
A Platform-Independent Approach for Auditing Information

Systems

Gerald Weber

Department of Computer Science
The University of Auckland

38 Princes Street, Auckland, New Zealand
Email: gerald@cs.auckland.ac.nz

Abstract

Information systems in several application domains
have to fulfil particularly stringent requirements, first
of all concerning privacy, but then also concern-
ing the ability to audit the use of data in hind-
sight. For databases as a key component of such sys-
tems, the concept of hippocratic databases was pro-
posed (Agrawal et al. 2002). These databases are
targeted at privacy-intensive applications including
healthcare applications. Hippocratic databases en-
able active enforcement of privacy policies, as well
as audits of compliance. We present here a frame-
work that allows us to audit the data that was actu-
ally presented. In a model-driven approach, platform-
independent models support reuse and are translated
into platform dependent models. We present here a
platform-independent model for auditing information
systems. It is based on a message-based system view-
point that allows us to discuss aspects of a service-
oriented architecture on a high-level analysis and de-
sign level. This method shows how we can use a pro-
tocol of all ingoing and outgoing messages as an audit
trail for the system.

1 Introduction

In this paper we discuss a platform-independent
model for message-based communication of informa-
tion systems. We will see how the message model of
this approach fosters our understanding of the system
and enables powerful data analysis. In particular it
will enable us to perform audits of the system usage.
Information systems in several application domains
have to fulfil particularly stringent requirements, first
of all concerning privacy, but then also concerning
the ability to audit the use of data in hindsight.
There are many application areas, in particular in
the healthcare sector, where there is an increasing de-
mand for reliable auditing features, partly motivated
by policies. In practice such policies often already
have connections to message-based concepts such as
EDI. For databases as a key component of such sys-
tems, the concept of hippocratic databases was pro-
posed (Agrawal et al. 2002). These databases are
targeted at privacy-intensive applications including
healthcare applications. Hippocratic databases pro-
vide support for active enforcement of privacy poli-
cies, as well as for audits of compliance with these
policies. The compliance audit is based on database
accesses. If we want to interpret these database ac-

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Workshop on Health Data
and Knowledge Management (HDKM2008), Wollongong, Aus-
tralia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 51, Ping Yu, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

cesses, however, we have to make some assumptions
on the information system that processes the data
before the presentation to the user. In contrast, we
present here a framework that allows us to audit the
data that was actually presented. Our framework al-
lows us to audit end-user interaction with the system,
as well as interaction via service-oriented interfaces.

We use a form-oriented system model (Draheim &
Weber 2004), because in this way the message-based
audit-data can be obtained in a structured data for-
mat that can be easily mapped to relational data.
This makes it possible to store such data in a mean-
ingful way directly in a data analysis component such
as a data warehouse or in Hippocratic databases in or-
der to use the advantages of this technology not only
to the primary data, but also to the audit data, such
as limited disclosure (LeFevre et al. 2004).

This paper is first of all focusing on presenting
the underlying system model, the paper naturally
leaves the discussion of detailed audit functions to
further presentations. This system model can not
only be applied to human-computer interaction, but
also to the boundaries of discernible subsystems of
an information system. For the latter purpose we in-
troduce a platform-independent model for message-
based communication between automated systems.
One key idea of a model-driven approach is to use
platform-independent models in order to enable reuse
to translate them into platform-dependent models.
For service-oriented architectures, many frequently
discussed languages are not platform-independent;
BPEL, for instance, is tailored towards web-services.
In the same vein, it is important to realize that a (mis-
)understanding of service-orientation as mere web-
services roll-out is an implementation technology and
not an architecture.

We discuss here a platform-independent model
that has been successfully applied in industry
projects. Today’s enterprise computing projects are
covering areas as diverse as healthcare (Eichelberg
et al. 2005) and e-commerce (Zhang et al. 2006). In
such projects, a plethora of different message-based
technologies is used; take just e-commerce with clas-
sical EDI (Kimberley 1991) and AS2 (D. Moberg and
R. Drummond 2005), a novel e-commerce standard
that is similar but different from web-services (Bussler
et al. 2002, Weerawarana et al. 2005). We capture our
modeling approaches as viewpoints in the tradition of
Open Distributed Processing (ODP) (ISO/IEC 1995,
Farooqui et al. 1995).

The main line of argument of this paper is as fol-
lows. In Section 2 we reflect on the importance of
message-based communication for enterprise comput-
ing. In Section 3 we motivate our approach with the
viewpoint approach of ODP and discuss a key mod-
eling principle, namely the heavy use of immutable
datatypes. In this paper we focus on statically typed
system models. The methodology here can also be

generalized to untyped or dynamically typed system
models, but many parts of such generalizations are
rather straightforward, moreover they incur the usual
loss of static expressibility and are of lesser inter-
est for the comparison with other formalisms. The
message-based viewpoint presented in Section 4 cap-
tures the high-level architecture of state-of-the-art
systems, particularly enterprise service bus architec-
tures. This viewpoint gives rise to our platform-
independent high-level design models; they are called
Data Type Interchange Models (DTIMs) and are de-
signed to match these modern message-based system
architectures. In Section 5 we explain how this gives
a message-based model of human interaction with the
system. In Section 8 we discuss the system view of
form-oriented analysis. In Section 7 we discuss how
this interface model allows us to define system view-
points in the ODP terminology; these viewpoints in
turn allow us to discuss important features that we
expect from an auditable information system.

2 Connectivity of Enterprise Systems

The automated communication between systems is
one of the cornerstones of an efficient IT infrastruc-
ture within or between organizations. The challenges
here are not just the different technologies used by
different organizations and the agreement on the se-
mantics of the exchanged messages. A further im-
portant issue is related to system stability. An orga-
nization participating in automated communication
wants to make sure that the use of the automated
interface does not endanger the stability of its own
system. But also within a single organization very
similar stability demands for system communication
appear, since the desire is to decouple the systems
with respect to failures so that no single event can
endanger the whole IT infrastructure.

2.1 Message-Based Middleware

An established best practice for the implementation
of data interchange between different system units
is the use of message-based middleware. In using
message-based middleware, systems can send infor-
mation asynchronously to other system parts. The
delivery can be configured to follow different qual-
ity of service (QoS) levels. A particular high-quality
service can be obtained by the use of persistent mes-
saging. A crucial element of the message-based in-
frastructure and a key difference to simple remote
method invocation is the existence of queues which
store the messages until they are retrieved by the re-
ceiver. The queues fulfill two intertwined purposes.
First they provide a buffer for bridging temporal load
peaks; of course this means that the queued requests
experience a delay in response time. Secondly they
provide a means of secure intermediate storage; in
the case of persistent messaging this is a transac-
tionally safe storage. Today, persistent messaging is
done through high-quality Enterprise Service Buses
(ESBs), as shown in Figure 1. Asynchronous mes-
saging services can be used to build synchronous re-
quest/response services on top of them. The under-
lying principle is ubiquitous in computing and also
found where synchronous services are built on top of
IP, which is itself asynchronous. We recall that the
transaction service enables consistent multi-user busi-
ness logic on shared data. Persistent messaging now
is attractive, since it makes it possible to combine in-
dependent transactional systems in a transactionally
safe manner, without creating the considerable over-
head of a distributed transactions framework. The
message-based paradigm is the foundation of our net-

work model. The consistent use of this paradigm not
only provides a simple and adequate model for spec-
ification purposes, but also ensures that the specifi-
cation is directly translatable in many current archi-
tectures, including persistent messaging and Web ser-
vices. Our message-based network paradigm is part
of the high-level programming paradigm.

2.2 Electronic Data Interchange

Message-based data interchange is used in many ma-
ture technologies. EDI is an implementation tech-
nique for business message interchange (Emmelhainz
1992). EDI allows communication with high QoS,
which can furthermore be customized. The inter-
change is traditionally on dedicated networks, so–
called value–added networks. EDI furthermore de-
fines industry-wide message types, which can be seen
as one of the most important examples of domain
models, i.e., common models for an application do-
main. A system based on EDI can easily be modeled
with form-oriented techniques, and the form-oriented
description can be seamlessly mapped to a design for
a system communicating with EDI.

2.3 Web Services

Web services (Alonso et al. 2004) are an implementa-
tion technique for message communication. They use
XML as a semistructured format (Buneman 1997) for
messages. Notations for distributed systems based on
Web services are called Web service orchestration lan-
guages such as BPEL (TC 2007). Web services use a
type system given through the XML Schema concept.
Deployed Web services are described by the Web Ser-
vice Description Language WSDL. This language can
be used for the specification of configuration informa-
tion, i.e., about the data transmission options cho-
sen. This approach is technology-dependent: BPEL
primarily describes Web service communications. A
higher degree of abstraction is needed for modeling at
the design or analysis stage.

3 The Memo Based Viewpoint

The reference model for ODP defines a viewpoint
as “a form of abstraction achieved using a selected
set of architectural concepts and structuring rules, in
order to focus on particular concerns within a sys-
tem.” (ISO/IEC 1995). We will propose our own
viewpoints, some of them are related to the enter-
prise viewpoint of ODP; each of our viewpoints gives
rise to a particular important modeling concept.

Our first viewpoint is the memo-based viewpoint
and it captures the requirements of a rigorous docu-
ment quality management as it is current best prac-
tice. The central architectural feature of this view-
point is that the system model must contain a single
space of memorandums, memos for short. In this sys-
tem view, all IT-related business activities proceed
by creating documents, namely the memos, typically
based on earlier documents. Memos are only con-
sidered created at the moment the user or the sys-
tem signs them, and after this point in time they are
immutable in a truly persistent way and remain in
the system state. Hence the memo viewpoint mod-
els archiving on an analysis level as the repository of
memos. User generated as well as relevant system
generated memos must be kept. We want to model
memos in the data model. Hence memos must be
modeled as immutable composite data objects.

In a stronger version, the fully memo based view-
point, it is established that the whole system state
can be derived from this repository of memos, and

ESB

HTTP input
adaptor

ESB
internal
Queue message

receiv. EJB

SMTP input
adaptor

SOAP input
adaptor

HTTP output
adaptor

SMTP output
adaptor

Style Sheet

message
receiv. EJB

Figure 1: The high level design expressed in DTIMs fits to Enterprise Service Bus (ESB) Architectures.

hence this repository is the system state. The clas-
sical changeable system state can then be seen as a
mere view on this repository as it would be possible
using database view technology. This state can still
be effectively updateable, but the update commands
would be stated as memos, and the definition of the
current state as a view has to be such that an inserted
update memo has the desired effect. Take a collection
of accounts as an example. The update memos could
be credit/debit memos for accounts. The table of
current balances of the accounts is a view that is de-
fined by taking the sum over all credit/debit memos
for each account; in this way the insertion of such a
memo leads to the desired effect. A more detailed
discussion of this view will be given in Section 8.

The memo-based viewpoint is not supposed to fit
to all computer applications; for example real-time
control applications are different. But it is a powerful
tool for administrative applications.

The memo-based viewpoint makes clear that im-
mutable memos are capable of maintaining a model
of the system development, because the memos refer-
ence back to earlier memos; this will be elaborated in
the Memo Flow Model.

As such, it is again an enabling viewpoint for later
process models. Memos are a precursor to messages,
but in memos there is no emphasis on them being
sent. The memo-based viewpoint is a slight alter-
ation of a message-based viewpoint: The aspect of
transporting information is not yet emphasised, and
persistence is emphasized more.

4 The Message-Based System Viewpoint

We will use memos to describe messages. Messages
are therefore persistent and kept in a repository, the
message model. For the sake of regularity, in this
viewpoint all memos are considered to be messages,
therefore it is called the message-based viewpoint.
Furthermore we assume the messages to be strongly
typed. Each model in this viewpoint is called a data
type interchange model, DTIM for short. DTIMs are
high-level design models for message-based communi-
cation. In this viewpoint we will capture the architec-
ture of state-of-the-art message-based systems. They
fit well for example to enterprise service bus architec-
tures (Luo et al. 2005), but also to similar systems
used in electronic data interchange (Dowdeswell &
Lutteroth 2005).

The core architectural feature of such systems is
that the business logic is comprised of components
that are triggered by messages. This common high

level design might be implemented with various con-
crete component technologies, such as message-driven
enterprise java beans (EJBs) or XML style sheets.
In Figure 1 two components are shown as transfor-
mations that take messages and produce again other
messages.

4.1 Unit Systems as Automata

In form-oriented analysis, distributed systems are
conceived as a net of single systems, called unit
systems. Such a unit system is a computational
automaton with a state. In an untyped view, such
an automaton is specified by a single state transition
function:

stateTransitionFunction: message × state

→ state × collectionOf(message)

In the statically typed view, the unit system
offers a set of transactions it can perform. Each
transaction has an associated message type. The
state transition function is conditional and invokes
for each message type a different transaction which
is the state transition for this message type. A
transaction takes a message and produces a set of
new messages. The transition function can now be
written as:

transactiona: messagea × state → state

× collectionOf(messagea1)

× collectionOf(messagea2)

. . .
× collectionOf(messageana

)

transactionb: messageb × state → state

× collectionOf(messageb1)

× collectionOf(messageb2)

. . .
× collectionOf(messagebnb

)

.

.

.

We can therefore represent the transactions by
their message types. We call the message type the su-
perparameter of the transaction. Each such transac-
tion may represent one deployed transformation com-
ponent from Figure 1. Message-based components
are an old type of components, known from classical
transaction monitors. They are crucially important
for a workable enterprise platform, and it was a major

checkstatus x state

state

x collectionOf(checkuse)
checkuse x state

state

x collectionOf(invoice)
x collectionOf(control)

DTIM

checkstatus

checkuse

invoice

0...1 1...1

control

0...*

transactions:

Figure 2: DTIMs fit to the typed automaton model.

drawback for the early Java enterprise platform not
to have message-driven ESBs; their later addition was
eagerly awaited by practitioners. Such message-based
components are an exact replica on the implemen-
tation level of our platform-independent concept of
transactions, and indeed such message-based compo-
nents follow the superparameter concept, in that the
message is their sole parameter and it is of course a
structured data object. As an additional side remark
one might add that these concepts bear resemblance
to the coordination language Linda (Gelernter 1985),
but in practice the central requirements for users are
nonfunctional requirements, chiefly persistence of the
messages. There is also a direct correspondence to ac-
tive database technologies: the transaction for mes-
sage m is in principle a trigger on insert on table
m, and it follows the event-condition-action pattern.
The transactional execution style used here is called
detached in active database terminology.

4.2 Data Type Interchange Models

The Data Type Interchange Models (DTIMs) that
we are going to introduce are first of all a natural
translation of the above mathematical definition into
a data model. We will use the parsimonious data
model from form-oriented analysis (Draheim & Weber
2004). The DTIM in its elementary form contains as
entity types (depicted as nodes) just such message
types that represent transactions. This means that
we depict such message types where each new instance
triggers an action, and this action may result in new
messages. The messages are immutable types.

An elementary DTIM is a directed graph with
message types as nodes. If the transaction for mes-
sage type A may send messages of type B, then the
DTIM contains a directed edge from A to B. The
connection between the mathematical notation for a
single transaction and the node in the DTIM is shown
in Figure 2. DTIMs are just data models, the nodes
are entity types and the edges are relation types be-
tween them. The direction on the edges implies an
order in time of the insertion of messages, from ear-
lier messages to later ones. Since the edges are just
relation types, DTIMs can immediately be annotated
with constraints such as multiplicities at the targets
of relation types. A 1...1 multiplicity at B for exam-
ple indicates that a message of type A always causes
a message of type B. These multiplicities are written
with three dots, since they have asynchronous seman-
tics as will be explained in Section 4.5. At the source
of each edge, a composition diamond is implied by the
above definition of transactions since every message
was produced by exactly one transaction. These di-
amonds are shown in Figure 3 to illustrate this fact,
but they will usually be omitted and assumed im-
plicitly in DTIMs. A message type can have many
ingoing edges as well, coming from all those transac-
tions that can produce such a message. This means
that the object net over the DTIM is not only cycle

check

order

payment

purchase

Figure 3: The transitions in DTIMs have implicit
composition diamonds at their source.

a

b

c

Figure 4: Subsystems in a DTIM

free but in fact it is a forest.

4.3 The Distribution Viewpoint

So far, elementary DTIMs model message-based sys-
tem architectures and view distribution as transpar-
ent, meaning that distribution is not depicted. In the
distribution viewpoint, we want to demarcate differ-
ent distributed systems.

We introduce subsystem types, depicted by dashed
boxes around message types. Each such box is a sub-
system type. Such a subsystem type can have many
instances. Each message, being an instance of a mes-
sage type, must belong to one subsystem instance.
Boxes can overlap, however, or message types can be
depicted several times, in different subsystems. For
example, in Figure 4, the subsystems a and b over-
lap and have message type c in common. This means
that a message instance of type c can be either in
subsystem a or in b, but not in both. We therefore
have the notion of a unit system type and a single
unit system of this type. Several servers that run the
same software would be modeled as several instances
of the same unit system type. If a subsystem type
is for example modeling a supply chain management
system, then each instance would model a different
company using this software and the extension (set
of all instances) of the subsystem type is the set of
all banks that use the same enterprise software. If
another part of the DTIM models a supplier and this
supplier sends a message to the supply chain system,
then we see that the DTIM does not express the inter-
connection of the system instances; rather it models
the fundamental capabilities of the software: It shows
that a supplier with a certain software can connect to
one instance of the supply chain management prod-
uct, then this supplier can in principle connect to all
systems of this make. Usually we expect that the
subsystem boundaries are boundaries for the access
to data that the actions can take in their operations.

4.4 Compositional Properties of Data Type
Interchange Models

We use for the platform-independent models pre-
sented here the model composition mechanism from

checkstatus

checkuse

invoice

0...1

0...*

resulting model

checkstatus

checkuse

invoice

0...1 1...1

control

0...*

submodel1

checkstatus

checkuse

1...1

control

0...*

submodel2

Figure 5: Model Decomposition

Figure 6: An example data type interchange diagram
showing all the notational elements

form-oriented analysis. the point of this mechanism is
that models are conceived as a set of model elements
and composition is the set union of these sets. As
a consequence, some models that contain partly the
same, partly different elements, can be composed, as
shown in figure 5.

In order to indicate that the system is producing
output to the environment, it has to have message
types which do not represent specified transactions,
but outgoing messages. These message types form
the output collection, each one called an output type.
In the following we also want to have the possibility to
explicitly define which messages can be received from
the environment; we call them input types, together
forming the input collection. Each choice of messages
from the model is valid as the input collection. By not
including a message in this collection we express that
this message does not relate to a publicly available
service of the distributed system. This is therefore a
visibility stereotype. An example showing the nota-
tional elements is shown in Figure 6.

The input collection is helpful for an analysis in
the style of dead code analysis. Transactions with su-
perparameters not reached from the input collections
can never be called. In Figure 6 the transaction order
is such an example.

The whole distributed system expressed by a
DTIM can itself be conceived as having a single in-
terface. For each input method we choose those mes-
sages from the output list which are reachable in the
directed graph. In this way, the whole system can be
considered as a single subsystem in a larger system.

In this way we can use one DTIM L as a model
subsystem in another DTIM R. This is shown in Fig-
ure 7. The relation between the two diagrams shows
that this is a compositional concept. We can form
larger diagrams, by modeling subsystems and con-
necting them with a diagram on a higher level. This
is similar to functional composition. The subsystem
can be said to be called over its interface by the higher

Figure 7: Similar to functional decomposition, a
model subsystem in one DTIM can be defined by a
whole sub-DTIM

level system. It is important to add that the seman-
tics behind this composition notion is just the con-
cept of model composition by set union that was ex-
plained earlier. Concerning the outgoing arrows of a
message type, we introduce here more general use of
DTIMs, because in this diagram, the outgoing edges
of one action do not have to be produced in the same
transaction; they can have been produced in a later
transaction that was caused by the first transaction.

4.5 Context of Multiplicities

Constraints on DTIMs such as multiplicities can be
tied to different checkpoints. For multiplicities this is
necessary to accommodate for the fact that not all the
messages produced during the operation of a system
are processed at once but in a consecutive way. To
state in intuitive terms: asynchronous messages call
for asynchronous multiplicities. We can formalize this
the following way.

A multiplicity tied to the transaction boundaries
is valid after each transaction. Such multiplicities
are depicted with two dots between upper and lower
bound. But the multiplicities given at the targets
of DTIM-edges – we call them DTIM multiplicities
– have a different meaning, and are therefore shown
with three dots. To understand the motivation we dis-
cuss the effect of a message. The message is processed
in a transaction, then the transaction may trigger new
messages, and so a message cascade is started which
is supposed to terminate. The lower DTIM multi-
plicities define conditions that must hold before the
cascade terminates, and the upper DTIM multiplici-
ties define limits for the message cascade.

5 Application to Form-Oriented Interface
Modeling

DTIMs can be used to specify interaction with a
browser. We compare here formcharts, the dedicated

user interface models of form-oriented analysis (Dra-
heim & Weber 2004), with an equivalent DTIM. The
terminal client where the dialogue according to the
formchart takes place is usually one subsystem. All
client sessions are instances of this unit system.

Within a server action modeled in a DTIM it is
possible to query a remote system and to forward the
response to the user. Take a look at the example in
Fig. 8. In this example we assume that the user per-
forms a login at a subsystem of the IT infrastructure,
but the authentication service is on a remote system.
The example shows a formchart with one server ac-
tion LoginForm. The two solutions below show two
different specifications of this formchart cutout with
DTIMs. The interface of the remote customer man-
agement determines which alternative is the right one.

All client pages are in the leftmost unit system,
the form-oriented client. The transitions from the
leftmost unit system to the unit system in the mid-
dle represent all page/server transitions in the form-
chart. The node LoginForm in the IT subsystem rep-
resents the actual message type LoginForm from the
user message model. The submitted form goes to this
transaction. The subsystem queries an external cus-
tomer management system about the authentication.
This system answers to a receiver transaction. There
are two natural variants for the interface of the au-
thentication service. In solution A it sends back one
message type containing the statement on the valid-
ity of the user request. In solution B it sends an
error message in the case of an invalid request. The
subsystem then has to offer two receivers for the re-
spective message. The transition between Login and
LoginForm is again another generalisation of the use
of DTIMs. The transition in this case takes place af-
ter the user has viewed the login form and triggered a
new page change. In this way the DTIM is even used
to model processes that include human intervention.

6 The Action Viewpoint

An often discussed phenomenon is synchronization
between message streams. Not every incoming mes-
sage must immediately lead to an action. Assume,
we need a quote and an approval in order to confirm
a travel booking. Then only if both messages are ar-
rived, an action is performed. We therefore want to
define a viewpoint that expresses this abstraction, the
action viewpoint. Actions that are performed get an
own identity, and they can result in several memos
produced. An action type is an entity type and it has
relation types to all memos that are required, and all
memos that are produced. The action viewpoint re-
sults in a bipartite action model resembling a Petri
net as shown in Figure 9. The two partitions are ac-
tions and memos. The actions themselves do not hold
data, but they help in defining a superparameter; the
action is linked to all the memos that are input to
the action, and we consider the composite of all these
memos the superparameter. The action viewpoint is
a computation-independent model (CIM). It can be
implemented with DTIMs.

Multiplicities that refer back from an action to pre-
decessor memos that must be there at the start of the
action. If for example the multiplicities are all 1..1
multiplicities, they represent a synchronisation, and
the action behaves similar to a synchronisation bar in
a Petri net.

Often, with respect to transactions, the actions
are executed detached; that means: in a new transac-
tion after the trigger conditions are met; the trigger
conditions then hold already before the action is per-
formed. In principle, one message insert can trigger
multiple actions, and these actions do not have to be

action

memo2

memo1 1..1

1..1

memo3

memo4

Figure 9: A Message Flow Model

action2

memo

0..1 action1

0..1 action2

memo

1..1

1..1

xor

action1

Figure 10: Nondeterminism in a Message Flow Model

in one transaction.

6.1 Nondeterminism and the Action View-
point

The action viewpoint is similar to coloured petri nets
since it is bipartite. In contrast to Petri nets however,
there is not necessarily a consumption of messages
by the successor messages. This becomes obvious if
we consider nondeterminism in examples. In the two
small MFMs in Figure 10, in the left picture each mes-
sage is giving rise to either action1 or action2 but not
both. In this sense the message is consumed, but only
because of the xor constraint (note here that the xor
constraint and the multiplicities are stated following
the PD model convention, not the UML convention).
That could express nondeterminism, but not neces-
sarily; this should come as no surprise, since nonde-
terminism could be often a lack of information, so if
other parts specify when each alternative will be used,
the nondeterminism disappears. This is a typical in-
stance of the fact that nondeterministic programs are
often simplifications of deterministic programs, as it
was for example used in the JSPick type system for
loops and if statements (Draheim et al. 2003).

On the right hand side however, the message may
give rise to two actions because of the multiplicities.
Having an upper multiplicity at every action reach-
able from a memo, like in Figure 10 is the usual case.
This is important to make sure that the trigger is
executed only once, without referring to a very me-
chanical operational semantics of trigger execution.
The lower multiplicity zero is necessary in many cases,
since actions are executed detached, and it is hard to
give any guarantee on when the message will be exe-
cuted. The main advantage over more sophisticated
Petri Net variants is here that we use only the most
basic core of data modeling; that is, entity types, re-
lation types and multiplicities, nothing more.

The bipartiteness in the action model is different
from the bipartiteness of a formchart: The formchart
is a further partitioning of the memos into two parti-
tions; the actions are not modeled in the form chart,
because the modeling of the actions is trivial in the
case of the form chart. This is because in the classi-
cal form-oriented model, every action is triggered by
a single message; in other words there is no synchroni-
sation going on. The actions are intermediate states
between the formchart states, thus representing tran-
sitions.

Login

Form-Oriented Client Subsystem Account Management

Authentication
Service

Receiver
Welcome

LoginForm

WelcomeLogin LoginForm

Login Authentication
Service

FailReceiver

Welcome

LoginForm

OKReceiver

flow: incorrect password

Solution A

Solution B
flow: incorrect password

Figure 8: Example DTIMs describing how the login dialogue accesses a remote authentication service

7 Viewpoints that Support Auditability

Now we are in a position to use the model obtained
so far in order to provide a high-fidelity audit track
of the user interaction. In the last section we have
established a purely message-based model for system
interaction. In this section we will present how this
model should be applied in order to make sure that
the recorded messages represent faithfully the system
interaction. Again we state this as viewpoints in the
style of ODP.

7.1 The User Memo Viewpoint

In this viewpoint, user created memos are strictly dis-
tinguished from all other, system created messages.

We extend it to the Signed User Memo Viewpoint
with the following main semantic model: Users pre-
pare and sign memos, wherein signing is understood
in a very general sense — hitting a confirm button
after explicit exhortation to check carefully counts as
signing; this will be discussed later. If a user shall
sign a memo, then the memo must contain a com-
plex information that makes sense. Hence the memos
must be semantic units that create a level of hierar-
chy in a hierarchical data model. Some memos are
irreducible units on their semantic layer; that means,
decomposition down to smaller units is not possible
without loss of meaning (while they can probably be
always composed, creating what is called a junctim).
Wherever sensitive data is involved, the practitioner
must be aware of the significance of submitting a cer-
tain report. This viewpoint clarifies that if we later
want to audit the submission of a certain primitive
value, we need to store sufficient context information;
this is the memo.

The system output viewpoint is complementary to
the user memo viewpoint. It separates out those mes-
sages that have been presented to the user (as opposed
to having been just put into a mailbox). Here, how-
ever, there are some issues in defining which informa-
tion has been shown to the user. In principle, even a
page that has to be scrolled is not an output in itself,
but only a queryable result to begin with, the query
being the scrolling option. Therefore, especially for

critical systems, we will have to define a screen out-
put viewpoint. In this viewpoint, a faithful model of
the information as it was presented to the user does
exist, and it is available for audits.

7.2 The Plain Data Memo Viewpoint

The signed user memo viewpoint requires that the in-
formation was shown to the user and recognized. This
poses interesting questions: Which formatting is per-
mitted, for instance regarding font size, color, reflow-
ing of text. How is the message identified? Which
framing is necessary? For critical information we
should avoid embellishment. Such information should
be presented as plain data. Plain data is not plain
text, it is a successor that it is similarly bare-metal,
but problem-defined, not implementation-defined as
it was the old green screen terminal. All graphical
formatting should follow strict guidelines. The use of
color must be questioned. Emphasis like bold fonts
should be only used if this follows a well known stan-
dard in the profession using this system. A user inter-
face element that contains important alerts must be
prevented from occlusion, not only from scrolling, but
from other windows, minimization etc. Occlusion-
free technologies like the generic editor in (Lutteroth
2006) can be used. There is no point in auditing the
system output on the GUI level, if there is no in-
herent guarantee that the user has actually seen the
messages that are registered in the audit trail. Infor-
mation presentation is on/off: Either information is
presented, or it is not presented. This is particularly
the perspective that a later audit will take in any
case. Plain data can be described with data types,
and an instance of the data type is sufficient to de-
scribe a presented page, since the presentation should
be standardized. Moreover, one has to be aware that
data presentation always involves the presentation of
data and metadata. It is a reasonable requirement
that a measurement value is presented with the same
label at the output, as it was presented at the in-
put. This label is part of the metadata, and in many
cases part of the type system. In form-oriented anal-
ysis, this uniform presentation is achieved by collect-
ing the metadata in a repository, the shared model.

Pages that present information as well as the forms
that are used to enter the data are specified as types
of a hierarchical type system. The form is represented
by the same type that is used to describe its presen-
tation. The plain data viewpoint would therefore re-
quire that in general the screen presentation is always
the same for the same piece of data. In principle only
the access rights change (whether a piece of data can
be read or written).

7.3 User Notification Viewpoint

in the User Notification Viewpoint we emphasize that
important events have to be presented such that their
arrival is recognized, such as critical information that
must be read in full by the user. This concept belongs
under the user memo viewpoint, since the natural idea
is that the user has to sign them off with a short,
generic I-have-read message. Furthermore the sign-
off should follow the following pattern that is of more
general relevance.

The confirm pattern is a proposal how to stan-
dardize signing and how to make it recognizable for
the user. In the confirm pattern, all binding signing
operations happen on forms that have only immutable
content and have only a confirm and an exit button.
The exit button is not a reject button, in case it is a
modal dialogue. This means, the user is not coerced
to either accept right now or lose the offer, because
this would prevent the user from doublecheck other
data in the system, or, more general, to do higher
prioritized tasks. If it is not a modal dialogue, then
there is not a necessity to require this exit semantics.
There is only one possible change the system can do
without being prompted by the user, and that is to
invalidate the offer. An additional requirement could
be that minimum ’offer valid until’ time is shown, and
the offer is only invalidated after that time. Beyond
that, the user confirm viewpoint requires a receipt for
the user, so that the user knows that his confirmation
was indeed recorded.

8 Form-Oriented Models

The system models given so far create the basis for
the modeling methodology that we call form-oriented
analysis (Draheim & Weber 2004). There it was ar-
gued that we can capture information systems in cer-
tain highly standardized models that we call normal
forms. These normal forms are different from the
database theory notion of normal forms. Our nor-
mal forms will allow us in turn to audit such systems.
They all have the term warehouse in their name to in-
dicate that they all support inserts, but no updates.
There are three normal forms that we usually con-
sider:
• The history warehouse. Every state the system

assumed at a certain point in time is kept as part
of the immutable system state. This system view
is therefore adding a time dimension to the whole
datamodel.

• The log warehouse. The log of updates is kept
as a queryable data model. First we assume that
the log is kept in addition to the current (up-
dateable) state. The log is a redo log, and this
means by definition that the information in this
log is sufficient to reconstruct the state at each
point in time. The state thus is revealed as being
a materialized view on the redo log.

• The message warehouse. In the message ware-
house, every incoming and outgoing message is
stored in the system state. This model stores the
messages as they appear at the system boundary.

The message warehouse stands in direct relation-
ship to the fully memo-based viewpoint. These nor-
mal forms enable us to give a rewording of the tenet
of the fully memo-based viewpoint. The idea behind
this viewpoint is that all three normal forms are in
fact equivalent under certain assumptions; they can
be derived from each other. Therefore we want to
make these further assumptions about the business
logic explicit. In order to assume that the log ware-
house is a view on the message warehouse, we have
to assume that the business logic makes any nonde-
terminism known to the system clients. This means
that the same input message always leads to the same
updates, or any nondeterminism taking place has to
be reported in the same transaction in some kind of
output (which could, however, be an administrative
message inbox). In order for the message warehouse
to be a view on the log warehouse, we have to assume
that the system stores all input in some manner, i.e.
it does not discard any input field. With very few
exceptions (repeated password in a password change
dialogue) this is a natural assumption anyway. On
the other hand this points out that it is a good prac-
tice for a system to keep a direct record of all input:
it is indeed a strange procedure if we shred each input
form and distribute it onto many tables of the data
model without keeping a direct record.

The normal forms are important for us because
they deliver the audit trails that we need in order
to assess the system behavior. Hippocratic databases
use in our terminology the log warehouse for audit-
ing purposes. We however will put emphasis on the
message warehouse, because this keeps track of all the
system communication and hence can be used as the
audit trail. We argue that it is moreover the more nat-
ural audit trail, because it keeps more direct evidence
of the system interaction, especially if embellishment
is kept to a minimum, which is a good practice in crit-
ical systems as we will argue later. The log warehouse
in contrast has to be interpreted and the actual user
activity has to be inferred. The message warehouse
is interesting in that it connects data modeling with
human computer interaction: all interactions become
part of the data model.

9 Discussion

The viewpoints give us a platform-independent list of
requirements. They particularly help us to use the
message-warehouse as a faithful history of the system
usage for further audits. Compliance audits enable an
after-the-fact analysis whether privacy policies have
been observed (Johnson & Grandison 2007). Our sys-
tem model keeps a log of every interaction with the
critical system. This includes also the information
about the conversational sequence in which the mes-
sages are produced. The amount of data presented,
especially if reports are involved, may become large.
However, in sensitive information systems it is reason-
able to assume that casual browsing is discouraged.
Futhermore the audit trail should describe faithfully
what was actually presented to the user (following the
screen output viewpoint). In the case of a report this
is therefore not necessarily the whole report, but only
the pages that were seen by the user. The audit pro-
cess in our proposal has access to a description what
information was actually presented to the user. In
principle, it might not be automatically possible to
reconnect the data presented to the database entries;
this is so because the intervening information system,
as a potentially universal system, can arbitrarily pro-
cess the data. In the simplest such case the label of
the data might be changed (column in the database
has an abbreviation as a name, form on the screen

presents the long name). It is therefore indeed neces-
sary to test the audit process for every type of screen
or every outgoing message that the system generates.
This is another example where the system model pre-
sented in form-oriented analysis can help: It clarifies
that a reasonable system can be built with only a fi-
nite number of screen types and is therefore amenable
to such a check. Furthermore this clarifies why the
use of a shared model as explained in the plain-data
viewpoint is crucial not only from the standpoint of
user understanding of the system, but also from the
standpoint of auditing the system. Our approach of-
fers a further possibility to enhance privacy: If the
concept of a shared model is used consistently, then
we can envisage a purely formal audit trail, in which
for one message of a part of this message only the type
from the shared model is recorded, and the sensitive
data is not replicated in the audit trail.

10 Conclusion

We need a platform-independent way to describe sys-
tems that must fulfil stringent requirements. Here we
focused on an architecture enabling auditability. We
used a message-based approach since the messages
are the building blocks of our audit trail. Message-
based architectures can be set up with a plethora of
technologies. The high level design of such systems is
however often very similar. In this paper we presented
a platform-independent model that fits well to current
state of the art architectures such as enterprise ser-
vice bus technologies. We focused on making systems
auditable, not on discussing the audit process itself.
We have argued that the audit process should have
access to the data in a way that faithfully represents
the way the data was presented as well as the way
the data was entered. At the same time this faithful
way must be on the level of the data itself, i.e. it
must live on the abstraction level of data types. In
the future, such a system model can be used to pro-
vide standardized input for audit systems based on
standard technologies such as data warehousing and
data mining.

References

Agrawal, R., Kiernan, J., Srikant, R. & Xu, Y. (2002),
Hippocratic databases, in ‘VLDB’, Morgan Kauf-
mann, pp. 143–154.

Alonso, G., Casati, F., Kuno, H. & Machiraju, V.
(2004), Web Services: Concepts, Architecture and
Applications, Springer Verlag.

Buneman, P. (1997), Semistructured data, in ‘PODS
’97: Proceedings of the 16th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems’, ACM Press, New York, NY,
USA, pp. 117–121.

Bussler, C., Fensel, D. & Maedche, A. (2002), ‘A con-
ceptual architecture for semantic web enabled web
services’, SIGMOD Rec. 31(4), 24–29.

D. Moberg and R. Drummond (2005), ‘RFC4130:
MIME-Based Secure Peer-to-Peer Business Data
Interchange Using HTTP, Applicability Statement
2 (AS2)’, RFC.

Dowdeswell, B. & Lutteroth, C. (2005), A message
exchange architecture for modern e-commerce., in
D. Draheim & G. Weber, eds, ‘TEAA’, Vol. 3888
of Lecture Notes in Computer Science, Springer,
pp. 56–70.

Draheim, D., Fehr, E. & Weber, G. (2003), JSPick
- a server pages design recovery, in ‘7th European
Conference on Software Maintenance and Reengi-
neering’, LNCS, IEEE Press.

Draheim, D. & Weber, G. (2004), Form-Oriented
Analysis - A New Methodology to Model Form-
Based Applications, Springer.

Eichelberg, M., Aden, T. & Riesmeier, J. (2005), ‘A
survey and analysis of electronic healthcare record
standards’, ACM Computing Surveys .

Emmelhainz, M. A. (1992), EDI: Total Management
Guide, John Wiley & Sons, Inc., New York, NY,
USA.

Farooqui, K., Logrippo, L. & de Meer, J. (1995), ‘The
iso reference model for open distributed process-
ing: an introduction’, Comput. Netw. ISDN Syst.
27(8), 1215–1229.

Gelernter, D. (1985), ‘Generative communication in
linda’, ACM Trans. Program. Lang. Syst. 7(1), 80–
112.

ISO/IEC (1995), ‘Open distributed processing- ref-
erence model - part 2: Foundations international
standard 10746-2 itu-t recommendation x.902’.
URL: citeseer.ist.psu.edu/3915.html

Johnson, C. & Grandison, T. (2007), ‘Compli-
ance with data protection laws using hippocratic
database active enforcement and auditing’, IBM
Systems Journal 46(2).

Kimberley, P. (1991), Electronic Data Interchange,
McGraw Hill.

LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrish-
nan, R., Xu, Y. & DeWitt, D. J. (2004), Limiting
disclosure in hippocratic databases, in M. A. Nasci-
mento, M. T. Özsu, D. Kossmann, R. J. Miller,
J. A. Blakeley & K. B. Schiefer, eds, ‘VLDB’, Mor-
gan Kaufmann, pp. 108–119.

Luo, M., Goldshlager, B. & Zhang, L.-J. L. (2005),
Designing and implementing enterprise service bus
(esb) and soa solutions, in ‘SCC ’05: Proceedings
of the 2005 IEEE International Conference on Ser-
vices Computing’, IEEE Computer Society, Wash-
ington, DC, USA, p. .14.

Lutteroth, C. (2006), AP1: A platform for model-
based software engineering, in D. Draheim &
G. Weber, eds, ‘TEAA’, Vol. 4473 of Lecture Notes
in Computer Science, Springer, pp. 270–284.

TC, O. W. S. B. P. E. L. W. (2007), ‘Web Services
Business Process Execution Language (WS-BPEL)
Version 2.0’.

Weerawarana, S., Curbera, F., Leymann, F., Storey,
T. & Ferguson, D. F. (2005), Web Services Plat-
form Architecture, Prentice Hall PTR.

Zhang, H., Weber, G., Zhu, W. & Thomborson, C.
(2006), B2b e-commerce security modeling: A case
study, in ‘Computational Intelligence and Security,
2006 International Conference on’, pp. 1549–1554.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

