
A New Component Concept for Fault Trees

Bernhard Kaiser1, Peter Liggesmeyer1, Oliver Mäckel2

1Hasso-Plattner-Institute for Software Systems Engineering at the University of Potsdam,
Dept. for Software Engineering and Quality Management, Prof.-Dr.-Helmert-Str. 2-3, Potsdam, Germany

2Siemens AG, Corporate Technology, Simulation & Risk Management, Otto-Hahn-Ring 6, Munich, Germany
{bernhard.kaiser|peter.liggesmeyer}@hpi.uni-potsdam.de, oliver.maeckel@siemens.com

Abstract
The decomposition of complex systems into manageable
parts is an essential principle when dealing with complex
technical systems. However, many safety and reliability
modelling techniques do not support hierarchical
decomposition in the desired way. Fault Tree Analysis
(FTA) offers decomposition into modules, a breakdown
with regard to the hierarchy of failure influences rather
than to the system architecture. In this paper we propose a
compositional extension of the FTA technique. Each
technical component is represented by an extended Fault
Tree. Besides the internal basic events and gates, each
component can have input and output ports. By
connecting these ports, components can be integrated into
a higher-level system model. All components can be
developed independently and stored in separate files or
component libraries. Mathematically, each Component
Fault Tree represents a logical function from its input
ports and internal events to its output ports. As in
traditional FTA, both qualitative and quantitative
analyses are possible. Known algorithms e.g. based on
Binary Decision Diagrams (BDDs) can still be applied.
The Windows based safety analysis tool UWG3 has been
developed to prove this concept in practice. It allows
creating component libraries in an exchangeable XML
format. We have carried out some case studies in order to
show that the new concept improves clearness and
intuitive modelling while maintaining the same results as
traditional FTA.1

Keywords: Fault Trees, Safety, Reliability

1 Introduction
Today's technical systems typically consist of hardware
and software and have grown too complex that a single
person is able to understand them as a whole.
Hierarchical decomposition is the underlying principle in
understanding complex systems. In hierarchical models, a
system consists of components, which are recursively
refined into sub-components. A set of rules allows
determining the properties of the whole system based on
the properties of its components and its architecture.
Models that allow this proceeding are called
compositional models. Many design models used in

Copyright 2003, Australian Computer Society, Inc. This
paper appeared at the 8th Australian Workshop on Safety
Critical Systems and Software (SCS'03), Canberra. Conferences
in Research and Practice in Information Technology, Vol. 33. P.
Lindsay & T. Cant, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

industry or in academic research provide compositional
semantics (Harel 1987, Clarke and Wing 1996).

For many technical systems, safety and reliability are
important quality aspects. Therefore, there is a strong
demand for techniques and models that help the
developer to achieve and to assess these properties. Some
of these techniques are Fault Tree Analysis (FTA) (IEC
61025, DIN 25424, Vesely 1981), Event Tree Analysis,
or Reliability Block Diagrams (RBDs). Some of them
also allow the examination of a technical system from the
component perspective, similarly to design models. The
components, however, are not necessarily the same that
have been identified during the design process. We will
examine this in the case of Fault Trees.

In FTA causal chains leading to some failure are depicted
as a tree. The system failure to be examined is the root of
the tree; the basic influence factors are the leaves. This
tree structure inherently describes a hierarchical
breakdown, but with regard to the hierarchy of failure
influences rather than to the system architecture. A notion
of modules does exist in FTA; it is used with the meaning
of independent subtrees. This partition merely represents
a property of the influence chains. The modules generally
do not correspond to the technical components that have
been identified during system development. Technical
Components are often influenced by other components
and thus are no modules. So there is no way to assign to
each technical component a separate and reusable entity
in FTA. As a consequence it is not possible to utilise
several developers to construct partial FTA models for
later integration into an overall system model. Moreover
the integration of Fault Trees with the models obtained
from the system design phase or the automatic generation
of Fault Trees from design artefacts is not directly
possible. Another issue is that the tree structure is
sometimes insufficient to model failure propagation paths
since common cause failures influence the top-event by
more than one path. Therefore they must be split into
several "repeated events" in order to preserve the tree
structure.

To overcome these drawbacks we propose to extend the
traditional Fault Trees with a notion of components that
are connected via ports. These components need not be
modules in the sense of independent subtrees. They can
be partitioned according to the real components of the
technical system. It is possible to elaborate and store them
independently. It is only when the analysis is started that
all the component models involved need to be available.
In previous work (Mäckel, Liggesmeyer 2000), we
extended the trees to Directed Acyclic Graphs (DAGs),

which allow the resolution of common failure
dependencies and negate the need for repeated events.

In a co-operation between the Hasso-Plattner-Institute,
Siemens and DaimlerChrysler, we implemented this
extended FTA technique in the safety and reliability
analysis tool UWG3. This tool has proven its intuitive
effectiveness in several case studies and some first
industrial applications.

In Section 2 of this paper we give a short overview over
classical FTA, the traditional notion of hierarchy and
present some of the resulting drawbacks. We also present
our previous work on extending the tree topology to a
Directed Acyclic Graph. In Section 3 we introduce our
new component concept that extends classical Fault
Trees. We intuitively develop it step by step and finally
give a formal definition. In Section 4 we present our tool
UWG3 and report about its practical application. Section
5 gives some concluding remarks and provides an outlook
on our future projects.

2 State of the Art and Previous Work

2.1 Traditional Fault Tree Analysis
FTA is an analysis technique for safety and reliability
aspects that uses a graphical representation to model
causal chains leading to failures. It was first invented in
1961 for the Minuteman Launch Control System, then
further developed and defined in international standards
(DIN 25424, IEC 61025) and other literature as the
NUREG Fault-Tree-Handbook (Vesely 1981). The
concept is to start with a failure event or hazard state and
to trace its influences back until the basic influence
factors are reached. The resulting influence hierarchy is
depicted as an upside-down tree with the failure event
(referred to as "top-event") at its root. Mainly two
connectives are used to express how influences contribute
to a consequential failure:

- the AND connective, indicating that all
influence factors must apply simultaneously, and

- the OR connective, indicating that at least one of
the influence factors must apply to cause the
failure

&

System Down

>=1 >=1

Main CPU Down

Power Unit Down

Power Unit Down

Auxiliary CPU Down

Main
Controller

Down

Auxiliary
Controller

Down

Fig. 2-1: Simple Fault Tree

Fig. 2-1 provides an example of the Fault Tree graphical
notation. In this example, we imagine some Controller
System that has a redundant structure consisting of a
Main Controller and an Auxiliary Controller. The whole
system is unavailable if both Controllers are unavailable
at the same time. Further, each Controller is down if
either its corresponding CPU is down or the Power Unit
is down (or both).

The Fault Tree is the parse tree of the corresponding
propositional logic formula:

SystemDown=(MainCPUDown ∨ PowerUnitDown) ∧
(AuxCPUDown ∨ PowerUnitDown)

SystemDown is the top-event; the four events on the
bottom line are called basic events. The boxes
representing the propositional logic connectives are called
gates (the term stems from integrated logic circuits).

The analyses to be performed on this Fault Tree can be
either qualitative or quantitative. Qualitative analyses
show, for instance, which combinations of failures must
occur together to cause a top-level failure. Quantitative
analysis, on the other hand, calculates the probability of
the top event occurring from the probabilities of the basic
events. It is important to know that most calculation rules
for the probabilistic analysis depend on the assumption
that all events are stochastically independent of each
other. Many modern analysis algorithms make use of the
efficient coding of Boolean formulae by Binary Decision
Diagrams (BBDs) (Bryant 1986, Doyle and Dugan 1995,
Coudert and Madre 1993) and of corresponding
manipulation techniques.

Besides AND and OR Fault Trees allow the use of
Exclusive-OR (sometimes denoted XOR), NOT,
INHIBIT, and n-out-of-m-VOTER gates. However, we
will confine ourselves to AND and OR for the following
discussion. We point out that the presence of NOT gates
has no impact on our concept.

2.2 Generation of Fault Trees
Fault trees are usually generated manually. Highly
skilled, experienced engineers analyse the system. Con-
siderable knowledge, system insight and overview are
necessary to consider various failure modes and their con-
sequences at a time. This manual work is error-prone,
requires substantial effort, and is still often incomplete,
since no single person can comprehend the whole system.
These disadvantages can be avoided by the automation of
Fault Tree generation. During the development of a
system, documents are produced that contain information
about the system's behaviour and structure (e.g. formal
specifications, circuit designs and source code). These
documents implicitly contain information about
misbehaviours and can be used to partly automate the
Fault Tree generation. Because of this we have focused
on the automatic generation of Fault Trees for hardware
and software units (Liggesmeyer and Rothfelder 1998,
Liggesmeyer and Mäckel 2001), and tools for integration
and analysis (Mäckel and Rothfelder2001).

Fault trees of complex systems are often very large –
especially generated ones. Ideally, the modularity of

complex systems should be reflected by a corresponding
structure of the Fault Tree. The known module concept
for Fault Trees is often not appropriate to do so. This is
due to the fact that, in practice, many causes are
contained in several subtrees. For this reason, the
precondition of statistical independence of the causes in
standard Fault Trees is no longer true. Neglecting this
circumstance leads to incorrect results during calculation
of reliability characteristics. Currently, this problem is
handled by marking multiple occurrences of causes as
repeated events.

2.3 Cause Effect Graphs
In some cases two (or more) branches of the Fault Tree
depend on the same basic failure event. For instance,
looking at the example from Fig. 2-1 we may ask the
question if each Controller has a Power Unit on its own
or if there is a common Power Unit feeding both of them
(see Fig. 2-2).

In the latter case the independence of basic events is no
longer given. The calculation algorithm must know about
the repeated events; otherwise it will produce incorrect
results.

&

System Down

>=1 >=1

Main CPU Down

Power Unit Down

Power Unit Down

Auxiliary CPU Down

Main
Controller

Down

Auxiliary
Controller

Down

?

Fig. 2-2: Repeated Event

Practical experience (Mäckel and Rothfelder 2001) shows
that Fault Trees usually contain a large number of
repeated events. There are computation methods, based
on minimal cut sets (Kececioglu 1991) or on BDDs, that
can handle repeated events correctly. Depending on the
FTA tool either the user marks events as repeated or the
tool considers events that have the same name as repeated
events. In either case there is some danger of confusion
(since in large systems it is possible that events
accidentally have the same name) or of inconsistencies.
Sometimes the user even wishes to give the same name to
equal failures in different technical components.

Apart from repeated events, the fact that Fault Trees
contain only one top-event (IEC 61025) is also a
restriction. In practice, it is often important to analyse
cause-effect relations between various top-events that
represent different failure modes of the same technical
component.

To overcome both problems, we previously defined a
generalized form of Fault Trees (Mäckel and Rothfelder
2001). We call these diagrams Cause Effect Graphs
(CEGs). CEGs are Directed Acyclic Graphs (DAGs or
Acyclic Digraphs). The following differences exist
between Fault Trees and CEGs:

• Repeated events are represented only once (see
Fig. 2-3 in comparison to Fig. 2-2). This reduces
the size of the graph and improves readability
and maintainability. It is much easier to keep the
Fault Tree consistent during modifications.
Furthermore, CEGs may also be read bottom-up.
It is easy to determine all the effects a specific
cause is correlated with. This is not directly
possible in standard Fault Trees, because it
would be necessary to identify all instances of
the causes.

• CEGs may contain several top-events (see Fig.
2-4). This permits to take into account different
undesired events during system optimisation.
Further, it is possible to analyse relations
between different top-events within a system.

&

System Down

>=1 >=1

Main CPU Down

Power Unit Down

Auxiliary CPU Down

Main
Controller

Down

Auxiliary
Controller

Down

Fig. 2-3: Cause Effect Graph

Although the logical structure of the above example is no
longer a tree but a DAG, it is still possible to represent
the corresponding Boolean formula by a BBD and to
calculate the top event probability by the standard
algorithms.

To give an example for the simplification obtained, a
CEG for an automotive system contained 200 instead of
the 9000 elements that are contained in the corresponding
standard Fault Tree representation. There were about 150
instances of just one specific repeated event.

By allowing more than one top-event it is possible to
examine several failure modes and their common
influences at a time. A cause that is connected to several
top-events is usually an appropriate starting point for
system optimisation. Some kinds of analyses that have
traditionally been carried out by Event Tree Analysis can
now be performed using CEGs.

>=1 >=1

Keyboard
Controller

Down

CPU Down LAN Adapter Down

No local operation No remote operation

Display Controller
Down

Fig. 2-4: Two Top-Events

The transition from trees to DAGs is a precondition and
support for the new component concept presented in this
paper. As we will see, the top events of CEGs will appear
there as output ports of the corresponding Component
Fault Trees. In the following we will use the terms Fault
Tree and Cause Effect Graph interchangeably.

2.4 Hierarchy and Modules in Fault Trees
As stated before, complex Fault Trees or CEGs need to
be partitioned both for editing and for efficient computer
analysis. The goal is to generate separate Fault Trees for
different system components, e.g. electronic components
and software, and then to combine the Fault Trees in
order to get a valid analysis result for the system.

Today, the usual principle for handling complexity in
Fault Trees is division into independent subtrees, called
modules. A module is a subtree that is not influenced by
other parts of the Fault Tree and influences other parts of
the tree only by its root (DIN25424, Kohda et al 1989).

Modularisation is a recursive process as subtrees might
themselves contain independent subtrees. In particular the
whole Fault Tree and every basic event are independent
modules.

Traditionally, the top-event probability of each module is
calculated and then the whole module is replaced by a
virtual simple event, located where the subtree root was
before. This virtual event has the subtree root probability
assigned to it. This continues until the top-event
probability of a Fault Tree has been calculated. So for
probabilistic analysis the output of the root gate of a
module is handled like a basic event.

Identification of modules in Fault Trees is a formal
procedure that only refers to the tree structure and not to
the system architecture. Due to repeated events and
influences between technical components, it is often
necessary for events belonging to different technical units
to be members of the same module. Thus, system
architecture components do not necessarily correspond
directly to Fault Tree modules.

The refinement of a system into components by its
architecture is a different kind of hierarchy and, as we
have seen, not necessarily related to the refinement into
modules. In summary, we find two distinct refinement
hierarchies in Fault Trees:

1. the backward refinement of the cause-effect
relations as indicated by the tree

2. the refinement by architectural components.
(Mäckel and Rothfelder 2001).

In Section 3 we introduce a method for decomposing a
Cause Effect Graph based on architectural components.

3 Fault Trees with Hierarchical Components

3.1 Informal Introduction
To introduce our component concept intuitively, we start
by revisiting the CEG example from Fig. 2-3. The events
shown can be related, for instance, to three different
technical units:

1. The Main Controller

2. The Auxiliary Controller

3. The Power Unit

In the following we will call these technical units
components. The whole system to be modelled is equally
considered as a component and we say that the
component "Controller System" contains the sub-
components "Main Controller", "Auxiliary Controller"
and "Power Unit". In Fig. 3-1 we show the component
borders by dotted lines.

Controller System

Main Controller Aux Controller

Power Unit

&

System Down

>=1 >=1

Main CPU Down

Power Unit Down

Auxiliary CPU Down

Main
Controller

Down

Auxiliary
Controller

Down

Fig. 3-1: Partition into Components

We see that the failure of either component Controller is
an OR-term of one basic event that is generated within
the same component and another basic event that is
generated within a foreign component, namely the Power
Unit. We assume that the model is complete for our
purposes, i.e. there are no other failure influences than
those represented by the Fault Tree edges. Then the only
failure influences that cross component borders are:

• the two edges from the Power Unit to the Main
Controller and to the Auxiliary Controller,

• the two edges from the Main Controller and the
Auxiliary Controller to the upper OR gate
belonging to the component "Controller
System".

We make these interconnections between components
visible by introducing ports, which are interfaces that
allow joining subcomponents together. To preserve the
direction of the gates we introduce two types of ports:
input ports and output ports. Graphically we denote ports
by solid triangles (see Fig. 3-2).

Controller System

Main Controller Aux Controller

Power Unit

&

System Down

>=1 >=1

Main CPU Down

Power Unit Down

Auxiliary CPU Down

Main
Controller

Down

Auxiliary
Controller

Down

Fig. 3-2: Components with Ports

Ports can be the source or target of edges just as the
ordinary Fault Tree nodes (basic events and gates). Note
that the short edges joining the output port of component
Power Unit to the input ports of component
Main/Auxiliary Controller belong to the component
Controller System while the edges drawn inside of each
sub-component box belong to the respective component.

Since, by assumption, influences between different
subcomponents only exist through the ports, we can now
assert that every basic event inside of some component is
stochastically independent of any basic event belonging
to another component. This assertion can be relied on
during the analysis of the complete graph.

As an additional benefit of the proposed component
concept, it is now possible to store each component
independently of each other and to have the components
developed by different people. The developer of the
Power Unit, for instance, makes an agreement with the
developer of the Controller System about the ports of the
Power Unit. Then both can continue their work
independently: One person refines the internal structure
of the Power Unit while the other is building the
component Controller System around a black box

representation of the Power Unit and both of the
Controllers. The result of the system modeller's work
looks like this (Fig. 3-3):

Controller System

Main Controller:
Controller

Aux Controller:
Contoller

Power Unit:
Power Unit

&

System Down

Main
Controller

Down

Auxiliary
Controller

Down

Fig. 3-3: The Component "Controller System"

The work of the Power Unit modeller looks like this (Fig.
3-4):

Power Unit

Power Unit Down

Fig. 3-4: The Component "Power Unit"

Each modeller can use all conventional Fault Tree
elements, such as basic events and gates. As shown in this
example, it is not mandatory that the top-level component
contains only sub-components; standard gates and basic
events may be used on system level as well.

Let us now assume that Main Controller and Auxiliary
Controller are two devices of the same technical type.
Thus, both of them show the same stochastic
characteristics of their internal failure event "CPU
Down". This does not mean that they always fail at the
same time, but that the probability distribution and its
parameters are the same for both. As a consequence, there
is no need to model this component twice; a reuse is
possible and even advisable. The model for the
component type Controller is shown in Fig. 3-5. Two
instances of this component are used within the
Component Fault Tree model of the Controller System.

This example has revealed another advantage of our
concept: Each component is modelled only once and
reused as often as needed. The error-prone copy-and
paste of parts of a Fault Tree has become obsolete. Note
that if several instances of the component "Controller" are
used in a system, each of it has an internal event named

"My CPU Down". However, this is not a repeated event,
since all of these events are different and independent
from each other. The common name just indicates that it
is the same type of failure behaviour. If the modeller
wanted to express a repeated event, it would have to be
placed outside of the component (either inside of another
component or on the next higher hierarchical level). Due
to the Cause-Effect-Graph concept repeated events appear
only once in the graph. In summary, private events of a
component are not visible to any other component. In our
tool, the combined identifier of component instance and
event allows distinguishing repeated from individual
events.

Controller

>=1

My CPU Down

Fig. 3-5: The Component "Controller"

3.2 Analysing Component Fault Graphs
Mathematically, Component Fault Trees are described by
a set of Boolean functions, each one belonging to one
Output Port. Each function maps the input ports and the
internal events of the component to a Boolean term
assigned to an output port. To explain this facet of our
concept, we start by considering a component with just
one output port. To this end we revisit the Controller
component from Fig. 3-5.

The Boolean formula represented by this component is

 out1 ⇔in1 ∨ MyCPUDown

This formula gives a recipe how to calculate the
probability of the output event from the probabilities of
the internal event "MyCPUDown" and the probability of
the Boolean term connected to the input port:

 P(out1) = 1- (1-P(in1))*(1-P(MyCPUDown))

Obviously, a quantitative analysis of the component
Controller alone is not possible yet, since so far it is
unknown what will be connected to the input port in1.

If, in contrast, we examine the component Power Unit
from Fig. 3-4, we will find that this time a quantitative
Fault Tree Analysis is possible. This is due the fact that
this component has no input ports. From this precondition
for quantitative analysis follows that the system level
component must not have any input ports. Components to
be used as sub-components may have input and output

ports. We see that if we embed one instance of the
component "Power Unit" and two instances of the
component "Controller" into the component Controller
System from Fig. 3-3, the resulting system is a
component without input ports and thus analysable.

Note that the information, what the ports are connected
to, is not stored inside of the sub-components, but on the
higher-level component "Controller System". Generally,
the sub-components have no knowledge about their
context.

Since we have extended Fault Trees to CEGs it is
possible that components on any hierarchy level have
more than one output port. For instance, the component
from Fig. 2-4 has two output ports, modelling different
failure modes that can be examined. If a component with
several output ports is used within a higher-level system,
this can introduce repeated events (in the example: CPU
Down). These causal chains are resolved correctly due to
the CEG concept. It is not mandatory that all existing
output ports are connected or used for analysis. If the
component on the highest hierarchy level has exactly one
output port, then this output port corresponds to the top-
event of a classical FTA; if it has more than one, each
output port can be chosen as a starting point for analysis.

From this new point of view there is not much of a
difference between components (that define arbitrary and
often complex logical functions) and Fault Tree gates
(that define elementary logic functions): for instance, a 2
out of 3 voter gate that many FTA tools offer can
equivalently be described by a component "Voter 2oo3"
with three input ports and one output port, as shown in
Fig. 3-6:

Voter 2oo3

& & &

>=1

Fig. 3-6: A 2-out-of-3 Voter modelled as a Component

3.3 Formalisation
A Component Fault Tree (CFT) is a tuple (N, G, SC, E)
consisting of

1. a set N of Simple Nodes, partitioned into

a. a set Nintern of internal events

b. a set Nin of input ports

c. a set Nout of output ports

2. a set G of Gates, each of them described by

a. one output port, denoted g.out

b. one or more input ports, denoted g.ini,
with i∈ ù

c. a Boolean formula, (e.g.
g.out=g.in1∨ g.in2)

3. a set SC of Sub-Components, each one described
by

a. one or more output ports, denoted
sc.outi

b. one or more input ports, denoted sc.ini

c. a mapping to another CFT

4. a set of directed edges E ⊆ ((Nintern ∪ Nin ∪
G.OUT ∪ SC.OUT) × (Nout ∪ G.IN ∪ SC.IN))
where

� G.OUT is the set of all outputs of all
gates,

� G.IN is the set of all inputs of all gates,

� SC.OUT is the set of all outputs of all
sub-components,

� SC.IN is the set of all inputs of all sub-
components.

The first element of the tuple representing an
edge is called the source of the edge and the
second element is called the target.

As an additional restriction it is forbidden that
two or more edges share the same target, i.e.

ò s1, s2, t: [(s1,t)∈ E ∧ (s2,t)∈ E∧ s1≠s2].

♦

Some explanations:

� Simple nodes is the collective name for the
internal events (basic events in traditional FTA)
and the input and output ports belonging to the
component being modelled. Internal events and
input ports may be sources of edges; output ports
may be targets of edges.

� Apart from simple nodes there are gates and
sub-components. Both are very similar to each
other, not only regarding the graphical
representation as rectangular boxes. The
differences are:

� a gate has only one output port,
whereas a sub-component may have
more than one,

� a gate has a Boolean function attached
to it, whereas a sub-component has
another CFT attached to it.

Remembering that CFTs, by their graph
structure, define Boolean functions from their
inputs and internal events to their outputs, we
find that both gates and sub-components
represent Boolean functions (we know this from
Section 3.2).

� Edges must not be connected directly to gates or
sub-components but only to their input / output
ports.

� Obviously the own output ports of a CFT can
only be the target of edges while the output ports
of the sub-components and gates being used can
only be the source of edges and vice versa.

� The connection between different hierarchical
levels is accomplished by two means:

� by the mapping between a sub-
component and its corresponding CFT

� by the input and output ports that are
joined by edges. The own input ports of
the component currently being
modelled appear as sub-component
inputs on the next higher hierarchical
level. The same applies to the output
ports. The connection to the "right" port
is assured by a combination of the
unique component identifier and the
unique port identifier.

� It is forbidden that a component contains itself
as a sub-component - directly or indirectly.
Violations of this rule (called "deep cycles")
must be checked before analysis is started.

� Since the analysis relies on acyclic graphs it is
further forbidden that there is any set of nodes
and edges that forms a directed cycle (called
"shallow cycle"). To avoid cycles across
different hierarchy levels, edges leading from an
output port of a sub-component to an input port
of the same sub-component are forbidden,
directly as well as indirectly. This must be
checked before analysis is started.

� There is a restriction that two or more edges
must not share a common target. The uniqueness
of the edge source is essential when tracing the
graph back during the analysis. This means that
the edges could have been defined as functions
(as opposed to relations) as well. Edges would
then be defined in the style source = f(target).
However, for convenience we prefer the notation
as a relation rather than as a function.

� It is however allowed for two or more edges to
have a common source. This makes the
difference between a DAG and a tree. The
common source of two or more edges is
semantically the same as a repeated event.

� Apart from the mentioned restrictions the user
can group graph elements into components as
appropriate.

3.4 Differences to Existing Approaches
The main difference between our approach and existing
solutions is that we distinguish the subtree hierarchy
determined by the logical structure from the
decomposition hierarchy introduced by the system

architecture. The tree hierarchy leads from the root (the
top-event) down to the leaves (the basic events), whereas
the decomposition hierarchy leads from the whole
technical system to the most detailed sub-components.

Fig. 3-7 demonstrates the kind of decomposition that
many current FTA tools offer. It follows the first kind of
hierarchy, from root to leaves. The analysis of a modular
Fault Tree is done by merging the two partial trees at the
"transfer ports" (IEC 61025) and then calculating the
whole tree. This leads to the same result as first
calculating the failure probability of the top event in
"lower" and then replacing the connector in the
component "upper" by a basic event with this probability.
Note that component "upper" must carry the knowledge
about which subtree is connected below and that a
probability value can be assigned to the output of
component "lower".

upper

>=1

lower

to lower

P=0.02

&

Top Event

P=0.1 P=0.2

Fig. 3-7: Traditional Fault Tree Decomposition

By another example, we show the new kind of
decomposition according to the second kind of hierarchy,
see figure Fig. 3-8. This decomposition cannot be
expressed in traditional tools, since the component
"inner" is not a module. In spite of the common event the
calculation leads to the correct result. This time, it is not
the component "inner" that stores the knowledge about
what comes below the input ports, but it is the component
"outer" that keeps all edges leading to and coming from
its sub-components. We do not assume that components
are subtrees that can be simplified to one event with a
fixed probability or rate, but rather treat them as Boolean
functions.

Outer

&

Inner

Out Port 1

Top Event

In Port 1 In Port 2

Subcomponent1
: Inner

Out Port 1

In Port 1 In Port 2

>=1

Internal
Event

Fig. 3-8: Component-wise Fault Tree Decomposition

Focussing on this kind of hierarchy allows partitioning
the system Fault Tree as appropriate to model real world
components that influence each other and, vice versa, to
build up a system Fault Tree out of existing Component
Fault Trees. The expressive power supersedes what is
available from commercial tools and the intuitive

decomposition helps the modeller to build correct Fault
Trees even for complex systems.

4 Practical Application

4.1 The Safety Analysis Tool UWG3
The Safety and Reliability Analyser tool UWG3 that has
been developed in a co-operation between the Hasso-
Plattner-Institute and the companies Siemens and
DaimlerChrysler applies this new component concept. A
screen-shot can be found at the end of this paper (Fig.
7-1). It shows the tool at work, modelling the Controller
System Example shown above.

Its Windows based GUI offers different graph windows
showing one Component Fault Tree each. At the right
hand side there is a Component Explorer window that
allows navigating through all open files, all components
therein and all graph elements belonging to these
components. Below there is a properties window that
allows modifying functional parameters (e.g.
probabilities) and style attributes (e.g. line colours and
weights). Large amounts of numerical data are more
comfortably edited in tables, so UWG3 offers a table
view that allows data import and export to programs such
as EXCEL. On the left side of the screen there is a
repository of available graph elements, such as basic
events or gates. The logical symbols displayed here are
IEC 61025 style; they can alternatively be shown as
international (US) symbols. Note that port symbols are
offered in addition to the classical Fault Tree elements.
Graph elements are applied by dragging and dropping
them from the repository window into the graph window.
The same mechanism is used to apply components as
subcomponents of higher-level components: a component
is dragged from the explorer window into another
component window where it will appear as a black box,
showing only the ports. Putting edges between graph
elements generates the semantic connection.

The tool uses an open XML file format (Bray et al 2000)
to store the component models. This facilitates later
integration with other tools. Each file may contain one
ore more components and the components belonging to
one system may be distributed across different files. This
permits models for different components to be edited
concurrently.

Each graph element has a unique ID including the URI
where the file is located. The tool automatically assigns
and resolves the IDs, independently from the names that
the user gives to events and components (the user can
optionally display the internal IDs). This ID system also
enables the detection of repeated events and serves as a
cross-reference to other development documents, as
proposed in IEC61025: graph elements are identical iff
they have the same ID.

When analysis is started, all components belonging to the
system are loaded. This is performed recursively in the
sense that sub-components and their sub-components are
searched and loaded until no more references are found.
Consistency of the port signature is automatically
checked. The loader guarantees that the model is

complete (no more open input ports) and free from
cycles. The graph as a whole is transformed into one
BDD and can then be analysed by the usual algorithms.
The algorithms are taken from standard libraries. The fact
that the graph actually consists of different independent
parts is invisible to the analysis algorithm. Since a DAG
can have, unlike a tree, more than one output port ("top-
event"), it is necessary that the user specifies one for
analysis.

4.2 Practical Application
Currently, we use the tool UWG3 to calculate reliability
and safety figures for power plants and transportation
systems. The implemented concepts for the usage of
system components allow us to get more readable Fault
Trees. So each person responsible for a system
component is able to build the respective Fault Tree for a
component. Afterwards the entire Fault Tree for the
complete system is composed based on these component
Fault Trees. This technique saves time and increases the
quality of reliability and safety figures. In addition, it
guarantees quick results due to implemented BDD-
algorithm.

5 Conclusion and Future Work
In this paper we have proposed a new component concept
for Fault Trees. The components need not be modules in
the sense of classical FTA but may be partial graphs that
correspond to real-world components. Input and output
ports accomplish the connection of subcomponents to
their context on the next higher level. Components that
have no input ports can be analysed alone. Hereby,
qualitative or quantitative analysis known from classical
FTA is possible, e.g. by algorithms based on BDDs.
Component Fault Trees that do have input ports cannot be
analysed alone, but represent Boolean functions from
input ports and internal events to the output ports. These
components must be integrated into higher level
components and appear there as sub-components (black
boxes in the representation of our tool). Instead of trees,
we have been using Directed Acyclic Graphs that we call
Cause Effect Graphs for some time. This avoids the
problem of repeated events by allowing more than one
edge starting from any event or intermediate term and
permits analysis of more than one failure mode.

Many researchers have stated that for today's complex
embedded systems one single analysis technique is not
sufficient, but the different techniques must smoothly
integrate with each other (Bechta Dugan et al 1999),
(Fenelon and McDermid 1993). Since we agree with this
point of view, we are currently working on an integrated
workbench, incorporating state/transition based
probabilistic methods such as Markov-Chains and
combinatorial models such as Fault Trees (Kaiser 2002).
Our component concept makes an important step forward
since it allows partitioning Fault Trees into independent
components. The next step of our research efforts will be
to integrate components that are described by Markov
models. We plan to add a type system to input and output
ports in order to ensure that only matching kinds of
events or states can be joined together. The ID system

and XML file format chosen for our tool is structured to
cater for different kinds of future models.

Other issues in our further research are time-saving
analysis techniques that simplify each component as far
as possible and store the intermediate results along with
the component data (e.g. reduced ordered BDDs). We are
collaborating with other projects with the aim of
automatically generating Fault Trees from technical data
for Hardware and Software components and of annotating
components with Component Fault Trees (Grunske
2003). In the future we plan to implement a component
repository in order to store Component Fault Trees along
with other technical data and to locate them when they
are needed for analysis.

6 References
Bechta Dugan, J., Sullivan, K.J., Coppit, D.(1999).

Developing a high-quality software tool for Fault Tree
analysis. In Proceedings of the Int. Symposium on
Software Reliability Engineering, p. 222-31, Boca
Raton, Florida.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.
(2000): Extensible Markup Language (XML) 1.0
(Second Edition) W3C Recommendation Accessed 14
July 2003

Bryant, R. (1986): Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, C-35(8):677--691, Aug. 1986.

Clarke, E., Wing. J. (1996) Formal Methods: State of the
Art and Future Directions, CMU Computer Science
Technical Report CMU-CS-96-178, August 1996

Coudert, O. and Madre, J.C. (1993). Fault tree analysis:
10^20 prime implicants and beyond. In Proceedings of
the Annual Reliability and Maintainability Symposium,
pages 240-5, Atlanta, GA.

DIN 25424 (1981/1990) Fehlerbaumanalyse (Fault Tree
Analysis). German Industry Standard (Part 1 & 2).
Beuth Verlag, Berlin.

Doyle, S.A. and Bechta Dugan, J (1995). Dependability
assessment using binary decision diagrams (BDDs). In
Proceedings of the 25th Annual International
Symposium on Fault-Tolerant Computing, pages 249-
258, Pasadena, California.

Fenelon, P., McDermid, J.A., (1993), An Integrated
Toolset For Software Safety Analysis. In Journal of
Systems and Software, 21(3): p. 279-290

Grunske, L. (2003): Annotation of Component
Specifications with Modular Analysis Models for
Safety Properties. In Proceedings of the 1st
International Workshop on Component Engineering
Methodology, Erfurt, September 22, 2003

Harel, D. (1987): Statecharts: A Visual Formulation for
Complex Systems. Science of Computer Programming
8(3): 231-274

IEC 61025 (1990). Fault Tree Analysis International
Standard IEC 61025. IEC, Geneva

Kaiser, B. (2002): Integration von Sicherheits- und
Zuverlässigkeitsmodellen in den Entwicklungsprozess
Eingebetteter Systeme. In Softwaretechnik-Trends
22(4).

Kececiogliu, D. (1991), Reliability Engineering
Handbook Part 1 and Part 2, Englewood Cliffs:
Prentrice Hall

Kohda, T., Henley, EJ., Inoue, K. (1989): Finding
Modules. in Fault Trees. IEEE Trans. on Reliability,
Vol. 38, NO. 2, pp. 165-176

Liggesmeyer, P., Mäckel, O. (2001) Quantifying the
Reliability of Embedded Systems by Automated
Analysis. The International Conference on Dependable
Systems and Networks (DSN'01), Goteborg, Sweden

Liggesmeyer, P.; Rothfelder, M. (1998): Improving
System Reliability with Automatic Fault Tree
Generation. In Proceedings 28th Annual Fault Tolerant
Computing Symposium, Munich, June 1998, pp. 90-99.

Mäckel, O., Liggesmeyer, P (2000) Automatisierung
erweiterter Fehlerbaumanalysen für komplexe
technische Systeme. In at-Automatisierungstechnik, R.
Oldenbourg Verlag, München, Februar 2000

Mäckel, O., Rothfelder, M. (2001): Challenges and
Solutions for Fault Tree Analysis Arising from
Automatic Fault Tree Generation: Some Milestones on
the Way. ISAS-SCI (1) 2001: 583-588

Vesely, W. E., Goldberg, F. F., Roberts, N. H.,. Haasl, D.
F.(1981) Fault Tree Handbook. U. S. Nuclear
Regulatory Commission, NUREG-0492, Washington

7 Appendix: Screenshot of UWG3

Fig. 7-1: Sreenshot from the tool UWG3

