
After the Gold Rush: Toward Sustainable Scholarship in Computing

Raymond Lister
Faculty of Information Technology
University of Technology, Sydney

Australia
raymond@it.uts.edu.au

Abstract1
In just thirty years, we have gone from punched cards to
Second Life. But, as the American National Science
Foundation (NSF) recently noted, “undergraduate
computing education today often looks much as it did
several decades ago” (NSF, 2006). Consequently, today’s
“Nintendo Generation” have voted with their feet. We
bore them. The contrast between the changes wrought via
computer research over the last 30 years, and the failure
of computing education to adapt to those changes, is
because computing academics lead a double life. In our
research lives we see ourselves as part of a community
that reaches beyond our own university. We read
literature, we attend conferences, we publish, and the
cycle repeats, with community members building upon
each other’s work. But in our teaching lives we rarely
discuss teaching beyond our own university, we are not
guided by any teaching literature; instead we simply
follow our instincts.
Academics in computing, or in any other discipline, can
approach their teaching as research into how novices
become experts. Several recent multi-institutional
research collaborations have studied the development of
novice programmers. This paper describes some of the
results from those collaborations.
The separation of our teaching and research lives
diminishes not just our teaching but also our research.
The modern practice of stripping away all ‘distractions’
to maximize research output is like the practice of
stripping away rainforest to grow beef ─ both practices
appear to work, for a little while, but not indefinitely.
Twenty-first century academia needs to bring teaching
and research together, to form a scholarship of computing
that is an integrated, sustainable, ecological whole.
Keywords: discipline-based education research,
scholarship of teaching and learning, action research.

1 Introduction
The University of Al-Karaouine, Morocco, has existed
for over one thousand years. The University of Bologna,
Italy, has been granting degrees for over 900 years.
Australia has universities that are over 150 years old, and
New Zealand’s Otago University is almost 140 years old.
1 Copyright © 2008, Australian Computer Society, Inc.
This paper appeared at the Tenth Australasian Computing
Education Conference (ACE2008), Wollongong,
Australia, January 2008. Conferences in Research and
Practice in Information Technology, Vol. 78. Simon and
Margaret Hamilton, Eds. Reproduction for academic, not-
for-profit purposes permitted provided this text is
included.

Universities are among the oldest continuously operating
secular institutions in our societies; older than most
democratic nations.
A sceptical reader might argue that, while the name is the
same, today’s universities are profoundly different from
the dark-age institutions that perpetuated Aristotle’s
physics. But even if we accept such an argument,
universities remain among our oldest institutions. The
modern conception of enquiry-based universities has its
origins in Wilhelm von Humboldt (1767–1835) and the
associated changes to the nineteenth century German
university system. He saw the role of pre-university
education as being to present “closed and settled bodies
of knowledge” whereas universities were to:

“… conceive of science and scholarship as
dealing with ultimately inexhaustible tasks… an
unceasing process of enquiry … [where] … the
teacher does not exist for the sake of the student:
both teacher and student have their justification in
the common pursuit of knowledge”

 (as described in Clark, 1997).
Even if we accept von Humboldt as marking the
beginning of universities as we know them, the primacy
of research in universities is an even more recent
phenomenon. The graduate school only emerged in the
last quarter of the nineteenth century (Clark, 1997) as did
the use of the very word ‘research’:

The term [research] was first used in England in
the 1870s by reformers who wished to make
Cambridge and Oxford “not only a place of
teaching, but a place of learning” and it was later
introduced to American higher education in 1906
by Daniel Coit Gilman. (Boyer , 1990, Page 15)

Prior to World War II, the funding of research in United
States universities was not considered a responsibility of
the federal government, and it was largely funded by
private sources and charities. In 1941, to help with the
war effort, universities were mobilized via the creation of
the Office of Scientific Research and Development2. The
National Science Foundation, which today is a source of
enormous research funding, did not come into existence
until 1951. In 1958, as a direct result of the shock the
United States felt from the launch of Sputnik, Congress
passed the National Education Defence Act which funded
150,000 new PhDs over the subsequent ten years
(Dickson, 2001, p. 227). University research had become
big business.
2 The head of this organisation was Vannevar Bush, best
known to computing academics today for ‘memex’, short
for ‘memory extender’, his pre-computer vision of the
World Wide Web (Bush, 1945).

As the post-war research money flowed, a new academic
culture grew in which research became the most highly
regarded activity within universities ─ possibly the only
activity that was highly regarded. This change in
American university priorities was reflected in other
countries. If the argument is made that universities of
one thousand years ago are the same in name only to
universities of today, then it also needs to be
acknowledged that the post-World-War-II universities are
a very new stage ─ and possibly an unsustainable stage ─
in the long evolution of university culture.

1.1 The Boom and Bust of Future Eating
Within the ‘green’ movement, the term ‘future eater’
describes a scenario where people over-consume a
potentially renewable resource, the resource is lost, and
then the people suffer the consequences (Flannery, 1994).
I see a pattern of future-eating in the rise and fall of
academic disciplines since World War II:
• Pre-Discipline: A discipline begins as part of another

discipline. For example, computing emerged from
mathematics and electronic engineering.

• Early Boom Discipline: Enrolment numbers grow to
the point where the emerging discipline can sustain an
undergraduate curriculum that spans the 3-4 years of
an undergraduate degree, either as a major in a more
general degree or as a degree in its own right.
Universities formally recognize the discipline by
creating departments and schools devoted to the
discipline. The 1970s were the early-boom years of
computing.

• Late Boom Discipline: Some students in the
undergraduate programme begin to enrol in research
degrees, resulting in a large increase in research
students. Academics become more focused on their
research students than on their undergraduate students,
and undergraduate education is increasingly seen as a
vehicle to filter for, and prepare, research students.
Also, less consciously, academics drift into teaching
styles aimed at students who share the academic
mindset, which is a small minority of the students.
These two forms of disengagement with the bulk of
undergraduate students, combined with the burden of
large student numbers, leads to poor teaching and
widespread student dissatisfaction. This situation can
persist for many years, as prospective undergraduates
do not see an alternative to studying that discipline.
The situation may persist so long that the academics
within the discipline come to see it as the natural
equilibrium condition, but in fact the discipline is
future-eating. In the second half of the twentieth
century, physics and English literature were two
disciplines that underwent such booms. The 1980s and
1990s were the late-boom years of computing.

• Bust Discipline: Prospective undergraduates are
attracted to a new early-boom discipline. Enrolment
numbers plummet, followed quickly by school and
departmental budgets. For example, prospective
physics students were drawn to study computing, and
prospective English literature students preferred media
studies or communications. Just after the turn of the
century, computing became a bust discipline.

From the perspective of a university as a whole, the
movement of student numbers from one discipline to
another discipline is not of vital importance, provided the
overall student numbers at the university stay about the
same. Today’s university operates like a mining
company. It exploits the boom discipline until the
resource is exhausted, then moves on to the next early
boom discipline, leaving the natives of the bust discipline
to cope with a degraded environment. To academics
inside a discipline, the bust of a discipline can have a
profound effect on their academic careers, perhaps even
ending their careers. Only academics native to a
discipline have a direct interest in the long term
sustainability of that discipline.
As the twenty-first century progresses and the world
comes to grips with global warming, the short-term
industrial mindset of the twentieth century will be
replaced with a more environmentally sensitive mindset.
In that twenty-first century mindset, the developed
world’s voracious consumption of resources since World
War II, and the social institutions it supported, may be
seen as an ephemeral and unhealthy period in human
history. If that proves to be the case, then the ephemeral
and unhealthy post-World War II priorities of universities
will be re-examined, and the relationship between
teaching and research will be reconsidered.
Even if it were possible to reverse the trends since World
War II and go back to a more peaceful, pastoral,
pedagogically oriented academy (and it probably isn’t
possible), I do not advocate turning back that clock.
Instead, in this paper, I will advocate that we adopt a new
way of thinking about the relationship between teaching
and research. As Rowland (2000) expressed it, my aim in
this paper is not so much to “regain what has been lost –
the project of nostalgia – as to write a new story”(p. 3) I
believe that a new story has its basis in two things that
have emerged since World War II. The first of these is
the concept of ecological sustainability. The second is the
development of educational psychology, in forms that can
be understood and applied by an academic in any
discipline.
But before I can write the new story, I must set the scene
by reviewing the old story. In the next three sections I
will outline three different conceptions of teaching that
are popular today. I will then present an emerging fourth
conception of teaching, which has its basis in the ethos of
postgraduate research. This new conception does not
replace the earlier conceptions. Instead, it completes a set
of conceptions that together provide an ecologically
sustainable future for computing.

2 Folk Pedagogues I: The Single Institution
When I was a child, my mother was convinced that apple
cider vinegar had medicinal powers. Perhaps she was
right, as not all ‘folk medicines’ are without merit. For
example, willow bark has been used for centuries as a
medicine, and it contains salicin, the active ingredient of
aspirin. Folk medicine has been defined thus:

Traditional medicine as practiced by non-
professional healers or embodied in local custom
or lore… http://medical- dictionary.

thefreedictionary.com/folk+medicine

If we replace ‘medicine’ with ‘pedagogy’ and ‘healers’
with ‘teachers’ then the above quote becomes a workable
definition of folk pedagogy:

Traditional pedagogy as practiced by non-
professional teachers or embodied in local custom
or lore…

The following description of folk medicine has been
edited to provide a further description of folk pedagogy:

Folk medicine [pedagogy] … is a category of
informal knowledge distinct from “scientific
medicine [pedagogy]” … is usually unwritten and
transmitted orally ... [and] … may be diffusely
known by many adults [teachers] … [Folk
medicine/pedagogy is] … not necessarily
integrated into a coherent system, and may be
contradictory. Folk medicine [pedagogy] is
sometimes associated with quackery … [but] … it
may also preserve important knowledge and
cultural tradition from the past.

http://www.windwalkergifts.com/
page/page/4185022.htm

Bruner (1996) invoked folk pedagogy to describe our
“intuitive theories about how other minds work” and that
these intuitive theories “badly want some deconstructing
if their implications are to be appreciated”.

2.1 I was a Teenage Folk Pedagogue
Like most computing academics, I began my teaching
career as a folk pedagogue. My approach to teaching was
a mix of an oral tradition handed down by more
experienced colleagues and my own intuitions about what
would help the students, which was often a reflection of
what had worked for me when I was a student.
Thomas Gray, an eighteenth century British poet, wrote
“Where ignorance is bliss, ‘Tis folly to be wise”, and I
was indeed blissfully ignorant for several years. My class
survey results were good, and I was nominated for a
university teaching award. I thought I was a good teacher.
As Brookfield (1995, pp. 1-2) expressed it, I was yet
another of those academics who “teach innocently” and
believe that their pedagogical assumptions are
“objectively valid renderings of reality”.
There were two factors that disturbed my bliss. The first
was the high failure rates in my class. I taught first year
programming, and my failure rates were routinely around
30%, sometimes much higher. In one unforgettable
semester, I failed two thirds of the class. I was troubled
by these failure rates, but I was able to rationalize the
problem by blaming the students ─ their innate ability,
their high school preparation and their commitment.
The second disturbance to my bliss was impossible to
ignore. First year programming is a politically sensitive
area in which to teach, as you must contend not only with
your students but also with an intimidating second
audience – your colleagues who teach the students in
subsequent semesters. Just as I blamed high school
teachers for my failure rates, my colleagues blamed me
for their teaching problems. In most universities, the
academics who teach introductory computing
programming are placed under enormous (if well
intentioned) pressure by their colleagues. As surely as

farmers complain about the weather, computing
academics will complain about the programming abilities
of students.
I understand why many colleagues who teach upper year
electives remain blissful folk pedagogues ─ as long as
their students aren’t complaining, nobody really knows
how well those colleagues are teaching. Had I not taught
first year programming, I might also have remained a
blissful folk pedagogue to this day.

2.2 The Yoda Retort
The most frustrating forms of intimidation from
colleagues are those prefaced with, “I’ve been teaching
for N years, and …” where N≥10, usually much larger
than 10. I am reminded of a line spoken by Yoda in The
Empire Strikes Back. Annoyed when Luke Skywalker
questions his judgement, Yoda begins his retort “For
eight hundred years have I trained Jedi …” To a folk
pedagogue, the primary source of knowledge about
teaching comes from direct experience of teaching, and
therefore the longer someone has been teaching the more
they know about teaching. For someone who has been
teaching for N<10 years, there is no defence against
comments prefaced in this way. Whether it is intentional
or not, academics who preface a statement this way are
denying legitimacy to the views of their junior
colleagues. It is a statement that can only end a
discussion.
Justifying a teaching position by citing the number of
years that one has been teaching highlights the double life
of academics ─ our teaching lives and our research lives.
In our research lives, we never justify our position by
citing the number of years that we have been researchers.
To do so would invite ridicule. Consider your own
reactions to the following two assertions:
• “I have been teaching programming for 30 years, and I

tell you students must learn procedural programming
before they learn object-oriented programming”.

• “I have been researching cosmology for 30 years, and I
tell you the steady state theory is right”.

2.3 “When I was a student …”
For folk pedagogues, their own undergraduate experience
is their second source of knowledge, and so another
common folk-pedagogic preface is “When I was a student
…” In my first few years of teaching I drew heavily from
memories of my own student days. I copied those
teaching techniques my own teachers had used that had
worked well on me, and (more commonly) I eschewed
those teaching techniques that had not worked for me.
It is legitimate for academics to draw upon their own
student experience, but academics should do so with
caution. In our undergraduate classes, we future
academics were the exceptions to the general rule. When
I was a first year undergraduate (almost exactly 30 years
ago at the time this paper appeared), I was one of 500
students in my computing class. To the best of my
knowledge, I am one of only two students in that
undergraduate class who went on to join the academy. It
does not follow that what worked well for the two future
academics worked well for the other 498 students.

2.4 Denial of a Pedagogic Discourse
The problem with folk pedagogy is not that it inevitably
leads to poor teaching. Being a folk pedagogue does not
mean that an individual is a bad teacher. On the contrary,
and as Kreber (2002, p. 159) expressed it succinctly,
“excellent teachers need not be scholars of teaching”.
The problem with folk pedagogy lies at the collective
level, not the individual level. A culture of folk pedagogy
lacks a mechanism for genuine discourse.

2.4.1 Discourse When We Agree
Without a mechanism for discourse we cannot build upon
each other’s work. Again, the contradiction is apparent in
the double life of academics (i.e. our teaching lives and
our research lives). Newton moved physics forward
because he “stood on the shoulders of giants”. In our
research lives, we publish our work in the hope that other
researchers will build upon it. Thus, the research cycle
continues and advances indefinitely, with community
members building upon each other’s work. In contrast,
the folk pedagogue is doomed to reinvent the wheel. Bain
(2004, p. 4) illustrated this problem eloquently, when he
wrote about the untimely death of a particularly gifted
teacher:

His colleagues eulogized him, his students
remembered his classes, and perhaps a few of
them who became teachers carried some pieces of
his talent into their own careers. But for the most
part his library of teaching talents and practices
burned to the ground when he died.

2.4.2 Discourse When We Disagree
The lack of a mechanism for discourse is an even greater
problem when colleagues disagree. Imagine two folk
pedagogues, both with equal years of experience, who
disagree over some teaching issue ─ how can they
resolve their disagreement? They might (and frequently
do) regale each other with colourful stories from their
respective undergraduate days, but there is no reason why
an academic would alter an opinion because of another
academic’s nostalgic (and possibly romantic) account of
their undergraduate experience.
Where there cannot be a resolution of pedagogic
disagreement through discourse, office politics will fill
the vacuum. In a survey of 31 academics from 19
different computing departments and schools across
Australasia, Gruba et al. (2004) found that the dominant
driving factor in curriculum change was “influential or
outspoken individuals”. In the post-World-War-II
academy that promotes staff on the basis of research and
not teaching, it does not follow that the most influential
or outspoken individuals have greater pedagogical
insight.
In response to computing becoming a bust-discipline,
many computing degrees have been redesigned. My
concern is that most of that redesign has been driven by
the intuitions of influential and outspoken folk
pedagogues. Consequently, under a veneer of change,
largely changes to content, there remain the same old
tired pedagogies.

2.4.3 The Silence of Folk Pedagogy
In the previous section I asked (rhetorically) how two
folk pedagogues, with equal experience, would resolve a
pedagogic disagreement. Most experienced folk
pedagogues eventually realize (as I concluded above) that
it is futile to attempt to change the minds of fellow folk
pedagogues. From that realization emerges a culture of
silence. A cynical reader might invoke George Bernard
Shaw, who wrote that professions “are all conspiracies
against the laity” (Shaw, 1906). In fact, a longer extract
from that work by Shaw is more illuminating. Shaw was
primarily concerned with the medical profession, but
(continuing the medical analogy from earlier) his thinking
also applies to folk pedagogy:

… no doctor dare accuse another of malpractice.
He is not sure enough of his own opinion to ruin
another man by it. He knows that if such conduct
were tolerated in his profession no doctor’s
livelihood or reputation would be worth a year’s
purchase. I do not blame him: I would do the same
myself. But the effect of this state of things is to
make the medical profession a conspiracy to hide
its own shortcomings. No doubt the same may be
said of all professions. They are all conspiracies
against the laity;

Shaw’s observations are less true of medicine today,
given the contemporary practice of evidence-based
medicine, which applies “more uniformly the standards
of evidence gained from the scientific method”
(Wikipedia, “Evidence-based Medicine”) … by using
“the best available external clinical evidence from
systematic research” (American College of Cardiology).
However, Shaw’s observations remain applicable to folk
pedagogy, which does not admit any form of external
evidence.

2.5 Evidence
The key to all scholarly discourse is evidence. To be
more precise, the key to scholarly discourse is what
scholars accept as legitimate forms of evidence. As
Rowland (2000) explained:

The concept of evidence is arguably the most
fundamental concept in all disciplinary enquiry.
As the philosopher Jeremy Bentham pointed out,
‘the field of evidence is no other than the field of
knowledge itself’. (p. 93)

In the epistemology of the folk pedagogue, there does not
exist external evidence; there is just introspection. But if
there is to be a non-political resolution to pedagogic
disagreement, then some form of external evidence is
necessary.
After having taught first year programming for about five
years, unable to defend myself by invoking N>10 years
of teaching, I commenced a journey, like a latter day
Marco Polo, to find what I and others would accept as
evidence of good teaching. The journey would take me to
three more places, each described in the next three
sections, and each with its own conception of legitimate
evidence.

3 Folk Pedagogues II: Marco Polo Papers
Valentine (2004) was the first to use an exploration
analogy to describe a certain type of pedagogical
adventure in computing education. According to
Valentine, in the computing education literature a ‘Marco
Polo’ or ‘flag planting’ paper can be summarized as “I
went there and I saw this” or “We tried this and we think
it is good”. He explained that the authors of such papers:

… describe how their institution has tried a new
curriculum, adopted a new language or put up a
new course. The reasoning is defined, the
component parts are explained, and then (and this
is the giveaway for this category) a conclusion is
drawn like “Overall, I believe the [topic] has been
a big success.” or “Students seemed to really
enjoy the new [topic]”.

Valentine went on to make the following comment about
the usefulness of Marco Polo papers:

Marco Polo presentations serve an important
function: we are a community of educators and
sharing our successes (and failures) enriches the
whole community. Yet, it seems that with just a
little more effort at … [providing evidence] … we
could wring a great deal more benefit from the
exercise.

In the absence of evidence, there is nothing in a Marco
Polo paper that can persuade the sceptical reader. Readers
of Marco Polo papers can only evaluate the paper against
their own teaching experiences and intuitions ─ if the
reader is sceptical of the paper’s claims, then the reader
can safely ignore a Marco Polo paper (e.g. “It may work
with students at that university, but it won’t work with my
students.”). A Marco Polo paper is folk pedagogy
committed to paper.
The potential danger of Marco Polo papers is that they are
‘cargo cult research’ (Wikipedia, “Cargo Cult”). That is,
the ideas expressed in a Marco Polo paper have the
superficial appearance of being research, but the absence
of evidence in such a paper means it is not research.
However, if a reader finds a Marco Polo paper to be
consistent with his/her own folk pedagogy, the danger is
that he/she will then cite the paper to colleagues as if it is
research evidence. As Mark Twain is purported to have
quipped, “What gets us into trouble is not what we don’t
know, it’s what we know for sure that just ain’t so.”
Valentine found that just over a quarter of CS1/CS2
papers in recent SIGCSE conferences were Marco Polo
papers. However, Valentine’s classification system
probably gives an optimistic impression of the state of the
SIGCSE literature, as he does not include as Marco Polo
papers other forms of innovation that are also
unaccompanied by formal evidence.
Simon (2007) categorized papers from recent ACE and
NACCQ conferences, in a way similar to Valentine.
However, Simon’s categorization included a category of
paper, ‘report’, that included Marco Polo papers and also
any paper that describes “something that has been done,
perhaps with a simple survey of student satisfaction”.
Simon found that 55% of all recent ACE/NACCQ papers
were such reports. From his re-analysis of Valentine’s

results, Simon concluded that 69% of all CS1/CS2 papers
at recent SIGCSE conferences are reports.
In his Ph.D. thesis, Randolph (2007) reviewed a sample
of computing education articles published in various
conferences and journals between 2000 and 2005. Of the
papers that dealt with human participants, Randolph
found that 40% provided “anecdotal evidence”, a
classification that appears to correspond to Valentine’s
‘Marco Polo’ paper (see page 154 of Randolph’s thesis).

3.1.1 Hypothesis Generation vs. Confirmation
Randolph (2007) makes the useful distinction between
hypothesis generation and hypothesis confirmation:

… anecdotal experience has a role in the research
process – it has a role in hypothesis generation.
But … there are major problems to using informal
anecdotal experience as the sole means of
hypothesis confirmation.

(Page 136)
… what computer science educators have so far
been great at is generating a large number of
informed research hypotheses, based on anecdotal
experience or on poorly designed investigations.
However, they have not systematically tested these
hypotheses. This leaves computer science
education at a crossroads. To the crossroads
computer science education researchers bring a
proliferation of well-informed hypotheses. What
will happen to these hypotheses remains to be
seen. One option is that these informed hypotheses
will over time, through repeated exposure [via
Marco Polo papers, reports, and anecdotal
evidence] come to be widely accepted as truths
although having never been empirically verified.
That is, they will become folk conclusions.

(Page 176)
… it makes sense to shift the balance from one that
emphasizes anecdotal evidence and hypothesis
generation to one that emphasizes rigorous
methods and hypothesis confirmation.

(Page 177)
Once I had realized that Marco Polo papers are about
hypothesis generation but not hypothesis confirmation, I
recommenced my search for beauty and truth. Eventually
I came to another fork in the road ─ was I searching for
hypotheses that had already been confirmed by other
people’s research, or for rigorous research methods with
which I would confirm or deny my own hypotheses? A
discussion of each of these two forks comprises the next
two sections of this paper.

4 Students of Teaching I: The Undergraduate
Model

As cited in the introduction of this paper, Humboldt saw
the role of pre-university teachers as to present “closed
and settled bodies of knowledge”, whereas universities
were to engage in an education process based on enquiry.
Since Humboldt’s day, the vast growth in knowledge has
resulted in enquiry-based education becoming more the
domain of the postgraduate research degree, while the
undergraduate degree has become more focused (not

exclusively) on the teaching of relatively closed and
settled bodies of knowledge.
After realizing that Marco Polo papers did not provide the
evidence for which I was looking, I decided to become a
student again ─ a student of teaching. However, was I to
be (metaphorically speaking) an undergraduate student or
a postgraduate student? That is, should I be seeking
authorities who could teach me a “closed and settled
body of knowledge”, or should I engage in an education
process based on enquiry?
Every Australian university has, under a variety of names,
an organizational unit containing people charged with
improving the standard of teaching and learning in that
university. I shall refer to such groups as the ‘Teaching
and Learning group’ (T&L group) and to those groups
collectively across Australasia as the T&L community. I
shall refer to those who teach computing or any other
discipline (e.g. physics, English literature) as ‘discipline-
based academics’.

Because discipline-based academics have not provided
the second voice required for a conversational discourse
on teaching with the T&L community, the ‘discourse’ has
become a one-way transmission of information. T&L
groups run staff development programs, where they are
the authorities who teach, by a transmission model, their
“closed and settled body of knowledge” ─ discipline-
based academics are taught as if they are undergraduates.

The T&L community have, through the inactivity of
discipline-based academics, become the unquestioned
authorities on teaching and learning. This is unfortunate,
because while they know much that is of value, their
recommendations on teaching have weaknesses. In fact,
the strength of the T&L community is also their weakness
─ they span disciplines. This is their strength because
they are witness to teaching innovation across all
disciplines, whereas discipline-based academics are
limited to studying innovation in only one discipline.
This strength is also their weakness as their ontology
emphasizes aspects of teaching that are generic, and thus
transportable across disciplinary boundaries. As
Rowland (2000, p. 120) expressed it:

… a focus on generic approaches to teaching, and
theories of learning, can lead to a separation of
teaching method and subject matter. Academics
or educational developers come to be seen as
experts in how to teach but ignorant about what to
teach … like experts of love who have no lover.

Bowden and Marton (1998, p. 143) expressed a similar
sentiment:

… being good at teaching means that you are
good at teaching something. You cannot teach in
general and the way in which you deal with the
particular content you are dealing with is what
matters.

Discipline-based academics treasure the knowledge they
have of their discipline. Within a discipline, much of the
pedagogic discourse is about ways of structuring the
knowledge to make it easier for students to understand
that knowledge. In contrast, the T&L community tend to

play down the importance of discipline-specific
knowledge and how to structure it.

The T&L community are a strong proponent of a teaching
approach known as constructivism. As a philosophical
concept, constructivism has a clear meaning. However, it
is not well defined as pedagogy. Different advocates of
constructivism-as-pedagogy use ‘constructivism’ to mean
loosely related ideas. Kirschner, Sweller and Clark (2006)
describe the approach of constructivist-oriented teachers
as follows:

First, they challenge students to solve “authentic”
problems or acquire complex knowledge in
information-rich settings based on the assumption
that having learners construct their own solutions
leads to the most effective learning experience.
Second, they appear to assume that knowledge can
best be acquired through experience based on the
procedures of the discipline …

On the basis of that definition, computing education has
used constructivist approaches for decades. For example,
many of us introduce students to programming via the
problem-solving approach, which McCracken et al.
(2001) defined as an approach where we provide students
with a problem description, and then require them to
decompose it into sub-problems, implement them, test
them, then assemble the pieces into a complete solution.
As McCracken et al. demonstrated, the problem-solving
approach has not proved to be a panacea.

A further difficulty with looking to authorities to provide
a closed and settled body of knowledge is that authorities
tend not to teach any body of knowledge other than the
body they favour. In the next subsection, I will explore
Cognitive Load Theory, a theory that I believe offers
useful insights into some of the problems we face in
teaching computing. However, I have never heard
Cognitive Load Theory mentioned at any T&L staff
development workshop, perhaps because (unlike
constructivism) Cognitive Load Theory places knowledge
front-and-centre in its approach to teaching.

4.1 A Brief Tour of Cognitive Load Theory

4.1.1 Knowledge and Long Term Memory
Obviously, an expert in any discipline knows more than a
novice in that discipline. However, studies across a
number of disciplines (Chi et al., 1988; Ericsson & Smith,
1991) show that experts organize their knowledge in
more sophisticated and flexible ways than novices. For
example, when asked to memorize board positions in
chess, novices were found to memorize the position of
each piece in isolation, whereas experts organized the
information in terms of the attacking and defensive
relationships between the pieces (Chase & Simon, 1973).
In psychological terms, experts are skilful because their
long term memories contain huge amounts of relevant
knowledge. To most computing academics, the human
long term memory might at first appear to be like the long
term memory of a computer, but that is a naïve
comparison. Unlike computers, a person’s long term
memory has an uncanny ability to provide, almost
instantly, without conscious effort, information relevant

to whatever mental task currently engages the person.
Long term memory is so fast and powerful it even
changes the way an expert perceives. For example, an
expert interpreter of medical X-rays will almost instantly
see salient features in an X-ray that a novice might only
find after much effort, if at all.

4.1.2 Working Memory and Chunking
Working memory is a concept well-known to many
tertiary educated people. Best known is Miller’s (1956)
result that working memory has a very small capacity ─
seven plus or minus two is the popularly known estimate.
Also, working memory can only retain data for about
thirty seconds.

Despite these severe limitations on working memory,
people’s capacity to handle data is greater because of
‘chunking’. If a set of associated data items are already
stored in long term memory, they may be retrieved and
used in working memory as if they were a single item.
For example, if someone gives you a new telephone
number, retaining that phone number for a few seconds
before repeating it will probably consume your entire
working memory, as each digit forms one data item to be
stored in working memory. However, if you are required
to recite, in a specific order, the phone numbers of several
friends (and all their phone numbers are in long term
memory), then you can do so because each of those
familiar phone numbers counts as only one data item in
working memory. Thus, the well known limitations of
working memory do not apply to all data, but only to data
that is not already in long term memory. That is, these
limitations to working memory apply to data that has not
yet been learned.

4.1.3 Automaticity and Overlearning
A skill can be so well learnt that it becomes ‘automatic’.
That is, it places little burden on working memory. For
example, most car drivers can conduct a conversation
with a passenger while driving their car because many
aspects of driving have been automated. (Not all aspects
of driving can be automated, such as reasoning about
traffic at an intersection, where most drivers will cease to
speak while they reason about the traffic).
The most common way that skills become automated is
through ‘overlearning’, where a skill is practised long
after it has been mastered at a conscious level. For
example, professional sports people will practise a
specific skill an enormous number of times, until the
performance of the skill becomes automatic.

4.1.4 Implications for Teaching and Learning
The concepts of long term memory, working memory,
and chunking are important components of Cognitive
Load Theory (Sweller, 1999). Within Cognitive Load
Theory, learning is described as the process whereby data
stored in working memory is transferred to long term
memory. Furthermore, from the Cognitive Load Theory
perspective, a major instructional problem faced by
teachers is the structuring of knowledge so that the
working memory of students will not be overwhelmed.

As advocates of Cognitive Load Theory and critics of
constructivism, Kirschner, Sweller and Clark (2006)
made the following claim:

Any instructional theory that ignores the limits of
working memory when dealing with novel
information or ignores the disappearance of those
limits when dealing with familiar information is
unlikely to be effective. Recommendations
advocating [constructivist approaches] during
instruction proceed as though working memory
does not exist or, if it does exist, that it has no
relevant limitations when dealing with novel
information …

4.1.5 The Worked Example Effect
Sweller and Cooper (1985) performed several
experiments with students who were studying algebra. In
the experiments, some students learnt certain algebraic
processes by solving problems, while other students
learnt those same algebraic processes by studying worked
examples (i.e. students were given a complete solution to
each algebraic problem). When both groups were then
required to solve more algebraic problems of the same
type, the students who had studied the worked examples
solved the problems faster, with fewer errors. This
finding has been supported in many subsequent
experiments in other disciplines, and is known as the
worked example effect.
Kirschner, Sweller and Clark (2006) explain the worked
example effect as follows:

Solving a problem requires problem-solving
search and search must occur using our limited
working memory. Problem-solving search is an
inefficient way of altering long-term memory
because its function is to find a problem solution,
not alter long-term memory. … Thus, problem-
solving search overburdens limited working
memory and requires working memory resources
to be used for activities that are unrelated to
learning. As a consequence, learners can engage
in problem-solving activities for extended periods
and learn almost nothing …
In contrast, studying a worked example both
reduces working memory load because search is
reduced or eliminated and directs attention (i.e.,
directs working memory resources) to learning the
essential relations between problem-solving
moves. Students learn to recognize which moves
are required for particular problems …

Cognitive Load Theory may seem simple and obvious in
this brief introduction, but applying this theory to
teaching is not straightforward. A naïve attempt to
construct worked examples might not result in improved
learning, as inappropriately constructed worked examples
can also impose a high cognitive load on working
memory. For example, if a problem is specified as a
diagram, and if two spatially separated pieces of
information on the diagram need to be integrated by the
reader before the problem can be understood, then that
integration imposes a load on working memory (Sweller,
1999).

I will return to Cognitive Load Theory in section 5, where
it will be used to explain some results in computing
education research.

4.2 Teaching and Learning in Perspective
My criticism of the Australasian T&L community
position is not that it is an incorrect view of the world. On
the contrary, the T&L community know much that is of
value. My criticism is that ─ largely due to the absence of
discipline-based academics from the discourse on
education ─ the T&L community are now positioned in
Australasian universities as if they offered a complete
explanation of how university teaching should be done. In
fact, the T&L community, with their heavy emphasis on
non-discipline-specific, constructivist approaches, offer
only part of the complete picture.

As mentioned earlier, we (i.e. discipline-based
academics) sit in the staff development workshops run by
T&L groups as if we were undergraduate students. More
than once, I have found it ironic to hear a T&L person
complain about their ‘undergraduates’ (us!), in ways
analogous to how discipline-based academics complain
about their own undergraduates ─ such as (1) our
apparent lack of interest and motivation; (2) an
unwillingness to attend lectures (i.e. staff development
workshops); and (3) our surface approach to learning (i.e.
a tendency to superficially satisfy the university T&L
policy without understanding the thinking behind the
policy). The Australasian T&L community have these
same complaints about their students because they have
made the same mistake with their students that we in
computing have made with our students ─ they bore us.
That is, by presenting pedagogy as a closed and settled
body of knowledge, the T&L community guarantee that
discipline-based academics will not respect teaching.
Enquiry is what academics value and what they are
trained to do. To raise the esteem with which teaching is
held in Australasian universities, the T&L community
need to encourage a culture of enquiry into discipline-
based pedagogy. I will discuss an enquiry-based model
in the next section.

5 Students of Teaching II: The Postgraduate
Model

The difference between being a student of a “closed and
settled body of knowledge” (i.e. an undergraduate) and
being a postgraduate is that the former is about
recognizing good answers whereas the latter is about
recognizing good questions. Every PhD student learns
that lesson, often traumatically. Discipline-based
education research is the same3. There is no authority to
whom we can turn for answers to all the questions we
have about our teaching, especially when those questions
are specific to our own discipline. From the messy and
puzzling world of teaching, we need to formulate a
question for which the answer may improve our teaching,
and for which we can collect suitable evidence ─ that is,
and always has been, the art of research.

3 In this paper, ‘postgraduate’ is used as a metaphor. I am
not implying that computing education researchers must
enrol in PhDs.

5.1 In Defence of Discipline-based Education
Research

I find that many of my colleagues in computing will not
admit the possibility of computing education research. To
them, any form of interaction with students is an aspect of
teaching, not a form of research. To those colleagues I
reply as follows. As a discipline, we accept that it is
legitimate to research the thoughts and actions of people
who have graduated from a computing degree (i.e. to
study computing as it is practiced in industry), so how
can it not be research if we apply the same methods to
study the same sort of people before they have graduated?
Indeed, how can we hope to develop a comprehensive
understanding of the people who have graduated if we do
not study that same type of person before they have
graduated? The university graduation ceremony is an
arbitrary boundary between student and research subject.
Some of my colleagues admit to the possibility of
computing education research but believe it should be left
to ‘the specialists’ ─ academics from psychology and
education departments. To those colleagues, I reply as
follows. Of course those specialists have something to
contribute to computing education. However, the study of
the path from novice to expert in any discipline, by those
already within that discipline, is also a legitimate research
programme. Just as a computing academic might not
understand some of the subtleties of education and
psychology, likewise the education or psychology
specialist might not understand some of the subtleties of
computing. The computing education researcher should
approach educational and psychological theory in two
ways: (1) as a platform upon which to elaborate a
discipline-specific perspective, and (2) as a general theory
that may or may not apply to computing and that needs to
be empirically tested by those within computing.
Furthermore, to my more philosophically inclined
colleagues, I might add that it is a myth that theory ─
especially educational theory ─ comes first, handed down
by specialists, followed by application. Education theory
often emerges as “a by-product of the improvement of
real situations” (Carr & Kemmis, 1986, p. 28).

5.2 Adventures of a Middle-aged Postgraduate
In this subsection I will illustrate how we can all profit by
studying students from a research perspective. I will do so
by showing how my own activity in computing education
research helped me to understand a persistent problem in
my teaching of novice programmers (and, I believe, a
problem that many other teachers also face).

5.2.1 The Problem
For five semesters, from 2002 to 2004, I taught a first-
semester programming subject, where the final exam
consisted entirely of multiple-choice questions (Lister &
Leaney, 2003a&b; Lister, 2005). I adopted that style of
exam because it was clear to me that many students could
not write code by the end of first semester, and I was tired
of setting and marking exams where I pretended that
students could write code. My multiple-choice questions
fell into two categories:
• ‘Fixed code’ questions, where a piece of code was

provided and students had to choose from the four

options the value that would be in a particular variable
after the code had executed.

• ‘Skeleton code’ questions, where students were given a
piece of code with one or two lines missing., were told
what the code was supposed to do, and were required
to choose the correct missing lines of code from the
four options provided. These questions were based
upon code that I taught in lectures, and consisted of
classic sorting and searching algorithms, such as
bubble sort, other quadratic sorts, linear search, and
binary search. Not only had I taught these algorithms
during semester, but I attached to the exam paper a
complete set of the PowerPoint slides from lectures,
describing these algorithms diagrammatically (over
100 slides). As if providing the lecture notes was not
already enough, several weeks prior to the exam,
students were provided with a pool of 30-40 multiple-
choice skeleton code questions on these algorithms,
and they were told that a number of them (usually 5-
10) would appear, unaltered, in the exam.

I thought I was setting an easy exam, even though I set
the pass mark for the exam at 70%. In fact, in the first
semester where I tried this approach, I worried that
providing the PowerPoint slides and providing the pool of
questions had made the exam too easy. Certainly many of
my colleagues thought it was too easy. That first
semester, and every subsequent semester, I was
astonished to find that the failure rate for the exam was
between a quarter and a third of the class, and in the fifth
and final semester that I taught the class, the failure rate
approached a half.
Why should so many students have trouble answering
these questions? For each line of code required by a
skeleton-code question, all they had to do was find the
appropriate diagram in the PowerPoint slides and
effectively turn that diagram into one line of code.
Many of my folk pedagogic colleagues did not share my
confusion as to why students struggled with this type of
exam. Their explanations were that the students (1) were
lazy, or (2) were spending too much time in paid
employment, or (3) lacked an essential innate quality, the
‘programming gene’ or ‘geek gene’.

5.2.2 Leeds Working Group
In 2004, I participated in a research experiment with 11
other collaborators from six countries (Lister et al.,
2004b). My collaborators arranged to have their own
students attempt some of the multiple-choice questions I
had used in my exams (but their students did not have
prior exposure to similar multiple-choice questions). We
collected data from over 600 students. I felt a little better
about my own teaching when we found that a quarter of
those 600+ students performed at a level consistent with
guessing.
Most of the 600+ students answered the multiple-choice
questions on paper, or via the web, but we also had a
small number of students answer the questions while
‘thinking out loud’. Before collecting the ‘think out loud’
data, I had assumed that students would answer the fixed
code questions by the same techniques that I have found
that most academics use ─ first, read the code to
determine the function performed by the code, then apply

the function to the input to calculate the correct answer. I
was surprised to find that very few students used that
technique. Instead, almost all the students played ‘human
computer’. That is, they would meticulously hand execute
the code to completion. While I had expected that the
weaker students might use that technique, I was
particularly surprised that the stronger students also
solved the questions by playing ‘human computer’. Why
were novices, especially the better novices, not using the
same approach as their teachers? I suspected that the
answer to that question was related to the reason why so
many of my own students had failed my ‘easy’ exams.
At the time that we conducted this study, I had taught first
year programming almost continuously for 10 years.
That I was surprised by the ‘think out loud’ data
demonstrated that I was not learning everything that I
needed to know about my students merely through the
process of teaching them. To solve my teaching
problems, I needed to research my students as well as
teach them.

5.2.3 BRACElet
The BRACElet research collaboration began by building
upon the findings of the Leeds working group (Whalley,
Clear, and Lister, 2007). We prepared a set of exam
questions that each project participant then gave to their
own students in the end-of-semester exam. One of the
questions asked the students to explain ‘in plain English’
what a short piece of code did. The code was less than 10
lines long (by one common definition of a line of code,
there were four lines). The code contained a ‘for’ loop
that iterated over an array, with a single ‘if’ statement
forming the body of the loop. The complete ‘explain in
plain English’ question that we used can be found in
another paper in these proceedings (Clear et al., 2008)
and elsewhere (Lister et al., 2006a).
When I show this ‘explain in plain English’ question to
academic colleagues, and ask them to answer it, I find
that they almost always provide an answer that
summarizes the purpose of the code, such as “it checks to
see if the elements of the array are sorted” (a reasonably
correct summary of the code). That answer is not the
typical type of answer we get from the majority of
students. Instead, students tend to give a (usually correct)
line-by-line description of the code. Why were students
giving a different type of answer from their teachers?
Again, I suspected that the answer to that question was
related to the reason why so many of my own students
had failed my ‘easy’ exams.

5.2.4 Related Literature
Since the classic study of chess by Chase and Simon
(1973), there have been related studies in many
disciplines, including computing (Adelson, 1984;
Corritore & Wiedenbeck, 1991; Soloway & Iyengar,
1986; Soloway & Spohrer, 1989; Wiedenbeck, Fix &
Scholtz, 1993). The findings from the computing studies
have been consistent with the findings for chess and other
disciplines ─ expert programmers form more
sophisticated and flexible representations of code than
novices. The representations formed by experts are based
upon the functionality of the code, whereas novices focus
more on syntactic features of the code.

5.2.4.1 The Wiedenbeck (1985) Experiment
Wiedenbeck (1985) studied differences between a group
of expert programmers and a group of novices. The
novices each had about 700 hours of programming
experience over two semesters.
The experiment consisted of (1) showing a novice/expert
a ‘prime’, which was a short English descriptive phrase,
then (2) showing the subject 1 to 8 lines of code. The
code was taken from introductory textbooks on
FORTRAN. Each novice/expert had to determine
whether the prime was an accurate description of the
code. All subjects were shown 108 pairs of prime-then-
code. Half the pairs were syntactic (e.g. a prime of
‘assignment statement’ followed by ‘F = F + TOT’) and
half were functional (e.g. a prime of ‘swap two variables’
followed by code containing three appropriate assignment
statements). Also, half the syntactic pairs and half the
functional pairs were consistent (i.e. the prime correctly
described the code) and half were inconsistent.
On average, novices made more than twice as many
errors as experts, with mean error rates of 8.2% and 3.5%
respectively. The speed of response was also measured.
On average, novices took almost twice as long as experts
to make up their minds, with mean reaction times of 6.1
and 3.2 seconds respectively. The difference between
novices and experts was greatest when they were shown
an inconsistent functional pair. The mean error rate of
novices was 6.3% compared to a mean error rate of only
1.1% for experts. That is, when shown a piece of code
that did not correctly implement the specification in the
prime, novices did not detect the error 6.3% of the time.
The significance of Wiedenbeck’s experiment is, like all
research, open to different interpretations. Here is my
interpretation. First, we need to bear in mind that the
pieces of code the students were asked to read were only
1 to 8 lines long. Second, these students had been
learning to program for two semesters, by which stage
most of us expect our students to write programs that are
a few hundred lines long. Third, an error rate of 6.3% is
equivalent to a 50% chance of an error in every ten
inconsistent functional pairs ─ if we assume that the code
in each inconsistent functional pair is always the
maximum 8 lines, then ten pairs comprise (at most)
eighty lines of code (and probably a good deal less).
Finally, Wiedenbeck’s figures are averages, so below
average students would have performed worse. My
interpretation of Wiedenbeck’s experiment is that is not
surprising that weaker students, after a year of
programming, cannot debug their own programs.
Furthermore, the students in Wiedenbeck’s experiment
learnt FORTRAN, so the number of different
programming concepts those students needed to learn and
cope with would have been considerably less than the
number of programming concepts taught to today’s
students.
As part of her own interpretation, Wiedenbeck concluded
that the expert programmers had to some degree
automated the type of tasks she had tested, and this freed
the working memory of the experts for higher-level
problem-solving tasks. On the other hand, the novices had
not automated the tasks, so their working memories were
not available for higher-level problem-solving tasks. This

led Wiedenbeck to make the following recommendation
for teaching programming:

For programmers to gain automation it is
probably important that the teaching process
stress continuous practice with basic materials to
the point that they become overlearned. To some
extent this goes against contemporary teaching
practice.

By ‘continuous practice with basic materials’ I interpret
Wiedenbeck as advocating continuous practice with the
sort of code segments she used in her experiment, which
were only 1 to 8 lines long. I find her experimental
evidence persuasive. Given the high failure rates of most
first year programming courses, I think we should have
tried her suggestion. However, more than 20 years after
Wiedenbeck published that paper, her recommendation
still ‘goes against contemporary teaching practice’.

5.2.5 True Confessions
From the above research literature, from Cognitive Load
Theory, and from the results of the Leeds Working group
and BRACElet projects, I have come to see that my
‘easy’ exams were in based upon folk-pedagogic
misconceptions, such as:
• For novices, reading a piece of code is substantially

easier than writing a similar piece of code.
• When novices read a piece of code, they quickly

abstract to the function of the code
• Novices can move easily between code and

diagrammatic (or other) representations of that code.
I have elaborated upon these misconceptions elsewhere
(Lister, 2007).
I have taught novices to program for N>10 years … but
unlike many who begin a sentence that way, I will finish
it by confessing that throughout those N years my folk-
pedagogic assumptions were wrong, and today I am
embarrassed that I remained blissfully ignorant for so
long while students suffered ─ I wish I had developed a
research approach to my teaching from the very first day
that I began to teach.
It is now 30 years since I was a first year university
student learning how to program. Then, and throughout
all the years since, failure rates in programming courses
around the world have remained high ─ but the folk-
pedagogy of programming has remained largely
unchanged. We deserved to become a bust discipline.

5.3 Sustainability
This fourth, enquiry-based ‘postgraduate’ conception of
teaching does not supersede the previous three
conceptions, but instead completes an ecology that can
sustain computing education.
The first three conceptions of teaching perpetuate the
pedagogic heritage. Folk-pedagogy, whether it is in the
oral tradition or the written ‘Marco Polo’ tradition,
disseminates stories about what appears to work within a
discipline. The third conception of teaching, the
‘undergraduate’ conception, disseminates stories about
what seems to be working in other disciplines. These are
vital roles.

The fourth conception, the ‘postgraduate’, with its
“unceasing process of enquiry” (Clark, 1997), is the
conception of teaching that allows us to change. The
pedagogy of a fast changing discipline, such as
computing, needs to remain intellectually nimble.
I now think that disciplinary knowledge should be
organized with learning primarily in mind. This is a
fundamental reorientation of disciplinary thinking. For
most academics, the undergraduate education is an
obstacle course, which only the most worthy students will
surmount. I do not mean that we should ‘dumb down’
computing. I think we must learn to discern between
‘dumbing down’ computing and making computing more
accessible.
To facilitate the process of reorganizing a discipline’s
knowledge to make it more accessible, I agree with
Bowden and Marton (1998, p. 286) that a discipline needs
to develop a new research specialization, “knowledge
formation”:

The idea is that questions about knowledge
formation will be developed into legitimate
specializations within [each discipline]. This
would mean that studies of knowledge formation
in physics would become a part of physics proper,
for instance, and studies of knowledge formation
in social work would become a part of social work
proper.

The “knowledge formation” research specialization,
through an “unceasing process of enquiry”, will routinely
reorganize disciplinary knowledge, making the discipline
more accessible, protecting it from boom-and-bust, and
thus sustaining the discipline indefinitely into the future.

6 Thoughts on the Enrolment Decline
As I wrote earlier, many degrees have been redesigned in
response to the enrolment decline in computing. My fear
is that those redesigns have been driven by folk
pedagogues. It is only reasonable that the reader should
expect me to say something about the decline, from my
perspective as a student of teaching. In this section, I will
not attempt to offer up a recipe for reversing the decline
─ it is not the nature of research that it can offer up
answers to such big questions when, from a research
perspective, the enrolment decline happened very
recently. Instead, I shall nominate some literature that I
think people should be reading.
Pascarella and Terenzini (1991) wrote the classic book
How College Affects Students. They surveyed twenty
years of research into the American college experience.
The following is a frequently quoted excerpt:

The research is unequivocal: students who are
actively involved in both academic and out-of-
class activities gain more from the college
experience than those who are not so involved.

Another classic volume is Seymour and Hewitt’s (1997)
Talking about leaving. It is a study into student attrition
from the physical sciences. The reasons students give for
leaving might also apply to computing. Among the
reasons given are over-packed curricula (‘drinking from a
fire hose’) and harsh grading systems.

Tinto (1994) also studied attrition. Among his
recommendations for reducing attrition was building a
sense of community among students.
All of the above books are written about the American
college system. In Australia, Scott (2006) has analysed
the written data from the Course Experience
Questionnaire (which former students complete within six
months of finishing their degree). Scott investigated what
factors influenced student engagement. Among his
findings was the following (page xvii):

“Of particular interest … is the fact that the social
affinity subdomain attracted so many hits … This
subdomain concerns the nature of the
relationships that students experience, not just in
the traditional classroom but between peers and
with staff from all areas of the university. In short,
the CEQuery results strongly suggest that feeling
that one’s place of study is somewhere where it is
great to be has a positive influence on retention …
[and confirms] … that learning is a profoundly
social experience.

Social affinity is a theme in all of the above literature. I
don’t believe that computing folk pedagogues are highly
conscious of that issue, and consequently I believe it has
been largely ignored in recent redesigns of computing
courses in Australasian universities. The emphasis in
recent redesigns has been on course content, not on the
social environment.
Prior to the personal computer, student cohorts developed
a sense of camaraderie in the long hours they endured
together in the terminal room. I do not propose that we
reintroduce those torture chambers, but I think we need to
work at building social relationships in today’s student
cohorts. It is essential that we do that on campus, but I
think we could also creatively use web-based social
networking technology (i.e. like MySpace), for which this
current generation of students already have an affinity.
Some readers may object that the literature I have cited is
not concerned directly with the enrolment decline, but is
concerned instead with student satisfaction and student
attrition. That is a valid criticism. However, I suspect it is
very difficult to identify a high school student who will
not enrol in computing under current circumstances, but
who would have enrolled under different circumstances.
Consequently, I believe that all research on the enrolment
decline will in fact study proxies for the enrolment
decline. For example, when we study attrition, we are
studying the students who chose to enrol in computing,
not the students who chose not to enrol in computing. In
studying attrition, we are assuming that the factors behind
attrition are related to the factors behind the enrolment
decline. Inevitably, some readers will disagree with my
choice of proxies, but equally I think people need to
recognize that, for example, research into high school
student attitudes to computing is also research into a
proxy for the decline.

7 Assorted Asides to Established Researchers
Computing education research remains poorly understood
within our discipline. Consequently, most of the space in
this paper has been devoted to a manifesto, possibly

polemic, arguing the place and importance of computing
education research.
This keynote paper is also an opportunity to share some
views with those who are already computing education
researchers. This section of the paper is for those people.
Each of the following subsections deals with a separate
issue. There is no relationship between the subsections.

7.1 The Broader Social Perspective & Funding
The artificial distinction between teaching and research
extends beyond computing, and even beyond academia.
Our society as a whole makes such a distinction. This
leads to government funding models that separate
teaching and research, which is illustrated in the
following exchange in an Australian Senate Committee
(Australian Government, 2007, commencing page 150):

Senator CARR — If [the Carrick Institute] is a
research institute, why isn’t it in the research
division? [Of the government budget papers]
Ms Baly — It is not, strictly speaking, a research
institute. It will undertake research in respect of
learning and teaching, but its activities are to
promote excellence in learning and teaching
within the sector.
 …
Senator CARR — … I cannot quite follow,
though. It has fellows and various other research
grants. Why is it not a research institute?
Mr Walters — Because it does not just do
research. It is about disseminating good practice,
you see, as well as carrying out a bit of research.
They provide grants in order to do some
investigation, and that is intended to support the
idea of developing best practice, developing
networks about best practice and disseminating
the results of that.

Implicit in the above statements by Ms. Baly and Mr.
Walters is a view of university pedagogy as being a
closed and settled body of knowledge that needs to be
disseminated (i.e. transmitted), but not created.
There is certainly a need for greater dissemination of best
practice, and perhaps it is appropriate that the Carrick
Institute operate in a way consistent with the above views
of Ms. Baly and Mr. Walters. However, we also need a
body willing to fund enquiry-based work on education,
for academics within a discipline, with an educational
focus specifically on that discipline. Such funding bodies
exist. For example, the American National Science
Foundation has funded computing education research
(NSF, 2006). In theory, an academic could go to the
Australian Research Council (ARC) for such funding.
While an academic in an education faculty may be funded
via the ARC, I doubt that an academic in another
discipline would be successful in seeking funding for
discipline-based education research, ─ the concept of
discipline-based education research falls through a gap
between the epistemologies of the ARC and the Carrick
Institute . Closing that gap may take years, and will
happen only if we are patient and continue to work at it.

7.2 On Method
I commend to all computing education researchers the
PhD thesis by Randolph (2007), which encompasses a
methodological review of computing education research.
Randolph’s undergraduate education appears to have
been in psychology or a related field, so he exhibits a bias
for positivist, quantitative research, and sometimes
displays a weak appreciation of interpretive, qualitative
education research. However, his thesis is an incisive
analysis of that part of computing education research that
is positivist and quantitative. As part of his thesis,
Randolph analysed 93 papers that use an experimental or
quasi-experimental approach, and found that most used a
one-group posttest-only design. On page 141, Randolph
writes that such a design is “probably the worst of the
experimental research designs in terms of internal
validity”. On page 164, he elaborates:

In the one-group posttest-only design, almost any
influence could have caused the result. For
example, in a one-group posttest-only design, if
the independent variable was an automated tool to
teach programming concepts and the dependent
variable was the mastery of programming
concepts, it is entirely possible that, for example,
students already knew the concepts before using
the tool, or that something other than the tool
(e.g., the instructor) caused the mastery of the
concepts.

Many computing educators are aware of the limitations of
the one-group posttest-only design. We tend to adopt that
model because our research questions most commonly
focus on very large changes to how we teach, and it is
therefore not practical to adopt other designs. I do not
advocate that we stop researching large changes, but if we
also studied smaller changes ─ for example a change to a
single class session ─ we might be able to use designs
other than the one-group posttest-only design.
On page 177 of his thesis, Randolph advocates that we
need to “shift the balance from one that emphasizes
anecdotal evidence and hypothesis generation to one that
emphasizes rigorous methods and hypothesis
confirmation”. I agree with Randolph. As part of such a
shift, I think when we review papers we should all place
greater value on papers describing careful, thorough
research that is circumspect in its conclusions. Currently,
I think we reward authors who make claims that go
beyond what can be safely inferred from their results.

7.3 Looking into the Mirror
I recently found myself in conversation with an
anthropologist. He explained that today’s anthropologists
have re-evaluated the work of those pioneering
anthropologists from decades past who studied hunter-
gathering tribes. Today’s anthropologist believes that the
thinking of those past anthropologists was so profoundly
influenced by their own cultural origins that their research
findings were a reflection more of their own culture than
of the cultures of the tribes they studied. That
conversation led me to wonder whether, in decades
hence, computing education researchers would think that
today’s research on computing students is more a
reflection of the researchers than the students.

But why wait for those decades to pass? I think
contemporary computing education research should be as
much the study of computing teachers as the study of
computing students. There are many suitable techniques
for studying the teacher (Lewis & Smith, 2005; Lister, et
al., 2006b).

7.4 Some Tentative Rules of Discourse
I think we need to work at improving the way that
computing education researchers talk to one another.
Often, our response to our colleagues is almost folk-
pedagogic ─ we compare their finding to our own
experiences and intuitions, then accept or reject the work,
and the conversation is over. I therefore propose some
tentative rules for conducting the discourse of computing
education research:
• The Golden Rule: Aim to sustain the discourse, not

stifle it.
1. Everyone’s intuition and personal histories are equally

valid when forming hypotheses, and equally invalid
when attempting to confirm hypotheses.

2. Sometimes we should debate the evidence, sometimes
we should debate what counts as legitimate evidence,
and all those present should know which is being
debated.

3. Discuss whether the method was used properly, and
reported comprehensively, before focusing on the
findings ─ especially when the findings appeal to your
folk-pedagogy.

4. When there are alternative, equally plausible
explanations for the same data, the discussion should
focus on further work that will distinguish between the
alternative explanations.

8 Conclusion
I have outlined my four conceptions of teaching and
learning. Two are folk pedagogical, one with an oral
tradition, the other with a written tradition. The two other
conceptions are oriented toward teachers as students of
learning, one with an ‘undergraduate’ focus on the study
of “closed and settled bodies of knowledge” and the other
with a ‘postgraduate’ focus on an “an unceasing process
of enquiry”.
However, I do not propose that these four conceptions
form a hierarchy, with folk pedagogy at the bottom and
discipline-based ‘postgraduate’ research at the top.
Computing education research will only ever answer
some of the many questions I have about teaching and
learning. For those questions that are unanswered by
research, I will remain part folk pedagogue, I will
continue to read and write Marco Polo papers, and I aim
to be the sort of enthusiastic ‘undergraduate’ that we all
love to teach. Not every computing education academic
who aspires to be a good computing teacher needs to be a
computing education researcher ─ no more than anyone
who aspires to be a good programmer needs to design
programming languages. What is important is not the
conception into which we each choose to (temporarily or
permanently) locate ourself. The important thing is two-
fold: (1) to be aware of which category we have chosen to
locate ourself in, and (2) to remain aware of ─ and to
respect ─ the other categories.

The sustained health of ‘postgraduate’ computing
education research depends upon a permanent, two-way
relationship with the other conceptions of teaching and
learning. From that relationship, ‘postgraduate’ research
will receive a steady stream of research hypotheses,
which will then be confirmed or denied via research. I
believe a healthy computer science education research
programme is based upon a social constructivist view of
the world, in which I see “… the development of theory
or understanding as a by-product of the improvement of
real situations, rather than application as a by-product of
advances in ‘pure’ theory.” (Carr & Kemmis, 1986, p.
28). All research, including computing education, can
become an inward looking, irrelevant, self-indulgent
exercise, geared more to furthering careers than to
answering important questions. But if computing
education research maintains a two-way relationship with
the other conceptions of teaching and learning, then
computing education research will remain outward
looking, focused on answering important questions that
improve our teaching.
Metaphors have a profound influence on how we think
and subsequently act. Since World War II, the metaphor
of the factory and its associated principles of quality
assurance have grown to become the principal organizing
metaphor of academia. As Rowland (2000, page 7)
pointed out, in our teaching lives we ‘deliver’ our lectures
and the ‘quality’ is ‘tracked’ and ‘benchmarked’ by
student surveys. Meanwhile, in our research lives, we
attempt to increase our research ‘capacity’ by writing
grant applications with clearly defined ‘outputs’. In just
one twentieth of the time that universities have existed,
the post-World-War-II industrial metaphor has degraded
the intellectual environment, endangering the health of
several disciplines ─ including physics, English literature
and recently our own discipline of computing. However,
history shows that, so long as the intellectual environment
is not entirely extinguished, it responds with vigour when
the conditions for growth return. If we change our
metaphors, to instead ‘cultivate the soil’, ‘sow the seed’,
‘tend the field’ and ‘harvest the crop’ … and continue
that cycle, all the while remaining sensitive to what the
environment can sustain, universities will still be reaping
the intellectual harvest in another thousand years.

Acknowledgements
Thanks to Ilona Box and Leslie Schwartzman for their
comments on drafts of this paper. Special thanks to Ilona,
for her subtle role in helping me develop these ideas over
the last 10 years. Without her influence, I might never
have become a computing education researcher. I am
indebted to Alison Young and Logan Muller who, via
inspiring and provocative talks on their work in Peru,
started me thinking about academia in terms of ecological
sustainability. And I am grateful to Simon for his editing
of this paper.
I am an Associate Fellow of the Carrick Institute.
However, the views expressed in this paper are solely
mine, and not the views of the Carrick Institute.

References
Adelson, B. When novices surpass experts: The difficulty

of a task may increase with expertise. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 10, 3 (1984), 483-495.

American College of Cardiology. What Is Evidence-
Based Medicine? http://www.acc.org/qualityandscience/
quality/evidence.htm [Accessed October 2007]

Australian Government (2007) Official Committee
Hansard SENATE: STANDING COMMITTEE ON
EMPLOYMENT, WORKPLACE RELATIONS AND
EDUCATION ESTIMATES (Additional Budget
Estimates). February 14, 2007. http://www.aph.gov.au
/Hansard/senate/commttee/S9945.pdf

Bain, K. (2004) What the Best College Teachers Do.
Cambridge, Mass. : Harvard University Press.

Bowden, J. & Marton, F. (1998) The University of
Learning: Beyond Quality and Competence in Higher
Education. London: Kogan Page.

Boyer, E. Scholarship Reconsidered: Priorities of the
Professoriate. Princeton, New Jersey: Princeton
University Press: The Carnegie Foundation for the
Advancement of Teaching, 1990.

Brookfield, S. (1995) Becoming a Critically Reflective
Teacher, San Francisco: Jossey-Bass.

Bruner, J (1996) The Culture of Education, Harvard
University Press.

Bush, V. (1945) As We May Think. Atlantic Monthly,
July.

Carr, W., Kemmis, S. (1986) Becoming critical:
education knowledge and action research. Lewes:
Falmer Press

Chase, W. C., & Simon, H. A. Perception in chess.
Cognitive Psychology, 4 (1973), 55-81.

Chi, M. T. H., Glaser, R. & Farr, M. J. (Eds.) (1998) The
nature of expertise. Hillsdale, NJ, Lawrence Erlbaum
Associates.

Clark, B. (1997) The modern integration of research
activities with teaching and learning. The Journal of
Higher Education; 68, 3 (May/Jun).

Clear, T., Edwards, J., Lister, R., Simon, B, Thompson,
E. and Whalley, J. (2008) The Teaching of Novice
Computer Programmers: Bringing the Scholarly-
Research Approach to Australia. 10th Australasian
Computing Education Conference (ACE2008).
Wollongong, Australia. January 22- 25.

Corritore, C. & Wiedenbeck, S. (1991) What Do Novices
Learn During Program Comprehension? Int. J. of
Human-Computer Interaction, 3, 2, 199-222.

Dickson, P. (2001) Sputnik: The Shock of the Century.
Walker Publishing Co, USA.

Ericsson K, and Smith, J. (Eds) (1991) Toward a General
Theory of Expertise: Prospects and Limits. Cambridge
University Press, England.

Flannery, T. (1994) The future eaters: an ecological
history of the Australasian lands and people. Sydney:
Reed Books; New York: G. Braziller.

Gruba, P., Moffat, A., Søndergaard, H., and Zobel, J.
(2004) What drives curriculum change?. In Proceedings
of the Sixth Conference on Australasian Computing
Education - Volume 30 (Dunedin, New Zealand). R.
Lister and A. Young, Eds. ACM International
Conference Proceeding Series, vol. 57. Australian
Computer Society, Darlinghurst, Australia, 109-117

Kirschner, P. A., J. Sweller, & R.E. Clark. 2006. Why
Minimal Guidance During Instruction Does Not Work:
An Analysis of the Failure of Constructivist, Discovery,
Problem-Based, Experiential, and Inquiry-Based
Teaching. Educational Psychologist, 41(2): 75-86.
http://www.cogtech.usc.edu/publications/kirschner_Swe
ller_Clark.pdf [Accessed October 2007]

Kreber, C. (2002). Controversy and consensus on the
scholarship of teaching. Studies in higher education, 27,
2, pp 151-167

Lewis, T., and Smith, W. (2005) The Computer Science
Debate: It’s a Matter of Perspective. SIGCSE Bulletin.
Volume 37, Issue 2 (June 2005) 80-84.

Lister, R and Leaney, J (2003a), First Year
Programming: Let All the Flowers Bloom, Fifth
Australasian Computing Education Conference
(ACE2003). Adelaide, Australia. February 4-7. pp. 221-
230. http://crpit.com/confpapers/CRPITV20Lister.pdf

Lister, R and Leaney, J (2003b), Introductory
Programming, Criterion Referencing, and Bloom, 34th
Technical Symposium on Computer Science Education
(SIGCSE 2003), Reno, Nevada USA, February 19-23,
2003, pp 143-147.

 Lister R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Moström, E., Sanders,
K., Seppälä, O., Simon, B., Thomas, L., (2004b) A
Multi-National Study of Reading and Tracing Skills in
Novice Programmers, SIGCSE Bulletin, Volume 36,
Issue 4 (December), pp. 119-150.

Lister, R. (2005) One Small Step Toward a Culture of
Peer Review and Multi-Institutional Sharing of
Educational Resources: A Multiple Choice Exam for
First Semester Programming Students. Seventh
Australasian Computing Education Conference
(ACE2005). Newcastle, Australia. January 31 -
February 3. pp. 155-164. http://crpit.com/
confpapers/CRPITV42Lister.pdf

Lister, R., Simon, B., Thompson, E., Whalley, J. L., and
Prasad, C. (2006a). Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy.
Proceedings of the 11th Annual SIGCSE Conference on
Innovation and Technology in Computer Science
Education. (Bologna, Italy, June 26 - 28, 2006). ITiCSE
’06. ACM Press, New York, NY, 118-122.

Lister, R., Berglund, A., Clear,T., Bergin, J., Garvin-
Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly, A.,
Sanders, K., Schulte, C., Whalley, J. (2006b) Research
Perspectives on the Objects-Early Debate. SIGCSE
Bulletin, Volume 38, Issue 4 (December), pp. 173-192.

Lister, R. (2007). The Neglected Middle Novice
Programmer: Reading and Writing without Abstracting.
In the proceedings of the 20th Annual Conference of the
National Advisory Committee on Computing
Qualifications, NACCQ, Port Nelson, New Zealand,

July 8-11. pp. 133-140. http://site.tekotago.ac.nz/
staticdata/papers07/papers/133.pdf

McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D.
Hagen, Y. Kolikant, C. Laxer, L. Thomas, I. Utting, T.
Wilusz, (2001): A Multi-National, Multi-Institutional
Study of Assessment of Programming Skills of First-
year CS Students. SIGCSE Bulletin, 33(4):125-140.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological Review, 63, 81–97.

NSF (2006) CISE Pathways to Revitalized Undergraduate
Computing Education (CPATH)
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5
00025 [October 2007]

Pascarella, E.T. and Terenzini, P.T. (1991). How college
affects students: Findings and Insights from Twenty
Years of Research. San Francisco: Jossey-Bass.

Randolph, J. (2007) “Computer science education
research at the crossroads: A methodological review of
the computer science education research: 2000-2005”.
PhD dissertation: Utah State University.
http://www.archive.org/details/randolph_dissertation
[Accessed October 2007].

Rowland, S. (2000) The enquiring university teacher.
Buckingham: SRHE and Open University Press.

Scott, G. (2006). Accessing the Student Voice - Using
CEQuery to identify what retains students and promotes
engagement in productive learning in Australian higher
education. Barton, Australian Capital Territory:
Department of Education, Science and Training.
http://www.dest.gov.au/sectors/higher_education/public
ations_resources/profiles/access_student_voice.htm

Seymour, E., and Hewitt, N. (1997) Talking about
leaving: why undergraduates leave the sciences.
Boulder, CO: Westview Press.

Shaw, G. B. (1906) The Doctor’s Dilemma: Preface on
Doctors. http://www.gutenberg.org/dirs/etext04/
dcprf10.txt [Accessed October 2007]

Simon (2007) A Classification of Recent Australasian
Computing Education Publications. Computer Science
Education. Vol. 17 Issue 3, (Sep) p155-169.

Soloway, E. and Iyengar, S., Eds Empirical Studies of
Programmers. Ablex, NJ, USA,1986.

Soloway, E. and Spohrer, J. (Eds) Studying the Novice
Programmer. Lawrence Erlbaum Associates, Hillsdale,
NJ, 1989.

Sweller, J. (1999) Instructional Design. Camberwell,
Victoria: ACER Press.

Sweller, J., & Cooper, G. A. (1985). The use of worked
examples as a substitute for problem solving in learning
algebra. Cognition and Instruction, 2, 59–89.

Tinto, V. (1994) Leaving College: Rethinking the Causes
and Cures of Student Attrition. University Of Chicago
Press; Second edition.

Valentine, D. (2004). CS educational research: a meta-
analysis of SIGCSE technical symposium proceedings.
In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (Norfolk,
Virginia, USA, March 3-7). SIGCSE ’04. ACM Press,
New York, NY, 255-259.

Whalley, J, Clear, T, and Lister, R. (2007) The Many
Ways of the BRACElet Project. Bulletin of Applied
Computing and Information Technology (BACIT) Vol.
5, Issue 1. ISSN 1176-4120. http://www.naccq.co.nz/
bacit/ 0501/2007Whalley_BRACELET_Ways.htm

Wiedenbeck, S. 1985. Novice/expert differences in
programming skills. International. Journal of Man-
Machine Studies, 23, 4 (Oct. 1985), pp. 383-390.

Wiedenbeck, S., Fix, V. & Scholtz, J. (1993)
Characteristics of the mental representations of novice
and expert programmers: An empirical study.
International Journal of Man-Machine Studies, 39, 793-
812.

Wikipedia. Cargo Cult http://en.wikipedia.org/
wiki/Cargo_cult [Accessed October 2007]

Wikipedia. Evidence-based Medicine http://en.wikipedia.
org/ wiki/Evidence-based_medicine [Accessed October
2007]

