partition into Components 

We see that the failure of either component Controller is 
an OR-term of one basic event that is generated within 
the same component and another basic event that is 
generated within a foreign component, namely the Power 
Unit. We assume that the model is complete for our 
purposes, i.e. there are no other failure influences than 
those represented by the Fault Tree edges. Then the only 
failure influences that cross component borders are: 



• the two edges from the Power Unit to the Main 
Controller and to the Auxiliary Controller, 

• the two edges from the Main Controller and the 
Auxiliary Controller to the upper OR gate 
belonging to the component "Controller 
System". 

We make these interconnections between components 
visible by introducing ports, which are interfaces that 
allow joining subcomponents together. To preserve the 
direction of the gates we introduce two types of ports: 
input ports and output ports. Graphically we denote ports 
by solid triangles (see Fig. 3-2). 
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Fig. 3-2: Components with Ports 

Ports can be the source or target of edges just as the 
ordinary Fault Tree nodes (basic events and gates). Note 
that the short edges joining the output port of component 
Power Unit to the input ports of component 
Main/Auxiliary Controller belong to the component 
Controller System while the edges drawn inside of each 
sub-component box belong to the respective component.  

Since, by assumption, influences between different 
subcomponents only exist through the ports, we can now 
assert that every basic event inside of some component is 
stochastically independent of any basic event belonging 
to another component. This assertion can be relied on 
during the analysis of the complete graph. 

As an additional benefit of the proposed component 
concept, it is now possible to store each component 
independently of each other and to have the components 
developed by different people. The developer of the 
Power Unit, for instance, makes an agreement with the 
developer of the Controller System about the ports of the 
Power Unit. Then both can continue their work 
independently: One person refines the internal structure 
of the Power Unit while the other is building the 
component Controller System around a black box 

representation of the Power Unit and both of the 
Controllers. The result of the system modeller's work 
looks like this (Fig. 3-3): 
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Fig. 3-3: The Component "Controller System" 

The work of the Power Unit modeller looks like this (Fig. 
3-4): 

Power Unit

Power Unit Down
 

Fig. 3-4: The Component "Power Unit" 

Each modeller can use all conventional Fault Tree 
elements, such as basic events and gates. As shown in this 
example, it is not mandatory that the top-level component 
contains only sub-components; standard gates and basic 
events may be used on system level as well. 

Let us now assume that Main Controller and Auxiliary 
Controller are two devices of the same technical type. 
Thus, both of them show the same stochastic 
characteristics of their internal failure event "CPU 
Down". This does not mean that they always fail at the 
same time, but that the probability distribution and its 
parameters are the same for both. As a consequence, there 
is no need to model this component twice; a reuse is 
possible and even advisable. The model for the 
component type Controller is shown in Fig. 3-5. Two 
instances of this component are used within the 
Component Fault Tree model of the Controller System. 

This example has revealed another advantage of our 
concept: Each component is modelled only once and 
reused as often as needed. The error-prone copy-and 
paste of parts of a Fault Tree has become obsolete. Note 
that if several instances of the component "Controller" are 
used in a system, each of it has an internal event named 



"My CPU Down". However, this is not a repeated event, 
since all of these events are different and independent 
from each other. The common name just indicates that it 
is the same type of failure behaviour. If the modeller 
wanted to express a repeated event, it would have to be 
placed outside of the component (either inside of another 
component or on the next higher hierarchical level). Due 
to the Cause-Effect-Graph concept repeated events appear 
only once in the graph. In summary, private events of a 
component are not visible to any other component. In our 
tool, the combined identifier of component instance and 
event allows distinguishing repeated from individual 
events. 
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Fig. 3-5: The Component "Controller" 

3.2 Analysing Component Fault Graphs 
Mathematically, Component Fault Trees are described by 
a set of Boolean functions, each one belonging to one 
Output Port. Each function maps the input ports and the 
internal events of the component to a Boolean term 
assigned to an output port. To explain this facet of our 
concept, we start by considering a component with just 
one output port. To this end we revisit the Controller 
component from Fig. 3-5.  

The Boolean formula represented by this component is 

 out1 ⇔in1 ∨  MyCPUDown 

This formula gives a recipe how to calculate the 
probability of the output event from the probabilities of 
the internal event "MyCPUDown" and the probability of 
the Boolean term connected to the input port: 

 P(out1) = 1- (1-P(in1))*(1-P(MyCPUDown)) 

Obviously, a quantitative analysis of the component 
Controller alone is not possible yet, since so far it is 
unknown what will be connected to the input port in1.  

If, in contrast, we examine the component Power Unit 
from Fig. 3-4, we will find that this time a quantitative 
Fault Tree Analysis is possible. This is due the fact that 
this component has no input ports. From this precondition 
for quantitative analysis follows that the system level 
component must not have any input ports. Components to 
be used as sub-components may have input and output 

ports. We see that if we embed one instance of the 
component "Power Unit" and two instances of the 
component "Controller" into the component Controller 
System from Fig. 3-3, the resulting system is a 
component without input ports and thus analysable.  

Note that the information, what the ports are connected 
to, is not stored inside of the sub-components, but on the 
higher-level component "Controller System". Generally, 
the sub-components have no knowledge about their 
context. 

Since we have extended Fault Trees to CEGs it is 
possible that components on any hierarchy level have 
more than one output port. For instance, the component 
from Fig. 2-4 has two output ports, modelling different 
failure modes that can be examined. If a component with 
several output ports is used within a higher-level system, 
this can introduce repeated events (in the example: CPU 
Down). These causal chains are resolved correctly due to 
the CEG concept. It is not mandatory that all existing 
output ports are connected or used for analysis. If the 
component on the highest hierarchy level has exactly one 
output port, then this output port corresponds to the top-
event of a classical FTA; if it has more than one, each 
output port can be chosen as a starting point for analysis. 

From this new point of view there is not much of a 
difference between components (that define arbitrary and 
often complex logical functions) and Fault Tree gates 
(that define elementary logic functions): for instance, a 2 
out of 3 voter gate that many FTA tools offer can 
equivalently be described by a component "Voter 2oo3" 
with three input ports and one output port, as shown in 
Fig. 3-6: 

Voter 2oo3
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Fig. 3-6: A 2-out-of-3 Voter modelled as a Component 

3.3 Formalisation 
A Component Fault Tree (CFT) is a tuple (N, G, SC, E) 
consisting of 

1. a set N of Simple Nodes, partitioned into 

a. a set Nintern of internal events 

b. a set Nin of input ports 

c. a set Nout of output ports 

2. a set G of Gates, each of them described by 

a. one output port, denoted g.out 



b. one or more input ports, denoted g.ini, 
with i∈ ù  

c. a Boolean formula, (e.g. 
g.out=g.in1∨ g.in2) 

3. a set SC of Sub-Components, each one described 
by 

a. one or more output ports, denoted 
sc.outi 

b. one or more input ports, denoted sc.ini 

c. a mapping to another CFT  

4. a set of directed edges E ⊆  ((Nintern ∪  Nin ∪  
G.OUT ∪  SC.OUT) × (Nout ∪  G.IN ∪  SC.IN)) 
where  

� G.OUT is the set of all outputs of all 
gates,  

� G.IN is the set of all inputs of all gates,  

� SC.OUT is the set of all outputs of all 
sub-components,  

� SC.IN is the set of all inputs of all sub-
components.  

The first element of the tuple representing an 
edge is called the source of the edge and the 
second element is called the target.  

As an additional restriction it is forbidden that 
two or more edges share the same target, i.e. 

ò s1, s2, t: [(s1,t)∈ E ∧ (s2,t)∈ E∧ s1≠s2]. 

♦  

Some explanations: 

� Simple nodes is the collective name for the 
internal events (basic events in traditional FTA) 
and the input and output ports belonging to the 
component being modelled. Internal events and 
input ports may be sources of edges; output ports 
may be targets of edges. 

� Apart from simple nodes there are gates and 
sub-components. Both are very similar to each 
other, not only regarding the graphical 
representation as rectangular boxes. The 
differences are: 

� a gate has only one output port, 
whereas a sub-component may have 
more than one, 

� a gate has a Boolean function attached 
to it, whereas a sub-component has 
another CFT attached to it. 

Remembering that CFTs, by their graph 
structure, define Boolean functions from their 
inputs and internal events to their outputs, we 
find that both gates and sub-components 
represent Boolean functions (we know this from 
Section 3.2). 

� Edges must not be connected directly to gates or 
sub-components but only to their input / output 
ports. 

� Obviously the own output ports of a CFT can 
only be the target of edges while the output ports 
of the sub-components and gates being used can 
only be the source of edges and vice versa. 

� The connection between different hierarchical 
levels is accomplished by two means: 

� by the mapping between a sub-
component and its corresponding CFT 

� by the input and output ports that are 
joined by edges. The own input ports of 
the component currently being 
modelled appear as sub-component 
inputs on the next higher hierarchical 
level. The same applies to the output 
ports. The connection to the "right" port 
is assured by a combination of the 
unique component identifier and the 
unique port identifier. 

� It is forbidden that a component contains itself 
as a sub-component - directly or indirectly. 
Violations of this rule (called "deep cycles") 
must be checked before analysis is started.  

� Since the analysis relies on acyclic graphs it is 
further forbidden that there is any set of nodes 
and edges that forms a directed cycle (called 
"shallow cycle"). To avoid cycles across 
different hierarchy levels, edges leading from an 
output port of a sub-component to an input port 
of the same sub-component are forbidden, 
directly as well as indirectly. This must be 
checked before analysis is started. 

� There is a restriction that two or more edges 
must not share a common target. The uniqueness 
of the edge source is essential when tracing the 
graph back during the analysis. This means that 
the edges could have been defined as functions 
(as opposed to relations) as well. Edges would 
then be defined in the style source = f(target). 
However, for convenience we prefer the notation 
as a relation rather than as a function. 

� It is however allowed for two or more edges to 
have a common source. This makes the 
difference between a DAG and a tree. The 
common source of two or more edges is 
semantically the same as a repeated event. 

� Apart from the mentioned restrictions the user 
can group graph elements into components as 
appropriate. 

3.4 Differences to Existing Approaches 
The main difference between our approach and existing 
solutions is that we distinguish the subtree hierarchy 
determined by the logical structure from the 
decomposition hierarchy introduced by the system 



architecture. The tree hierarchy leads from the root (the 
top-event) down to the leaves (the basic events), whereas 
the decomposition hierarchy leads from the whole 
technical system to the most detailed sub-components. 

Fig. 3-7 demonstrates the kind of decomposition that 
many current FTA tools offer. It follows the first kind of 
hierarchy, from root to leaves. The analysis of a modular 
Fault Tree is done by merging the two partial trees at the 
"transfer ports" (IEC 61025) and then calculating the 
whole tree. This leads to the same result as first 
calculating the failure probability of the top event in 
"lower" and then replacing the connector in the 
component "upper" by a basic event with this probability. 
Note that component "upper" must carry the knowledge 
about which subtree is connected below and that a 
probability value can be assigned to the output of 
component "lower". 
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Fig. 3-7: Traditional Fault Tree Decomposition 

By another example, we show the new kind of 
decomposition according to the second kind of hierarchy, 
see figure Fig. 3-8. This decomposition cannot be 
expressed in traditional tools, since the component 
"inner" is not a module. In spite of the common event the 
calculation leads to the correct result. This time, it is not 
the component "inner" that stores the knowledge about 
what comes below the input ports, but it is the component 
"outer" that keeps all edges leading to and coming from 
its sub-components. We do not assume that components 
are subtrees that can be simplified to one event with a 
fixed probability or rate, but rather treat them as Boolean 
functions. 
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Fig. 3-8: Component-wise Fault Tree Decomposition 

Focussing on this kind of hierarchy allows partitioning 
the system Fault Tree as appropriate to model real world 
components that influence each other and, vice versa, to 
build up a system Fault Tree out of existing Component 
Fault Trees. The expressive power supersedes what is 
available from commercial tools and the intuitive 

decomposition helps the modeller to build correct Fault 
Trees even for complex systems. 

4 Practical Application 

4.1 The Safety Analysis Tool UWG3 
The Safety and Reliability Analyser tool UWG3 that has 
been developed in a co-operation between the Hasso-
Plattner-Institute and the companies Siemens and 
DaimlerChrysler applies this new component concept. A 
screen-shot can be found at the end of this paper (Fig. 
7-1). It shows the tool at work, modelling the Controller 
System Example shown above.  

Its Windows based GUI offers different graph windows 
showing one Component Fault Tree each. At the right 
hand side there is a Component Explorer window that 
allows navigating through all open files, all components 
therein and all graph elements belonging to these 
components. Below there is a properties window that 
allows modifying functional parameters (e.g. 
probabilities) and style attributes (e.g. line colours and 
weights). Large amounts of numerical data are more 
comfortably edited in tables, so UWG3 offers a table 
view that allows data import and export to programs such 
as EXCEL. On the left side of the screen there is a 
repository of available graph elements, such as basic 
events or gates. The logical symbols displayed here are 
IEC 61025 style; they can alternatively be shown as 
international (US) symbols. Note that port symbols are 
offered in addition to the classical Fault Tree elements. 
Graph elements are applied by dragging and dropping 
them from the repository window into the graph window. 
The same mechanism is used to apply components as 
subcomponents of higher-level components: a component 
is dragged from the explorer window into another 
component window where it will appear as a black box, 
showing only the ports. Putting edges between graph 
elements generates the semantic connection. 

The tool uses an open XML file format (Bray et al 2000) 
to store the component models. This facilitates later 
integration with other tools. Each file may contain one 
ore more components and the components belonging to 
one system may be distributed across different files. This 
permits models for different components to be edited 
concurrently. 

Each graph element has a unique ID including the URI 
where the file is located. The tool automatically assigns 
and resolves the IDs, independently from the names that 
the user gives to events and components (the user can 
optionally display the internal IDs). This ID system also 
enables the detection of repeated events and serves as a 
cross-reference to other development documents, as 
proposed in IEC61025: graph elements are identical iff 
they have the same ID. 

When analysis is started, all components belonging to the 
system are loaded. This is performed recursively in the 
sense that sub-components and their sub-components are 
searched and loaded until no more references are found. 
Consistency of the port signature is automatically 
checked. The loader guarantees that the model is 



complete (no more open input ports) and free from 
cycles. The graph as a whole is transformed into one 
BDD and can then be analysed by the usual algorithms. 
The algorithms are taken from standard libraries. The fact 
that the graph actually consists of different independent 
parts is invisible to the analysis algorithm. Since a DAG 
can have, unlike a tree, more than one output port ("top-
event"), it is necessary that the user specifies one for 
analysis.  

4.2 Practical Application 
Currently, we use the tool UWG3 to calculate reliability 
and safety figures for power plants and transportation 
systems. The implemented concepts for the usage of 
system components allow us to get more readable Fault 
Trees. So each person responsible for a system 
component is able to build the respective Fault Tree for a 
component. Afterwards the entire Fault Tree for the 
complete system is composed based on these component 
Fault Trees. This technique saves time and increases the 
quality of reliability and safety figures. In addition, it 
guarantees quick results due to implemented BDD-
algorithm.  

5 Conclusion and Future Work 
In this paper we have proposed a new component concept 
for Fault Trees. The components need not be modules in 
the sense of classical FTA but may be partial graphs that 
correspond to real-world components. Input and output 
ports accomplish the connection of subcomponents to 
their context on the next higher level. Components that 
have no input ports can be analysed alone. Hereby, 
qualitative or quantitative analysis known from classical 
FTA is possible, e.g. by algorithms based on BDDs. 
Component Fault Trees that do have input ports cannot be 
analysed alone, but represent Boolean functions from 
input ports and internal events to the output ports. These 
components must be integrated into higher level 
components and appear there as sub-components (black 
boxes in the representation of our tool). Instead of trees, 
we have been using Directed Acyclic Graphs that we call 
Cause Effect Graphs for some time. This avoids the 
problem of repeated events by allowing more than one 
edge starting from any event or intermediate term and 
permits analysis of more than one failure mode. 

Many researchers have stated that for today's complex 
embedded systems one single analysis technique is not 
sufficient, but the different techniques must smoothly 
integrate with each other (Bechta Dugan et al 1999), 
(Fenelon and McDermid 1993). Since we agree with this 
point of view, we are currently working on an integrated 
workbench, incorporating state/transition based 
probabilistic methods such as Markov-Chains and 
combinatorial models such as Fault Trees (Kaiser 2002). 
Our component concept makes an important step forward 
since it allows partitioning Fault Trees into independent 
components. The next step of our research efforts will be 
to integrate components that are described by Markov 
models. We plan to add a type system to input and output 
ports in order to ensure that only matching kinds of 
events or states can be joined together. The ID system 

and XML file format chosen for our tool is structured to 
cater for different kinds of future models. 

Other issues in our further research are time-saving 
analysis techniques that simplify each component as far 
as possible and store the intermediate results along with 
the component data (e.g. reduced ordered BDDs).  We are 
collaborating with other projects with the aim of 
automatically generating Fault Trees from technical data 
for Hardware and Software components and of annotating 
components with Component Fault Trees (Grunske 
2003). In the future we plan to implement a component 
repository in order to store Component Fault Trees along 
with other technical data and to locate them when they 
are needed for analysis. 
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7 Appendix: Screenshot of UWG3 

 

Fig. 7-1: Sreenshot from the tool UWG3 


