
Agent-based Ontology Integration for Ontology-based Applications

Li Li Baolin Wu Yun Yang

Faculty of Information and Communication Technologies
Swinburne University of Technology,

PO Box 218, Hawthorn, Melbourne, Australia 3122,
Email {lli,bwu,yyang}@it.swin.edu.au

Abstract

In this paper, a novel agent-based ontology integra-
tion framework is developed for agents which consume
ontologies in ontology-based applications as well as
engage in tasks of ontology integration. The cor-
responding ontology integration mechanism is dis-
cussed. Derived ontologies can be reused in the sys-
tem. A prototype is built by using the JADE agent
platform for evaluation.

Keywords: Agent, ontology integration, consistency
checking.

1 Introduction and Motivation

An ontology is defined as an explicit specification of
a conceptualisation (Gruber 1993). It is a formal de-
scription of a domain of discourse, intended for shar-
ing among different applications, and expressed in a
language that can be used for reasoning (Noy 2003).
Ontologies facilitate the interoperability between het-
erogeneous systems involved in commonly interested
domain applications by providing a shared under-
standing of domain problems and a formalisation that
makes ontologies machine-processable. Furthermore,
ontologies are seen as key enablers for the emerging
Semantic Web. It is known that any information sys-
tem uses its own ontology, either implicitly or explic-
itly. Proliferation of Internet technology and glob-
alisation of business environments has given rise to
the advent of a variety of ontologies which are far
beyond expectations. Thus it is unlikely that every-
one conforms to a single ontology because of technical
and non-technical reasons. On the other hand, it is
a trend that different systems combine to achieve a
goal by taking advantage of existing resources or in-
tegrating available systems to avoid error-prone and
costly reinvention. All these may take place at un-
predictable times, for unpredictable reasons, between
unpredictable organisations. Agents in multi-agent
systems (MAS) operate flexibly and rationally in en-
vironments which are dynamic and heterogeneous,
given that agents have abilities to perceive changes
of environments and respond promptly. A MAS per-
spective is thus suitable for tackling ontology inte-
gration within and across the boundaries of organi-
sations. The aim of this paper is to develop a novel
agent-based framework to conduct ontology integra-
tion based on a certain business scenario and prior
work (Li, Yang & Wu 2005b).

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Ontology Workshop (AOW
2005), Sydney, Australia. Conferences in Research and Prac-
tice in Information Technology (CRPIT), Vol. 58. T. Meyer,
M. Orgun, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Two major architectures for ontology integration
have been investigated (Noy 2003). The first one is a
general upper ontology agreed upon by users of dif-
ferent applications, while the second one is a method
comprising heuristics-based or machine learning tech-
niques that use various characteristics of ontologies.
These two approaches focus on ontology manage-
ment and have been taken by many researchers in
information integration. However, ontology inte-
gration, as part of the ontology development pro-
cess (Pinto & Martins 2004), is far more complex
than expected. Considerable effort is needed in on-
tology reuse (Uschold, Healy, Williamson, Clark &
Woods 1998). We refer the reader to an excellent and
thorough review (Kalfoglou& Schorlemmer 2003) for
a detailed discussion in this field. In terms of contri-
butions from database community, we refer the reader
to a survey (Rahm & Bernstein 2001). Also other
researchers (Calvanese, Giacomo & Lenzerini 2002,
Klein & Noy 2003, Noy 2004, Wache, Vögele, Visser,
Stuckenschmidt, Schuster & Neumann 2001) provide
overviews of ontology integration. Some of the spe-
cific challenges in ontology integration that must be
addressed in the near future are listed in (Noy 2003).
Although the problem of specifying the architecture
is the core of ontology integration, it has not been
thoroughly investigated yet. It is a great challenge to
perform ontology integration as flexibly as possible
as required on the Web. In terms of flexibility, agent
technology fits well in developing applications in a
dynamic and distributed environment which requires
substantial support for change. A MAS approach is
thus ideally suited in handling ontology integration in
an open environment such as Web.

To this end, an agent-based framework is devel-
oped. By following the framework, agents’ behaviours
in interaction diagrams are presented. A key feature
of our framework is its flexibility and extendibility in
ontology integration by allowing ontology reuse in the
system.

This paper is organised as follows. Section 2 in-
troduces the terminology of ontologies and presents
an ontology integration scenario. Section 3 presents
an agent-based integration framework and mecha-
nisms. Section 4 describes the prototype and eval-
uation. Section 5 contains the related work and dis-
cussion, and finally, Section 6 addresses conclusions
and future work.

2 Ontology Definition and Scenario

Agents act on different ontologies from different
sources. These agents in a certain business scenario
might contact each other to work together to solve the
problems that are beyond the individual capabilities
or knowledge. It is not surprising that there are some
terms used inconsistently when people talk about
ontology integration and even ontology itself. We

introduce ontology definition and terminology used
throughout this paper next. Under the ontology spec-
ification, example ontologies will be presented.

2.1 Ontology Definition and Terminology

It is most likely that different organisations opt to
choose terminology according to their understandings
and requirements. Hence, terms such as mapping and
integration may have been used in differing ways. Be-
cause a consensus about the meanings of the terms in
this field is unlikely, we need to specify terms that we
use throughout this paper. The following definition
and terminology will specify terms used in this paper.

In this paper, we follow Gruber’s best known on-
tology definition (Gruber 1993). Under this defini-
tion, we define an ontology O with a specific domain
model, T . Thus a conceptualisation Σ is a pair of
< C,R >, where C represents a set of concepts, and
R stands for a set of relations over these concepts. A
specification is a pair of < Σ,Ψ > to describe that Σ
satisfies the axioms Ψ derived from the domain model.
In the following, notation C(O) is used to annotate
concepts C of the ontology O.

There are many representations and languages
available for encoding an ontology, however to es-
tablish the notation of ontology used in a MAS
internally for the task of ontology integration, an
Entity-Relation (E-R) data model is considered to
encode an ontology, where concepts are regarded as
classes. A typical concept class will have an identi-
fier that distinguishes from others, and a set of at-
tributes that describes the properties of the concept
class. Then it is feasible to compare two concepts
by looking at the identifier as well as the attributes.
Below are three kinds of mutually exclusive semantic
relations between existing concept classes from two
different ontologies. We assume that Oi and Oj are
in the same domain (i, j ∈ N, where N: natural num-
bers). ci where ci ∈ Ci(Oi) and cj where cj ∈ Cj(Oj)
are two different concepts.
Definition (Equivalent): Two concepts are seman-
tically equivalent, if ∃ci, cj , s.t. ci ∼ cj . Namely,
these two concepts: (1) have the same denotation
names (e.g. labels); (2) are synonyms; or (3) their
attributes are the same.
Definition (Inclusive): Two concepts are semanti-
cally inclusive, if ∃ci, cj , s.t. ci ≤ cj (e.g. ci is a kind
of cj) or ci ≥ cj (e.g. cj is a kind of ci). Namely,
the attributes of one concept are also the attributes
of the other.
Definition (Disjoint): Two concepts are disjoint, if
∃ci, cj , s.t. ci ∩ cj = Φ. Namely, there is no common
attribute between them.

For the purpose of ontology integration, we need
to consider the consistency issue of an integrated on-
tology. It is obvious that the E-R date model of an
ontology and the defined semantic relations between
concepts allow us to check the consistency of a newly
derived ontology. The ontology consistency is defined
as follows.
Definition (Consistent): An ontology is consis-
tent, if ∀ck

i , cn
i , cm

i (ck
i , cn

i , cm
i ∈ Ci(Oi), and ck

i 6=
cn
i 6= cm

i (k, n,m ∈N), ck
i ≤ cn

i and cn
i ∩ cm

i = Φ, s.t.
ck
i 6≤ cm

i . Namely no sub-concepts of a particular con-
cept is also a sub-concept of another concept where
these two concepts are disjoint.
Definition (Ontology Mapping): An mapping ℜ
between two ontologies Oi and Oj exists, if ∃ci, cj ,
s.t. ℜ(ci, cj) ∈ {∼, ≤, ≥}. In terms of integration,
we will use the following definition throughout this
paper.

Definition (Ontology Integration): Reusing avail-
able source ontologies within a range to build a new
ontology which serves at a higher level in the appli-
cation than that of various ontologies in ontology li-
braries. It is associated with semantic integration.
Different levels of integration can be distinguished.

2.2 Scenario

The running example ontologies come from the
domain of beer and concern the types of beer.
One is from the DAML ontology library (http:
//www.daml.org/ontologies/66). The second one
is built on the definition of the term “beer” from
the WordNet (http://wordnet.princeton.edu/). The
third one is based on basic types of beer provided by
the website http://www.dma.be/p/bier/1 2 uk.htm#.
The fourth one is Australian beer types ontology
based on information from the following websites:
(1)http://www.australianbeers.com/beers/beer types/
beer types.htm; and (2) http://www.fosters.com.au/
beer/about/beertypes/beer types.asp.

Our main interest is on term “beer” and the corre-
sponding hyponym relationship. The scenario such as
different wine retailers or even brewers using different
beer ontologies is not unusual. In a business, achiev-
ing some goals frequently requires more than individ-
ual capabilities and knowledge. A general view of a
variety of existing ontologies at an abstract level is
necessary for achieving such goals.

The above four ontologies are about types of
“beer”, but from different points of view. We will
come back to them in Section 4.

3 Agent-based Ontology Integration

Agent technology presents an exciting prospect in
a field where high dynamics are requested. It has
the potential to significantly extend the range of ap-
plications that can be feasibly tackled (Jennings &
Wooldridge 2001). We have discussed the rationale of
an agent-based perspective in (Li, Yang & Wu 2005b)
and behaviours of mapping agent (MA) in (Li, Yang
& Wu 2005a). Next, we first present an agent-based
integration architecture. We incorporate ontology
reuse in the integration. Then we describe the be-
haviours of integration agent (InA) and its inter-
actions within the integration process. After that, we
discuss the integration process. And finally, we detail
the integration mechanism.

3.1 Incorporate Ontology Reuse in Integra-
tion

Some ontologies in the same area exist with different
aspects and overlapping information. Ontologies in-
dependently created by individual organisations may
need to be integrated later on. Moreover, integration
serves ontology reuse in applications. So we should
take it into consideration in ontology integration de-
sign. Ontology reuse in this paper has two meanings.
On one hand, existing ontologies can be used to gener-
ate new ontologies (e.g. extending or combining); on
the other hand, newly generated ontologies are ready
for reuse in the system whenever needed. Ontology
integration embedded with ontology reuse is shown in
Figure 1.

Figure 1 points out this paper’s focus. Under the
proposed architecture, some of the important aspects
are highlighted: (1) integration can be done gradu-
ally; and (2) derived ontology can be reused instantly
by taking advantage of the presence of ontology
agent (OA). In other words, whenever a new ontol-
ogy is derived (based on existing ontologies), an OA

RDF

OWL

Frame-

based

InA
(integration module)

MA
(mapping module)

mapping.txt . . .

integrated

IAUA

OA

OA

OA

OA

NA

NA

NA

NA

.

legend: UA- user agent IA- interface agent InA- integration agent
 MA- mapping agent OA- ontology agent NA- negotiation agent

Figure 1: Ontology integration architecture

will be created on the fly to be responsible for it. On-
tology integration (module) is based on the mapping
results discussed in (Li, Yang & Wu 2005a). Inte-
grated ontology is depicted at the most right top in
Figure 1. It can be reused in the system (associated
with the integration module in dotted line). Refer to
(Li, Yang & Wu 2005b) for details of definitions of
other agents in Figure 1.

3.2 Agent Interaction Diagram

At an abstract level, agents achieve a goal by work-
ing with other agents to solve problems that are be-
yond individual capabilities and knowledge. Agents
work together based on interactions. An interaction
process (e.g. diagram) is needed as interactions be-
tween agents may take place concurrently. After in-
vestigating the existing tools, we have chosen AUML
(http://www.auml.org/) to describe the artifacts of
agent interactions.

Figure 2 displays interactions in the integration
module. InA consults OAs involved in integration
process and counts the number of occurrences. Then
it records concepts that meet the requirements. Cer-
tainly, a visualisation module of the user agent
(UA) can present a graphic view of the result at the
end.

3.3 Integration Process

In this paper, the integration module starts from the
root of the specified ontology and then traverses all
sub-concepts of the ontologies. Briefly speaking, InA
counts the appearance of each concept of existing
ontologies, and then filters unexpected concepts with
a given threshold. By saying this, we do not mean
that we attempt to change the conceptual modelling
of the ontology. Instead, ontology integration is
based on a specified ontology. The process is as
follows:

(1) obtain ontology related information (e.g. map-
ping results) via OAs ;

(2) keep the numbers of occurrences of each concept
in the specified ontology;
Three cases may take place according to the map-
ping results. They are:

- Case 1 semantic equivalence for the current
two concepts (for example, “beer” is the
same as “suds”):

In this case, increase the number of occur-
rences of the concept by 1 for each equiva-
lence;

- Case 2 inclusive relation for the current two
concepts (for example, “stout” is a kind of
“ale”):
In this case, insert sub-concepts of the coun-
terpart into the specified ontology structure
but keep the original relations;

- Case 3 no semantic equivalence for the cur-
rent two concepts but their corresponding
direct ancestors are semantically equivalent:
In this case, insert the counterpart into the
specified ontology but without conflict with
existing sub-concepts of the same ancestor;

(3) filter unexpected concepts by a given threshold.

Following the above approach, we derive a newly
integrated ontology based on the mapping results.
Moreover, as the OA is used in the proposed frame-
work to be in charge of ontology related tasks, the
integrated ontology can be reused.

3.4 Integration Mechanism

Integration module operates over available mapping
results. The module uses the following functions or
data structures to execute relevant operations. The
pseudocode for the integration algorithm is shown in
Table 1.

• initialise: initialise the integration process;

• next-c: request a particular OA the next con-
cept of a specified ontology and returns the con-
cept if it exists;

• search: search for relations in mapping results
and returns existing relations if it exists or Null
otherwise;

• insert-sup: insert a specified concept as a
super-node of a given concept in a particular on-
tology structure;

• insert-sub: insert a specified concept as a sub-
node of a given concept in a particular ontology
structure;

• get-threshold: contact the UA via IA to obtain
a threshold. It returns the threshold;

• filter: filter unexpected items by given thresh-
old from a given ontology and returns a filtered
ontology.

4 Prototyping and Evaluation

We have developed an agent-based ontology in-
tegration prototype using the JADE platform
(http://jade.tilab.com/). The application back-
ground of the prototype is ontology integration in a
certain scenario where agents involved work together
to achieve a goal. In that case, an abstract confor-
mance view is needed. After that, the evaluation of
the framework and the work we have done is pre-
sented.

4.1 Prototyping

Following the analysis of the proposed architecture,
we worked out the details of the prototype. It
consists of the following agents: one user agent
(UA), one interface agent (IA), one mapping
agent (MA), one integration agent (InA), one

InA

request start_node

traverse the ontology
structure to get the current
nodes

inform current_node

search mapping.txt,
if they are the same,

then increase the
counter by 1

UA

request subs

inform subs

request is_sub

inform [Yes|No]
search mapping.txt,
if they are the same,

then increase the
counter by 1

request threshold

inform threshold

request insert new ontology

create a new ontology by
inserting concepts

visualisation

inform insert new ontology

OAnewOA
OAi OAj

Figure 2: Interactions between agents in integration module

consistency checking agent (CA), four ontology
agents (OAs), four negotiation agents (NAs).

The prototype runs as follows:
(1)Import existing ontologies;
(2)Develop corresponding OAs for each available

ontology;
(3)Execute mapping module;
(4)Execute integration module;
The process may take the following steps if re-

quired.
(5)Visualise the integrated ontology;
(6)Export the integrated ontology in a specified

format (e.g. RDF);
(7)Check the consistency of the integrated ontol-

ogy.

Figure 3: Screen shot of ontology integration

Suppose four similar organisations are seeking to
achieve a goal that is beyond their individual capabil-
ities and knowledge. They have their own ontologies
as presented in Section 2.2. In order to have a general
view of the variety of ontologies, a higher abstract on-
tology is necessary. In the example, we assume that
existing four ontologies are integrated based on the
WordNet “beer” definition.

Figure 3 is a screen shot of the ontology integra-
tion results (see Section 2.2 for existing running ex-
amples). The upper part is the overall prototype, the
lower right part is the integrated ontology in a hier-
archical structure.

Consistency checking is conducted by applying a
certain description logic (DL) based reasoning tool.
DL-based inference engines, which use a tableau
based algorithms (Baader & Sattler 2001), are decid-
able and support complete consistency checking. In
this paper, ontology consistency checking is done with
RACER (http://www.racer-systems.com/) in Protégé
(http://protege.stanford.edu).

4.2 Evaluation

Ontologies and ontology-based applications perform
in the environment of dynamics, distribution and het-
erogeneity. The agent-based framework proposed in
this paper is suitable for tasks such as ontology in-
tegration in a certain business scenario. By adopt-
ing a MAS’s perspective, interactions among multiple
agents, which work together to achieve the goal be-
yond individual capabilities and knowledge, are high-
lighted. In other words, MASs are able to take a
variety of environmental circumstances into consider-
ation rather than treating the environment mainly as
being static. The evaluation work takes the following
characteristics into account:

• Flexibility: In the framework, the already set
up agent communication channel facilitates mes-

Table 1: Integration algorithm
/* assume the mapping module starting from a given start point;
Os, Ot: two different ontologies;
Od: the derived ontology;
cs, ct: concepts from ontologies Os and Ot, respectively;
ncs

, nct
: the numbers of occurrences of concepts cs and ct, respectively;

m: the number of available ontologies;
relation: relations between two given concepts from different ontologies;
threshold: the threshold given by the user to filter unexpected items from the generated
ontology.
*/
Function integration {
initialise;
for(i = 1; i < m; i + +) {

while ((next-c(Os)!=Null) && (next-c(Ot)!=Null)) {
cs=next-c(Os);
ct=next-c(Ot);
relation=search(cs, ct);
switch (relation) {

case “=”: ncs
+ +; break;

case “≤”: insert-sup(ct, cs); nct
= 1; break;

case “≥”: insert-sub(ct, cs); nct
= 1; break;

default: ncs
= 1;

} //end switch
} //end while

} //end for
threshold=get-threshold;
filter(Od, threshold);
} //end function

sage delivery. Moreover, the presence of the OAs
allows flexible system organisation. The system
allows freely adding/deleting OAs and all defined
agents for a particular tasks to/from the system;

• Interactivity: Agents are highly interactive in
the framework. Interactions take place not only
between OAs, but also between other agents if a
particular task needs to deploy the functionalities
of others;

• Interoperability: The framework enables
interoperability between agents of different
agent platforms. In terms of syntactic
and semantic heterogeneity of ontologies, a
meta-ontology (Li, Yang & Wu 2005b) is de-
veloped to resolve semantic heterogeneities;

• Scalability: In the framework, different classes
are developed. They include concept class, ontol-
ogy class and agent class. Moreover, all ontology
related operations are encapsulated and isolated
from other agents’s view (e.g. only being visible
to OAs). By extending corresponding classes, the
agents can be created easily.

• Reusability: In the framework, whenever a new
ontology is generated based on existing ontolo-
gies, an OA is developed correspondingly. It en-
ables the general view of a particular application
domain to be reused in the system.

• Reliability: It depends on agents performing
rationally in the framework. As every agent
of the system is required to register and adver-
tise its capabilities to the IA, any other agents
are able to reach all available capabilities in the
system whenever needed. Moreover, the upper
bound on the number of iterations (the integra-
tion algorithms) required to reach a fixed point
is the number of concepts in an ontology. It is
known that the number of concepts in an ontol-
ogy is finite.

Agents generated for the running examples work
properly at this stage. They all exhibit their be-
haviours correctly as specified.

To sum up, the proposed framework provides a
flexible and effective modelling approach to tackle on-
tology integration over a variety of ontologies.

5 Related Work and Discussion

Independently developed ontologies may need to be
integrated or composited later on if required. It is
natural to treat it from a process perspective. Pinto
et al. (Pinto & Martins 2001) define activities of the
process. A methodology is presented to support and
guide the process. Even though each stage of the
integration process still needs to be addressed in the
future, we can find some existing tools which are
claimed to support it in some way. Some of these sys-
tems are: PROMPT (Noy & Musen 2003), Chimaera
(http://www.ksl.stanford.edu/software/chimaera),
SHOE (http://www.cs.umd.edu/projects/plus/SHOE),
and OntoEdit (http://www.ontoknowledge.org/tools
/ontoedit.shtml). The PROMPT suite consists of
a set of tools to assist merging, alignment and
versioning of ontologies. These tools support some
of the tasks in the context of multiple ontology
management. Chimaera (McGuinness, Fikes, Rice
& Wilder 2000) is an environment for merging and
testing large ontologies. SHOE (Heflin 2001) allows
Web page authors to annotate their web documents
with machine-readable knowledge. OntoEdit (Sure,
Erdmann, Angele, Staab, Studer & Wenke 2002) is
an ontology editor that integrates numerous aspects
of ontology engineering. Moreover, there are some
other tools listed in (Duineveld, Stoter, Weiden,
Kenepa & Benjamins 2000) that support ontology
integration to some extent.

Besides those tools, some researchers, such as
Grüninger et al. (Grüninger & Kopena 2003),
Kalfoglou et al. (Kalfoglou& Schorlemmer 2003),

Gómez-Pérez et al. (Gómez-Pérez & and Richard
Benjamins 1999), have investigated ontology integra-
tion from different technical aspects. Other related
works, such as GLUE (Doan, Madhavan, Domingos
& Halevy 2003) and Hovy (Hovy 1998) are more con-
cerned with mapping techniques than the overall ar-
chitecture.

Another closely related work is Process
Specification Language (PSL) (http://www.mel.
nist.gov/psl/ontology.html). Its aim is to create a
process interchange language that is common to all
manufacturing applications, generic enough to be
decoupled from any given applications and robust
enough to be able to represent the necessary process
information for any given applications. It is more
appropriate to refer to it as an ontology or a data
model than a language.

Our work is inspired by the approaches in infor-
mation integration and PSL as well. We argue that
different techniques and methodologies are comple-
mentary and thus must be used in combination rather
than exclusively. Bearing these in mind, we adopt a
MAS perspective to model the variety of ontologies
in ontology-based applications. We believe that the
agent technology is ideally suited in a dynamic and
distributed environment such as ontology integration
on the Web.

An agent-based approach aims to provide a flexible
and robust way to automate the process of ontology
integration as much as possible to alleviate the heavy
burden of building ontologies from scratch, which is
believed to be error-prone and costly. Moreover, little
prior knowledge is needed to start the system because
agents, which are autonomous and engaged in flexible
interactions, can perceive changes in the environment
and adopt corresponding actions to achieve the goals
in a timely fashion. Clearly, communications between
agents play very important roles in agent interactions,
which are based on some kinds of ontologies.

6 Conclusions and Future Work

Ontologies are becoming more and more important in
the context of the emerging Semantic Web. Because
of this trend, the need for integration and reuse of
ontologies increases as well. In this paper, we have
presented an novel agent-based framework to achieve
ontology integration in the environment of similar on-
tologies existing in a distributed and heterogeneous
way. With the presence of ontology agents, newly
generated ontologies can be reused, which is in accor-
dance with the intuition of reuse of existing ontologies
no matter whether they are original or newly built.

Although the approach proposed in this paper is
promising for ontology integration, some issues need
to be further addressed. We attempt to use a process
algebra to support agent interactions at a high level
of abstraction. We hope that this perspective will
allow the proposed framework to deal with ontology
integration in an abstract but more flexible way.

Acknowledgements

Work reported here is partly supported by Swinburne
VC’s Strategic Research Initiative Grant 2002-2004
for project “Internet-based e-business ventures”. The
authors are grateful for Shane Grund’s prototyping
work.

References

Baader, F., and Sattler, U., (2001), An overview of
tableau algorithms for description logics, Studia
Logica, 69, 5-40.

Calvanese, D., Giacomo, D. G., and Lenzerini, M., A
framework for ontology integration, (2002), Proc.
of the 1st Semantic Web Working Symposium at
the Emerging Semantic Web, pp. 201-214.

Doan, A., Madhavan, J., Dhamankar, R., Domingos,
P., and Halevy, A., (2003), Learning to match
ontologies on the Semantic Web, VLDB Journal,
Special Issue on the Semantic Web, 12 (4), 303-
319.

Duineveld, J. A., Stoter, R., Weiden, R. M., Kenepa,
B., and Benjamins, R. V., (2000), Wonder-
Tools? A comparative study of ontological engi-
neering tools, International Journal of Human-
Computer Studies, 52(6), 1111-1133.

Gómez-Pérez, A., and Richard Benjamins, V., (1999),
Applications of ontologies and problem-solving
methods, AI Magazine, 20(1), 119-122.

Gruber, T. R., (1993), Toward principles for
the design of ontologies used for knowl-
edge sharing, KSL-93-04, Knowledge Systems
Laboratory, Stanford University, http://ksl-
web.stanford.edu/.

Grüninger, M., and Kopena, B. J., (2003), Semantic
integration, position statement, In: Proc. of the
Workshop on Semantic Integration, jointly held
with the 2nd International Semantic Web Con-
ference, Sanibal Island, Florida, USA.

Heflin, J., (2001), Towards the Semantic Web: knowl-
edge representation in a dynamic distributed en-
vironment, Ph.D. Thesis, University of Mary-
land, College Park.

Hovy, E., (1998), Combining and standardising large-
scale, practical ontologies for machine transla-
tion and other uses, In: Proc. of the 1st In-
ternational Conference on Language Resources
and Evaluation (LREC), pp. 535-542. Granada,
Spain,

Jennings, N., and Wooldridge, M., (2001), Agent-
oriented software engineering, J. Bradshaw
(Eds.), Handbook of Agent Technology,
AAAI/MIT Press.

Kalfoglou, Y., and Schorlemmer, M., (2003), Ontol-
ogy mapping: the state of the art, Knowledge
Engineering Review, 18(1), 1-31.

Kalfoglou, Y., and Schorlemmer, M., (2003), IF-
map: an ontology-mapping method based on
information-flow theory, Journal of Data Seman-
tics, 1(1), 98-127.

Klein, M., and Noy, F. N.,(2003), A component-based
framework for ontology evolution, In: Proc. of
the IJCAI’03 Workshop: Ontologies and Dis-
tributed Systems, Acapulco, Mexico.

Li, L., Yang, Y., and Wu, B., (2005a), Agent-based
ontology mapping towards ontology interoper-
ability, In: Proc. of the 18th Australian Joint
Conference on Artificial Intelligence (AI’05),
LNAI 3809, Springer-Verlag, pp. 843-846, Syd-
ney, Australia.

Li, L., Yang, Y., and Wu, B., (2005b), Implementa-
tion of agent-based ontology mapping and inte-
gration, Technical Report, Swinburne University,
http://www.it.swin.edu.au/personal/yyang/papers
/2005TR-Li-1.pdf.

McGuinness, D., Fikes, R., Rice, J., and Wilder, S.,
(2003), An environment for merging and test-
ing large ontologies, In: Proc. of the 7th In-
ternational Conference on Principles of Knowl-
edge Representation and Reasoning (KR2000),
pp. 483-493, Breckenridge, Colorado, USA.

Noy, F. N., (2003), What do we need for ontology
integration on the semantic web, position state-
ment, In: Proc. of the Workshop on Semantic
Integration, jointed held with the 2nd Interna-
tional Semantic Web Conference, Sanibal Island,
Florida, USA.

Noy, F. N., and Musen, M. A., (2003), The PROMPT
suite: interactive tools for ontology merging
and mapping, International Journal of Human-
Computer Studies, 59(6), 983-1024.

Noy, F. N., (2004), Semantic integration: a survey
of ontology-based approaches, SIGMOD Record,
Special Issue on Semantic Integration, 33 (4),
65-70.

Rahm, E., and Bernstein, P., (2004), A survey of
approaches to automatic schema matching, The
VLDB Journal, 10, 334-350.

Pinto, H. S., and Martins, P. J., (2001), A method-
ology for ontology integration, In: Proc. of
the International Conference on Knowledge Cap-
ture, pp. 131-138, Victoria, British Columbia,
Canada.

Pinto, H. S., and Martins, P. J., (2004), Ontologies:
How can they be built?, Knowledge and Infor-
mation Systems, 6 (4), 441-464.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer,
R., and Wenke, D., (2002), OntoEdit: collabora-
tive ontology engineering for the Semantic Web,
In: Proc. of the International Semantic Web
Conference (ISWC 2002), LNCS 2342, Springer-
Verlag, pp. 221-235, Sardinia, Italy.

Uschold, M., Healy, M., Williamson, K., Clark, P.,
and Woods, S., (1998), Ontology reuse and ap-
plication, In: Proc. of Formal Ontology in Infor-
mation Systems (FOIS’98), Treno, Italy.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt,
H., Schuster, G., Neumann, H., and Hübner, S.,
(2001), Ontology-based integration of informa-
tion - A survey of existing approaches, In: Proc.
of the IJCAI’01 Workshop: Ontologies and In-
formation Sharing, Seattle, Washington, USA.

