
A Pluggable Architectural Model and a Formally Specified
Programming Language Independent API for an Ontological

Knowledge Base Server

Alexander Paar, Jürgen Reuter, Jaron Schaeffer
Institute for Program Structures and Data Organization

Universität Karlsruhe (TH)
Am Fasanengarten 5, 76128 Karlsruhe, Germany

alexpaar@acm.org, reuter@ipd.uka.de, schaeffer@ipd.uka.de

Abstract
Recently, ontology engineering has become ever more
important when it comes to conceptualize knowledge.
However, writing software applications that operate on
ontological knowledge still suffers from a lack of
connectivity provided by available ontology management
systems. Interfaces of ontology management systems are
either based on error prone programming language
agnostic remoting protocols or they are restricted to one
particular programming language. We implemented an
ontological Knowledge Base Server, which can expose
the functionality of arbitrary off-the-shelf ontology
management systems via arbitrary remoting protocols.
Based on XML Schema Definition, we defined a full-
fledged API for processing OWL ontologies. Client
access code can be generated automatically for virtually
any object oriented programming language. Using
Description Logics terminology, the Knowledge Base
Server API was formally specified, such that it could be
used to validate implementations based on three different
adapted ontology management systems..

Keywords: Web Ontology Language (OWL), Description
Logics, Ontology Management.

1 Introduction
In recent years, Semantic Web technologies like RDF(S)
(RDF), DAML+OIL (DAML+OIL), and their common
Description Logics (DL) (Baader, Calvanese, McGuiness,
Nardi, and Patel-Schneider 2003) based successor OWL
(OWL) have paved the way for standardized formal
conceptualizations of all kinds of knowledge. Numerous
ontologies have been developed to conceptualize a
plethora of domains of discourse (Ontology Library).
Since corporations from all sectors have braced to define
company specific knowledge using Semantic Web
technologies, ontology engineering has become a
business model for a number of companies.

As the underlying standards have matured, tools for
ontology engineering have emerged both in commercial

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Ontology Workshop (AOW
2005), Sydney, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 58. T. Meyer, M.
Orgun, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

as well as in academic fields. Knowledge acquisition
systems like Protégé (Protégé) make it particularly easy
to construct domain ontologies and to enter data.
Ontology management systems like the IBM Semantic
Network Base (SNOBASE) or HP Labs’ Jena (Jena) can
be used for loading ontologies from files and via the
Internet and for creating, modifying, querying, and
storing ontologies. Inference engines like RACER
(RACER) provide support for query answering. There is
an incessantly growing set of tools, projects, and
applications for ontology languages like OWL. However,
processing ontological information programmatically is
still laborious and error prone. From our experience, this
is caused by two main problems.

Firstly, there are no formal specifications that fully define
the semantics of ontology management APIs. This is
particularly problematic since typical interface methods
(e.g. listSubclasses, addIndividual) are
closely related to the semantics of the formal foundations
of ontology languages (e.g. Description Logics).

Secondly, existing off-the-shelf ontology management
systems only provide limited connectivity with respect to
native support for programming languages and remoting
protocols. Hence, it is particularly difficult to use
ontology management systems remotely or along with a
variety of different programming languages (i.e. in
heterogeneous distributed computing environments).
More gravely, it may be unfeasible to replace an ontology
management system by alternative products without
altering significant parts of client code.

This paper describes a pluggable architectural model for
an ontological Knowledge Base Server, which can expose
the functionality of arbitrary off-the-shelf ontology
management systems via a well defined API. XML
Schema Definition (XSD) data types and Description
Logics terminology were used to formally specify the
result sets and side effects of each method.

The architectural model of our Knowledge Base Server
facilitates adding and replacing hosts for remoting
protocols and replacing the access code for arbitrary off-
the-shelf ontology management systems dynamically at
runtime. Different implementations of the Knowledge
Base Server API can automatically be tested for
coherence to the specification using a JUnit (JUnit) based
testing framework. In order to make it particularly easy
for programmers to use the exposed API, we developed a
code generation tool, which automatically generates

client access code for object oriented programming
languages.

The ontological Knowledge Base Server along with the
code generation technologies as described in this paper is
actively used in the CHIL research project. This is why it
will be referred to as CHIL Knowledge Base Server in the
rest of this paper. The CHIL research project aims to
introduce computers into a loop of humans interacting
with humans, rather than condemning a human to operate
in a loop of computers. In order to implement unobtrusive
user friendly services, a semantic middleware is being
developed that fusions information provided by so called
perceptual components in meaningful ways. Each
perceptual component (e.g. image and speech
recognizers, body trackers, etc.) contributes to the
common domain of discourse. The Web Ontology
Language (OWL) is being used to replace previous
domain models based on particular programming
languages. The CHIL Knowledge Base Server is used as
the backend of an extensive semantic middleware
(Pandis, Soldatos, Paar, Reuter, Carras, and Polymenakos
2005).

Whereas there are several approaches that aimed to
provide programming language independent APIs for
processing ontological knowledge bases, to the best of
our knowledge, this paper presents the first work that
combines the following three features.

• The CHIL Knowledge Base server API is solely
based on XML Schema Definition primitive data
types and it is remotely accessible by virtually
every programming language capable of parsing
strings and of TCP socket communication.

• Description Logics terminology was used to
formally specify the result sets and side effects
of each interface method.

• A JUnit based testing framework was developed
for automatically validating implementations of
the CHIL Knowledge Base Server API for
coherence to the specification.

The outline of this paper is as follows. Section 2 will give
an overview of the connectivity capabilities and API
specifications of some of the most widely used ontology
management systems. Section 3 will elucidate the
architectural model and the implementation of the CHIL
Knowledge Base Server. Section 4 will describe the
design of the CHIL Knowledge Base Server API and how
this API is remotely accessible via several different ports.
Examples of formal specifications of CHIL Knowledge
Base Server interface methods and a testing framework,
which can be used to automatically validate
implementations of the CHIL Knowledge Base Server
API, will be introduced in Section 5. A conclusion and an
overview of ongoing- and future work will be given in
Section 6 followed by acknowledgements in Section 7.

2 Related Work
This section gives an overview of some widely used
ontology management systems and reasoning engines
along with a bird’s eye view of some generic interface

specifications for DL systems and related attempts to
improve the remoting capabilities of such APIs.

2.1 Off-the-shelf Ontology Management
Systems

This subsection gives an overview of existing off-the-
shelf ontology management systems that can be used to
manage RDF(S) data. In particular, the following three
dimensions are considered. Firstly, remoting capabilities
are assessed based on the number of supported remoting
protocols (e.g. Java RMI, SOAP, and CORBA).
Secondly, the extent of native support for programming
languages such as Java or C++ is considered. Thirdly, the
way how API specifications were devised is listed.

KAON 2 (KAON) is an open source ontology
management infrastructure targeted for business
applications. It ships as a Java library file. The core of the
KAON 2 Java library are two APIs for RDF and the
KAON ontology language. These APIs are represented by
Java interfaces for which several implementations exist.
Remote access is supported but limited to the Java
programming language. Moreover, additional application
server software is required, which may be impractical in
practice. KAON 2 comes with plain text specifications of
its RDF and KAON ontology language APIs.

HP Labs’ Jena 2 (Jena) provides an ontological
framework for the Java language environment. The
internal representation of ontological data in Jena is
tightly bound to the RDF model of triples. Originally
designed for DAML+OIL, but later adopted to OWL,
Jena 2 ships with a layered API. On the upper layers, it
offers a unified view onto the features of the DAML+OIL
and OWL languages, while providing access to specific
ontology language dependent constructs via specific
ontology models. Jena 2 makes it possible to configure
and to replace the underlying reasoning engine, which is
why there are only informal specifications of the exposed
Jena 2 API. Remote access is not supported.

Ont.
Mgmt.
System.

Remoting
support

Programming
Languages

API
Specification

KAON 2 Limited to Java Java Java Docs

Jena 2 No Java Java Docs

Snobase No Java Java Docs

Protégé No Java Java Docs

Sesame HTTP Java, Python Java Docs

RACER HTTP, Sockets Java, Lisp DIG

Table 1: Off-the-shelf ontology management systems

The IBM Ontology Management System (also known as
SNOBASE, for Semantic Network Ontology Base)
(SNOBASE) is a Java framework that provides a
mechanism for querying ontologies and an easy-to-use
programming interface for interacting with vocabularies
of standard ontology specification languages such as
OWL. Applications can query against the created
ontology models and the inference engine deduces the

answers and returns result sets similar to JDBC (Java
Data Base Connectivity) result sets (JDBC). In theory,
Java based remote access is possible but not available yet.

Stanford University School of Medicine’s Protégé
(Protégé) is an interactive Java application with a GUI
that focuses on creating and editing ontologies. Having
started as a project before OWL was available; it was
designed to support a variety of different ontology
languages. For ontology management Protégé focuses on
user input through the graphical user interface. It also
supports an API for plug-ins that essentially can be used
as a management API. However, there is no support for
remote access and the Protégé OWL API is specified only
by example.

Sesame (Sesame) is an open source RDF database with
support for RDF(S) inferencing and querying. It can be
deployed on top of a variety of storage systems and offers
a significant number of wrappers that facilitate HTTP
based access to the Sesame system for a number of
programming languages. However, the semantics of the
Sesame API for processing OWL data are defined by
third party extensions, which up to now only implement
fragments of the OWL specification.

RACER (RACER) is a Semantic Web inference engine
for query answering over RDF documents, and, with
respect to specified RDF(S)/DAML ontologies,
registering permanent queries. RACER implements a
Description Logics reasoning system with support for
TBoxes with generalized concept inclusions, ABoxes,
and concrete domains. It supports native access from Java
and Lisp and implements the DIG protocol (Bechhofer
2002) via XML-over-HTTP.

2.2 Knowledge Base Interface Specifications
The DIG protocol, which is a simple API for a general
Description Logics system, is one representative of a
class of interface definitions that consist of simple
mechanisms to tell and ask DL knowledge bases. These
mechanisms follow foundational aspects that have been
well-studied over time (Levesque 1984). Many previous
frame-oriented knowledge representation systems such as
the Generic Frame Protocol (Chaudhri, Farquhar, Fikes,
Karp, and Rice 1997) and OKBC (Open Knowledge Base
Connectivity) (Chaudhri, Farquhar, Fikes, and Karp
1998) also embody such distinctions.

Although well defined, the DIG specification merely
defines an XML schema that has to be used along with
HTTP as the underlying communication protocol. There
is no specific support for a particular programming
language. In contrast, the KRSS specification (Patel-
Schneider and Swartout 1993), which is an earlier
approach to define a number of tell- and ask operations
that a DL system should implement, was tightly bound to
the LISP (Graham 1995) syntax, which may not be
adequate for programmers who prefer other languages
such as Java or C#.

In addition to RACER, the FaCT reasoner (Horrocks
1998, Horrocks 1999) from the University of Manchester
is another implementation of the DIG 1.0 interface

specification, which also requires further application
server software.

Bechhofer et al. proposed a CORBA interface to the
FaCT system (Bechhofer, Horrocks, Patel-Schneider, and
Tessaris 1999). Beyond the fact that CORBA may not be
an appropriate remoting technology in today’s service
oriented- and XML based computing environments,
Bechhofer et al. note that “the CORBA IDL does not
support the definition of the kinds of recursive data types
that may be required for the representation of DL
concepts and roles”. This is why an XML based
workaround was devised to pass ontological concepts and
roles as single data items. Previous approaches to
augment DL knowledge base interfaces with remoting
capabilities include the wines- (Brachman, McGuinness,
Patel-Schneider, Resnick, and Borgida 1991) and stereo
(McGuiness, Resnick, and Isbell 1995) configuration
demonstration systems.

Common to all mentioned DL knowledge base interface
specifications is the lack of support for arbitrary state-of-
the-art remoting protocols and adequate error- and
exception handling. In particular, there are no detailed
error messages passed to clients in case invalid requests
are passed to the ontology management system.

3 CHIL Knowledge Base Server Architectural
Model

The CHIL Knowledge Base Server is an adapter written
in Java for off-the-shelf ontology management systems
that implements a formally specified and well defined
API to client components that may be written in a variety
of different programming languages. Moreover, it
supports dynamic replacements of adapted reasoners and
ontology management systems.

3.1 Technical Requirements
For the CHIL Knowledge Base Server, the following
most crucial requirements had to be met. Since the server
is targeted for a distributed system, it must be accessible
both locally and remotely through a single interface.
Since client components in the CHIL research project
may be written in a variety of different languages (e.g.
Java, C#, C++, Python, Tcl/Tk), the remote interface
must be programming language independent. Data
representation must be architecture independent, such that
mixed use of architectures with little-endian and big-
endian byte order does not lead to interoperability issues.
The CHIL Knowledge Base Server must be capable of
handling multiple, potentially competing incoming
requests in parallel without corrupting the underlying
database (i.e. thread-safe server design). Since in the
CHIL research project the Web Ontology Language
OWL is used, the CHIL Knowledge Base Server API
should be tailored specifically to OWL, rather than
providing a more verbose and potentially error-prone
interface to a more general ontology model. Finally, it
must be possible to dynamically replace adapted ontology
management systems.

3.2 Implementation
The architectural model on a class level of the CHIL
Knowledge Base Server is partly depicted in Fig. 1. It
makes extensive use of the Factory Design Pattern
(Gamma, Helm, Johnson, and Vlissides 1995) and
reflection capabilities of the Java programming language
in order to be able to plug in hosts for arbitrary remoting
protocols dynamically at runtime.

Fig. 1: Architectural model of the CHIL Knowledge
Base Server

Ontology management system adapter classes implement
the interface IOntology, which extends
IAskingABox, IAskingTBox, ITellingABox,
and ITellingTBox. Currently, about 150 methods are
defined to manipulate and query OWL ontologies.

The green coloured exemplary class OntologyJena2
would adapt the Jena 2 Semantic Web Framework. The
interface IKnowledgeBase extends the interfaces
IOntology and java.rmi.Remote to identify it as
an interface whose methods may be invoked from a non-
local Java virtual machine (for performance reasons the
Java RMI remoting port is not implemented as a distinct
KnowledgeBaseServer remoting host).

There is only one instance of the class
KnowledgeBase at a time. This instance handles all
incoming requests from Java RMI and all remoting hosts
aggregated by the KnowledgeBaseServerHost
instance.

The abstract base class KnowledgeBaseServer
defines methods to bind and unbind the respective
remoting host and to query status information. By
dynamically binding and unbinding remoting hosts at
runtime it is possible to update implementations with
newer versions.

Persistence capabilities are defined by the
IPersistence interface inheriting to
IKnowledgeBase. IPersistence implementations
can either use persistence capabilities of the underlying

ontology management system or extend these features. It
is possible to use off-the-shelf inference-, manipulation-,
and persistence features from a variety of different
systems to combine the best of several worlds.

3.3 Implementation as an Eclipse Plug-In
The front-end of the CHIL Knowledge Base Server was
implemented as an Eclipse plug-in (Eclipse). This
decision was taken to benefit from the capabilities and the
standard behaviour provided by the Eclipse Rich Client
Platform and to make it particularly easy to manage both
software application- as well as ontology projects in one
single Eclipse workspace.

Fig. 2: CHIL Knowledge Base Server Eclipse plug-in

Fig. 2 shows a screenshot of a running instance of the
CHIL Knowledge Base Server. A project type
“Knowledge Base Server” was added to Eclipse.
Ontology projects are created using a “New Knowledge
Base Wizard” as shown. This wizard searches specific
library folders for Java class files that contain
implementations of the interfaces
IKnowledgeBaseFactory and
IKnowledgeBaseServerFactory. Thus, both the
CHIL Knowledge Base Server Eclipse plug-in as well as
additional implementations of ontology management
system adapters and remoting protocol hosts can easily be
xcopy-deployed to Eclipse installations.

4 CHIL Knowledge Base Server API
The CHIL Knowledge Base Server is designed to locally
and remotely store, manage, and retrieve arbitrary
ontological data that meets OWL DL. Originally designed
for use in the highly distributed, heterogeneous
environment of the CHIL research project, special
emphasis was put on good connectivity. Moreover, Sect.
5.1 will explain – for the most part by example – how the
API was formally specified in order to make it possible to
consistently adapt off-the-shelf ontology management
systems.

4.1 Implementation
The CHIL Knowledge Base Server exposes its API via
several ports. It is natively accessible via Java and Java
RMI. A remoting technology and a code generation tool

Ontology management system

called LORA were developed to automatically generate
client code for virtually every object oriented
programming language. Finally, an XML-over-TCP
interface is provided as a port for basically every
programming language capable of parsing strings and of
TCP socket communication.

The CHIL Knowledge Base Server API was defined
using XML Schema Definition (XSD). A root element
KnowledgeBaseServerAPI contains six child nodes
IAskingABox, IAskingTBox, ITellingABox,
ITellingTBox, IPersistence, and IOntQL for
asking and telling the ABox and TBox of an OWL DL
based ontology, for persistency functionality, and for
executing an ontology query language, respectively.

As an example, Fig. 3 depicts the XML schema fragment
presenting the definition of the
listDirectSubClasses method that takes as input
the identifier of an OWL class and returns all direct
subclasses in case the input concept is properly defined in
the ontology and the query to the underlying ontology
management system succeeds. An
UndeclaredConceptException is thrown in case
the concept does not exist.

Fig. 3: XML Schema Definition based API definition

Using XSL Transformations (XSLT), Java interface code
was automatically generated from the XML Schema
Definition based method definitions. The above
listDirectSubClasses definition resulted in the
following Java code.
 interface IAskingTBox {

 public String[]
 listDirectSubClasses(String owlClass)

 throws UndeclaredConceptException;

 }

We want to emphasize that in contrast to other OWL API
approaches, the CHIL Knowledge Base Server API does
not depend on programming language specific data types.
Thus, the automatically generated Java interface is
completely remotable and can easily be exported via Java
RMI. Moreover, the entire interface definition is rather
service oriented, which does also facilitate integration
with non object oriented client programming languages.

Such kinds of clients can use the XML-over-TCP port of
the CHIL Knowledge Base Server. We decided to use
TCP/IP via the socket interface because in state-of-the-art
operating systems, local TCP/IP connections are usually
routed via loop back or similar devices that bypass most
of the TCP/IP stack; the advantage of having a single
interface for local and remote communication when using
the socket interface even for local communication
therefore fully outweighs any marginal performance
slowdown or latency imposed by socket communication.

Language independence was achieved by a two-step
approach. Firstly, all communication is performed by
transmitting and receiving XML messages over TCP/IP,
rather than building upon some language dependent RPC-
based mechanism. Data values are encoded with XSD
data types, rather than using programming language-
specific data types. While with XML messages based on
XSD data types we achieve a highly programming
language independent communication mechanism, we do
not want to put the burden of generating and parsing
XML messages on client programmers. Therefore, as a
complementary step of our approach, for a selected set of
programming languages, client libraries are provided that
handle all XML-related work. Up to now client libraries
are available for C#, C++, and Python.

The CHIL Knowledge Base Server handles multiple
incoming requests with standard socket calls (i.e. listen
on server port, accept request, rebind to different port).
Each request is rebound to a different port and delegated
to a thread of its own. In this way another connection on
the server port can be accepted while the previous one is
still being processed. In order to avoid corruption of the
managed knowledge base data by concurrent access,
without relying on the capabilities of the underlying
ontology management system, all incoming requests are
strictly serialized before they are executed on live data.

A remoting technology called LORA, which includes
code generation features, was developed in order to make
it particularly easy to reflect changes in the XSD based
CHIL Knowledge Base Server API once these changes
have been implemented in Java.

Both LORA remoting hosts as well as the XML-over-
TCP port were devised as implementations of the
KnowledgeBaseServer class (see Sect. 3.2).

4.1.1 Automatic Cross Language Client
Integration with LORA

This subsection elucidates how client code for object
oriented programming languages is automatically
generated from the CHIL Knowledge Base Server API
specification using LORA (Lightweight Object Remote
Access), a novel and easy-to-use framework for accessing
distributed objects locally or through the Internet
(Schaeffer 2005).

LORA was developed as an alternative to existing
remoting technologies in order to perfectly suit the
requirements of the CHIL Knowledge Base Server API.
In particular, we decided against the use of CORBA
(CORBA) since there is not definitive reference
implementation. Moreover, the CORBA specification has
shown several defects that led to a number of revisions of
the specification, which were not backward-compatible
with existing implementations. Furthermore, the CORBA
IDL does not cope well with recursively defined data
types.

LORA is XML-based and offers advanced features such
as automatic proxy class code generation and client
session management. With LORA, every serializable
class of an object oriented programming language can be

used as a distributed object to offer its public methods to
remote clients. In the CHIL Knowledge Base Server,
LORA makes the IKnowledgeBase interface
introduced in Sect. 3 accessible to remote clients. Up to
now, LORA was implemented for Java and .NET
programming languages. However, it does not depend on
features exclusively offered by these two platforms. Any
object oriented programming language with reflection
capabilities could be used with LORA as well.

To use a class as a distributed object, LORA requires the
class to inherit from the abstract base class
RemoteAccessible. Public class methods can be
annotated in a way, which is most suitable for the given
programming language, to make them available for
remote invocation. For example, for Java and C#
annotations and attributes are used, respectively.

As method parameters and return types, LORA supports
primitive language types and indexed or named
compositions, which allow passing complex data
structures through recursion. For each distributed class,
proxy source code can be auto-generated for supported
target languages. After transferring proxy code files to the
client, the remote object can be transparently used as if
the class was local.

5 CHIL Knowledge Base Server Testing
Framework

Based on Description Logics terminology formal
specifications were devised for methods of the CHIL
Knowledge Base Server interfaces IAskingTBox,
IAskingABox, ITellingTBox, and
ITellingABox. Using these formal specifications and
a reference ontology along with given result sets and side
effects for particular method calls, a JUnit (JUnit) based
testing framework was designed and implemented in
order to automatically test adaptations of ontology
management systems for consistency with the CHIL
Knowledge Base Server API.

5.1 A Formal Specification of the CHIL
Knowledge Base Server API

A formal specification of the CHIL Knowledge Base
Server API was devised in order to make it possible to
consistently adapt off-the-shelf ontology management
systems. In particular, ambiguities had to be resolved that
may be caused by informal specifications like “This
method returns all super classes of the given class”. In
such cases it mostly remains unclear if the result set will
contain the OWL top level concept
http://www.w3.org/2002/07/owl#Thing or
not.

With a more rigid specification, it would be clear if in an
adapter class the top level concept from the result set of
an adapted method had to be removed in case the
underlying ontology management system yields it. In
addition, a more formal specification is machine readable,
such that result sets could be validated according to the
specification.

For the formal specification of the CHIL Knowledge
Base Server API, we used the Z notation (Spivey 1992,
ISO/IEC Information Technology 2002). Since the CHIL
Knowledge Base Server API is specific to Description
Logics, we added to the Z notation the syntax and
semantics of Description Logics. Additionally, the
semantics of the ‘ ⊑ ’-sign, which in Z denotes a sub-bag
relation, was overwritten, such that it stands for the
subsumption relation as defined by Description Logics.

Following, four examples are given how methods from
the CHIL Knowledge Base Server interfaces
IAskingTBox, IAskingABox, ITellingTBox,
and ITellingABox were formally specified.

The method listDirectSubClasses(String
owlClass) from the IAskingTBox interface, which
returns all classes that are directly subsumed by the given
class owlClass, was defined as shown in Fig. 4.

The method listPropertyValues-
OfIndividual(String role, String
individual), which is defined in the IAskingABox
interface, yields all values of role R of individual IND.
The result set returned by this method was defined as
depicted in Fig. 5.

Fig. 4: Method listDirectSubClasses

Fig. 5: Method listPropertyValuesOfIndividual

The interface ITellingTBox comprises methods that
can be used to modify the set of terminological axioms,
which are defined in a knowledge base. The method
addClass(String class, String
superClass) adds a class class, which is subsumed
by the class superClass, to the ontology. Accordingly,
the axiom class ⊑ superClass where

classI ⊆ superClassI is added to the knowledge
base as shown in Fig. 6.

The method addPropertyValue-
OfIndividual(String role, String
individual, String value), which is defined in

Ξ KnowledgeBase
role? : String
individual? : String
propertyValues! : ℙ String

propertyValues! = { val.toString() | ∃ role.D
propertyValues! = { ∧ ∃ val.(individual, val) ∈ roleI
propertyValues! = { ∧ val ∈ DI }

 listPropertyValuesOfIndividual

Ξ KnowledgeBase
owlClass? : String
subClasses! : ℙ String

subClasses! = { X.toString() | X ⊑ owlClass ⋀
subClasses! = { ∀ X,Y.Y ⊑ X ⇒ X ≡ Y }

 listDirectSubClasses

the ITellingABox interface, can be used to add a role
assertion as depicted in Fig. 7.

Fig. 6: Method addClass

Fig. 7: Method addPropertyValueOfIndividual

The next subsection will elucidate how these formal
specifications were exploited by a testing framework in
order to validate particular implementations of the CHIL
Knowledge Base Server API.

5.2 A JUnit Based Testing Framework
The CHIL Knowledge Base Server explicitly supports
replacing adapted off-the-shelf ontology management
systems with different reasoning- and ontology
management engines. In order to make these changes
transparent, it is crucial to preserve the semantics of the
CHIL Knowledge Base Server API according to the
specifications as introduced in the previous subsection. A
JUnit (JUnit) based testing framework as depicted in Fig.
8 was developed in order to automate the testing of
particular adaptations.

Together with a reference ontology, the formal
specification of the CHIL Knowledge Base Server API
was taken to manually compute the result sets and side
effects of each interface method. The same kind of output
is computed by the adaptation of an off-the-shelf
ontology management system. Both results are
automatically compared with each other in order to
validate the adapter.

The JUnit based testing component was implemented as
an Eclipse plug-in. Thus, it can be managed in the same
workspace along with the CHIL Knowledge Base Server
and the adapter project.

Fig. 8: JUnit based testing framework

Current work includes the adaptations of HP Labs’ Jena
2, of the IBM Semantic Network Base, and of the KAON
2 ontology management infrastructure, which has been
completed for significant portions of the CHIL
Knowledge Base Server API.

5.3 Building the Reference Ontology and
Choosing Test Cases

The design of the reference ontology and the set of test
cases were crucial in order to validate the CHIL
Knowledge Base Server API as complete as possible.

The reference ontology had to comprise both a TBox and
an ABox. Moreover, special effort was put in covering
ontology features that are specific to SHIQ Description
Logics on which the Web Ontology Language OWL is
based (e.g. transitive roles, transitivity of the
subsumption relation and nominals).

Test cases were chosen in a similar way, such that, with a
presumably minimal number of method calls, a maximum
of reasoning- and ontology management features could be
covered. Hence, for a TBox C1 ⊑ C2 ⊑ C3 the method
listSubClasses(String owlClass) is rather
called with concept C3 and not with C2 in order to be
able to check for the indirectly subsumed subclass C1 as
well.

We would like to emphasize, that the testing framework
is not to validate the behaviour of off-the-shelf ontology
management systems against the specification of the Web
Ontology Language. Rather, adapters of such systems are
tested to comply with the specification of the CHIL
Knowledge Base Server API with respect to one given
reference ontology.

6 Conclusion and Outlook
We developed and implemented a pluggable architectural
model for an ontological knowledge base server, which
can be used to adapt off-the-shelf ontology management
systems.

Δ KnowledgeBase
role? : String
individual? : String
value? : String

role? ∈ KnowledgeBase
individual? ∈ KnowledgeBase
KnowledgeBase’ = KnowledgeBase ∪ {
KnowledgeBase’ = role(individual, value) }
KnowledgeBase’ = where (individualI, valueI)
KnowledgeBase’ = ∈ roleI

 addPropertyValueOfIndividual

Δ KnowledgeBase
class? : String
superClass? : String

class? ∈ KnowledgeBase
superClass? ∈ KnowledgeBase
KnowledgeBase’ = KnowledgeBase ∪
KnowledgeBase’ = { class ⊑ superClass }

 addClass

Reference
ontology

Formal specification of
the CHIL Knowledge
Base Server API

Result sets and
side effects
according to the
specification

Manual
processing

Result sets and side
effects as a result of the
adapted ontology
management system

Automatic
processing

=
?

Based on XML Schema Definition and on a combination
of the Z notation and formal Description Logics
terminology, a programming language independent API
was defined as a common interface to the CHIL
Knowledge Base Server. The API supports forwarding of
exception information to clients in order to provide
programmers with as much information as possible
without being restricted to one particular programming
language.

The well defined ontology management API proved to be
suitable both for developing auxiliary Eclipse plug-ins
(e.g. for ontology visualization) and for accessing the
CHIL Knowledge Base Server from a variety of
perceptual components in the CHIL research project.

A code generation tool was devised to automatically
generate client access code for object oriented
programming languages. An Eclipse front-end was
implemented in order to make it particularly easy to
manage both software- and ontology projects in one
single Eclipse workspace, which proved to be a good
experience.

A JUnit based testing framework was developed in order
to automatically validate adaptations of different ontology
management systems, which include HP Labs’ Jena 2,
KAON 2, and the IBM Semantic Network Base.

Up to now, the reference ontology and the set of test
cases had to be devised manually. Future work will
include research on to what extent test cases could be
generated automatically considering particular ontology
features.

7 Acknowledgements
This work is part of the FP6 CHIL project (FP6-506909),
partially funded by the European Commission under the
Information Society Technology (IST) program. The
authors acknowledge valuable help and contributions
from all partners of the project.

In particular, we would like to thank Jürgen Moßgraber
from Fraunhofer Gesellschaft’s IITB for contributing to
the architecture and API definition of the CHIL
Knowledge Base Server and Tobias Kluge from
Universität Karlsruhe’s Interactive Systems Lab and
Siamak Azodolmolky from Athens Information
Technology for their feedback on deployment issues.

8 References
RDF: RDF Primer, W3C Recommendation 10 Feb 2004.

http://www.w3.org/TR/rdf-primer/. Accessed on 11
Oct 2005.

DAML+OIL: DARPA's Information Exploitation Office.
http://www.daml.org/2001/03/daml+oil-index.html.
Accessed on 11 Oct 2005.

Baader, F., Calvanese, D., McGuiness, D., Nardi, D. and
Patel-Schneider, P.F. (2003): The Description Logic
Handbook. Cambridge University Press.

OWL: OWL Web Ontology Language Overview, W3C
Recommendation 10 Feb 2004.

http://www.w3.org/TR/owl-features/. Accessed on 11
Oct 2005.

Ontology Library: DAML Ontology Library, DARPA's
Information Exploitation Office.
http://www.daml.org/ontologies/. Accessed on 11 Oct
2005.

Protégé: Protégé knowledge acquisition system, Stanford
University School of Medicine.
http://protege.stanford.edu/. Accessed on 11 Oct 2005.

SNOBASE: IBM Ontology Management System, IBM
Alphaworks. http://alphaworks.ibm.com/tech/snobase.
Accessed on 11 Oct 2005.

Jena: Jena 2 - A Semantic Web Framework, HP Labs.
http://www.hpl.hp.com/semweb/jena.htm. Accessed on
11 Oct 2005.

RACER: Racer Systems GmbH & Co. KG.
http://www.racer-systems.com/. Accessed on 11 Oct
2005.

XSD: XML Schema Part 0: Primer Second Edition, W3C
Recommendation 28 Oct 2004.
http://www.w3.org/TR/xmlschema-0/. Accessed on 11
Oct 2005.

JUnit: JUnit testing framework. http://www.junit.org/.
Accessed on 11 Oct 2005.

Pandis, I., Soldatos, J., Paar, A., Reuter, J., Carras, M.
and Polymenakos, L. (2005): An Ontology-based
Framework for Dynamic Resource Management in
Ubiquitous Computing Environments. Proc.
International Conference on Embedded Software and
Systems (ICESS), Xi’an, P. R. China.

KAON: Universität Karlsruhe (TH), Germany.
http://kaon2.semanticweb.org/. Accessed on 11 Oct
2005.

JDBC: Sun Developer Network.
http://java.sun.com/products/jdbc/. Accessed on 11 Oct
2005.

Sesame: Sesame RDF database, openRDF.org.
http://www.openrdf.org/. Accessed on 11 Oct 2005.

Bechhofer, S. (2002): The DIG Description Logic
Interface: DIG/1.0. University of Manchester, Oxford
Road, Manchester M13 9PLA.

Levesque, H.J. (1984): Foundations of a functional
approach to knowledge representation. Artificial
Intelligence 23:155-212.

Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and
Rice, J. (1997): The Generic Frame Protocol 2.0.
Technical Report. Artificial Intelligence Center, SRI
International, Menlo Park, CA, USA.

Chaudhri, V.K., Farquhar, A., Fikes, R. and Karp, P.D.
(1998): Open Knowledge Base Connectivity 2.0.
Technical Report KSL-09-06. Stanford University
KSL.

Patel-Schneider, P.F. and Swartout, B. (1993):
Description-logic knowledge representation system

specification from the KRSS group of the ARPA
knowledge sharing effort. Technical report. AI
Principles Research Department, AT&T Bell
Laboratories.

Graham, P. (1995): ANSI Common LISP. Prentice Hall.

Horrocks, I. (1998): The FaCT system. Proc. of the 2nd
Int. Conf. on Analytic Tableaux and Related Methods
(TABLEAUX), Oisterwijk, The Netherlands, 1397:307-
312, Lecture Notes in Artificial Intelligence.

Horrocks, I. (1999): FaCT and iFaCT. Proc. of the 1999
Description Logic Workshop (DL’99), Linköping,
Sweden, 133-135, CEUR Electronic Workshop
Proceedings.

Bechhofer, S., Horrocks, I., Patel-Schneider, P.F. and
Tessaris, S. (1999): A proposal for a Description Logic
interface. Proc. of the 1999 Description Logic
Workshop (DL’99), Linköping, Sweden, 33-36, CEUR
Electronic Workshop Proceedings.

Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F.,
Resnick, L.A. and Borgida, A. (1991): Living with
CLASSIC: When and how to use KL-ONE-like
language. Principles of Semantic Networks 401-456,
Morgan Kaufmann, Los Altos.

McGuiness, D.L., Resnick, L.A. and Isbell, C. (1995):
Description Logic in practice: A CLASSIC application.
Proc. of the 14th Int. Joint Conf. on Artificial
Intelligence (IJCAI), Montréal, Québec, Canada, 2045-
2046.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
(1995): Design Patterns – Elements of Reusable
Object-Oriented Software 107–116, Addison-Wesley
Publishing Company, Reading, Massachusetts.

Eclipse: Eclipse Foundation. http://www.eclipse.org/.
Accessed on 11 Oct 2005.

XSLT: XSL Transformations (XSLT) Version 1.0, W3C
Recommendation 16 Nov 1999.
http://www.w3.org/TR/xslt. Accessed on 11 Oct 2005.

Schaeffer, J. (2005): LORA – Lightweight Object
Remote Access. Studienarbeit. Universität Karlsruhe
(TH), Germany.

CORBA: Object Management Group (OMG).
http://www.omg.org/. Accessed on 11 Oct 2005.

Spivey, J.M. (1992): The Z Notation: A Reference
Manual, 2nd edition. Prentice-Hall International Series
in Computer Science, Prentice Hall.

ISO/IEC Information Technology (2002): Z Formal
Specification Notation – Syntax, Type System and
Semantics. ISO/IEC 13568:2002.

