
A Relational Model of Incomplete Data without NULLs

Michael Johnson1 Stefano Kasangian2

1 Mathematics and Computer Science
Macquarie University,

Sydney, Australia 2109,
Email: mike@ics.mq.edu.au

2 Dipartimento di Matematica
Università degli Studi di Milano,

Milan, Italy,
Email: stefano.kasangian@unimi.it

Abstract

The theoretical study of the relational model of data is
ongoing and highly developed. Yet the vast majority of
real databases include incomplete data, and the incomplete
data is widely modelled using special flags called nulls.
As noted many times by Date and others, the inclusion
of nulls is not compatible with the relational model and
invalidates many of the theoretical results as well as re-
quiring a three-valued logic for query support. In category
theoretic applications to computer science, partial func-
tions are frequently modelled by using a special value ap-
proach (the partial map classifier), or by explicit reference
to the domain of definition subobject. In a former edition
of the CATS conference the first author and his colleague
Rosebrugh proved a Morita equivalence theorem showing
that for database modelling the two approaches are equiv-
alent, provided the domain of definition subobject is com-
plemented. In this paper we study the uncomplemented
domain of definition approach (which is not equivalent to
using special values). Our main results show that using
uncomplemented domains of definition to model incom-
plete data is entirely compatible with the relational model
and so leaves the well-developed theory applicable to real
databases that use this approach. Furthermore, using un-
complemented domains of definition supports in-place up-
dating, in stark contrast to special values, and, in a wide
variety of circumstances, ensures the existence of carte-
sian and op-cartesian models which, as shown in a recent
TCS article, are important for solving view update prob-
lems.

Keywords: Category theory, relational model, partiality,
database special values

1 Introduction

One of the more remarkable mismatches between theory
and practice is the distinction between the theory of the
relational data model, and real world databases. The re-
lational model (Codd 1970, 1990) has been extensively
developed (for a survey see Date (2004)), but consistently
assumes that complete data is available. In contrast real
systems are replete with missing data, typically handled

Copyright c©2010, Australian Computer Society, Inc. This paper ap-
peared at the 16th Computing: the Australasian Theory Symposium
(CATS), Brisbane, Australia. Conferences in Research and Practice in
Information Technology, Vol. 109. A. Potanin and A. Viglasi Eds. Re-
production for academic, not-for profit purposes permitted provided this
text is included.

The authors acknowledge gratefully financial support from the Aus-
tralian Research Council and the Università degli Studi di Milano, and
the helpful advice of anonymous referees.

by adding a NULL which is used in place of the missing
values. The theory of the relational model has been vital
to the development of modern database systems. But the
ubiquity of missing data, and the lack of applicability of
the theory in the presence of NULLs, leave a significant
mismatch which is often glossed over.

Missing data is difficult to handle in the relational
model. As noted many times over the years, a tuple in
which one coordinate has a missing value is not a tuple at
all, and much of the theory of relations, and particularly
any attempts to use them to calculate queries, becomes in-
valid. Nor does the NULL value resolve the issue. The
null is either a member of all types, leading to positively
absurd query results, or it is in some sense a meta-value in
which case once again our tuples are not tuples. As noted
long ago (Maier 1983) “It all makes sense if you squint a
little and don’t think too hard.”

It is probably best to view many modern database sys-
tems as theoretically well-founded on the relational model
provided that the data that they store is complete. Then,
the notion of NULL is retro-fitted for practical purposes
to deal with the unpleasant fact that in the real world we
rarely have complete data to store. The result is a beautiful
theory about reliable systems that are not built, since the
systems that are needed include the retrofitted NULLs, and
the theory then no longer applies.

The authors and others (Johnson & Rosebrugh 2007,
Kasangian, Kelly & Vighi 2000) including Diskin,
Piessens, Buneman, Phoa, and White have over a number
of years been using insights from the branches of math-
ematics known as category theory and universal algebra
to study database design and specification. Partial func-
tions may be viewed as one example of “missing data”,
and category theory uses two common techniques to deal
with partial functions (Johnstone 1977, page 28): The
representability of partial maps by a partial map classi-
fier and the explicit representation of the domain of def-
inition as a subobject of the domain of the partial func-
tion. The two approaches are generally thought of as be-
ing equivalent. Indeed, aspects of such an equivalence
are fundamental to the definition of partial map classi-
fiers. However, in universal algebra, when one approach
or the other is used for specification, there is a little studied
difference as was demonstrated in the conditions required
for a Morita equivalence theorem (Johnson & Rosebrugh
2003). The fundamental difference arises because com-
plements of the domains of definition are not basic types
— since they are not part of the specification, a simple
update can insert a new instance in the domain of defini-
tion, effectively extending the partial function. In contrast,
if complements of domains of definition were base types,
then inserting into the domain of definition would require
simultaneously deleting from its complement, and a single
natural transformation can’t do that.

In this paper we study the umcomplemented domain
of definition approach, and explore how it can be used

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

89

at specification time to design systems that will support
partial data without using NULLs. Our main results show
that such an approach is compatible with the relational
model. In particular we work through many of the funda-
mental relation algebra operations and show how they can
be calculated category theoretically in the classical case,
and we develop appropriate analogues of those operations
for models which include possibly partial attributes, that
is which support missing data.

The plan of the paper is as follows. In the next section
we review the category theoretic representations of partial
data and establish notation that we will use throughout the
remainder of the paper. Section 3 considers the treatment
of possibly partial attributes using the explicit domain of
definition approach. In Section 4 we review how compo-
sition of apparently not composable morphisms is calcu-
lated using pullbacks, and observe that this is really just
the standard composition of relations. Then in Sections 5-
8 we consider in turn each of the operations of select, re-
strict, project and join and some of their interactions treat-
ing them both for the classical case with categorical tech-
niques and for models which support missing data. Finally
Sections 9 and 10 briefly review related work and draw
conclusions including outlining some very recent findings
adding further weight to the benefits of supporting missing
data using the techniques presented here.

2 Category theoretic representation of partial data

For elementary category theoretic notions readers are re-
ferred to the usual texts (Barr & Wells 1990, Mac Lane
1971, Walters 1991) although there are now many others
too. In this paper, in many cases, a reader’s intuition from
diagrams of sets and functions will suffice, so we will not
take the space to review the formal notions. Nevertheless,
it is important to remember that all of what follows has
a fully rigorous mathematical treatment, and that the ab-
straction from functions to arbitrary categories is precisely
what is required to properly support database specifica-
tion.

Databases are frequently specified by indicating those
real world entities (for example employees, products,
equipment, etc) about which we might wish to store
known attributes (addresses, salaries; locations product-
numbers; owners, capacity; etc). In addition relationships
between entities can also be stored (an employee might be
responsible for selling particular products, an employee
might be assigned the exclusive use of particular equip-
ment, etc). The database itself might be thought of as
a collection of functions with domains given by the en-
tities about which information is stored, and codomains
being the sets of possible values for their corresponding
attributes, along with other functions which encode the
relationships between the entities. As an example con-
sider Figure 1 which can be thought of as a diagram of
sets and functions to be stored. Figure 1 is a fragment of
a flight control system database taken from the first au-
thor’s work with his colleague Rosebrugh. In this case
we have for simplicity not shown attributes which add a
number of arrows starting from each entity. For example,
a Runway has a direction, length, width, category, etc,
and each of these attributes would appear as an arrow with
domain Runway and various appropriate codomains (di-
rection measured in compass degrees, length measured in
metres, etc).

The most common kind of missing information is an
unknown attribute value. For example, if an employee
moves house without notifying us we may discover that
his or her address is no longer valid, but not have any
knowledge of the new home address to replace it with.
The great bulk of incomplete information is like this, and
can be modelled by assuming that the attribute value func-
tions are partial functions. So, we will briefly review the
two most common representations of partial functions in

ILSApproach��

is a

��

// ILS��

is a

��

Overshoot
at

&&NNNNNNNNNNN
for

vvnnnnnnnnnnnn

Approach // faf //

to

��

NavAid

at

��

VORoois aoo

Runway
at // Airport NDB

]]

is a

]]:::::::::::::::

Figure 1: Part of a flight control system

category theory.
In this paper we will frequently indicate a partial func-

tion between an entity X and an attribute A by a barred
arrow

f : X 9 A

which should be read as “f is a possibly partial function
from X to A”. Such a function can be represented us-
ing two total functions, one the function f restricted to its
domain of definition, and the other the inclusion of that
domain of definition, say X ′, into X . In other words

X 9 A

X � X ′ → A

where the horizontal line can, as usual, be read as indicat-
ing that it is equivalent to give either the data above the
line (a partial function) or the data below the line (two to-
tal functions, one of which is monic as shown).

Notice the arrow with the extra tail? This is the stan-
dard notation for a monic arrow — in terms of sets and
functions it represents an injective function. We will fre-
quently call the domain of an injective function a subob-
ject and treat the injective function as the inclusion of the
subobject.

Incidentally, a span of functions is a standard repre-
sentation for a relation. So, a possibly partial function
X 9 A is a relation X ′ from X to A which because of the
monic arrow is either 0-valued or 1-valued, i.e. for each
x ∈ X there are precisely 0 or 1 elements a ∈ A such that
xX ′a.

Briefly we outline the alternative approach. In the cat-
egory of sets the partial map classifier for functions into a
set A is the set A + 1, so

X 9 A

X → A + 1

The extra element of the set A + 1 is analagous to the
NULL used in many database systems — we replace the
partial function f into A by a total function into A + 1 by
sending all the elements of X for which f is undefined to
the ‘special’ element 1.

In the remainder of this paper we will use the explicit
subobject of definition approach, the span of two arrows
one of which is monic, to represent possibly partial func-
tions. And we repeat: despite common misconceptions,
earlier work has shown that in Morita terms, that is in
terms of the model theory and logic that they support, the
two approaches are not equivalent.

3 Database specification with partially defined at-
tributes

In a range of applications, the authors and their colleagues
(particularly Rosebrugh and Dampney) have used cate-

CRPIT Volume 109 - Theory of Computing 2010

90

gory theoretic specification of database systems to analyse
and improve real systems, often as part of industrial con-
sultancies. To systematise some of our techniques John-
son & Rosebrugh (2002) showed how to translate between
category theoretic representation techniques based on uni-
versal algebra and traditional relational database design.
Those techniques can be applied directly to convert cate-
gorical database specifications which include subobject of
definition representations of possibly partial attributes into
traditional relational databases that support missing data
but don’t use NULLs. This section will consider briefly
guidelines for incorporating possibly partial attributes and
identify issues of concern that will then be addressed in
the remainder of the paper.

Firstly, in specifying a database we can decide which
attributes will be required to be total, and which may be
permitted to be partial. To distinguish between the two
cases we simply have a single arrow X → A for attributes
A of X which are required to be total, and a span

X 9 A

X � X ′ → A

for those attributes A of X which are permitted to be par-
tial.

It is important that we have the choice. There are at-
tributes which must never include missing data. The most
obvious such attributes are keys — those values which are
used to identify distinct instances of an entity. In addi-
tion, there may be other attributes which while not for-
mally recorded as keys are for semantic reasons essential
for a particular entity. In both cases we simply specify that
the attribute is total.

On the other hand, very many, indeed most, attributes
can be partial, even if this may be thought to be undesir-
able. Usually we don’t plan how missing data might oc-
cur. We know that some missing data (for example miss-
ing key data) invalidates an entity instance’s existence in
the database, but other missing data arises simply through
exigencies in the world, and if it can be supported by the
database then it should be.

This suggests that to properly support missing data
most attributes in most databases, each of which would
normally be modelled by a single arrow, should be re-
placed by spans of arrows allowing an explicit subobject
of definition for the attribute.

Now, replacing each possibly partial arrow X 9 A
with a span X � X ′ → A might be expected to compli-
cate an entity-relationship representation enormously, and
would also spoil composition (composable X → Y 9 A
becomes X → Y � Y ′ → A, a not composable zig-zag
of arrows). Furthermore the standard relational operations
(select, project, join and so on) will need to be redefined,
if possible, to take account of partiality.

The remainder of this paper will carefully consider
each of these issues. As usual, we will conduct our anal-
ysis in category theoretic terms and the implications for
databases can then be read off via the translations of John-
son & Rosebrugh (2002).

4 Composition involving partial attributes

The first concern is easily dealt with. In all our category
theoretic specifications we use pullbacks (see for exam-
ple Barr & Wells (1990) for a definition and tutorial treat-
ment). Indeed, even specifying that an arrow is monic, as
we need to do to indicate possible partiality using an ex-
plicit subobject of definition, is done with pullbacks. We
can calculate pullbacks whenever they might be required.
In the category of sets and functions, a pullback like X ′ in
the diagram below can be calculated as the subset of the
product of X and Y ′ determined by requiring that the two
components agree at Y . It is easy to see that special cases

of pullbacks include selections as shown in Section 5, and
the intersections that are used in Sections 6–8.

Now the composition above can be calculated using
a pullback. The zig-zag of arrows identified in the last
section is the lower half of the following diagram and the
square is to be a pullback.

X ′
||

||zzzzzzzz

$$HH
HH

HH
HH

H

X

""EE
EE

EE
EE

E Y ′
zz

zzuuuuuuuuu

""EE
EE

EE
EE

Y A

Let us interpret that answer and check its validity. Why
is there an X ′ generated by the pullback and what does it
mean? Well, it only makes sense to compose the arrow
X → Y 9 A for those x ∈ X which are sent by the first
arrow to a Y value for which the partial arrow is defined.
So the result is a partial arrow X 9 A, and its domain
of definition is X ′. Furthermore, the pullback calculates
as X ′ precisely those X values for which composition can
be defined. Lastly, X ′ really is a subobject of X using the
easy result that a pullback of a monic is monic.

It’s easy to modify this calculation to calculate com-
posites of partial and total functions in the other order, or
indeed of two partial functions.

Of course many readers will recognise the above calcu-
lation as a special case of classical relational composition:
Two relations R and S are composed by forming the com-
posite relation RS with the property that xRSy if an only
if there is a z with xRz and zSy. Such compositions can
always be calculated by pullback, and in the case we’ve
looked at in detail the first relation is in fact functional,
allowing it to be represented as a single arrow rather than
a span.

From now on we will calculate compositions of zig-
zags using pullbacks without further comment.

Next we consider the relational operations and how to
calculate each one in turn in normal circumstances (when
all attributes are total) and how to modify that calculation
in order to take account of possible partiality, that is, of
possibly missing data.

5 Select with and without partiality

The basic case of a database select operation is, given an
entity E and one of its attributes E → A, along with an
attribute value a ∈ A, to identify those instances of E
which have associated attribute value a. In category theo-
retic terms the specification of a single attribute value a is
given by an arrow 1 → A from the terminal object into A.
That arrow “picks-out” a as its image in A.

The select operation is again a pullback as shown (note
that arrows out of a terminal object are automatically
monic, and that pullbacks of monics are monic, and so
the object labelled select is guaranteed to be a subobject
of E):

select // //

��

_� E

��
1 // // A

But now, how might that operation be changed if E → A
is replaced by a possibly partial attribute E 9 A? The
selection can after all only take place from among those
entity instances which have the attribute defined, so we
can calculate the selection in the presence of a possibly
partial attribute as follows.

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

91

select // //

��

_� E′

��

// // E

1 // // A

Of course, the result is a subobject of the domain of defi-
nition object E′, but since being a subobject is transitive,
or equivalently since monics compose to give monics, the
result is, as we would want, a subobject of E.

Easy extensions of the select operation using cate-
gory theoretic techniques support the restriction opera-
tions (where clauses) and these are not changed by the
introduction of possibly partial attributes so we will not
treat them in more detail.

6 Project with and without partiality

The project operator amounts to choosing to ignore, or
“project off” certain attributes. For example, an entity E
with attributes A, B, C and D might, via the project oper-
ator, yield the same entity with only attributes A, B, and
C.

E

��~~
~~

~~
~

�� ��@
@@

@@
@@

A B C

If some or all of the attributes are possibly partial a similar
result arises as shown.

E

EA

~~}}
}}

}}
}}

;;

;;xxxxxxxxx
EB

��

OO

OO

EC

""EE
EE

EE
EE

dd

ddHHHHHHHHH

A B C

As an alternative, we might choose to project onto the
attributes A and C, but ask that the projection result in a
relation in which for each instance of the entity E the two
attributes either both have defined values together, or are
not defined. In that case we use a pullback to determine
the common domain of definition of both A and C as a
subobject of E, as shown.

E

EA

}}{{
{{

{{
{{

99

99ssssssssss
EC

ee

eeKKKKKKKKKKK

""DDDDDDDD

A EA ∩ EC

99

99ssssssssssee

eeJJJJJJJJJ

C

Notice that the “intersection” subobject is a subobject, us-
ing again the transitivity of subobjects, of E, and on it
values of attributes A and C are defined by composing the
two lower leftward arrows and the two lower rightward ar-
rows respectively. Thus A and C appear as possibly partial
attributes with a common domain of definition.

It’s very important that in the presence of partiality
there are analogues of the standard relational algebra op-
erations. This section shows how, in the presence of par-
tiality, there are richer choices and there may be several
different but useful analogues available.

7 Select and project together with partiality

In the fully defined context select and project work to-
gether without any further ado.

select // //

��

E

��

//

��@
@@

@@
@@

B

1 // // A C

Notice that the composition with the inclusion of the se-
lect into the entity E ensures that the attributes B and C,
assuming that we choose to keep them in our projection,
are still attributes of the selected subobject of E.

On the other hand, writing S for the selected subob-
ject of E, if an attribute B say is possibly partial the se-
lected subobject does not necessarily have the domain of
definition of B, EB as a subobject. So, a priori B is not
inherited as a possibly partial attribute of S. Nevertheless,
calculating a second pullback, the upper diamond in the
following diagram, resolves the issue. The second pull-
back, being the intersection of the selected entities S and
the domain of definition EB of B, exhibits B as a possibly
partial attribute of S.

S ∩ EByy

yyttttttttt $$

$$JJJJJJJJJ

S %%

%%KKKKKKKKKK{{

{{www
ww

ww
ww

EB
//

yy

yytttttttttt
B

1 ##

##HHHHHHHHH E

yysssssssssss

A

Similarly if in addition our projection retains the at-
tribute C, and if C is originally a possibly partial attribute
of E, we obtain two possibly partial attributes of S as
shown.

S ∩ EB
//

{{

{{ww
ww

ww
ww

w
B

S

S ∩ EB
//

cc

ccGGGGGGGGG

C

Once again, if our intention was to project onto the
attributes B and C so as to obtain commonly defined at-
tribute values (see the last example in the previous section)
we would proceed by calculating yet another pullback in
the diagram above to find the intersection of the two in-
tersection subobjects, and that would be the common do-
main of definition for the possibly partial attribute B and
C taken together.

8 Join with and without partiality

We turn now to joins. Forming a join over the attribute
value B say can be seen to be calculated by a pullback as
shown. We have included also attributes A of the relation
R and C of the relation S to illustrate the fact that in the
classical case both A and C appear as attributes of the

CRPIT Volume 109 - Theory of Computing 2010

92

join J .

J

��~~
~~

~~
~

��?
??

??
??

?

R

��@
@@

@@
@@

��~~
~~

~~
~

S

����
��

��
�

��?
??

??
??

A B C

Now suppose that A is a possibly partial attribute of
R with RA the subobject of R giving the domain of def-
inition of the attribute. How does the operation change?
Again we can calculate the join J . Again C is an attribute
of the join automatically. But a priori A is not an attribute
of J . Instead we need to calculate a second pullback to
find JA the subobject of J on which attribute A is defined.
This exhibits A as a possibly partial attribute of the join.

JA

{{wwwwwwww !!

!!CC
CC

CC
CC

RA ##

##GG
GG

GG
GG

G

}}zz
zz

zz
zz

J

}}{{
{{

{{
{{

{

��?
??

??
??

?

A R

!!DD
DD

DD
DD

S

����
��

��
�

��?
??

??
??

B C

So we can see how to treat attributes that are inherited,
whether possibly partial attributes or total attributes, by
the join. But what if the attribute that we are joining over,
B is possibly partial, say for relation R? Then rather than
forming the pullback over R we can only calculate it over
the domain of definition RB of B as shown.

J

��?
??

??
??

?

||yyyyyyyy

R

����
��

��
��

RB

""EE
EE

EE
EE

oooo S

����
��

��
��

��?
??

??
??

?

A B C

This is in fact what we would want. As you can see,
the join has been calculated over the defined values only.
(Indeed, joining over undefined values is one of the pecu-
liarities that arises in the presence of NULLs that Date and
others have analysed in detail and railed against.)

Notice that the join still inherits attributes C, as usual,
and A via the relation R of which RB is a subobject.

9 Related work

Three approaches to partiality in database systems were
studied by Johnson & Rosebrugh (2003). Two of the ap-
proaches are those described in Section 3, one of which
corresponds to the approach taken here and another of
which corresponds to the use of nulls. The third approach
was an attempt in the style of domain theory to incorporate
missing value information in the value sets of attributes
themselves. The main theorem was a Morita equivalence
theorem for all three approaches provided that explicit
subobjects of definition are required to be complemented.

It is only in recent work exploring the dynamics of
database systems, especially in the light of view updat-
ing, that it has become apparent that subobjects of defini-
tion must not be complemented at specification time. Us-
ing such subobjects, as in this paper, is no longer Morita
equivalent to the other two approaches, and this is the first
paper to study in detail the resulting relational algebra op-
erations.

A different version of the domain theoretic approach
appeared in (Libkin 1991). Further work will be required
to determine whether the Morita equivalence theorem ap-
plies to Libkin’s formulation, or whether it too extends
beyond the NULLs approach, and if the latter, whether it is
Morita equivalent to the approach described here.

Many other authors have decried the mistreatment of
the relational model forced upon practitioners by systems
which use NULL values. Date is the foremost author in
that group, and he reviews much of the other work (Date
2004). He also has proposals for distinguishing special
values from NULL values, and for restructuring query log-
ics, but those ideas remain Morita equivalent to models
that incorporate NULL values.

Date has also suggested in an example a relational rep-
resentation (but without explicit 0 or 1-valuedness) of an
Employee 9 Dept attribute. In a sense we are here tak-
ing that suggestion seriously and pushing it to its limits.

Another approach to partiality is presented in a se-
quence of papers on restriction categories. See (Cockett &
Lack 2009) and papers cited therein. As yet that approach
has not been seriously applied to databases.

10 Conclusion

This paper has examined in detail some of the effects
of permitting partiality, represented by explicitly mod-
elling domains of definition, and hence of modelling par-
tial functions as necessarily 0- or 1-valued relations. We
have concentrated on the relation algebra operations that
don’t involve difference since these are the ones that have
been demonstrated to be of practical importance in cate-
gory theoretic modelling of real systems.

The main results that we note here are as follows. The
first two are demonstrated in detail in the paper and the
second two are recently completed findings which will be
reported in detail elsewhere.

1. Such an approach does no violence to the relational
model. In particular, select, restrict, project and join
work as expected with only minor modifications (ex-
tensions) to take account of spans

2. The new approach is mathematically well-founded
being based on elementary constructions from cate-
gory theory

3. The new approach supports “in-place updating of
(non key) attribute values” something category the-
oretic models of data were long supposed not to do

4. We have also proved that in a wide variety of cir-
cumstances cartesian and op-cartesian models (Barr
& Wells 1990) exist when partiality via domain of
definition relations is supported. This means that the
category theoretic solutions to view update problems
(Johnson & Rosebrugh 2007) are even more widely
available.

In contrast, the use of NULLs or special values is ex-
tra relational (contrary to 1) and conflicts with category
theoretic view updating (contrary to 4).

In summary: Earlier approaches to incomplete data
have generally retrofitted NULLs or other special values
when they are unavoidable even if they are contrary to
the data model’s theoretical foundations. Instead we’ve
adopted the slogan

Proc. 16th Computing: The Australasian Theory Symposium (CATS 2010), Brisbane, Australia

93

If it’s not a key, an attribute should be allowed
to be partial unless there is a special semantic
reason to require it to be total

and explained how to support that within a relational
framework.

References

Barr, Michael & Wells, Charles (1990), Category theory
for computing science, Prentice Hall.

Cockett, J.R.B. & Lack, S. (2009), ‘Restriction categories
III: colimits, partial limits and extensivity’, Mathemati-
cal Structures in Computer Science, to appear.

Codd, E.F. (1970), ‘A relational model of data for
large shared data banks’, Communications of the ACM
13(6), 377–387.

Codd, E.F. (1990), The relational model for database
management version 2, Addison-Wesley.

Date, C.J. (2004), An introduction to database systems,
Addison-Wesley.

Johnson, Michael & Rosebrugh, Robert (2002), ‘Sketch
Data Models, Relational Schema and Data Specifica-
tions’, ENTCS 61, 1–13.

Johnson, Michael & Rosebrugh, Robert (2003), ‘Three
approaches to partiality in the sketch data model’,
ENTCS 78, 1–18.

Johnson, Michael & Rosebrugh, Robert (2007), ‘Fibra-
tions and Universal View Updatability’, Theoretical
Computer Science 388, 109–129.

Kasangian, Stefano, Kelly, G.M. & Vighi, Veronica
(2000), ‘A bicategorical approach to information flow
and security’, Rendiconti di Circolo Matematico di
Palermo 64, 99–122.

Johnstone, P.T. (1977), Topos theory, Academic Press.

Libkin, L. (1991), ‘A relational algebra for complex ob-
jects based on partial information’, Springer LNCS
495, 29–43.

Mac Lane, Saunders (1971), Categories for the working
mathematician, Springer.

Maier, D. (1983), The theory of relational databases,
Computer Science Press.

Walters, R.F.C. (1991), Categories and computer science,
Cambridge University Press.

CRPIT Volume 109 - Theory of Computing 2010

94

