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Abstract

Aspect-Oriented Software Development (AOSD) fa-
cilitates the modularisation of different crosscutting
concerns in software development. In AOSD, aspect
weaving is the composition mechanism that combines
aspects and components in an aspect-oriented appli-
cation. Aspect weaving can be performed statically,
at load time or at runtime. These different kinds
of weavers may entail a runtime performance and a
memory consumption cost, compared to the classical
object-oriented approach. Using the Dynamic and
Static Aspect Weaving (DSAW) AOSD platform, we
have implemented three different scenarios of security
issues in distributed systems (access control / data
flow, encryption of transmissions, and FTP client-
server). These scenarios were developed in both the
aspect-oriented and object-oriented paradigms in or-
der to evaluate the cost introduced by static and dy-
namic aspect weavers. A detailed quantitative evalu-
ation of runtime performance and memory consump-
tion is presented.

Keywords: Aspect-oriented software development,
runtime performance, memory consumption, aspect
weaving, DSAW.

1 Introduction

The Aspect-Oriented Software Development
(AOSD) (Irwin et al. 1997) paradigm allows
developers to make good use of the Separation of
Concerns (SoC) principle (Hürsch & Lopes 1995)
when developing applications. AOSD offers a direct
support to modularise different functionalities that
cut across system software. The modularisation
of crosscutting concerns prevents tangling of the
application source code, making it easier to de-
bug, maintain and modify (Parnas 1972). Typical
examples of crosscutting concerns are persistence,
authentication, logging and tracing (Ortin et al.
2004). The process of integrating aspects into the
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main application code is called weaving and an aspect
weaver is the tool that performs it (Ackoff 1971).
The weaving process can be performed statically
(compile time or load time) or dynamically (at
runtime). Dynamic weaving AOSD platforms offer a
powerful mechanism to dynamically adapt running
applications, modifying their functionality while the
system is being executed (Popovici et al. 2002).
Application concerns can be modified, inserted or
removed without stopping the application execution.
However, in some scenarios, the use of AOSD may
involve an increase of runtime performance and
memory consumption (Garcia et al. 2012).

There are specific scenarios where it is necessary
to adapt running applications in response to runtime
emerging requirements (Vinuesa et al. 2008), such
as distributed systems security (Garcia et al. 2012).
Distributed systems involve the interaction between
disparate and independent entities working toward a
common goal (Belapurkar et al. 2009). As the number
and arrangement of these potentially mobile entities
may change, these systems are commonly required to
be flexible and scalable. Under these circumstances,
security in distributed systems is a complex issue to
be considered. The security concerns of distributed
systems can be modularised using AOSD, becoming
possible to adapt the security measures without com-
promising their global security, even when their sizes
and arrangements change at runtime (Garcia et al.
2012).

Our objective is to compare the runtime per-
formance and the memory consumption of aspect-
oriented and object-oriented programming (OOP)
paradigms, evaluating the cost of aspect weaving. For
this purpose, we have assessed three different scenar-
ios of distributed systems security, where both static
and dynamic weaving is appropriate. These exam-
ples consider access control, data flow, and data en-
cryption. The solutions based on AOSD were devel-
oped using the Dynamic and Static Aspect Weaving
(DSAW) (Vinuesa et al. 2008) platform. DSAW is
an AOSD platform that supports both static and dy-
namic weaving, allowing the modification of applica-
tion concerns at runtime. By using this platform,
it is possible to dynamically modify the flow, access
and encryption of data dynamically. Therefore, the
security measures of the distributed systems can be
adapted when required, varying in size and arrange-
ment. Following a statistically performance evalua-
tion methodology (Georges et al. 2007), these imple-
mentations are quantitatively assessed. A comparison
between both paradigms is presented to estimate the
penalty introduced by the AOSD approach, compared
to the OOP one.

The remainder of this paper is structured as fol-
lows. Section 2 describes static and dynamic weaving,
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and the DSAW platform. The implemented applica-
tions used in the assessment are presented in Sec-
tion 3. In Section 4, we evaluate and discuss the
results of both approaches. Section 6 presents the
conclusions and future work.

2 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) (Ir-
win et al. 1997) is a concrete approach to im-
plement the principle of Separation of Concerns
(SoC) (Hürsch & Lopes 1995). AOSD facilitates the
modularisation of different functionalities that cut
across the entire system software (i.e., crosscutting
concerns).

An aspect is a piece of code that cannot be en-
capsulated in a method or procedure, being scattered
throughout the source code of an application. Com-
mon examples of aspects include transaction control,
memory management, threading, persistence or log-
ging (Hürsch & Lopes 1995).

With the classic object-oriented paradigm, cross-
cutting concerns in a system cannot be modularised
as regular classes. AOSD handles this problem, al-
lowing the separation of those concerns whose code
is commonly tangled with the code of other classes.
The major benefits of this approach are higher level
of abstraction, concern reuse, higher legibility and
improved software maintainability (Hürsch & Lopes
1995).

The final application is built by weaving the ap-
plication aspects with the corresponding classes (Fig-
ure 1). The output code mixes the aspect code with
the application functionality modularised in tradi-
tional classes. The aspect weaver performs this code
processing, offering a higher level of modularisation
to the programmer. As shown in Figure 1, the ma-
jor difference between AOSD and OOP is that the
object-oriented programmer has to decide where to
place the code of the crosscutting concerns, whereas
the aspect weaver automates this process. In this pa-
per, we evaluate the cost of this automation in three
different scenarios.
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Logging

Logging
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Figure 1: Traditional object-oriented development vs.
aspect-oriented development.

2.1 Aspect Weaving

Once both the application components and the as-
pects are developed, it is necessary to build the fi-
nal program (i.e., aspect weaving). The compiler
of an object-oriented language receives the applica-
tion source code and generates the executable file. In
AOSD, the code (either source or binary) must also
be processed by the aspect weaver to obtain the final
program with full functionality. This process can be
performed statically (at compile time or load time) or
dynamically (at runtime).

Aspects should define the way they are related to
application components, so that the aspect weaver

can generate the final application by mixing the code
of both kinds of modules. There are specific elements
of the programming language semantics where the as-
pect code may be injected. These semantics elements
are stable points of execution called join-points (Irwin
et al. 1997). Therefore, it is necessary to describe the
mapping between join-points and aspect code. For
this purpose, pointcuts are defined as a set of join-
points (usually using regular expressions) plus, op-
tionally, some of the values in the execution context
of those join-points (Kiczales et al. 2001).

2.1.1 Static Weaving

The majority of existing AOSD implementations pro-
vide static weavers. Static weavers combine the as-
pect and component functionality prior to applica-
tion execution. This combination consists in inserting
calls to advice in the components code. An advice is
a method-like construct used to define the additional
behaviour to be injected in the join-points expressed
by a pointcut (Kiczales et al. 2001). An advice is the
part of an aspect that modularises the code of the
crosscutting concern.

This type of weaving commonly causes little per-
formance penalty because all the code is combined
and statically optimized before its execution. Since
the application is woven before its execution, when
a new aspect is required at runtime the applica-
tion should be stopped, recompiled, rewoven and
restarted, losing the non-persistent state of the pro-
cess. There are scenarios where running applications
require the dynamic addition, deletion or modifica-
tion of aspects, and hence a dynamic weaving ap-
proach is more suitable (Ortin & Cueva 2004).

2.1.2 Dynamic Weaving

There are applications that need to be adapted at
runtime in response to changes in their execution en-
vironment (Popovici et al. 2002, Zinky et al. 1997,
Ségura-Devillechaise et al. 2003). An example is the
so-called autonomic software; these systems should
be able to repair, manage, optimise or recover them-
selves (Kephart & Chess 2003).

In the case of dynamic weaving, the program is
compiled in the traditional way and an executable file
is obtained. This program does not need to foresee
which modules may be adapted at runtime. When
the running program needs to be modified, it can be
dynamically woven with new aspects that adapt the
behaviour of the application.

The main advantage of this kind of weaving is that
it supports the dynamic adaptation of programs, plus
the modularisation of the different application con-
cerns. Therefore, the resulting code is more adapt-
able and reusable, and both the aspects and the basic
functionality can evolve independently (Pinto et al.
2001). However, this dynamic adaptation commonly
entails a runtime performance cost (Böllert 1999).

2.2 Dynamic and Static Aspect Weaver

Existing dynamic weaving tools such as AOP/ST,
PROSE, DAOP, JAC, CLAW, LOOM.NET, JAsCo
or DSAW (Vinuesa et al. 2008) can be used to adapt
running applications to new requirements, not fore-
seen at design time. Since we want to evaluate the
cost of both static and dynamic weaving, a plat-
form that supports both approaches may facilitate
our work. That was the main reason why we selected
DSAW (Vinuesa & Ortin 2004, Ortin et al. 2011), an
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Figure 2: Distributed system with different authorisation levels.

aspect-oriented software development platform that
supports homogeneous static and dynamic weaving.
Its main features are:

1. Full dynamic weaving: DSAW instruments appli-
cations enabling all the application join-points.
Since the adaptive JIT compiler of the CLR opti-
mizes the code introduced by DSAW, the penal-
ization is not significant. Then, DSAW allows
runtime (un)weaving of aspects, even at join-
points that were not woven before the application
was executed.

2. Platform independence: It is designed over the
.Net virtual machine reference standard (ECMA
2005). As a result, any .Net application can be
run over DSAW.

3. Language independence: DSAW performs the
adaptation applications at the virtual machine
level, instrumenting the Intermediate Language
(IL) of executable files and libraries. Any .Net
high-level programming language can be used to
program application components and aspects.

4. Weave-time independence: Aspect and compo-
nent implementations do not depend on the type
of weaving to be performed. Therefore, chang-
ing from dynamic to static, and vice versa, is a
straightforward task.

5. Wide range of join-points: DSAW offers a wide
and flexible set of join-points to facilitate the
adaptation of applications for both dynamic and
static scenarios.

3 Use cases

The objective of this paper is to compare runtime per-
formance and memory consumption of the OOP and
AOSD approaches. In order to do this, we have used
both the static and dynamic weavers of DSAW, de-
veloping security issues of distributed systems (Gar-
cia et al. 2012). DSAW has been used to implement
two specific scenarios: access control / data flow and
encryption of transmissions. A third scenario taking
an existing real application, a FTP client and server,
has also been used in our experiments. Details of
these implementations are presented in (Garcia et al.
2012). These three scenarios were developed using
both AOSD and the traditional OOP paradigm.

In the first scenario, we tackle the vulnerabilities
caused by the flow of data through a network. Each
node in the network has an authorization level. The
security policy of the distributed system dictates that
a node with an authorization level can only send and

receive information from those nodes with greater or
equal authorization level (NCSC 1990). The left part
of Figure 2 shows an example. Nodes 1 and 4 can
send information to any other node because the con-
fidential level is the lowest one. Node 2 can only send
information to node 3, since the secret authorization
level is lower than top secret. Finally, node 3 cannot
send information to anyone because it has the highest
authorization level.

The traditional implementation only considers
one-to-one relationships (Lang & Schreiner 2002), im-
plying restrictions on data flow in point-to-point net-
works with changing topologies. For example, nodes 1
and 4 in Figure 2 have the same access level, but they
cannot exchange information because node 3 cannot
relay messages to nodes 2 and 4.

We have used the DSAW static weaver to imple-
ment a distributed system with this security policy,
which guarantees the secure transmission of informa-
tion over changing topologies, tagging data with the
authorization levels of nodes. Applications are built
relying on the classical send and receive operations,
and aspects intercept these two messages to include
the following functionalities:

1. Encryption of information to avoid unauthorized
access to it.

2. Authentication to grant the user the appropriate
authorization level.

3. Data tagging to determine how information flows
across the network and to control the access to
it.

As shown in the right part of Figure 2, all nodes
can now exchange information between them regard-
less of their authorization level, because aspects con-
trol the data flow and restrict the access to data. As
a result, nodes 1 and 4 can securely exchange data
through nodes 2 and 3.

The second scenario is based on distributed sys-
tems made up by mobile devices, where network
topologies and communication channels may dynami-
cally change. If the user is connected to a distributed
system and it is detected that the communication
channel is not secure any more, encryption of trans-
missions may be required. Therefore, a dynamic en-
crypting aspect is woven with the application that
uses the distributed system, while the system is run-
ning. The aspect is even able to forward the chan-
nel to another secure one if the mobile device allows
it. Any kind of encryption or forwarding aspect can
be woven at runtime, because the DSAW dynamic
weaver does not impose any coupling between aspects
and components. Finally, if the mobile device returns
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to a trusted environment, the encryption aspect is un-
woven to avoid the unnecessary overhead of encryp-
tion.

The last scenario is a common client-server FTP
environment1. We have added dynamic aspect weav-
ing to the existing client and server applications in
order to cipher all messages exchanged between them,
when a more secure communication is needed. It is
feasible to cipher the channel when critical informa-
tion is exchanged, e.g. during the client login process,
and to use the default channel when the exchanged
information is not so important. In a standard client-
server FTP communication, the information is sent
and received directly. On the other hand, in an en-
hanced scenario where cipher is enabled using aspects,
all the information passes through the dynamically
woven aspect, responsible for encryption and decryp-
tion. Before either the server or the client sends a
FTP command, the aspect encrypts the message; and
just after a FTP command is received, the same as-
pect decrypts it. Thus, the exchanged information
travels ciphered using the same channel, transpar-
ently to both the client and the server. If the aspect
is then unwoven, the information flows as it does in
the original scenario.

4 Evaluation

In this section, we present an assessment that com-
pares runtime performance and memory consumption
of the DSAW platform and the traditional OOP. The
first subsection outlines the experimental methodol-
ogy employed, describing the hardware, programming
language and the scenarios used. For each use case
described in the previous section, we present data of
the runtime performance and memory consumption
when using the AOSD and OOP paradigms. Finally,
we present a discussion of the measurements obtained.

4.1 Methodology

We have implemented in DSAW the three use cases
described in Section 3, using the aspect-oriented
paradigm to modularise the crosscutting concerns in
the applications. The first scenario (access control
and data flow) is composed of three single nodes, and
the second one (encryption) uses two single nodes and
two encryption/decryption nodes –implementation
details are presented in (Garcia et al. 2012). In or-
der to compare this approach with OOP, we have
also implemented the crosscutting concerns tangling
their code with the rest of modules in the applica-
tion, following the conventional approach of object-
orientation. The two different versions of the three
use cases vary in the way crosscutting concerns are
tangled: by a human or by an aspect weaver. The
objective is to measure the memory consumption and
runtime performance cost of DSAW static and dy-
namic weaving. All the applications were developed
in the C# programming language.

Regarding data analysis, we have followed the
methodology proposed by Georges (Georges et al.
2007) to evaluate the runtime performance of appli-
cations, including those executed on virtual machines
that provide JIT compilation. In this methodology,
the start-up performance measures how quickly a sys-
tem can run a relatively short-running application.
To measure start-up performance, a two step method-
ology is used:

1We have used the FTP.Net client (http://ftpnet.sourceforge.
net) and the SimpleFTP Server (http://www.tudra.net/wp/2007/10/
15/simpleftp-server).

1. We measure the elapsed execution time of run-
ning multiple times the same program. This re-
sults in p (we have taken p = 30) measurements
xi with 1 ≤ i ≤ p.

2. The confidence interval for a given confidence
level (95%) is computed to eliminate measure-
ment errors that may introduce a bias in the eval-
uation. The confidence interval is computed us-
ing the Student’s t-distribution because we took
p = 30 (Lilja 2000). Therefore, we compute the
confidence interval [c1, c2] as:

c1 = x− t1−α/2;p−1 s√
p c2 = x+ t1−α/2;p−1

s√
p

Being x the arithmetic mean of the xi measure-
ments, α = 0.05 (95%), s the standard deviation
of the xi measurements, and t1−α/2;p−1 defined
such that a random variable T , that follows the
Student’s t-distribution with p−1 degrees of free-
dom, obeys Pr[T ≤ t1−α/2;p−1] = 1 − α/2.

The data provided is the mean of the 95% confi-
dence interval.

To measure runtime performance, we have instru-
mented the code with hooks that registers the value
of high-precision time counters provided by the Win-
dows 7 operating system. This instrumentation calls
the native function QueryPerformanceCounter of the
kernel32.dll library. This function returns the ex-
ecution time measured by the operating system Per-
formance and Reliability Monitor (MicrosoftTechnet
2012). We measured the difference between the be-
ginning and the end of exchanging a set of messages
to obtain the total execution time. Tests were made
with different message sizes.

For memory consumption, we measured the maxi-
mum size of working set memory used by the process
(the PeakWorkingSet property). The working set of a
process is the number of memory pages currently vis-
ible to the process in physical RAM memory. These
pages are resident and available for an application to
use without triggering a page fault. The working set
includes both shared and private data. The shared
data comprises the pages that contain all the instruc-
tions that the process executes, including instructions
from the process modules and the system libraries.

These implementations have been compared using
the .Net Framework 2.0 build 50727 for 32 bits, over
a Windows 7 x64 operating system. All tests have
been carried out on a lightly loaded 2.13GHz Intel
Core 2 Duo system with 4GB of RAM.

4.2 Evaluation

To evaluate the cost of static and dynamic weaving
in DSAW, we have developed the three proposed sce-
narios using the traditional object-oriented program-
ming paradigm. Using object-orientation, we have ex-
tended the implementations with access control and
data flow security measures in the first use case, and
encryption in the other two scenarios. These same
functionalities were also developed as separate as-
pects, using the AOSD paradigm.

In the control access and data flow scenario, we
have used static weaving to inject the aspect in the
original system. In the encryption and FTP use cases,
the DSAW dynamic weaver was employed. Following
the start-up methodology presented in Section 4.1, we
measured the influence of the number of messages on
the performance and memory penalties. Since both
penalties remained constant, we used a fixed number
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of 6,000 messages for the first and third applications,
and 100,000 messages for the second one.

Figures 3 to 5 show the runtime performance
penalty in the three scenarios. For each application,
we increase the number of words contained in the mes-
sages in order to analyse the influence of message
sizes in runtime performance. Performance penal-
ties are calculated relative to the corresponding OOP
implementation. Values are the difference between
the DSAW and OOP execution times, divided by
the value of the OOP implementation (expressed in
percentage form) for each message size (expressed in
number of words).
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Figure 3: Runtime performance penalty of the Access
Control / Data Flow application.
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Figure 5: Runtime performance penalty of the FTP
application.

Concerning the memory consumption, Tables 1 to
3 show the memory usage in the three scenarios: ac-
cess control / data flow (OOP vs. DSAW static), en-
cryption (OOP vs. DSAW dynamic) and FTP client-

server (OOP vs. DSAW dynamic). Memory con-
sumption is expressed in KBytes, and message size
in number of words per message.

4.3 Discussion

After presenting the data in Figures 3 to 5 and Ta-
bles 1 to 3, three issues are highlighted. The first one
is related to the runtime performance cost of weaving.
In all scenarios, the performance costs decrease as the
size of messages increases. In the first application, the
performance cost of static weaving varies from 9.35%,
with the minimum message size, to 0.44%, when mes-
sages are 10,000 times greater. In the second scenario,
the cost decreases from 59.81% (10 words per mes-
sage) to 14.28% (50 words per message). Finally, for
the FTP application shows a performance penalty of
25.19% for the smallest message, while this penalty
drops to 12.54% when the message size is multiplied
by 16. Therefore, runtime performance penalty grows
as the size of the message drops. This dependency is
caused by the number of intercepted joinpoints ex-
ecuted, which remains constant in each experiment.
For bigger messages, the overall execution time rises,
but the injection code executed (the number of join-
poits) stays the same. The FTP application shows a
smaller dependency on the message size. This is be-
cause the application executes 10 commands (such as
creating, changing and erasing directories), and only
one is file (message) transmission.

The second discussion is the different performance
penalties depending on the type of weaving. In the
static scenario, runtime performance penalty is be-
tween 9.35% and 0.44%. When the size of mes-
sages is significantly high, the cost of static weaving
is almost negligible. However, the cost of dynamic
weaving is more notable. The encryption application
showed a performance penalty between 59.81% and
14.28%, and 25.19% and 12.54% in the case of FTP.
This higher performance cost of dynamic weaving is
caused by different factors. First, the execution of the
dynamic weaver is included in the overall execution
time. Second, the runtime examination of joinpoint
registration (checking whether there are aspects wait-
ing for a joinpoit to be executed) also implies a per-
formance price. Finally, when a joinpoint is reached,
registered aspects are called by means of an indirec-
tion (a reference); whereas static weaving simply tan-
gles the code, enabling the optimizations performed
by the JIT compiler (Redondo et al. 2008, Ortin et al.
2009).

The last issue is related to memory consumption.
In every scenario, the memory consumption penalty is
not affected by the size of messages: standard devia-
tions of the three applications where 0.14%, 0.34%
and 0.26%, respectively. The static weaving tech-
nique has shown an average memory consumption in-
crease of 2%. This average cost augments to 60%
and 47% when dynamic weaving is used in the two
last scenarios. This difference is due to the additional
code and the registered aspects per joinpoint table im-
plemented by the dynamic weaver to allow dynamic
adaptation of components. Therefore, the cost of dy-
namic weaving examples has been higher than static
ones, for both runtime performance and memory con-
sumption.

5 Related Work

There are some existing works that compare the run-
time performance of different AOSD platforms (Vin-
uesa et al. 2008, Bijker 2005, Vanderperren & Suvée
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Message size 10 100 1,000 10,000 100,000
Object-Oriented 28,001 28,112 29,532 38,272 51,788

DSAW Static 28,735 28,859 30,387 39,400 53,204

Table 1: Memory consumption (KBs) of the Access Control / Data Flow application.

Message size 10 20 30 40 50
Object-Oriented 27,408 27,440 27,524 27,517 27,650
DSAW Dynamic 43,880 43,880 44,187 43,980 44,148

Table 2: Memory consumption (KBs) of the Encryption application.

Message size 500 1,000 2,000 4,000 8,000
Object-Oriented 33,708 33,799 33,799 33,832 33,764
DSAW Dynamic 49,484 49,600 49,768 49,772 49,716

Table 3: Memory consumption (KBs) of the FTP application.

2004), but there are not many that compare AOSD
implementations with equivalent OOP versions. Hils-
dale and Hugunin (Hilsdale & Hugunin 2004) assess
both run-time and compile-time performance of As-
pectJ, introducing a simple logging policy as an as-
pect in a benchmark. In this experiment, the aspect
is woven statically. It logs all the method entries of
the XSLTMark benchmark. The obtained results are
fairly similar to the results presented in this work.
The runtime performance cost of the AOSD version
compared to the hand-coded one is around 3%. More-
over, the authors present a comparison between the
original application (without any modification) and
the AOSD version (with logging) to evaluate the over-
head introduced by the logging aspect. Using dif-
ferent versions of the aspect code, this overhead is
greatly reduced from 2,500% to 22%.

Regarding the use of AOSD to implement and
adapt security measures, Viega (Viega et al. 2001)
proposes an extension of the C programming language
to support aspects. This extension allows the defini-
tion of security policies apart from the application
code. AspectJ has also been used for security issues.
Huang (Huang et al. 2004) presents a generic and
reusable library to introduce security mechanisms in
Java developments. This library provides reusable
and generic aspects in AspectJ, as practical software
components, and a prototype implementation of a
common security-relative API for AOSD. Kim and
Lee (Taeho & Hongchul 2008) also use AspectJ to dis-
cuss how authorisation capabilities could be added to
existing well-structured, object-oriented systems. In
these works, neither run-time performance nor mem-
ory consumption is assessed.

6 Conclusions

Aspect-Oriented Software Development allows the
separation of crosscutting concerns in software de-
velopment. The modularisation of different appli-
cation concerns provides higher level of abstraction,
concern reuse, higher legibility and improved soft-
ware maintainability. However, in some scenarios,
the use of AOSD may involve an increase of runtime
performance and memory consumption. This paper
presents a comparison of runtime performance and
memory consumption between three different applica-
tions developed using AOSD and the classical object-
oriented approach. All the applications were devel-

oped in the DSAW platform and using the C# pro-
gramming language. The three applications apply se-
curity measures to distributed systems: access control
and data flow, communications encryption, and FTP
client-server. The first application is statically woven,
whereas the two last ones require dynamic weaving.

The assessment of runtime performance has shown
that the DSAW static weaver have entailed a per-
formance cost of 9.35%, compared to the traditional
object-oriented development. When the size of the
messages increases, the performance cost decreases to
values near to zero. In the dynamic weaving scenar-
ios, runtime performance penalties were 59.81% and
25.19%, dropping to values around 13% when message
sizes grow. Different factors in the dynamic weaving
technique implemented by DSAW causes this perfor-
mance increase compared to static weaving. In all the
scenarios, memory consumption has not depended on
the size of messages. The memory usage penalty of
static weaving was around 2%, and 60% and 47% in
the case of dynamic weaving.

We plan to apply this evaluation methodology to
commercial aspect-oriented applications developed in
other platforms such as AspectJ, Spring AOP, JAsCo
or JBoss AOP. Regarding the use of AOSD in dis-
tributed systems security, future work will be fo-
cused on applying the AOSD approach to develop
other security measures such as Intrusion Detection
or Load Balancers. A more involved question con-
cerns how our approach can be suitably generalised
in distributed “systems-of-systems” scenarios (Ackoff
1971). We aim to address this challenge in the future
by considering more flexible means of defining point-
cuts, such as by allowing pointcuts to be defined in
a reactive manner, taking into account the results of
analysis of multiple interacting applications within a
network, and using different techniques together with
our approach (Söldner et al. 2008, Tanter et al. 2009).

The current documentation and implementation
of this work can be freely downloaded from (DSAW
2010).
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