

University of Southern Queensland

Faculty of Engineering and Surveying

Ambient Air Temperature Aeration Controller

A dissertation submitted by

Andrew Charles

in fulfilment of the requirements of

Courses Eng4111 and 4112 Research Project

towards the degree of

Bachelor of Engineering (Electrical and Electronic)

Submitted: November, 2006

 i

Abstract

Aeration is an important component in the successful bulk storage of grain.

Without it, grain can degrade in quality, destroying profits. To achieve the best

results from aeration, an automatic aeration controller should be used. This

device monitors the condition of ambient air and automatically activates aeration

fans, during the coolest period of the day, to cool the stored grain. The system has

been designed by researching existing control methods, in quest of improvements

and alternatives, and developed into a working prototype.

A PICAXE microcontroller is used to process data and determine the optimal

period to operate the aerators. A combined Relative Humidity and Temperature

sensor is utilised to measure the state of the ambient air. The Relative Humidity is

combined with a lookup table to determine an approximate wet-bulb temperature.

By utilising wet-bulb temperature, a greater cooling effect is achieved through an

evaporative cooling effect. A LCD display provides a user interface exhibiting

useful data in relation to the device. The CSIRO Time Proportioning Control

Method was implemented, providing Normal and Rapid outputs. An alternative

method of calculating set-points, involving cumulative probability, was applied.

The final prototype constructed was tested successfully, logging data and

determining set-points for operation. Improvements and further work aimed at

improving the design are discussed.

- ii -

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &

ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of
Engineering and Surveying, and the staff of the University of Southern
Queensland, do not accept any responsibility for the truth, accuracy or
completeness of material contained within or associated with this
dissertation.

Persons using all or any part of this material do so at their own risk, and
not at the risk of the Council of the University of Southern Queensland,
its Faculty of Engineering and Surveying or the staff of the University of
Southern Queensland.

This dissertation reports an educational exercise and has no purpose or
validity beyond this exercise. The sole purpose of the course pair entitled
"Research Project" is to contribute to the overall education within the
student’s chosen degree program. This document, the associated
hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used,
it is entirely at the risk of the user.

Professor R Smith

Dean
Faculty of Engineering and Surveying

- iii -

Certification

I certify that the ideas, designs and experimental work, results, analyses and

conclusions set out in this dissertation are entirely my own effort, except where

otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Andrew Charles

Student Number: 0050009343

Signature

 Date

- iv -

Acknowledgements

I would like to thank my supervisor, Mr Mark Norman, for his help and guidance

throughout this project.

I would also like to thank my friends and family for their continuing support

throughout my degree.

- v -

Table of Contents

Abstract .. i

Certification... ii

Acknowledgements ... ii

List of Figures ... ii

List of Tables... ii

Nomenclature .. ii

Chapter 1 – Introduction.. 2

1.1 Background Information ... 2

1.2 Project Aim.. 2

1.3 Project Objectives.. 2

1.4 Dissertation Structure .. 2

Chapter 2 – Aeration Process .. 2

2.1 Storage Problems... 2

2.2 What is Aeration.. 2

2.3 Aeration Benefits... 2

2.4 Aeration Categories ... 2

2.5 Aeration Control Methods... 2

2.5.1 Time Proportioning Controller ... 2

2.5.2 Adaptive Discounting... 2

2.6 Temperature Prediction ... 2

2.6.1 Gradient Control Method ... 2

2.6.2 Statistical Control Method.. 2

2.7 Temperature Sensing ... 2

Chapter 3 – Risk Analysis and Project Management .. 2

3.1 Assessment of Consequential Effects.. 2

3.2 Safety Issues .. 2

3.3 Risk Management Chart .. 2

3.4 Resource Planning and Timeline... 2

Chapter 4 – System Design ... 2

4.1 Description of Intended Use.. 2

- vi -

4.2 Control Method ... 2

4.3 Component Selection .. 2

4.3.1 PICAXE Microcontroller ... 2

4.3.2 Memory .. 2

4.3.3 Temperature Sensor.. 2

4.3.4 Contact Switching .. 2

4.3.5 Relay Driving Circuitry.. 2

4.3.6 Power Supply ... 2

4.3.7 Real Time Clock... 2

4.3.8 Human Interface ... 2

4.4 System Schematic.. 2

4.9 PCB ... 2

Chapter 5 – Hardware Implementation and Testing.. 2

5.1 Initial Testing and Construction .. 2

5.2 Final Prototype Construction... 2

Chapter 6 - Software Development ... 2

6.1 PICAXE Programming Editor... 2

6.2 Code Development .. 2

6.2.1 Temperature and Humidity Sensor Interfacing 2

6.2.2 Cyclic Redundancy Check ... 2

6.2.3 Wet Bulb Temperature Calculation.. 2

6.2.4 Real Time Clock Interface.. 2

6.2.5 Measurement Time Determination... 2

6.2.6 Storing Measurements .. 2

6.2.7 Calculating Number of Occurrences .. 2

6.2.8 Calculating Cumulative Probability ... 2

6.2.9 Checking Set-points ... 2

6.2.10 User Interfacing .. 2

6.2.11 Switch Bounce.. 2

6.2.12 Menus ... 2

6.2.13 Pre-defined Messages... 2

6.2.14 Sample Downloading ... 2

Chapter 7 – Analysis and Performance ... 2

7.1 Initial System Test... 2

- vii -

7.2 Second System Test... 2

7.3 System Improvements ... 2

7.4 System Discussion... 2

Chapter 8 – Conclusions and Recommendations .. 2

8.1 Achievement of Objectives ... 2

8.2 Recommendations for Further Work... 2

References ... 2

Appendix A – Project Specification .. 2

Appendix B – Wet-Bulb Temperature Lookup Table... 2

Appendix C – SHT15 Sensor Timing Diagram .. 2

Appendix D – LCD Display Commands... 2

Appendix E – PCB .. 2

Appendix F – Software Listing ... 2

Appendix G – CRC Data... 2

Appendix H – Raw Temperature Sample Data ... 2

Appendix I – Simulation Code.. 2

Appendix J – Resource Planning... 2

Appendix K – Timeline ... 2

- viii -

List of Figures

Figure 1.1: A Sealed Silo .. 2

Figure 1.2: Fan Switching Periods ... 2

Figure 2.1: Time Proportioning Controller ... 2

Figure 2.2: Slope Control Set-point Method ... 2

Figure 2.3: Statistical Method ... 2

Figure 2.4: Cumulative Probability Below Value X ... 2

Figure 2.5: Temperature Data ... 2

Figure 2.6: Histogram.. 2

Figure 2.7: Cumulative Probability ... 2

Figure 2.8: Hygrometer ... 2

Figure 2.9: Relative Humidity Table Excerpt ... 2

Figure 4.1: Rapid and Normal Output Conditions .. 2

Figure 4.2: PICAXE 18X Pin-out ... 2

Figure 4.3: Microchip 24LC16B ... 2

Figure 4.4: Dallas Semiconductor DS18B20 .. 2

Figure 4.5: Typical SHT1x Connection .. 2

Figure 4.6: Sensirion SHT15... 2

Figure 4.7: Sensor Pin Connections .. 2

Figure 4.8: Switching Relay.. 2

Figure 4.9: ULN2803A ... 2

Figure 4.10: Sealed Lead Acid Battery ... 2

Figure 4.11: L7805CV 5V Regulator.. 2

Figure 4.12: DS1307 RTC... 2

Figure 4.13: DS1307 Address Map... 2

Figure 4.14: AXE033 LCD Module.. 2

Figure 4.15: LCD Character Map.. 2

Figure 4.17: PCB... 2

Figure 5.1: Bread Board Prototype.. 2

Figure 5.2: Prototyping Board... 2

Figure 5.3: Completed Circuit on Prototyping Board ... 2

- ix -

Figure 5.4: Controller Displaying Main Page ... 2

Figure 5.5: Controller Displaying Set-points .. 2

Figure 5.6: Controller Internals ... 2

Figure 5.7: Remote Sensor .. 2

Figure 6.1: PICAXE Programming Editor .. 2

Figure 6.2: System Flow Diagram .. 2

Figure 6.3: Transmission Start Sequence .. 2

Figure 6.4: Internal CRC-8 Generator Structure ... 2

Figure 6.5: Wet Bulb Lookup Table Calculation .. 2

Figure 6.6: RTC RAM Locations Used... 2

Figure 6.7: Sampling Buffer.. 2

Figure 6.8: Temperature Histogram Locations ... 2

Figure 6.9: Display Main Page Layout ... 2

Figure 6.10: Debounce Bit Flags... 2

Figure 6.11: Menu items ... 2

Figure 6.12: Pre-Defined Messages .. 2

Figure 7.1: Initial Test Data .. 2

Figure 7.2: Second Test Results .. 2

Figure 7.3: Buffer Size Simulation.. 2

- x -

List of Tables

Table 3.1 Risk Assessment.. 2

Table 4.1: PICAXE 18X Features ... 2

Table 6.1: Variable Allocation .. 2

Table 6.2: SHT15 Commands ... 2

Table 6.3: SHT15 Status Register ... 2

Table 6.4: Temperature Conversion Coefficients ... 2

Table 6.5: Temperature Conversion Coefficients ... 2

Table 6.6: Temperature Output Conditions... 2

- xi -

Nomenclature

PIC Programmable Integrated Circuit

EEPROM Electrically Erasable Programmable Read Only Memory

LCD Liquid Crystal Display

RH Relative Humidity

CRC Cyclic Redundancy Check

RTC Real Time Clock

SPDT Single Throw Double Throw

PCB Printed Circuit Board

CSV Comma Separated Variable

BCD Binary Coded Decimal

Chapter 1 – Introduction 1

Chapter 1 – Introduction

1.1 Background Information

Grain in agriculture is generally stored for periods of time after harvest. This is

usually done as a stack of grain in the open air, or in a silo that contains the grain.

A typical silo is shown in figure 1.1. Silos in agricultural applications generally

range in size from a few tonnes to several hundreds of tonnes. Using a silo

presents advantages over an open heap. The grain in a silo is not directly exposed

to atmospheric conditions such as rain, this avoids wetting which can result in

possible shooting of the seed. The likelihood of rodent infestation is also reduced

significantly. Silos are available in either sealed or unsealed varieties, unsealed

are not air tight while sealed silos can be made air tight for fumigation purposes.

By storing the grain in a sealed container, it is exposed to complications that have

the potential to degrade the quality of the grain.

Figure 1.1: A Sealed Silo

Aeration is used successfully in bulk grain storage to prevent quality degradation

and can potentially offer improvements in quality. The process involves forcing

Chapter 1 – Introduction 2

air through the grain bulk to cool and remove moisture from the grain. To achieve

these benefits the air used in the aeration process must be carefully selected. An

aeration controller monitors ambient air parameters and switches fans on at

optimal times to condition stored grain according to the prevailing air conditions.

The controller must switch the fans to provide a cooling effect to the grain, hence

reducing insect/mould development, grain spoilage and moisture migration. Such

an automated system has significant advantages over other control methods such

as a timer or a manual switched system. These can be extremely inaccurate

methods, operating at inappropriate times with the potential of undoing any gains

previously made.

For highest efficiency the coolest possible air available must be used. As the day

to day temperature cycle varies, a method of prediction must be utilized to

forecast the minimum temperature for the current daily cycle. This data is used in

order to calculate set-points for the aeration motor control. Most existing aerators

are driven by mains supplied electric induction motors which offer no form of

speed control. The controller operates as a simple on/off switch to the motors

providing a variable, long pulse width run signal. This is demonstrated in figure

1.1 below.

0 50 100 150 200 250 300 350
0

5

10

15

20

25

T
e
m
p
e
ra
tu
re

Fans Active

Figure 1.2: Fan Switching Periods

Chapter 1 – Introduction 3

1.2 Project Aim

The aim of this project is to develop an aeration controller that will automatically

switch aeration fans on and off depending on ambient air temperature. This will

ensure the grain in storage is conditioned during the optimal time of coolest air.

Chapter 1 – Introduction 4

1.3 Project Objectives

The following objectives were chosen to facilitate the completion of the project.

1. Research information on aeration control methods in grain storage.

2. Research and select sensors appropriate for ambient air measurement.

3. Research and select microprocessor with other hardware components.

4. Design and simulate software required for control of aeration fans.

5. Construct prototype and evaluate.

As time permits

 6. Investigate remote monitoring of controller operation.

Chapter 1 – Introduction 5

1.4 Dissertation Structure

The dissertation is organized as follows:

Chapter two covers the findings of the literature review carried out on the aeration

process. The general process, categories, benefits and control methods will be

discussed.

Chapter three is a risk assessment of the project. It outlines the possible risks in

development and use of the controller and the measures required to minimise

these risks. The development of a budget and timeline is also discussed.

Chapter four contains the detailed design information. Included is comprehensive

information of components selected for the system, an explanation of how they

are interfaced, the system schematic and the PCB design.

Chapter five presents the methods used for building the prototypes. Firstly the

initial design that was built on a breadboard will be discussed. Secondly the final

prototype, housed within a protective case will be presented.

Chapter six describes the software development for the project. Firstly, the

PICAXE programming editor is introduced. The explanation of the software

modules and their operation then follows.

Chapter seven presents the methods and analyses the results of the tests conducted

on the design. Simulation is carried out to test the result of changing the sampling

buffer size.

Chapter eight discusses the performance of the design compared to the aims,

objectives and specifications. Recommendations for future work that would

improve the system are made.

Chapter 2 – Aeration Process 6

Chapter 2 – Aeration Process

This section will review current literature to establish the problems that need to be

overcome and the processes that are best for achieving this. The following points

will be considered:

1. The problems involved with the bulk storage of grain

2. Aeration benefits

3. Aeration categories and flow rates necessary

4. Aeration control methods currently used or in development

2.1 Storage Problems

There are a multiple reasons grain is stored for long periods of time. In

agricultural situations the most common is usually an attempt to maximize profits.

Other reasons include extending the harvest window (Newman 2002), allowing

earlier harvest and also in managing income tax by delaying profits until the next

financial year. These reasons justify grain storage but there are also problems

inherent in the process.

Grain deteriorates while in storage, this may result in potential profit losses. The

major causes of deterioration in bulk stored grain are insect activity, mould

growth and moisture migration (McPhee 1998). Temperature difference gradients

in the grain bulk cause moisture migration by convection currents. This moisture

condenses on silo surfaces, causing spoilage of the grain in that area (McPhee

1998). Mould can develop if the moisture within the grain is too high. Insect

development within the grain will naturally occur, however it is accelerated at

higher temperatures. This can be a serious concern in some circumstances. Insect

activity can cause hot spots within the grain; these areas promote extra insect

growth and contribute further to moisture migration (Newman 2002).

Chapter 2 – Aeration Process 7

2.2 What is Aeration

Fusae (2004) defines aeration as the process of passing cool air through grain to

reduce its temperature to a level where insect development, mould growth and

moisture migration are dramatically inhibited. The condition of this air needs to

be chosen carefully to achieve any benefit. Aeration is accomplished with fans

and ducting used to force the air through the grain. The fans are generally

electrically driven as it is the most cost effective.

2.3 Aeration Benefits

Aeration provides many benefits and is very important to successful grain storage.

Fusae (2004) lists the benefits as the following:

1. Insect and mould activity is dramatically suppressed, reducing spoilage

and weight loss of grain.

2. Temperature and moisture variations within the grain are prevented, thus

avoiding hot spots and condensation due to moisture movement.

3. Cooling helps maintain grain quality – especially important for grain kept

for seed.

4. Insecticides maintain their effectiveness for far longer when grain is

cooled by aeration.

5. Aeration is a low energy process – running costs are low. Aeration can

dramatically improve the storage life of dry grain. This practice has met

with a wide acceptance in the past few years with farmers installing many

of these units for improving the storage conditions in their silos.

Aeration can also be an effective means of relieving pressure on a drying system

by stalling the immediate need to dry over wet grain (Fusae 2004). The wet grain

may be stored under aeration for a limited period while other grain is dried.

Chapter 2 – Aeration Process 8

Aeration not only helps to keep the storage temperature in a safe range but will

also reduce the decay rate of protectants by 3 to 5 times (McPhee 1998). This

reduces the quantity of insecticide required; this reduction limits the extent of

insects becoming resistant to the chemical.

2.4 Aeration Categories

Aeration can be divided into general categories based on air flow rate. Darby

(1998) defines these categories as maintenance, up to 0.5 L/s/tonne, cooling, 0.5

to 2.5 L/s/tonne and drying, 2.5 to 20 L/s/tonne. The air flow rates of the aeration

fan equipment used dictate the extent of ability of the aeration system. Most

existing installed aeration systems are capable of air flows in the low cooling

range. The air flow of the system must be sufficient for the application otherwise

it will not perform effectively. This must be considered when designing the

controller. The lower functions of maintenance and cooling can be performed by

most systems (Darby 1998). Outputs from the controller to perform these

functions can be interfaced to most existing systems. Higher functions, such as

drying control periods, will be useless unless attached to a fan capable of the

necessary air flow.

2.5 Aeration Control Methods

In aeration, there are a number of general methods available to switch the aeration

fans on and off. Fully manual control involves the operator estimating and

activating the fans at the appropriate times. This can be improved by manual

charting of the temperature at various times and activating accordingly.

Advancement on this method is through the use of an adjustable timer switch for

control. The operator pre-sets the running time interval based on the estimate of

time that will provide the most benefit. This provides the same accuracy as

completely manual operation, but the operator will be relieved from manual

Chapter 2 – Aeration Process 9

switching at inconvenient times. Clearly these methods are exceedingly

inaccurate which is the reason a dedicated aeration controller, that monitors and

selects the most beneficial air is the best option.

Commercial aeration controllers are available on the market. These devices are

expensive for what is essentially a self adjusting thermostat. Many of these

systems provide no way of viewing when the system ran the aerators, making

verification of successful operation impossible. While monitoring the air

temperature, existing systems do not display the value. An accurate present

temperature display would be very useful in a grain storage environment. Many

test devices used for measuring moisture of grain require the air temperature to be

known. A readout of this value would eliminate the need for an additional

thermometer. The control method employed by commercial aeration controllers

are presented in the following sections. An alternative statistical method, logging

a buffer of samples which can be used to verify system operation is explained.

2.5.1 Time Proportioning Controller

Research into controllers currently available, showed that the most common form

of control was based on the CSIRO Time Proportioning Control Method. This

process tracks the daily fluctuation of ambient air temperature and switches the

aeration fan on during the coolest times in order to meet one of the two available

aeration time fractions, 0.15 (normal mode) or 0.5 (rapid mode) (CSIRO, SGRL).

A graphical example of this is shown in below in figure 2.1, the normal mode

time period is displayed.

Chapter 2 – Aeration Process 10

Figure 2.1: Time Proportioning Controller (Stored Grain Research Laboratory,

CSIRO)

This method is simple in that it is essentially an open loop function. The

temperature of the grain is ignored and the system attempts to keep the grain as

cool as possible. The only input to the system is the current temperature; the

output is selected from the two modes as appropriate.

The Rapid mode of 50% time duration is designed for use with hot, recently

harvested grain. The longer running period provides a greater cooling effect,

quickly removing the harvest heat from the grain before damage can result. Once

this heat has been removed the Normal mode, active for 15% time duration is

selected. This mode maintains the grain in a cool state by activating the fans long

enough to remove heat absorbed from the surroundings and reach a point of

stabilisation.

2.5.2 Adaptive Discounting

Research also revealed a new method of control recently became commercially

available, it is called Adaptive Discounting. This method contains two

components operating simultaneously. The adaptive component sequentially

Chapter 2 – Aeration Process 11

propagates complete individual fronts through the store until the target average

grain condition is achieved. The discounting action monitors the air selection

process and ‘releases’ the set points to maximize the propagation rate (Darby

2000). Adaptive Discounting is a closed loop method utilising sensors within the

grain to monitor its condition. This can also prove a disadvantage in that these

sensors are a possible point of failure that other methods do not utilise. Each silo

of grain being cooled requires its own sensor and control loop. This is an added

complexity when compared to the time proportioning controller which can be

simply multiplexed by connecting the outputs in parallel.

2.6 Temperature Prediction

As discussed in earlier sections, the success of aeration is based on the use of the

coolest possible available air. The selection of the coolest period of air is not a

simple process. The day to day weather pattern, and hence temperature is

continuously changing. Due to these daily temperature fluctuations it is not

known exactly what the coolest temperature will be and when it will occur. The

controller is therefore required to forecast the coldest period, this prediction is

generally based on previous temperature data. Two methods capable of

performing this prediction are discussed below.

2.6.1 Gradient Control Method

Research available regarding existing aeration controllers using Time

Proportioning Control, showed that they use a slope method for temperature

prediction. A commercially available aeration controller, the Rimik AC12, is

based on the CSIRO Time Proportioning Controller. It uses a self adjusting

thermostat method to predict the relevant set-points. The process is shown

graphically in figure 2.2.

Chapter 2 – Aeration Process 12

Figure 2.2: Slope Control Set-point Method (Fusae 2004)

Fusae (2004) describes the operation as follows. When first activated an initial

set-point is established by the controller. In the case of figure 2.2, the initial

temperature is less than the set-point. This being the case, the output is activated

and the set-point is slowly ramped downwards. When the set-point intercepts the

current temperature, the fans are switched off and the set-point gradient changes

sign. The set-point is now ramped upwards until it intercepts the temperature. At

this point the fans are again switched on. In this way the fans are only activated

while the temperature is below the set-point slope, this being the coolest part of

the temperature cycle. The gradient of the On Rate and Off Rate slopes determine

the duty cycle of the fans. Due to the initial set-point used when the device is first

switched on, it takes a number of cycles for the controller to stabilize and truly

select the correct period of the coolest air.

Pros

• Simple operation and calculation within processor

Cons

• Takes time to stabilize

• Gradients must be pre calculated from typical temperature data

• On and Off set-points are skewed to different temperatures due to on rate

slope, therefore not optimal selection of coolest period

Chapter 2 – Aeration Process 13

To implement this method of control, temperature data must be analysed to

determine the appropriate gradients. In figure 2.2, the temperature cycle is

represented by a sine wave. The true temperature cycle will appear as a cyclic

curve with a noise component due to the small fluctuations caused by atmospheric

changes such as varying cloud cover.

2.6.2 Statistical Control Method

An alternative method proposed for predicting the coldest temperature is by

statistical analysis of prior temperature data. This method involves storing a

buffer of temperature samples and using these as a basis for the prediction of the

current day’s minimum temperature. This can be easily demonstrated by studying

figure 2.3 below.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Time

T
e
m
p
e
ra
tu
re Set Point

50 Samples below line

Figure 2.3: Statistical Method

In this example one hundred samples represent a days temperature cycle. To

select the coolest 50% of the time, the lowest 50 samples are chosen. The buffer

of samples must be a multiple of complete days to ensure the time percentage is

correct. The temperature at which there are fifty samples below can be used as

the predictive set-point for the current day.

Chapter 2 – Aeration Process 14

In statistical terms, this is referred to as using the cumulative probability of the

data. The cumulative probability of the samples is the probability of the signal

being below a certain level (Leis 2002). This expressed mathematically for a

continuous signal is:

X} x(t){Pr F(X) ≤= (2.1)

Where F(X) is the cumulative probability

 x(t) is the continuous signal

X is the value which the cumulative probability is found to be

below

For the value of X shown in figure 2.4 the cumulative probability is found by:

T

tttt
 F(X) 4321 +++
=

 (2.2)

Where F(X) is the cumulative probability

 T is the total time

 t1 – t4 are the intervals for which the signal is below X

Chapter 2 – Aeration Process 15

Figure 2.4: Cumulative Probability Below Value X

In an aeration control sense, to use the coolest F(X) percent of the time, the

corresponding temperature value for X is found and this used as the predictive set-

point. The Normal mode percentage of 15% is used as an example. The number

of samples required to be below the set-point is established as 15% of the buffer.

Starting at the lowest recorded temperature, the number of samples measured at

this temperature is added to a total tally. The tally is incremented with the number

of times the temperature occurred as the temperature is stepped through in

ascending order. Once the required number of samples is reached the process is

stopped. The temperature at which this occurs is the set-point.

The following figures provide an example of this process. A day’s log of

temperature, taken at a sampling interval of 15 minutes and resolution of one

degree, is used as the statistical data. The histogram represents the number of

times each temperature occurred. The cumulative probability graph is simply a

cumulative sum of the histogram, scaled to a percentage. The lowest temperature

which encompasses 15% of the samples is the set-point. Due to the one degree

resolution in this example, there will be some error as a temperature bar

containing exactly 15% of the samples is highly unlikely.

Chapter 2 – Aeration Process 16

The dotted line in the figure shows the calculated set-point of 12 degrees. If the

temperature drops below this value the Normal fan output will be activated. The

Rapid set-point is calculated in the same way using 50% of the samples.

Chapter 2 – Aeration Process 17

0
2
0

4
0

6
0

8
0

1
0
0

0 5

1
0

1
5

2
0

2
5

3
0

T
e
m
p
e
ra
tu
re

S
a
m
p
le
 N
u
m
b
e
r

Temperature

0
2

4
6

8
1
0

1
2

1
4

0 5

1
0

1
5

2
0

2
5

3
0

H
is
to
g
ra
m

S
a
m
p
le
s

0
2
0

4
0

6
0

8
0

1
0
0

0 5

1
0

1
5

2
0

2
5

3
0

C
u
m
u
la
tive

 P
ro
b
a
b
ility

P
e
rc
e
n
ta
g
e

F
ig

u
re 2

.6
: H

isto
g
ra

m

F
ig

u
re 2

.5
: T

em
p
era

tu
re D

a
ta

F
ig

u
re 2

.7
: C

u
m

u
la

tiv
e P

ro
b
a
b
ility

Chapter 2 – Aeration Process 18

When using this method, a number of previous day’s data may be used to smooth

out daily fluctuations by effectively taking an average.

Pros

• Self calculating to climate

• Optimal symmetrical on and off switching based on data

Cons

• Takes time to collect samples initially

• Storage required for data

• More complex than Gradient Method

2.7 Temperature Sensing

The basis of aeration is air of correct condition being passed through the grain.

The basis of aeration control is the selection of appropriate air. Ambient air

contains an amount of water vapour. This amount can be measured in terms of

Relative Humidity. A method of calculating Relative Humidity (RH) is by means

of a hygrometer, also known as a Wet and Dry Bulb Thermometer.

Figure 2.8: Hygrometer (source:

http://www.bom.gov.au/info/weatherkit/section2/hygro.shtml)

Chapter 2 – Aeration Process 19

This method involves comparing the temperature indicated by a normal

thermometer to that given by a thermometer which has its bulb wrapped in a wet

moisture absorbent material. The rate of evaporation from the wet-bulb

thermometer depends on the humidity of the air - evaporation is slower when the

air is already full of water vapour. For this reason, the difference in the

temperatures indicated by the two thermometers gives a measure of atmospheric

humidity (BOM, 2006). The RH is calculated from a table comprising the dry

bulb temperature and the difference between dry and wet bulb temperatures.

Wet bulb temperature itself is an obscure measurement, usually only used to

determine RH. It is however a means of factoring the amount of evaporative

cooling potential available by the air. Aeration controllers using wet-bulb

temperature rather than dry-bulb temperature achieve greater cooling due to an

evaporative cooling effect. Air that is dryer than the grain will absorb some of the

moisture as it is blown through the grain bulk. This is the same principal used in

evaporative type air conditioners; the efficiency of these is reduced during times

of high humidity. Despite aeration controllers that use wet bulb thermometers

being more expensive, the increased efficiency is a desirable characteristic. One

solution is that rather than using an actual wet and dry bulb thermometer, the wet-

bulb temperature can be approximated using the dry-bulb temperature and the

relative humidity. These two characteristics can be measured relatively cheaply

and the same table used to calculate RH can be used in reverse to approximate the

Wet Bulb temperature of the air. An excerpt from a typical table is shown in

figure 2.9.

Chapter 2 – Aeration Process 20

Figure 2.9: Relative Humidity Table Excerpt

Source: (BOM 2001)

A complete copy of this table is presented in Appendix B. As an example

calculation take the red lines shown on the table. A dry bulb temperature of 15°C

is measured along with a Relative Humidity of 52%. By finding these values

within the table a wet bulb depression of 5°C is found. The depression is

subtracted from the dry bulb temperature, 15°C - 5°C = 10°C, and thus the wet

bulb temperature is estimated.

The accuracy of this method of determining wet-bulb temperature varies.

At lower temperatures the humidity range is much smaller. Thus the depression

value will vary less with a change in humidity. To obtain a very accurate value a

larger table would be required. This would require larger memory storage within

the controller to accommodate a larger lookup table. The table presented in the

above figure is deemed accurate for this prototype. The depression resolution is

half a degree and the dry-bulb resolution is in whole degree intervals.

Monitoring the humidity of the air also provides a further advantage. The device

is aimed solely at using cool air. Early dewy mornings, and when the temperature

drops just before rain storms, are times when the controller may operate the fans

(Fusae 2005). The cool temperature associated with these conditions will be less

than the set-points, activating the fans. These are cool periods where the RH of

the air will be high. This high humidity will transfer moisture to the grain along

with the cooling. Usually there is a great gain in cooling during these times and

Chapter 2 – Aeration Process 21

the amount of wetting occurring is small (Fusae 2005). If however drying is

preferred to cooling, the humidity may be used as a form of high moisture cut out.

The system could be prevented from running during times of high moisture. Such

a feature would be unavailable in a system monitoring dry-bulb temperature only.

Chapter 3 – Risk Analysis 22

Chapter 3 – Risk Analysis and Project Management

3.1 Assessment of Consequential Effects

The controller intended to be produced will be responsible for the control of

aeration fans maintaining a stockpile of grain. Failure of the device could

potentially result in loss of product income. Incorrect operating times could

possibly result in grain swelling; this could potentially cause damage to the silo

structure as the grain volume increases to more than the silo can hold. Adequate

testing of the design is necessary to ensure that the controller is capable of the task.

Use of this device should be relatively simple as incorrect operation could

produce catastrophic results.

The small scale of this project, containing few parts and limited production does

not present any significant hazard to the environment during production, operation

or disposal. Devices of this kind already exist and the project poses no major

ethical questions. The device produced should be designed to be safe to use,

install and dispose of. This product can be considered safe for all foreseeable

actions involving its use.

3.2 Safety Issues

To evaluate and reduce safety hazards during and after this project the following

risk assessment was developed.

To evaluate the level of risk posed, the likelihood of an event happening and the

potential consequences are assessed. Definitions for the probability scale used for

assessing risk are:

Extremely Slight = Practically impossible

Chapter 3 – Risk Analysis 23

Very Slight = Conceivable but very unlikely

Slight = Possible but unlikely

Significant = Possible

Substantial = To be expected

3.3 Risk Management Chart

To limit the risks associated with this project, the possible risks are firstly

identified. These risks perceived include those present during the construction

and use of the device. Measures for controlling and limiting these risks are also

included. These risks have been checked and reviewed during the project interval.

Table 3.1 Risk Assessment

Description of

Hazard

People at

Risk

Risk Severity Probability

Equipment being
dropped on feet

Myself Bruising Slight

Control Measures Always wear fully enclosed footwear
Take extra care

Injury during
construction of
prototype

Myself Cuts or scratches
to hands and
fingers

Slight

Control Measures

Use correct tools for the task
Use tools in the correct manner
Handle components carefully

Injury from heat from
soldering/ electrical
components

Myself Burns Slight

Control Measures Allow components to cool
Avoid touching components when on

Soldering fumes Myself Toxic inhalation
Eye irritation

Very slight

Control Measures Keep well ventilated
Stop if irritation occurs

Electrocution Myself
Future users

Small shock to
death

Significant to me
Future uses
slight

Control Measures Carry out as much testing as possible without power
Test using low voltage power supply to avoid mains
voltages
Exercise caution
Installation of live wiring by a licensed electrician

Chapter 3 – Risk Analysis 24

3.4 Resource Planning and Timeline

To facilitate the completion of the project, a list of expected resources and

associated costs were compiled. From this a budget of approximately $250 was

calculated. The table of resources is presented in Appendix J. To set deadlines

for work to be completed, a timeline was constructed consisting of work to be

completed, and time allotted. This timeline was updated through the course of the

project as required, as a better understanding of activities and their timeframes

became available. The timeline is presented for reference in Appendix K.

Chapter 4 – System Design 25

Chapter 4 – System Design

4.1 Description of Intended Use

The Aeration Controller is intended to be permanently mounted in an undercover

position and not exposed to environmental factors such as rain. The temperature

sensor will be remote and attached to the main unit by a cable, allowing it to be

mounted in an open location that will reflect the true atmospheric conditions. As

this system is being designed for control of electrically driven motors a 240v

mains supply should be available and the power supply for the system will be

derived from this source.

The outputs from the controller will be separate Normal and Rapid signals for

control of contactors. This will allow selection of required cooling rate for each

silo external to the aeration controller and minimize the number of outputs

required by the microcontroller.

Due to the slow rate of change that occurs with ambient temperature, high clock

speed of the microprocessor was not considered an important characteristic. A

display will provide a visual indication of current temperature along with other

useful features such as time and set-point levels.

4.2 Control Method

In order to determine the required hardware such as memory type and amount, it

was first necessary to select the control method to be used. The statistical control

method described in chapter 1.6.2 was chosen for this design. The advantage of

self tuning will allow the controller to adapt to any climate by simply collecting

samples. These samples however will need to be stored in memory, contributing

Chapter 4 – System Design 26

to the complexity of the hardware. A potential benefit of the stored samples is the

possibility for them to be read back to a PC allowing the aeration controller to

also perform the function of a data logger. The symmetrical set-points for both on

and off switching were also deemed beneficial compared to the gradient method,

which by using a slope and intercept would switch on and off earlier than ideal,

thus using warmer air than necessary and then wasting cooler air time respectively.

For these reasons the statistical method was chosen over the gradient method.

An initial period of measurements was decided to be three days. This period

would allow a quick response to climatic changes while also preserving averaging

information. Ambient temperature changes slowly, sampling too frequently

would only serve to increase the amount of storage needed without increasing

accuracy. An initial estimate of fifteen minutes was chosen as the sampling

interval. Over a three day period this amounts to a total of 288 samples that

require storing in the buffer.

The two operational modes, Normal and Rapid, require operational periods of

14% and 50% respectively. To achieve this, the cumulative density is found from

the buffer of samples, the temperature that is higher than the lowest 14% or 41

samples is used as the Normal set-point. Similarly the temperature higher than

50% or 144 samples is used as the Rapid set-point. At each fifteen minute

interval, a new temperature reading is measured and stored, the new set-points

will be calculated and the current temperature compared to these set-points. The

outputs will be activated as appropriate.

The figure below demonstrates the set-points and the output states which

correspond.

Chapter 4 – System Design 27

0 50 100 150 200 250 300
5

10

15

20

25

Sample Number

T
e
m
p
e
ra
tu
re

Rapid RapidRapid

Normal and Rapid

Figure 4.1: Rapid and Normal Output Conditions

To perform the calculation, the histogram will firstly be found. From the

histogram the cumulative distribution will be found by addition of the histogram

in ascending order. To encompass all likely temperatures that may occur, the

range of wet-bulb temperatures stored is from -20 to 49°C. Any values that may

occur outside this range will be clipped. The resolution of measurement is in

whole degrees. This requires temporary storage of 70 individual bytes, each

containing the number of times the corresponding temperature has been recorded

in memory. An 8 bit variable can store a maximum value of 255. The total

number of samples within memory is 288. If a temperature value were to be

recorded more than 255 times, then an overflow condition would occur within the

histogram. This is an unrealistic situation as the same temperature occurring

88.5% of the time over the course of three days would never occur. The only

possible cause for this would be a failure of the sensor; the same temperature

could possibly then be read from the sensor continually. The error handling

Chapter 4 – System Design 28

routines within the temperature measurement protocols will prevent this from

occurring.

To utilise the improved cooling effect of wet-bulb temperature the lookup table

must be stored in memory. The table is split into 20 rows and 56 columns. This

is equivalent to 1120 bytes. This capacity must be added to the measurement

buffer when selecting memory requirements.

4.3 Component Selection

This section will review and select appropriate components to perform essential

functions within the aeration controller system. The main task involved is the

development of the processor that will control all I/O. The important functions

include sensing temperature, determining optimum period, controlling the display,

checking input switches and switching two sets of contacts to control the fan

motors. These functions are not speed critical and will not require a high speed

processor.

Selection criteria were determined based on the above requirements.

• Affordability

• Ease of programming

• Moderate memory capacity

• Low power consumption

• Ease of interface with peripherals

Based on the above criteria a Programmable Integrated Circuit or PIC

microcontroller was considered the most suitable option for the tasks. The

PICAXE family of chips was chosen due to the low cost, freely available

programming software and basic programming language to facilitate ease of

software development.

Chapter 4 – System Design 29

4.3.1 PICAXE Microcontroller

A PIC is an integrated circuit that comprises memory, I/O ports, processor and its

program in a single chip. This has the major advantage of less hardware

complexity and cost compared to a microprocessor. The PICAXE microcontroller

is a PICmicro pre-loaded with a bootstrap program, allowing the chip to be

programmed in circuit from a PC serial port. The bootstrap program downloads

and stores the new program to memory without the need to completely erase and

reprogram the chip. The PICAXE chips utilize flash memory, which depending

on the particular model, allows reprogramming from one thousand to one hundred

thousand times. This is extremely valuable in a development environment where

a single write chip would have to be disposed of after each write. The program

assembler using the BASIC language is freely available for download from the

PICAXE website, www.picaxe.co.uk. A particularly useful ability is the debug

command which displays all variables on the programming PC, speeding up

debugging.

The PICAXE system is available in a range of I/O pin sizes and program memory

lengths. Special functions are available in the higher end families. The X range

of parts have the maximum program memory at 2K Bytes, this is equal to

approximately 600 lines of basic code. The smallest pin-out X part, the 18X,

having 18 pins was selected. The base chip used and loaded with the bootstrap

program is the PICmicro 16F88-I/P. All hardware specifications are obtained

from its datasheet.

A major reason for the choice of this component is its ability to communicate with

devices using the I2C (Inter Integrated Circuit) protocol. This interface allows a

large number of peripherals to be connected in parallel to a single bus, driven by

two microcontroller pins. A large range of devices are readily available that

utilise the I2C protocol. The I2C protocol is capable of two clock speeds, 100

kHz and 400 kHz. Some devices can operate at the higher speed while others are

Chapter 4 – System Design 30

limited to the lower. The 18X utilises an internal clock oscillator. This is less

accurate than an external ceramic oscillator commonly used with the larger

PICAXE parts. As a result the 18X is limited to the lower 100 kHz clock speed;

this is to reduce the likelihood of errors that could result from the less accurate

clock frequency.

Figure 4.2: PICAXE 18X Pin-out

Source: www.picaxe.co.uk

Table 4.1: PICAXE 18X Features

Pins Program Memory

(lines)

I/O Pins Outputs Inputs ADC Data Memory

18 600 14 9 5 3 256

This chip has sufficient I/O to fulfil the requirements of the project, with most

devices utilising the I2C bus. The 18X was selected in preference to the 28X or

40X to reduce the unnecessary cost of extra I/O pins.

While extremely versatile, the PICAXE family of chips is also limited in its

capabilities. Variables can not contain negative numbers, also fractions or

floating point numbers are also unavailable. Numbers that exceed the variable

size will overflow without any warning. These limitations may be overcome by

careful programming. Ensuring that a variable can never overflow by checking its

Chapter 4 – System Design 31

maximum possible size is one solution. Floating point numbers can be avoided to

a limited accuracy by multiplying the number by ten for example to preserve one

tenth accuracy. Negative numbers can also be avoided by adding an offset so that

the lowest negative number does not go below zero.

4.3.2 Memory

The method of control requires a buffer of temperature samples to be stored in

memory. This could be volatile or non-volatile. Using non-volatile memory has

the advantage that the samples will be retained in the event of a power failure. If

the sample data is lost the system will be unable to calculate the appropriate set-

points until new data can be recorded. This would result in lost running hours, an

unwanted occurrence. For this reason a non-volatile memory has been chosen for

the sample buffer. The lookup table for wet-bulb temperature calculation must be

non-volatile. It can be combined with the sampling buffer as both are of a non-

volatile nature.

Possible non-volatile memories considered include EEPROM (Electrically

Erasable Programmable Read Only Memory) and static ram with a backup battery.

Both forms are able to be written to and read from at will. Static ram has the

advantage of an unlimited number of write cycles, whereas EEPROM is capable

of approximately one million write cycles. By using a circular buffer, the number

of writes to each EEPROM location can be dramatically reduced. This reduction

is sufficient to make EEPROM the most suitable choice as it will not require extra

hardware in the form of a backup battery that would be necessary for memory

retention if using static ram.

Serial EEPROM was selected in order to minimize data lines. An I2C interface

was chosen as it can be easily connected to the PICAXE 18X. The 24LC range of

parts by Microchip was deemed suitable for this application. These range in

memory capacity from 128 bytes to 64K bytes. An estimate was made to the

Chapter 4 – System Design 32

amount of memory required, with some extra capacity included for expansion.

The 24LC16B was chosen with a capacity of 2K bytes. This device is shown in

the figure below.

Figure 4.3: Microchip 24LC16B

Source: Microchip (2005)

The specifications state that this EEPROM can be written to a minimum of one

million times. The 2K of memory is split into 8 blocks, each of 256 bytes in size.

To address the device a four bit control byte must be sent, followed by a further

four bits selecting the desired block. This configuration minimizes cost but limits

the I2C bus to a maximum of one 24LC16; otherwise an address conflict will

occur.

4.3.3 Temperature Sensor

Temperature sensors are available in a wide range of types, accuracies and

interfaces. Electrical temperature measurement is usually performed by a

temperature sensitive component which changes resistance according to

temperature. This can be as simple as a basic thermistor or as complicated as a

fully integrated chip. Common interfaces are a variable voltage, variable current,

variable frequency or a digital output signal. Thermistors have the advantage of

being inexpensive and simple; however this lack of complexity is also a

disadvantage. Integrated chip type temperature sensors are available fully

calibrated, greatly increasing accuracy.

Chapter 4 – System Design 33

The PICAXE 18X has a function for reading the temperature from a Dallas

Semiconductor DS18B20 one wire temperature sensor. This sensor is capable of

measurement in the range of -55°C to 125°C. Using this sensor allows

simplification of software development as a single basic command can be used to

take a reading. This sensor is suitable for monitoring the dry-bulb temperature of

the air. This sensor was selected for initial software development, to allow the

set-point calculation to be tested without other routines. A more suitable sensor

however was selected for use in the final prototype.

Figure 4.4: Dallas Semiconductor DS18B20

Source: Dallas Semiconductor

The temperature sensor selected for the final version of this project was the

Sensirion SHT15. It is an integrated single chip temperature and humidity sensor,

pre-calibrated at production. It uses a digital two wire interface, allowing for

minimal I/O. It is extremely small and has a very low power requirement. By

combining the temperature and humidity sensor into a single unit with a digital

output, a minimum number of data lines are required. To ensure accurate

communications the sensor is also capable of a CRC-8 (Cyclic Redundancy

Check 8 bit). This ensures to a high degree of certainty that the received

measurement has not been corrupted by noise.

Chapter 4 – System Design 34

Figure 4.5: Typical SHT1x Connection

Source: Sensirion (2003)

The sensor has two configurable measurement resolutions; these are 14bit

Temperature and 12 bit Relative Humidity, or 12bit Temperature and 8 bit

Relative Humidity. Auxiliary features include low voltage detection and a heating

element that will increases the temperature of the sensor by approximately 5°C.

This heater can be used to prevent condensation in high humidity environments.

The extremely small size of this device would make hand soldering extremely

difficult. A supplier was found that provided the device on its own small PCB,

with a connector plug supplied.

Figure 4.6: Sensirion SHT15

The serial interface used by this device is not compatible with I2C. To interface

with the PICAXE custom routines were written that operate at the bit wise level.

The timing diagram for this device can be found in Appendix C.

The standard configuration of the SHT15 temperature system requires a clock line

and a bi-directional data line, pulled high by a pull up resistor. The PICAXE 18X

does not have bi-directional data line. To overcome this problem a resistor was

placed between an output and an input line. When the SHT15 is transmitting, the

Chapter 4 – System Design 35

output line is made high by the microcontroller. The SHT15 then pulls the line

low to signify a low bit or leaves the collector open to signify a high; this is read

by the input pin of the microcontroller. To transmit to the SHT15, the

microcontroller switches the output line either high or low as appropriate.

Unfortunately this configuration uses an extra line that would not be needed if a

bi-directional line was available. The second output line is a clock signal, which

is toggled high and low when the data is ready to be transmitted or received. This

configuration uses a total of three pins of the microcontroller, two outputs and one

input. The configuration is shown in the following figure.

Figure 4.7: Sensor Pin Connections

4.3.4 Contact Switching

Most aeration fans are powered by electric induction motors and powered by the

mains supply. This being a 240V single phase or even a 415V three phase supply.

Switching of these motors is usually conducted by a set of electrical contactors.

In order for the microcontroller to activate the fans and to provide electrical

isolation, a set of relays was chosen to perform the switching of the larger

contactors. Each output, Normal and Rapid, has its own relay for connection to

the appropriate contactor. In typical installations each silo has its own switch,

with the positions Off, Normal, Rapid and Manual. This allows the use of a single

output for each mode being switched by the controller, while still being capable of

Chapter 4 – System Design 36

operating a large number of fans at the appropriate rate for the condition of the

grain each silo is storing.

The relays selected for this application are produced by OMRON. They contain

12V coils with a resistance of approximately 275Ω, equating to 0.53W power

consumption and 44mA of current. The switching side is a SPDT (Single Pole

Double Throw) contact rated at 240VAC and 10A. These ratings are sufficient

for switching industrial contactors which use minimal current at 240VAC.

Figure 4.8: Switching Relay

4.3.5 Relay Driving Circuitry

The 16F88-I/P chip has a limited maximum output current per pin. The datasheet

states the absolute maximum current either sourced or sunk by an I/O pin as

25mA. This is not sufficient to drive one of the selected relays as they require

approximately 44mA each. Therefore a form of current driving circuitry is

required to operate the relays. The selected device is a ULN2003A IC which

contains 8 high current Darlington pairs. All outputs are capable of sinking

500mA of current. Each Darlington pair has a 2.7kΩ base resistor built in,

allowing direct connection to TTL or 5V CMOS outputs.

Chapter 4 – System Design 37

Figure 4.9: ULN2803A

Source: Texas Instruments (2005)

All Outputs are situated along one side of the IC with their respective inputs

directly opposite, allowing easy routing of connections. The ULN2803A will be

used to sink current powering the two relays and also two LED’s that will provide

a visual indication of the status of the Normal and Rapid outputs.

4.3.6 Power Supply

To ensure accuracy of the system it is important to have a continuous string of

samples. A backup power supply is therefore required to allow the controller to

keep sampling in the event of a failure of the mains supply. A sealed lead acid

battery has been chosen as the backup supply source. These are completely

maintenance free and sealed, preventing explosive gases escaping during charging.

To simplify the design the battery will be continuously float charged, with the

controller permanently drawing power from the battery. The power requirements

for the controller are estimated as very small, less than 200mA. Most power

outages are limited to a maximum of a few hours, as a result the smallest 12V

Chapter 4 – System Design 38

sealed lead acid battery easily available was selected being 1.3AH. This capacity

should allow the system to continue sampling data for a period of approximately 6

hours, longer than any power outage can be expected for. The service life of the

battery under constant float charging should be up to 10 years.

Figure 4.10: Sealed Lead Acid Battery

The PICAXE chip, LCD and EEPROM require a 5V power supply. A L7805CV

voltage regulator has been selected to step down the voltage to a constant 5V

supply. This component is rated at a maximum of 1 Amp and utilises overheating

protection, making it virtually indestructible. Filter capacitors were also included

to eliminate any unwanted ripple component introduced by the charger. A TO-

220 package has been chosen.

Figure 4.11: L7805CV 5V Regulator

Source: STMicroelectronics (2003)

Chapter 4 – System Design 39

This configuration ensures that there will be no power outage experienced by the

microcontroller. Measurements will thus be taken uninterrupted, preserving

accuracy.

4.3.7 Real Time Clock

In order to free the microprocessor from time keeping tasks, and provide an

accurate time base, an external RTC (Real Time Clock) is used. RTC’s are

available in a range of configurations and interfaces. The part selected is a

DS1307 serial clock produced by Dallas Semiconductor. It is an I2C device and

can be easily connected with the other devices on the I2C bus, without the need

for any extra interfacing hardware. The chip counts seconds, minutes, hours, date,

month, day of the week and year, including leap year compensation to the year

2100. Once the chip is initialized with the current time and date it will

automatically keep the correct time with no further input needed.

Figure 4.12: DS1307 RTC

Source: Dallas Semiconductor

The DS1307 also contains 56 bytes of ram, non-volatile when backed up by a

lithium cell. The address map of the device is shown below.

Chapter 4 – System Design 40

Figure 4.13: DS1307 Address Map

Source: Dallas Semiconductor

The device has extremely low power consumption, less than 500nA when using

the backup battery. The device switches from its main supply to the backup

battery automatically when the voltage level drops.

4.3.8 Human Interface

A user friendly interface is necessary to convey information about operation and

easily set/monitor parameters. For basic status information, two LED’s will be

used to constantly display the state of the Normal and Rapid outputs. For more

detailed information, a Liquid Crystal Display (LCD) will be incorporated.

LCD’s are available in a range of types. These include number displays such as

on a wrist watch, graphical displays used for displaying graphics and character

displays, such as a typical fax machine may use. These may be selected in backlit

or non-backlit models. The AXE033 display module was chosen as it has a

number of advantages over a standalone LCD. An onboard driver chip allows

display information to be sent via a single serial line or by I2C interface. The I2C

mode was once again chosen to conserve I/O. Pull up resistors are built into the

Chapter 4 – System Design 41

module and therefore not needed for the EEPROM when the module is connected

to the same I2C bus.

Fitted is also a connector for the DS1307 RTC to plug straight in, along with a

battery holder for a CR2032 lithium coin cell backup battery. This battery allows

the RTC to keep time in the event of a power failure.

Figure 4.14: AXE033 LCD Module

The firmware chip decodes the I2C information sent and converts it to parallel

data which is then sent to the display. The LCD display is a HD44780 compatible

model, this being the most common standard for character LCD displays. The

LCD is a double line type with sixteen characters per line. It contains a full

ASCII character map, allowing any character in the following figure to be

displayed at any position on the screen.

Chapter 4 – System Design 42

Figure 4.15: LCD Character Map

Source: Revolution Education (2004)

To write to the LCD the I2C slave address is set to binary 11010000. To display a

character the character string is sent followed by the byte 255, this signifies the

end of transmission and causes the firmware chip to write to the LCD. To send an

instruction to the LCD, the byte 254 is first sent, followed by the instruction and

finally byte 255. A wide range of instructions are available to perform a number

of functions such as change the position of the cursor, switch the display on or off,

scroll the display left or right and many others. A list of these commands is

presented in Appendix D.

To input data it was initially decided that two switches would be sufficient.

Parameters would be changed similar to a digital wrist watch, a single key

Chapter 4 – System Design 43

incrementing the value, and another key to switch modes. Spare input lines on the

PICAXE were ensured so that additional buttons could be added if this setup was

found to be difficult to operate. The switches selected are of simple push button

SPST (Single Pole Single Throw), momentary, normally open design. The switch

input lines are to be high when the switch is operated. This is achieved by use of

pull down resistors. When a switch is pushed the supply voltage is lost across the

pull down resistor and the microcontroller pin sees 5V, signalling a high. With

any form of mechanical switch, switch bounce will exist. To simplify and

minimise hardware, switch bounce was compensated for in software.

The two LED’s used are green and contained within a 16mm bezel. They are

rated at 2V and 20mA. To achieve the correct current from the 5V supply 120Ω

resistors are placed in series with each LED. The Darlington driver chip is used to

sink the current activating each LED.

4.4 System Schematic

The schematic for the system was drawn using AutoCAD, it is presented in figure

4.16.

Chapter 4 – System Design 44

Figure 4.16: System Schematic

Chapter 4 – System Design 45

4.9 PCB

The Protel DXP software package was used to design a PCB (Printed Circuit

Board) for the system components. Due to time constraints, the PCB was

designed but not constructed. The PCB designed is a double sided type. The auto

route command was used to automatically place the tracks on the PCB. The

figure below is a representation of the design; the red is the top layer while the

blue is the bottom layer.

Figure 4.17: PCB

Further design details are provided in Appendix E.

Chapter 5 – Hardware Implementation and Testing 46

Chapter 5 – Hardware Implementation and Testing

5.1 Initial Testing and Construction

To test the viability of the hardware and that the configuration would operate as

expected, the design was initially bread boarded. This allowed any hardware

problems to be identified and any necessary modifications to be easily made. To

begin the PICAXE was mounted on the bread board and the required serial

interfacing circuitry added. The 5V regulator was used and this connected to a

12v source for testing and the serial cable connected. This was to verify the

ability of the chip to communicate with the programmer. Once successful the

EEPROM and ULN2803A IC’s were mounted on the board and connected as per

the schematic. A LED and current limiting resistor were connected to the

ULN2803A. The LCD display module required some assembly. The display was

mounted on the firmware PCB and the header pin connections soldered into place.

The display was powered and the contrast turned to maximum to check the

display was active.

This breadboard platform was used as a base to become familiar with the PICAXE

system. Simple test programs were written to perform straightforward functions,

such as flash the LED at intervals. Once simple functions were mastered, the

display and switches were connected to the prototype. Further simple programs

were written to display strings on the display after a key press. Additional testing

was undertaken with routines to test the writing and reading to the EEPROM, and

display these values on the LCD. The RTC was tested in similar fashion, by

setting the time with the keys and also displaying the time on the LCD.

Finally the connections to the DS18B20 Temperature sensor were added. A basic

routine was written to read the temperature from the device and display this on the

LCD. Correct operation was verified by using heat from the hand to warm the

sensor and check the displayed temperature rose accordingly. The sensor was

Chapter 5 – Hardware Implementation and Testing 47

then placed within a freezer and negative values checked. The reading of the

ambient temperature was compared to a digital thermometer, the result was a very

similar reading, and thus the sensor was deemed to be operating correctly.

After the bulk of the program appeared to be working correctly, the SHT15 sensor

was integrated into the design. An image of the completed breadboard prototype

is shown below.

Figure 5.1: Bread Board Prototype

5.2 Final Prototype Construction

The main controller was designed to be mounted in an undercover area. This

being the case and in an agricultural environment, the main concern is

accumulation of dust. The final prototype was housed in a case containing the all

peripherals except the temperature sensor, which was mounted remotely to allow

mounting in a position that will reflect an accurate ambient temperature and

Chapter 5 – Hardware Implementation and Testing 48

humidity. As the design is intended to be mounted undercover, UV radiation is of

no concern. A polycarbonate box with 3mm walls measuring 222(L) x 146(W) x

55(H) mm was selected, large enough to contain all the components including the

SLA battery. It features a tongue and groove sealing system with a neoprene

gasket, and the stainless-steel lid-fixing screws thread into brass inserts that are

outside the sealed area. The case has a claimed IP65 rating, meaning total

protection from dust and low pressure jets of water. The case was expected to be

mounted with its base on a wall and the lid forming the front and user interface.

The positions of components were marked on the lid and holes were drilled in the

case to fit the LED’s, programming cable connector and switches. The mounting

holes for the display were drilled next. Initial holes were drilled to allow a

hacksaw blade to be used to cut out the slot to allow the display to be viewed. A

file was then used to create a smooth finish to the slot.

Holes were drilled in the body of the box to allow cable glands to be mounted for

entry of the power and sensor cables. A separate smaller case was selected to

house the temperature/humidity sensor. A hole was drilled in the side of this box

to fit a cable gland. The SHT15 sensor was mounted inside this box.

The LED’s, switches, connector and display were fitted to the lid. A piece of

clear plastic was stuck to the inside of the lid over the LCD slot. This was to

provide sealing to prevent dust or moisture from directly contacting the LCD

screen. Wires were connected and soldered to the appropriate connections.

Header pin connector plugs were soldered to the LCD and PCB ends of the wires

to allow easy connection.

The remaining hardware components were assembled and soldered to a small

prototyping board, using single core insulated wire as connections. The bare

prototyping board is shown below.

Chapter 5 – Hardware Implementation and Testing 49

Figure 5.2: Prototyping Board

Connecting pins were kept towards the outside edges, header pins provide the

connection between the lid and also the sensor. A screw type connector allows

connection to the battery. The completed board is shown in figure 5.3.

Figure 5.3: Completed Circuit on Prototyping Board

The charging cable was passed through the cable gland and connected to the

battery. The battery leads also attach to the connectors on the board, providing

power. Initially the sensor was connected to the board by a piece of 5 core round

cable approximately 1.5 metres long. Only four of the wires were used with the

fifth left unconnected. Communication with the sensor could not be established

through this cable. After investigation it was deemed that the length of cable was

resulting in cross-talk between the clock and data lines. To solve this problem the

type of cable was changed. A piece of ordinary 4 core phone cable was used

again of length approx 1.5 metres. To minimise cross-talk the power and ground

lines were run as the middle two conductors, separating the data and clock lines.

Chapter 5 – Hardware Implementation and Testing 50

This configuration presented no problems with communication being established

straight away.

The completed prototype housed in the protective case is shown in the following

figures.

Figure 5.4: Controller Displaying Main Page

Figure 5.5: Controller Displaying Set-points

Chapter 5 – Hardware Implementation and Testing 51

Figure 5.6: Controller Internals Figure 5.7: Remote Sensor

Chapter 6 - Software Development 52

Chapter 6 - Software Development

The simulation and parameters determined for the statistical method of control in

previous sections were adopted as the aim for the PICAXE software. The

intended approach was bottom up implementation, the lower modules performing

specific functions were separated from the main program. This approach allowed

testing of individual sub-sections of code without reliance on the main loop. The

final BASIC code is presented in Appendix F.

6.1 PICAXE Programming Editor

The development of the code for this project was completed entirely within the

PCIAXE Programming Editor. This application is designed for use exclusively

with PICAXE chips; as such a range of special features for use with them has

been built in. The programming language used is BASIC, this language is simple

and easy to follow, but without some of the useful commands available in higher

level languages such as C.

The Editor can interface directly with a PICAXE chip through use of a serial port.

The laptop PC used to program the chips was not fitted with a serial port. As a

result a USB to Serial adapter was needed. This connected to the serial

programming cable which through a 3.5mm stereo plug provides the connection

to the PICAXE.

The editor also contains a data link terminal, for retrieving data from the chip via

the programming cable and a debug window, which allows the value of all

variables to be displayed at the time a debug command is used in the program. A

syntax check can be performed, alerting the programmer to a syntax error and also

displaying the amount of memory the program will occupy. The figure below is

an example of the PICAXE Programming Editor window.

Chapter 6 - Software Development 53

Figure 6.1: PICAXE Programming Editor

6.2 Code Development

The measurement, logging and calculation of set-points are the main functions of

the program. Auxiliary functions include the display of information on the LCD

display, outputting data for graphing and receiving input from the switches. A

simplified flow chart for the system operation is shown below in figure 6.2.

Chapter 6 - Software Development 54

Figure 6.2: System Flow Diagram

Start

Initialise
Equipment

Is key
Pressed?

Menu
YES

NO

Read
Temperature

Read
Humidity

Read RTC

Calculate
WB Temp

Display
Main Page

Is sample
required?

NO

YES

Perform
Measurements

Calculate Set-
Points

Activate
Outputs

Chapter 6 - Software Development 55

The code will be discussed according to functional sections.

The PICAXE contains 14 general byte variables that may be used in mathematical

calculations and program branches. These variables are allocated to storage as in

the table below.

Table 6.1: Variable Allocation

Byte 0 DataLow Temporary Byte DataWord

(Temporary Word) Byte 1 DataHigh Temporary Byte

Byte 2 DataLow2 Temporary Byte DataWord2

(Temporary Word) Byte 3 DataHigh2 Temporary Byte

Byte 4 NormalSet Normal Set-point

Byte 5 RapidSet Rapid Set-point

Byte 6 Day Current day of week

Byte 7 Counter Temporary Counter

Byte 8 WbTemp Wet-bulb Temperature

Byte 9 Hum Humidity

Byte 10 Temp

Byte 11

 Dry-Bulb Temperature

Byte 12 Minutes Current Minute

Byte 13 Hour Current Hour

6.2.1 Temperature and Humidity Sensor Interfacing

The purpose of this section of code is to interface the PICAXE with the SHT15

combined temperature and humidity sensor. As the device is not compatible with

I2C devices, a custom routine had to be written. To begin communication with

the device a transmission start sequence must be performed. This sequence is

shown below.

Chapter 6 - Software Development 56

Figure 6.3: Transmission Start Sequence

Source: Sensirion

From this point a range of commands may be entered, these are summarized in the

table below.

Table 6.2: SHT15 Commands

Source: Sensirion

Each command byte must be followed by an acknowledge signal. The SHT15

controls the data line and pulls it low for a ninth clock cycle, signifying the

successful receipt of the command byte. The initial code performs a status

register write, setting the resolution of the sensor output to a 12bit temperature

measurement and an 8bit humidity measurement. To achieve this binary byte

00000001 is written to the status register upon start-up. The status register

contents and corresponding configurations are shown below.

Chapter 6 - Software Development 57

Table 6.3: SHT15 Status Register

Source: Sensirion

Upon receiving a measurement command for either temperature or humidity, the

microcontroller must wait a period of time for the measurement to be completed.

This period is dependant upon the resolution of the measurement. In the 12/8 bit

configuration used the measurements require 11/15 ms respectively. During this

time the sensor must control the data line, keeping it high until the measurement is

complete. At this time the sensor pulls the data line low, signifying completion

and the microcontroller may again start toggling the clock line. Two bytes of data

are then sent by the sensor. These are most significant bit first, right justified. If

the measurement is only of 8 bits size then the first byte transmitted is empty.

Following the measurement data is an 8 bit CRC checksum. Following each byte

of data transmitted by the sensor, the microcontroller must provide an

acknowledge signal by pulling the data line low and toggling the clock line. If the

CRC byte is not used communication can be terminated after the last

measurement byte by a high acknowledge. The sensor will automatically return to

low current sleep mode once the measurement and communication have ended.

With the communication protocol needs established code was developed to

perform these functions. A subroutine called TransStart performs the

transmission start protocol by toggling the data and clock lines as appropriate.

Separate subroutines named WriteData and ReadData were written to send and

Chapter 6 - Software Development 58

receive data to and from the sensor. Each bit operation is performed by

multiplying the byte by two; this is equivalent in binary to a right shift of one bit.

Acknowledge routines were created to provide a high or low acknowledge routine

as appropriate. With these lower directly interfacing routines written it was

possible to construct the measurement routines that would convert the read in

bytes to physical values.

The temperature sensor output is inherently linear, to convert the digital value to a

corresponding temperature the following formula is used.

 (6.1)

The values for this formula vary with supply voltage and desired temperature unit

according to the following tables.

Table 6.4: Temperature Conversion Coefficients

Source: Sensirion

The measurement scale to be used for this project is °C, the supply voltage for the

sensor is 5V. Due to the inability of the PICAXE to perform decimal calculations,

the formula must be reconstructed. To preserve one decimal place of accuracy,

the measurement value must be multiplied by ten. The multiplication coefficient

d2 can be rewritten in terms of a division by taking the reciprocal, 1/0.04 = 25.

The coefficient d1 must also be multiplied by ten, resulting -400. The value d1 is

the offset above zero that converts the range to start at -40°C. Due to the inability

of the PICAXE to handle negative numbers, the negative offset of 400 will not be

added, data will be stored in this offset form with the value zero signifying a

temperature of -40°C. Multiplication by ten results in a number too large to be

Chapter 6 - Software Development 59

stored in a single byte variable, a double byte or word variable was therefore

allocated to hold the temperature value.

The digital relative humidity measurement unlike the temperature measurement is

non-linear. A conversion formula requiring floating point multiplications results

in a maximum error of ±0.1%. This formula can not be performed by the

PICAXE, instead a simpler two range linear formula was be used. This simpler

formula results in a maximum error of ±0.8%. This formula is presented below

with the ranges it is validity.

 (6.2)

Where SO is the 8 bit humidity sensor output

Table 6.5: Temperature Conversion Coefficients

Source: Sensirion

This equation can be performed by the PICAXE in this form. While performing

the calculation a temporary word variable is required to prevent overflow.

Underflow must also be checked in the event that SO×143 is less than b. In this

case the intermediate value is set to b so that after subtraction the final result is

zero.

6.2.2 Cyclic Redundancy Check

The SHT15 temperature sensor is capable of performing an 8bit CRC checksum.

This check can be performed in two ways, a bitwise method and a byte wise

method. To perform the bitwise method, the receiver must emulate the structure

of the generator. The process is presented in Appendix G. The final byte after all

Chapter 6 - Software Development 60

steps are complete is the CRC value. Figure 6.4 shows the internal structure of

the CRC-8 generator.

Figure 6.4: Internal CRC-8 Generator Structure

Source: Sensirion

The byte wise method requires the CRC data to be stored within a 256 byte

lookup table. Values are XOR’d and the result used as an index into the table.

The final byte obtained is the CRC value. In both these methods the CRC value

calculated is compared to that received. If the values are identical then the data

has been transmitted successfully and is not corrupt. If the values differ then the

data has been corrupted and is not valid. The CRC has not been implemented in

this prototype due to limited memory capacity.

6.2.3 Wet Bulb Temperature Calculation

This section of code has the specific function of calculating an approximate wet-

bulb temperature from the dry-bulb temperature and relative humidity

measurements. The conversion table presented in Appendix B is the basis for this

calculation. The initial step prior to device operation is to load the EEPROM with

the lookup table. The maximum number of elements in a column is twenty. As

discussed in the System Design section, the EEPROM is divided into eight blocks,

each of 256 bytes. The maximum number of columns that will completely fit

within a block is twelve. Therefore five EEPROM block are used, each

containing twelve columns of the lookup table. Each column represents a whole

degree of dry-bulb temperature from the range -5°C to 50°C. Each row within a

column contains a humidity value, each step through the column to reach a

Chapter 6 - Software Development 61

humidity value is equivalent to half a degree depression. This is graphically

represented in Figure 6.5 below.

Figure 6.5: Wet Bulb Lookup Table Calculation

This lookup table must firstly be loaded into the EEPROM memory. A dummy

BASIC program was written with the sole purpose of storing this table in the

memory. The values were hard coded as instructions within the program memory

for transfer to the EEPROM. This software was loaded into the PICAXE and

allowed to run, values were transmitted back to the PC serial interface and

verified.

The table is quantized into half degree steps of depression. This results in a non-

continuous range of humidity values within the lookup table. This causes an

element of rounding within the calculation, however this will impact minimally on

the overall operation of the design as the resolution of data storage used is one

degree. Dry bulb measurements below -5°C or above 50°C should rarely occur.

In the event of a measurement outside this range occurring, the depression will be

calculated based on the closest extreme of data within the lookup table.

To implement this in software a separate sub-routine was written. The dry-bulb

temperature is used to determine which block of EEPROM contains the relevant

lookup table column. The temperature is used as an index into the block, each

element of the column is then stepped through and compared to the humidity

Chapter 6 - Software Development 62

value. Once the value from the table is less than the measured humidity, the index

into the table column is multiplied by five. This is the depression in degrees

scaled by 10, the form the dry bulb temperature is in. The depression is subtracted

form the dry-bulb temperature and then divided by ten. This results in a wet-bulb

temperature value, quantized to one degree intervals and offset above zero by 40

to avoid negative numbers. This value will always be smaller than 255 and

therefore is stored in a single byte variable. The values are clipped to a minimum

of 20 and a maximum of 89, these correspond to -20°C and 49°C. This will be

further discussed in the data storage section.

6.2.4 Real Time Clock Interface

Reading the time from the RTC is a simple task. An I2C read is performed at the

RTC address. The data is received in the BCD format. To simplify clock

adjustment in later modules, this data is converted by a subroutine from BCD

(Binary Coded Decimal) into binary data. The values of hours and minutes are

stored in separate single byte variables of RAM within the PICAXE during each

RTC read.

6.2.5 Measurement Time Determination

This section of the code determines when the next measurement and set-point

adjustment needs to be made. As explained in previous sections, measurements

are taken at fifteen minute intervals.

The RTC read is performed prior to this module of code. To determine when a

period of fifteen minutes has elapsed, the minute data is divided by a modulus 15.

The result is zero when the minutes are either 0, 15, 30 or 45. This value is used

as a conditional branch when equal to zero. The main loop will complete in less

than one minute. To avoid the branch from occurring more than once during the

same minute, a further condition is stipulated. The non-volatile RAM available in

Chapter 6 - Software Development 63

the RTC is used to store the minute value of the last measurement. If the minutes

of the current measurement is not the same as the minutes of the last measurement,

the program will branch to allow further action. Otherwise if the minute is the

same as the current time then the measurements has already been taken dor the

current minute. During the read from the RTC the circular buffer position and

block of EEPROM currently in use is also read back. The usage of these values

will be discussed in the next section. The memory map of the ram locations used

within the RTC is displayed in the figure below.

Figure 6.6: RTC RAM Locations Used

6.2.6 Storing Measurements

As previously discussed the temperature measurements are stored in a circular

buffer of samples, containing three days of data. At this sampling rate the buffer

requires a total of 288 samples. To store this information in EEPROM, two

blocks are required, as each block contains 256 bytes. Block six is filled

completely while block seven contains only 32 samples. This configuration is

shown below.

Chapter 6 - Software Development 64

Figure 6.7: Sampling Buffer

The values read back form the RTC in the previous section are used here. On

initial activation of the device the circular buffer position is set to zero, and the

EEPROM set to block 6. The circular buffer position is incremented with each

measurement until it reaches 255. At this point it reverts to zero and the block is

changed to block 7. The position is once again incremented with each

measurement until position 31 is reached. The block is then reset to block 6 and

position zero, old data is overwritten.

The calculation of the set-points relies upon a complete set of samples. This

means that the set-point can not be calculated until the buffer of 288 samples is

complete. A bit flag is used to signify when the data set is complete. Upon a

master reset the flag is cleared to a zero. When the block is set to block 6 after

block 7 is complete, the flag is set to a one. This signifies that the samples are

complete and the set-points can be calculated. While the sample buffer is

incomplete and the outputs inactive, the display provides a notification. The

message “INACTIVE” is flashed alternatively with the main screen.

6.2.7 Calculating Number of Occurrences

This code calculates the number of times each temperature value occurs within the

buffer, in sequential order of lowest to highest temperature. The entire buffer of

samples is stepped through sequentially. The temperature value stored within

Chapter 6 - Software Development 65

each element is used as an index into the PICAXE RAM. Each time a value is

encountered within the EEPROM, the count of that value in the RAM is

incremented by one. This is continued until the entire buffer has been read. As a

result the RAM contains the number of times each temperature has been recorded

in the last 3 days, organized in ascending order from -20 to 49°C. The RAM is

split into two blocks, as a result the first block contains the data from -20 to 27°C

and the second block from 28 to 49°C. This is represented graphically in the

figure below.

Figure 6.8: Temperature Histogram Locations

6.2.8 Calculating Cumulative Probability

To determine the set-points for the Normal and Rapid modes the cumulative

probability is used. The sample buffer of 288 samples represents three days of

Chapter 6 - Software Development 66

data. As discussed in previous sections the appropriate percentage running time

for the Normal and Rapid modes is 14% and 50% respectively. This equates to 41

and 144 samples. The cumulative density is taken starting at the -20°C. For each

temperature the number of occurrences is added to the total stored within a word

variable. Once a total of 41 samples are reached this temperature is stored as the

Normal set-point temperature. The process is repeated for the Rapid set-point,

once 144 samples are reached this temperature corresponds to the Rapid set-point

temperature and stored as such.

6.2.9 Checking Set-points

This subroutine checks the current temperature against the Normal and Rapid set-

points and activates outputs accordingly. There are three output state conditions

possible based on the temperature relative to the set-points, these are summarized

in the following table.

Table 6.6: Temperature Output Conditions

Temperature Condition Normal Output Rapid Output

Normal < Rapid < Temp Off Off

Normal < Temp < Rapid Off On

Temp < Normal < Rapid On On

6.2.10 User Interfacing

The most challenging piece of code encountered in the development of this

project was the user interface. This is split into two sections, a routine to display

the main page of information and a routine to handle menu information. The main

page contains the current relative humidity, dry-bulb temperature, wet-bulb

temperature and the time. A layout was determined which would allow these

Chapter 6 - Software Development 67

values to be displayed concurrently on the two sixteen character lines of the

display. This layout is shown in the figure below.

Figure 6.9: Display Main Page Layout

Due to the relatively quick execution of the main loop, an interrupt was deemed

unnecessary for entering the menu. The buttons on the front of the display are

assigned as mode and adjust. The mode button is used for moving through the

menu, while the adjust button increments, selects or changes the value of the

current parameter.

The mode button is checked at the beginning of the main loop. If active a branch

is executed to the setting routine. This is a permanent branch and not a subroutine.

This is due to the large number of possible exit points from within the menu code.

The mode button must be held for three seconds to initiate the menu or the

program returns to the main loop.

6.2.11 Switch Bounce

Any mechanical switch with contacts will exhibit switch bounce. This

phenomenon will cause an oscillatory voltage to be present at the microcontroller

input. Such an input may cause erratic behaviour of the system such as multiple

key presses being registered as a result of a single key press. Switch bounce may

be countered using hardware or software methods. Hardware methods would

have required extra components, as such a software solution was chosen.

Chapter 6 - Software Development 68

A subroutine within the code named Debounce was developed to eliminate switch

bounce interference. On entry the DataLow variable is cleared to zero. The

subroutine contains a counter; the counter is incremented at periods or 50ms. If

the counter reaches 255 the routine is exited with a value of 0 in the temporary

byte. A press of either button during this timing period will set a bit flag to 1.

The subroutine will then exit at this point. The program uses these bits to

determine program flow. The bit flags used to signify button presses are

illustrated in the following figure.

Figure 6.10: Debounce Bit Flags

6.2.12 Menus

The menus within the program allow data to be displayed on the screen. The time

can be set in a fashion similar to a digital wrist watch. The menu items available

are presented below in a flow chart form.

Chapter 6 - Software Development 69

Figure 6.11: Menu items

6.2.13 Pre-defined Messages

To conserve program memory space the 256 bytes of EEPROM within the

PICAXE are utilised to store strings. Display messages are pre-defined in blocks

of sixteen bytes, each byte containing the ASCII code a character. Each sixteen

block segment contains a string that fills one line of the LCD display. A sub-

routine called PrintLine prints this string to the display at the position initialized

prior to the function being called.

The EEPROM command is issued at the start of the program, followed by the

ASCII characters to be used for the string. The programming editor loads these

values into the PICAXE internal EEPROM during the program download. The

strings stored within EEPROM are shown in the figure below.

Chapter 6 - Software Development 70

SEND SERIAL DATA

YES NO

MASTER RESET?

SET CLOCK

SHOW SET-POINTS

RESET COMPLETE

 INACTIVE

Figure 6.12: Pre-Defined Messages

6.2.14 Sample Downloading

The program allows for the data buffer to be transmitted serially to a PC. This is

performed when selected from the controllers menu. The PICAXE 18X is capable

of transmitting serial data via the programming cable. The “Sertxd” command is

used to transmit the data. The data is transmitted at 4800 baud rate. The data

from block 6 is sent followed by block 7. Each value is followed by $0D, a

carriage return. The programming editor data terminal is capable of receiving the

serial data. It can then be copied into a CSV (Comma Separated Variable) file,

and used to form a plot of the temperature data. To simplify this process, a simple

DOS command line program was found that was capable of receiving the data and

storing it in a CSV file automatically. The program used is serialterm.exe, written

by A. Schmidt, 2001. The serial port, baud rate and output file are set upon

calling the function. The complete CSV file can be opened in MS Excel, the

graphing facilities can be used to view the data graphically.

Chapter 7 – Analysis and Performance 71

Chapter 7 – Analysis and Performance

Once the final prototype was completed and software modules written, testing was

able to be carried out. The success of the tests were measured based on the

operational requirements. This chapter outlines the tests and results obtained.

7.1 Initial System Test

The first test of the completed prototype was aimed at successfully recording a

complete buffer of temperature samples. The prototype was placed outside with

the main box undercover and the sensor box in an open environment. The power

supply was connected to mains and the clock set to the correct time. A master

reset was performed to clear the buffer entirely. As expected, the display began to

flash the message “INACTIVE”, signifying the sample buffer was not complete.

The prototype was left uninterrupted for three days to log the ambient temperature

data.

Upon recoding the 288th sample, the system screen returned to normal and the

Rapid light illuminated. This signified that a complete buffer of samples had been

stored. The programming cable was connected and the sample data read out. The

figure below shows the recorded wet-bulb temperature, at a sampling interval of

15 minutes, over a period of three days.

Chapter 7 – Analysis and Performance 72

Initial Test

0

5

10

15

20

25

0 50 100 150 200 250 300

Sample Number

T
e
m
p
e
ra
tu
re
 (
d
e
g
re
e
s
 C
)

Figure 7.1: Initial Test Data

The graph clearly shows the temperature cycling over the three day test period. It

is evident that the temperature can vary considerably in the short term; this is

likely caused by atmospheric fluctuations such as varying cloud cover. It must

also be noted that this is the wet-bulb temperature. The wet-bulb temperature is

dependant on both the humidity and dry-bulb temperature components, for this

reason the results are not intuitive. It is also apparent that the average daily

temperature is falling over the course of the test.

The results of the test appear to be acceptable, the three days temperature

fluctuations are clearly visible. No problems were observed with the device or its

operation. With this test rated as successful, further testing was now possible to

check the function of the set-point calculation.

7.2 Second System Test

The second system test was aimed specifically at checking that the set-points

determined by the controller were providing correct operation. To save time, the

data collected in the initial test was kept. This meant that the system operation

could be monitored immediately, avoiding the need for another three days

Chapter 7 – Analysis and Performance 73

sampling prior to the system functioning. The device was left mounted in the

same position as during the first test.

The controller was allowed to operate uninterrupted until the buffer was again full.

The sample log was downloaded to a PC prior to the circular buffer wrapping

back to the first memory location and overwriting old samples. The data was

formatted sequentially within MS Excel to create a graph of the entire test. This

temperature data is included in Appendix H.

The results of the test are presented in Figure 7.2.

0 100 200 300 400 500 600
0

5

10

15

20

25
Second Test

Sample Number

T
e
m
p
e
ra
tu
re
 (
d
e
g
re
e
s
 C
)

Temperature

Normal Set-point

Rapid Set-point

Figure 7.2: Second Test Results

The graph shows the temperature data collected over the six days. The set-points

for the Normal and Rapid outputs are clearly visible. Each output is active when

the temperature is equal to or below its respective set-point. The first three days

data is required to initialise the system. Once this time has elapsed the set-points

are calculated and the system is ready for operation. The average temperature

observed over this six day test period appears to be falling, followed by a rise on

the last day. The set-points reduce slowly to follow the temperature trend. It is

Chapter 7 – Analysis and Performance 74

evident that the set-points are not reacting quickly enough to maintain the correct

time percentages of 15 and 50%. These periods equate to sample lengths of 43

and 144 respectively.

7.3 System Improvements

Due to the slow response of the set-points to changing climate, an adjustment was

deemed necessary to the system. To speed up the response, the buffer size was

reduced to two days. This reduces the number of older samples stored and should

speed up the response time.

To determine the effect of a reduced buffer size, the same data will be used. As it

is impossible to reproduce the same temperature data the system was simulated in

MATLAB. The code used to perform this function is included in Appendix I.

The algorithm was reproduced with a buffer length of 192, equivalent to two days

of samples. The data collected during the tests was used as the temperature and a

sliding window represented the buffer. As the sample buffer required is only two

days in length, the system will become operational one day earlier. The results of

the simulation are presented in figure 7.3, along with the original three day buffer

set-points for comparison.

Chapter 7 – Analysis and Performance 75

0 100 200 300 400 500 600
0

5

10

15

20

25
Simulation

Sample Number

T
e
m
p
e
ra
tu
re
 (
d
e
g
re
e
s
 C
)

Temperature

Normal 3 Days

Rapid 3 Days

Normal 2 Days

Rapid 2 Days

Figure 7.3: Buffer Size Simulation

It can be seen that the buffer of two days reacts quicker to the temperature average

changing than the three day buffer. Analysis of the time percentages that the

system would run in this case reveals that the two day buffer provides output

periods significantly closer to the ideal percentages.

7.4 System Discussion

The system tests revealed the set-points adapting to follow the average

temperature. The temperature data used for the tests is the worst case possible,

this being a sudden drop in temperature, quickly followed by a rise. This results

in the set-points adapting downwards and then being forced to adapt upwards.

Tests using a continuous sine wave input showed that the set-points stabilise with

the correct time percentages. This shows that the error encountered is caused

solely by the temperature prediction component of the system. This problem of

accurately predicting temperature minimums will be present for any method of

prediction implemented. The two day buffer of samples provided the best results,

increasing speed of reaction over the three day buffer.

Chapter 8 – Conclusions and Recommendations 76

Chapter 8 – Conclusions and Recommendations

8.1 Achievement of Objectives

The project specification in Appendix A contains the objectives of this project.

The tests carried out have been analysed in regards to the project objectives and

the success of the project has been judged in terms of the project specification.

As stated in the specification, the aim of the project was to “develop a controller

that will automatically switch aeration fans based on ambient air state, to

condition grain in storage during the optimal time.” The general aim of the

project has been completed. The controller provides automatically switched

outputs, for interfacing with aeration motor controls. The optimal times of coolest

air occur during the temperature troughs. The results show that the system does

operate the outputs during these periods.

Research into control methods suitable for the control of aerators was successful

and the design based on this. The air parameters required to be monitored were

investigated and chosen as temperature and relative humidity. From these the

wet-bulb temperature is derived.

The PICAXE 18X was selected as the microcontroller and interfaced successfully

with other required components. A program capable of automatically controlling

aeration fans, by operating them when appropriate, was completed. The final

prototype was constructed and tested successfully.

The major outcomes of the project are outlined below:

• The system provides a user interface for the operator to allow monitoring

of the device. The time can be set with the two keys on the device. The

display provides a readout of the air parameters being monitored by the

Chapter 8 – Conclusions and Recommendations 77

device. The set-points temperatures for the Normal and Rapid modes can

be checked.

• The system measures temperature and relative humidity. These are used

to calculate the wet-bulb temperature.

• The system calculates Normal and Rapid mode set-points from previously

stored temperature data. The Normal and Rapid outputs are switched on

and off as necessary.

• Remote monitoring of the device was not investigated due to time

limitations.

Overall the system has performed well. The system was designed and integrated

into a fully functional prototype. The initial research was paramount to this

success and the timeline followed to ensure completion.

8.2 Recommendations for Further Work

There are areas of further work that could enhance the operation of the system.

Some recommendations are outlined below:

1) Noise Immunity

Adding a CRC check to the sensor interface would ensure that measurements

were not corrupted during transmission. By improving code efficiency, memory

could be released for this function. The noise immunity could also be improved

by using shielded cable for connection to the sensor.

2) Manufacture the device on the designed PCB

The designed PCB could be constructed and the components fitted. This would

then be tested to verify correct operation.

Chapter 8 – Conclusions and Recommendations 78

3) Add Power Management Algorithm

It was originally envisaged that a power optimisation algorithm would be present

in the system. When active this would alter the running period to utilise the less

expensive electricity tariff times. Daily cooling efficiency would be sacrificed as

necessary to minimise running costs. The system could then catch up on lost

hours during the weekend off-peak period.

4) Investigate remote monitoring

Remote monitoring of the system would allow its operation to be verified and any

malfunctions recognised. This could also extend to the device remotely operating

aerators from a distance. Such a feature would allow the device to operate fans in

a remote location, rather than purchasing further aeration controllers, thus

minimising cost.

These recommendations provide a platform for further work to be undertaken in

this area.

Appendix A 79

References

Bureau of Meteorology 2006, Climate Glossary, Commonwealth of Australia,

viewed Apr 2006, http://www.bom.gov.au/climate/glossary/wetbulb.shtml

CSIRO, Stored Grain Research Laboratory, Time Proportioning Controller,

viewed 20 Apr 2006,

http://sgrl.csiro.au/storage/moisture/time_proportioning.html

Dallas Semiconductor, DS18B20 Programmable Resolution 1-Wire Digital

Thermometer, viewed 9 May 2006, www.maxim-ic.com

Dallas Semiconductor, DS130764 X 8 Serial Real Time Clock, viewed 20 May

2006, www.maxim-ic.com

Darby, J 1998, ‘Putting grain aeration in order with generalized aeration

categories’, Australian Postharvest Technical Conference, pp 203-4

Darby, J 2000, ‘Aeration control developments’, Australian Postharvest

Technical Conference, pp 39-46

Fusae, T 2004, Grain Storage Aeration & Fumigation, C RFM, Toowoomba

Kotzur, A 1998, ‘Ambient air in-store grain storing: recent Australian experience’,

Australian Postharvest Technical Conference, pp 218-220

Leis, J 2002, Digital Signal Processing: A MATLAB-based tutorial approach,

Research Studies Press LTD., Baldock

McPhee, J 1998, Grain Aeration, Farming Systems Institute, DPI Queensland,

viewed 19 Apr 2006,

http://agspsrv34.agric.wa.gov.au/ento/publications/p98156.html

Appendix A 80

Microchip Technology Inc. 2003, 24AA16/24LC16B Datasheet, DS21703D,

viewed 20 May 2006, ww1.microchip.com/downloads/en/devicedoc/21703d.pdf

Microchip Technology Inc. 2005, PIC16F87/88 Data Sheet, viewed 20 May 2006,

http://ww1.microchip.com/downloads/en/DeviceDoc/30487c.pdf

Motorola, Inc. 1996, ULN2803 ULN2804, Revision 1, viewed 20May 2006,

www.datasheetcatalog.com/datasheets_pdf/U/L/N/2/ULN2803.shtml

Newman, C 2002, ‘Aeration - for preserving grain quality’, Farmnote,

Department of Agriculture, no. 24/2002

Revolution Education 2004, PICAXE Manual, viewed 11 May 2006,

www.picaxe.co.uk

Revolution Education 2004, AXE033.pmd, v4.1, viewed 11 May 2006,

www.picaxe.co.uk

SENSIRION AG 2003, SHT1x / SHT7x Relative Humidity & Temperature Sensor

System, V2.01, viewed 10 June 2006,

www.sensirion.com/en/download/humiditysensor/SHT11.htm

SENSIRION AG 2005, SHTxx Application Note Non-Linearity Compensation,

Revision 1.32, viewed 10 June 2006, www.sensirion.com/humidity

SENSIRION AG 2006, SHTxx Application Note CRC, Revision 1.07, viewed 10

October 2006, www.sensirion.com/humidity

STMicroelectronics 2006, L7800 SERIES POSITIVE VOLTAGE REGULATOR,

viewed 20 May 2006, http://www.st.com

Appendix A 81

Appendix A – Project Specification

Appendix A 82

University of Southern Queensland

Faculty of Engineering and Surveying

ENG 4111/4112 Research Project

PROJECT SPECIFICATION

FOR: ANDREW CHARLES

TOPIC: AMBIENT AIR TEMPERATURE TREND

AERATION CONTROLLER.

SUPERVISOR: Mr. Mark Norman

ENROLMENT: ENG 4111 – S1, D, 2006
 ENG 4112 – S2, D, 2006

PROJECT AIM: The project aims to develop a controller that will

automatically switch aeration fans based on ambient air
state, to condition grain in storage during the optimal time.

PROGRAMME: Issue A, 27 March 2006

1. Research information on aeration control methods in grain storage.

2. Research and select sensors appropriate for ambient air measurement.

3. Research and select microprocessor with other hardware components.

4. Design and simulate software required for control of aeration fans.

6. Construct prototype and evaluate.

As time permits

 6. Investigate remote monitoring of controller operation.

AGREED: __________________ (student) __________________

(Supervisor)

(date)___/___/___

Appendix B 83

Appendix B – Wet-Bulb Temperature Lookup Table

Appendix B 84

Appendix C 85

Appendix C – SHT15 Sensor Timing Diagram

Appendix C 86

Appendix D 87

Appendix D – LCD Display Commands

Appendix D 88

Appendix E 89

Appendix E – PCB

Appendix E 90

Appendix E 91

Appendix F 92

Appendix F – Software Listing

Appendix F 93

'Written by Andrew Charles
'Student No. 0050009343
'Written with PICAXE Programming Editor

'Aeration Controller Project
'For use with PICAXE 18x
'Memory used: 1852 bytes

'--------------------Outputs-------------------------------
--

symbol Rapid = 2
symbol Normal = 3
symbol Sensclock = 6
symbol Sensout = 7

'--------------------Inputs--------------------------------
--

symbol Mode = pin0
symbol Adjust = pin1
symbol Sensin = pin6

'-------------------Variables------------------------------
--

symbol DataLow = b0 'Working Byte Low 1
symbol DataHigh = b1 'Working Byte High 1
symbol DataWord = w0 'Working Word 1 = b0 & b1

symbol DataLow2 = b2 'Working Byte Low 2
symbol DataHigh2 = b3 'Working Byte High 2
symbol DataWord2 = w1 'Working Word 2 = b2 & b3

symbol NormalSet = b4 'Normal Set-point Temperature
symbol RapidSet = b5 'Rapid Set-Point Temperature

symbol Day = b6 'Current number of Day, 1-7
symbol Counter = b7 'Universal Loop Counter Variable
symbol WbTemp = b8 'Wet-bulb temperature
symbol Hum = b9 'Relative Humidity
symbol Temp = w5 'Dry-bulb temperature =b10 & b11
symbol Minutes = b12 'Current time minutes
symbol Hour = b13 'Current time hour, 24hr format

'------------------Constants-------------------------------
--

symbol TempMeas = %00000011 'Measure Temp
command
symbol HumMeas = %00000101 'Measure Humidity command
symbol StatRegWrite = %00000110 'Write to Status Register
command
symbol StatRegRead = %00000111 'Read from Status Register
command
symbol Setup = %00000001 'Status Register write,
set precision

symbol EEPROM1 = %10100000 'EEPROM BLOCK I2C
Addresses
symbol EEPROM2 = %10100010

Appendix F 94

symbol EEPROM3 = %10100100
symbol EEPROM4 = %10100110
symbol EEPROM5 = %10101000
symbol EEPROM6 = %10101010
symbol EEPROM7 = %10101100
symbol EEPROM8 = %10101110

symbol RTC = %11010000 'Real Time Clock I2C
Address
symbol LCD = $C6 'LCD I2C Address

'----------Pre-defined Display Strings---------------------
--

EEPROM 0, ("SEND SERIAL DATA")
EEPROM 16, ("YES NO")
EEPROM 32, ("MASTER RESET? ")
EEPROM 48, ("SET CLOCK ")
EEPROM 64, ("SHOW SET-POINTS?")
EEPROM 80, ("RESET COMPLETE ")
EEPROM 96, (" INACTIVE ")

'__
__

'-------------------MAIN PROGRAM---------------------------
--

Main: 'Initial Setup

 pause 2000 'Wait For Peripherals to
Initialize

 'Setup Temp/Hum Sensor
 Datalow = StatRegWrite 'Status Register adress
 gosub TransStart 'Initiate Transmission

 gosub WriteData 'Write data to sensor
 gosub Acklow 'Provide Low Acknowledge
 DataLow = Setup 'Precision data
 gosub WriteData 'Write setup 10/8 bit
accuracy
 gosub Acklow 'Provide Low Acknowledge

 gosub RTCRead 'Read Real Time Clock

 goto SetTrue 'Set initial Parameters
Upon Startup

 'Main Repetative Loop

Repeat: if Mode = 1 then Settings 'Check Switch, jump
to settings if activated

After: gosub TempRead 'Read Temperature

 gosub HumRead 'Read Humidity

 gosub RTCRead 'Read Time

Appendix F 95

 gosub WbCalc 'Calculate Wet Bulb Temperature

 gosub DispMain 'Display Main Page

 gosub CheckTime 'Check if time for Calculation

 pause 2000 'Pause for period to avoid
heating sensor

 goto Repeat 'Repeat Main Loop

'__
__

'''
''
' Menu '
'User interface menu routines. This is a branch and not a
 '
'subroutine. Options are View Set-points, Send Serial
Data,'
'Master Reset and Set Time '
'''
''

Settings: pause 3000 'Pause to
elminate accidental press
 if Mode = 1 then SetTrue 'Continue if Mode
button still pressed
 goto repeat 'Else Exit

SetTrue: i2cslave LCD,i2cslow,i2cbyte 'Set I2C Address to
LCD

 DataLow = 64 'String 'Show Set-
Points?'
 gosub MenuItem 'Display Menu Item

 if bit0 = 1 then ShowSetPts 'If adjust key
pressed branch

 DataLow = 0 'String 'Send Serial
Data'
 gosub MenuItem 'Display Menu Item

 if bit0 = 1 then SendData 'If adjust key
pressed branch

MasterRst: DataLow = 32 'String
'MASTER RESET?
 gosub MenuItem 'Display Menu Item

 if bit0 = 1 then Reset 'If adjust key
pressed branch

SetTime: gosub DispClear 'Clear LCD
 DataLow = 48 'String 'Set Clock'
 gosub PrintLine 'Print
 pause 1000

HourSet: gosub TimePrint 'Print Time

Appendix F 96

 gosub DayPrint 'Print Day

 gosub Debounce 'Debounce

 if bit0 = 1 then IncHour 'If Adjust pressed
branch
 if bit1 = 1 then Minset 'If Mode pressed
branch
 goto Writetime 'Else Write time to
RTC

IncHour: Hour = Hour + 1 'Increment Hour
 Hour = Hour//24 'If 24 then set to
zero
 pause 200
 goto Hourset 'Update Display

MinSet: pause 500

Minset2: gosub TimePrint 'Print Time

 gosub Debounce 'Debounce

 if bit0 = 1 then IncMin 'If Adjust pressed
branch
 if bit1 = 1 then SetDay 'If Adjust pressed
branch
 goto Writetime 'Else Write time to
RTC

IncMin: Minutes = Minutes + 1 'Increment Minute
 Minutes = Minutes//60 'If 60 then set to
zero
 pause 200
 goto MinSet2 'Update Display

SetDay: pause 500

SetDay2: gosub DayPrint 'Print Day
 pause 10

 gosub Debounce 'Debounce

 if bit0 = 1 then IncDay 'If Adjust pressed
branch
 goto WriteTime 'Else Write time to
RTC

IncDay: Day = Day + 1 'Increment Day
 Day = Day//8 'If 8 then set to
zero
 if Day = 0 then IncDay 'If 0 then set to 1
 pause 500
 goto SetDay2 'Update Display

WriteTime: i2cslave RTC,i2cslow,i2cbyte 'Set I2C
Address to RTC
 DataLow = Minutes
 gosub BinarytoBCD 'Convert minutes to
BCD
 writei2c 1,(DataLow) 'Write Minutes to
RTC

Appendix F 97

 DataLow = Hour
 gosub BinarytoBCD 'Convert hour to BCD
 writei2c 2,(DataLow,Day) 'Write Hour and Day
to RTC

 goto ExitToMain 'Branch to Exit

Reset: 'Master Reset, Clear Memory Buffer
 i2cslave EEPROM6, i2cslow, i2cbyte 'Set I2C
Address to EEPROM6
 DataLow = 15 'Length of 16
bytes in block
 gosub Clearing 'Clear buffer
 i2cslave EEPROM7, i2cslow, i2cbyte 'Set I2C
Address to EEPROM7
 DataLow = 1 'Length of 16
bytes in block
 gosub Clearing 'Clear buffer
 i2cslave RTC, i2cslow, i2cbyte 'Set I2C
Address to RTC
 writei2c $08, (1, 0, 0) 'Reset Flags
in RTC

 i2cslave LCD,i2cslow,i2cbyte 'Set I2C Address to
LCD
 gosub DispClear 'Clear Display
 DataLow = 80 'String 'RESET
COMPLETE'
 gosub PrintLine 'Print
 pause 2000

ExitToMain: goto After 'Exit Menu,
return to Main loop

ShowSetPts: 'Display Set-Points on LCD
 writei2c 0,(254,1,255) 'Clear Display
 pause 30
 writei2c 0,(254,128,255) 'Position Top Left
 pause 10
 DataLow2 = NormalSet - 40 'Change format
 writei2c 0,("Normal = ",255) 'Print 'Normal = '
 pause 10
 if NormalSet >= 40 then skipneg3 'Account for
possible negative
 writei2c 0,("-",255)
 pause 10
 DataLow2 = 40 - NormalSet
skipneg3: gosub calcnum
 writei2c 0,(DataHigh,DataLow,%11011111,"C",255)
'Print Set-Point
 pause 10

 writei2c 0,(254,192,255) 'Position Bottom
Left
 pause 10

 DataLow2 = RapidSet - 40 'Change format
 writei2c 0,("Rapid = ",255) 'Print 'Rapid = '
 pause 10

Appendix F 98

 if RapidSet >= 40 then skipneg4 'Account for
possible negative
 writei2c 0,("-",255)
 pause 10
 DataLow2 = 40 - RapidSet
skipneg4: gosub calcnum
 writei2c 0,(DataHigh,DataLow,%11011111,"C",255)
 'Print Set-Point
 pause 4000 'Pause to allow
viewing
 goto ExitToMain 'Branch to Exit

SendData: 'Send Serial Data via programming cable

 i2cslave EEPROM6, i2cslow, i2cbyte 'Block 6

 for Counter = 0 to 255
 readi2c Counter, (DataLow)
 sertxd(#DataLow,$0D)
 next Counter

 i2cslave EEPROM7, i2cslow, i2cbyte 'Block 7

 for Counter = 0 to 31
 readi2c Counter, (DataLow)
 sertxd(#DataLow,$0D)
 next Counter
 goto ExitToMain 'Branch to Exit

'__
__

'***********************Subroutines************************
**

'''
''
' Clearing '
'Clears the EEPROM memory in a block of 16 bytes '
'''
''

Clearing: for Counter = 0 to DataLow 'Loop for
Datlow blocks
 DataHigh = Counter * 16 'Start Address
16*DataLow
 'Write 255 into block, this signifies empty
 writei2c
DataHigh,(255,255,255,255,255,255,255,255,255,255,255,255,2
55,255,255,255)
 pause 10
 next Counter
 return

'''
''
' TimePrint '
'Prints the Time stored in the PICAXE RAM to the LCD
 '
'''
''

Appendix F 99

TimePrint: writei2c 0,(254,192,255) 'Position Line
2
 pause 10
 DataLow2 = Hour
 gosub calcnum
 writei2c 0,(DataHigh,DataLow,":",255) 'Print
Hours
 pause 10
 DataLow2 = Minutes
 gosub calcnum
 writei2c 0,(DataHigh,DataLow,255) 'Print
Minutes
 pause 10
 return

'''
''
' DayPrint '
'Prints the Day stored in the PICAXE RAM to the LCD
 '
'''
''

DayPrint: writei2c 0,(254,200,255) 'Position Line
2
 pause 10
 'Select day
 if Day = 1 then Mon
 if Day = 2 then Tue
 if Day = 3 then Wed
 if Day = 4 then Thu
 if Day = 5 then Fri
 if Day = 6 then Sat
 if Day = 7 then Sun

 'Print Day to LCD
Mon: writei2c 0,("Mon",255)
 return

Tue: writei2c 0,("Tue",255)
 return

Wed: writei2c 0,("Wed",255)
 return

Thu: writei2c 0,("Thu",255)
 return

Fri: writei2c 0,("Fri",255)
 return

Sat: writei2c 0,("Sat",255)
 return

Sun: writei2c 0,("Sun",255)
 return

'''
''
' MenuItem '
'Prints the String within DataLow to first line of LCD. '

Appendix F 100

'Prints Yes No on second line, checks for key presses,
exits'
'when pressed or time out '
'''
''

MenuItem: gosub DispClear 'Clear Display

 gosub PrintLine 'Print String in
DataLow
 pause 1000
 writei2c 0,(254,192,255) 'Shift Cursor to
Line 2
 DataLow = 16 'Display String 'Yes
No'
 gosub PrintLine 'Print
 pause 10

 gosub Debounce 'Debounce
 return

'''
''
' Debounce '
'Debounces the two input keys. Sets flag bit0 for adjust,
 '
'bit1 for Mode. Exist after approximately 12 seconds if no
 '
'key pressed. '
'''
''

Debounce: Datalow = 0 'Clear flags
 for counter = 1 to 255
 if Adjust = 1 then Debounce1 'If adjust pressed
branch
 if Mode = 1 then Debounce2 'If Mode pressed
branch
 pause 50 'Pause for timeout
 next counter
 goto ExitDbnce 'Exit if no key
pressed

Debounce1: pause 10 'Debounce
Adjust
 if Adjust = 1 then Debounce3
 goto Debounce

Debounce2: pause 10 'Debounce Mode
 if Mode = 1 then Debounce4
 goto Debounce 'Branch to exit

Debounce3: bit0 = 1 'Set Adjust
key flag
 goto ExitDbnce

Debounce4: bit1 = 1 'Set Mode key
flag
ExitDbnce: return

'''
''

Appendix F 101

' PrintLine '
'Print EEPROM string starting at index stored in datalow to
'
'LCD display '
'''
''

PrintLine: DataHigh2 = DataLow + 15 'String
Length
 for Counter = DataLow to DataHigh2
 read Counter, DataHigh 'Read
character from EEPROM
 writei2c 0, (DataHigh,255)
 next Counter
 return

'''
''
' Check Time '
'Performs a read of RAM from RTC and determines if a new
'
'Measurement is required '
'''
''

CheckTime: i2cslave RTC,i2cslow,i2cbyte 'Set I2C
address to RTC

 'Read minutes of last measurement, Circular Buffer
Position and EEPROM Bank
 readi2c $08, (DataLow2, DataHigh, DataLow)

 'Modulus of Minutes = 0 if quarter hour interval
 DataHigh2 = Minutes // 15

 'If a quarter hour interval and not same interval
as last measurement then Measure
 if DataHigh2 = 0 and DataLow2 != Minutes then
Measure

 if bit1 = 1 then ExitCkTime 'If buffer complete
flag is active then exit
 i2cslave LCD,i2cslow,i2cbyte 'Set I2C address to
LCD
 pause 2000
 gosub DispClear 'Clear Display
 DataLow = 96 'String 'INACTIVE'
 gosub PrintLine 'Print

ExitCkTime: return

'''
''
' Measure '
'Stores Measurement in EEPROM Bank, may call
 '
'''
''

Measure: if bit0 = 1 then UseBlock7 'Check flag,
choose EEPROM Block

Appendix F 102

 i2cslave EEPROM6,i2cslow,i2cbyte 'Set I2C
address to EEPROM Block 6

BlckChosen: DataHigh2 = WbTemp - 20 'Adjust
WbTemp to start at -20 degrees C

 writei2c DataHigh,(DataHigh2) 'Store Current
Measurement in EEPROM
 pause 10

 i2cslave RTC, i2cslow, i2cbyte 'Set I2C
address to RTC

 'If next measurement is in second block change
block
 if DataHigh = 255 and bit0 = 0 then BlockChng1

 'If next measurement is in first block change
block
 if DataHigh = 31 and bit0 = 1 then BlockChng2

 DataHigh = DataHigh + 1 'Else
increment location within current block

 goto WriteLoc 'Branch to
Write index location to LCD RAM

UseBlock7: i2cslave EEPROM7,i2cslow,i2cbyte 'Set I2C
address to EEPROM Block 7
 goto BlckChosen 'Branch to
block operations

BlockChng1: bit0 = 1 'Set
flag to Block 6
 goto Changed

BlockChng2: bit0 = 0 'Set
flag to block 7
 bit1 = 1 'Set buffer
complete flag

Changed: DataHigh = 0 'Location zero
in block

WriteLoc: 'Write current measurement minutes, next
measurement location and block
 writei2c $08, (Minutes, DataHigh, DataLow)

 if bit1 = 0 then ExitMeas 'If Buffer not
complete then exit

 'Else

 gosub CalcOccur1 'Calculate Occurance of
Temperatures
 gosub CumProb 'Calculate Cumulative
Probability
 gosub ChkSetPts 'Activate outputs if necessary

ExitMeas: return

'''

Appendix F 103

''
' CalcProbs '
'Calculates number of occurences for each temperature in
the'
'range of -20 to 49 degrees C, stores histogram in RAM '
'''
''

CalcOccur1: for Counter = 80 to 127
 poke Counter, 0 'Clear Ram
block 1
 next Counter

 for Counter = 192 to 239
 poke Counter, 0 'Clear Ram
block 2
 next Counter

 i2cslave EEPROM6,i2cslow,i2cbyte 'Set I2C
address to EEPROM6
 for Counter = 0 to 255 'Step through
block
 gosub RamProb 'Increment
histogram

 next Counter

CalcOccur2: i2cslave EEPROM7, i2cslow, i2cbyte 'Set I2C
address to EEPROM7
 for Counter = 0 to 31 'Step through
block
 gosub RamProb 'Increment
histogram

 next Counter
 return

'''
''
' RamProb '
'Reads data from EEPROM and increments number of occurances
'
'of that temperature in the range of -20 to 49 degrees C '
 '
'''
''

RamProb: readi2c Counter, (DataLow) 'Read in
Measurement Data
 if DataLow > 47 then Ram2 'Store in 2nd
block of Ram
 DataHigh = 80 + DataLow 'Adjust to
suit Ram location
 peek DataHigh, DataLow2 'Peek location
DataHigh into DataLow2, current number of occurances
 DataLow2 = DataLow2 + 1 'Increment
value
 poke DataHigh, DataLow2 'Poke
incremented value back into ram
 goto ExitRamp

Ram2: DataHigh = 192 + DataLow -48 'Adjust

Appendix F 104

to suit Ram location
 peek DataHigh, DataLow2 'Peek location
DataHigh into DataLow2, current number of occurances
 DataLow2 = DataLow2 + 1 'Increment
value
 poke DataHigh, DataLow2 'Poke
incremented value back into ra
ExitRamP: return

'''
''
' Calc Cumulative Probability '
'Finds cumulative probability of data to determine Normal
 '
'and Rapid set-point temperatures
 '
'''
''

CumProb: DataWord2 = 0 'Clear 16 bit
word

 'Calculate Normal Set-Point

 for Counter = 80 to 127 'Step through
first block of Ram
 peek Counter, DataLow 'Peek location
Counter into DataLow, number of occurances
 DataWord2 = DataWord2 + DataLow 'Increment
cumulative density to include current temperature
 if DataWord2 >= 41 then SetNormal 'If time
percentage reached branch
 next Counter

 for Counter = 192 to 204 'Step through
second block of Ram
 peek Counter, DataLow 'Peek location
Counter into DataLow, number of occurances
 DataWord2 = DataWord2 + DataLow 'Increment
cumulative density to include current temperature
 if DataWord2 >= 41 then SetNormal 'If time
percentage reached branch
 next Counter

 end 'Error if this
point reached

SetNormal: if Counter >128 then SetNorm1 'Check
which block of ram value was in use

 NormalSet = Counter - 80 + 20 'Adjust to
range
 goto nextpt

SetNorm1: NormalSet = Counter - 192 + 20 + 48 'Adjust
to range

nextpt: DataWord2 = 0 'Clear 16 bit
word

 'Calculate Rapid Set-Point

Appendix F 105

 for Counter = 80 to 127 'Step through
first block of Ram
 peek Counter, DataLow 'Peek location
Counter into DataLow, number of occurances
 DataWord2 = DataWord2 + DataLow 'Increment
cumulative density to include current temperature
 if DataWord2 > 144 then SetRapid 'If time
percentage reached branch
 next Counter

 for Counter = 192 to 204 'Step through
second block of Ram
 peek Counter, DataLow 'Peek location
Counter into DataLow, number of occurances
 DataWord2 = DataWord2 + DataLow 'Increment
cumulative density to include current temperature
 if DataWord2 > 144 then SetRapid 'If time
percentage reached branch
 next Counter

 end 'Error if this
point reached

SetRapid: if Counter >128 then SetRap1 'Check
which block of ram value was in use

 RapidSet = Counter - 80 + 20 'Adjust to
range
 goto ExitCumP 'Branch to
exit

SetRap1: RapidSet = Counter - 192 + 20 + 48 'Adjust to
range
ExitCumP: return

'''
''
' CheckSetPts '
'Checks current temperature against set-points and
activates'
'outputs as required '
'''
''

ChkSetPts:
 if WbTemp > RapidSet then Case1 'If
Temperature is above Rapid
 if WbTemp > NormalSet then Case2 'If
Temperature is above Normal but below Rapid

 'Else temperature is below Normal and Rapid
 high Rapid
 high Normal 'Activate
Normal and Rapid
 goto FinChk

Case1: low Rapid 'Activate None
 low Normal
 goto FinChk

Case2: high Rapid 'Activate

Appendix F 106

Rapid
 low Normal

FinChk: return

'''
''
' DispClear '
'Clears both lines of LCD Display and returns cursor to top
 '
'left
 '
'''
''

DispClear: writei2c 0,(254,1,255) 'Clear Display
 pause 30
 writei2c 0,(254,128,255) 'Position Top Left
 pause 10
 return

'''
''
' Display Main Page '
'Displays the main idle page. Contains Relative Humidity,
 '
'Wet-bulb temp, Dry-bulb temp and time '
'''
''

DispMain: i2cslave LCD,i2cslow,i2cbyte 'Set I2C
address to LCD
 writei2c 0,(254,128,255) 'Position Top left
 pause 10

 DataLow2 = Hum 'Load Relative
Humidity
 gosub Calcnum 'Convert to Ascii
values

 'Write static data
 writei2c 0,("RH ",DataHigh,DataLow,"%
DB",%11011111,"C WB",%11011111,"C",255)
 pause 10
 writei2c 0,(254,192,255) 'Next Line
 pause 10

 DataLow2 = Hour 'Load Hours
 gosub Calcnum 'Convert to Ascii
values

 'Write Hours
 writei2c 0,(DataHigh,DataLow,":",255)
 pause 10

 DataLow2 = Minutes 'Load Minutes
 gosub Calcnum 'Convert to Ascii
values

 'Write minutes
 writei2c 0,(DataHigh,DataLow," ",255)
 pause 10

Appendix F 107

 'Prepare Dry-bulb temp for display
 DataWord = Temp - 400 'Change form
 if Temp >= 400 then SkipNeg 'Check negative
 writei2c 0,("-",255) 'Display negative
 pause 10

 DataWord = 400 - Temp 'Change because
negative

 'Convert into places for display
SkipNeg: DataHigh2 = DataWord /100 + $30
 DataLow2 = DataWord //100
 DataHigh = Datalow2//10 + $30
 Datalow2 = Datalow2/10 + $30

 'Write dry-bulb temp to LCD
 writei2c 0,(DataHigh2,DataLow2,".",DataHigh,"
",255)
 pause 10

 'Prepare wet-bulb temp for display
 DataLow2 = WbTemp - 40 'Change form
 if WbTemp >= 40 then SkipNeg2 'Check negative
 writei2c 0,("-",255)pause 10 'Display negative

 DataLow2 = 40 - WbTemp 'Change because
negative

 'Convert into places for display
SkipNeg2: gosub Calcnum 'Convert to
Ascii values

 'Write wet-bulb temp to LCD
 writei2c 0,(DataHigh,DataLow," ",255)
 pause 10
 return

'''
''
' Calcnum '
'Converts binary value to charater to display on LCD, value
 '
'to convert is in DataLow2 and outputs in DataHigh and '
'DataLow '
'''
''

Calcnum: DataHigh = DataLow2/10 + $30 'Find tens
place

 DataLow = DataLow2//10 + $30 'Find ones
place
 return

'''
''
' Perform Temprature Measurement '
'Read temperature from sensor and store in Temp variable '
'12 bit value is multiplied by 10 and offset by +400
 '
'''

Appendix F 108

''

TempRead: DataLow = TempMeas 'Load temperature
measure instruction
 gosub Transstart 'Transmission start
sequence
 gosub WriteData 'Write instruction
 gosub Acklow 'Provide low acknowledge
 pause 100 'Wait for Measurement
 DataWord = 0 'Clear variable for
measurement
 gosub ReadData 'Read first byte
 gosub Acklow 'Provide low acknowledge
 gosub ReadData 'Read second byte
 gosub Ackhigh 'Provide high acknowledge

 'Convert word into temperature value
 'Temp * 10, offset by +400
 DataWord = DataWord * 10 /25
 Temp = DataWord 'Store value
 return

'''
''
' Perform Humidity Measurement '
'Read humidity from sensor and store in Hum variable, 8 bit
 '
'''
''

HumRead: DataLow = HumMeas 'Load humidity measure
instruction
 gosub TransStart 'Transmission start
sequence
 gosub WriteData 'Write instruction
 gosub Acklow 'Provide low acknowledge
 pause 50 'Wait for Measurement
 DataWord = 0 'Clear variable for
measurement
 gosub ReadData 'Read first byte, empty
 gosub Acklow 'Provide low acknowledge
 gosub ReadData 'Read second byte
 gosub Ackhigh 'Provide high acknowledge

 'Convert into humidity value
 if DataLow <= 107 then less
 DataWord = DataLow*111 + 2893 'First linear
range
 goto finish
less: DataWord = DataLow*143 'Second
linear range
 if DataWord >= 512 then subtract 'Check for
underflow
 DataWord = 512
subtract: DataWord = DataWord - 512
finish: DataWord = DataWord/256
 Hum = DataLow 'Store Value
 return

'''
''
' Calculate Wb Temp '

Appendix F 109

'Use lookup table to find wet bulb temperature from dry-
bulb'
'and relative humidity, offset by +40 '
'''
''
WbCalc: 'Determine block of table

 if Temp < 470 then Bank1 'up to 7 degrees
 if Temp < 590 then Bank2 'up to 19 degrees
 if Temp < 710 then Bank3 'up to 31 degrees
 if Temp < 830 then Bank4 'up to 43 degrees
 goto Bank5 'else up to 50
degrees

 'Adjust for index into table
Bank1: i2cslave EEPROM1, i2cslow, i2cbyte
 DataLow = Temp - 350
 goto WbWorking

Bank2: i2cslave EEPROM2, i2cslow, i2cbyte
 DataLow = Temp - 470
 goto WbWorking

Bank3: i2cslave EEPROM3, i2cslow, i2cbyte
 DataLow = Temp - 590
 goto WbWorking

Bank4: i2cslave EEPROM4, i2cslow, i2cbyte
 DataLow = Temp - 710
 goto WbWorking

Bank5: i2cslave EEPROM5, i2cslow, i2cbyte
 DataLow = Temp - 830
 goto WbWorking

 'Find index into section of table
WbWorking: DataLow = DataLow / 10 * 20 'Table index
 DataHigh = DataLow + 19 'Find end of column
 for Counter = DataLow to DataHigh
 readi2c Counter,(DataLow2) 'Read value feom
table
 if DataLow2 < Hum then WbDone 'If value is less
than humidty then branch
 next Counter

 'Calculate depression from table index when exited
WbDone: WbTemp = Counter - DataLow 'Find index
 DataWord2 = WbTemp * 5 'Temp difference in
half degree times 10
 WbTemp = Temp - DataWord2 /10 'Subtract depression

 'Clip range from -20 to 49 degrees C
 if WbTemp < 20 then TooLow
 if WbTemp > 89 then TooHigh
 goto ExitWbCalc

TooLow: WbTemp = 20
 goto ExitWbCalc

TooHigh: WbTemp = 89
ExitWbCalc: return

Appendix F 110

'''
''
' Convert BCD to Binary '
'Uses BCD value in DataLow and converts to binary, returns
'
'result in DataLow '
'''
''

BCDtoBinary:
 DataHigh = DataLow & %11110000 'Remove lower
4 bits
 DataHigh = DataHigh/16 * 10 'Tens place
 DataLow = DataLow & %00001111 'Remove upper
4 bits, ones place
 DataLow = DataLow + DataHigh 'Add together
 return

'''
''
' Convert Binary to BCD '
'Uses Binary value in DataLow and converts to BCD, returns
'
'result in DataLow '
'''
''

BinarytoBCD:
 DataHigh = DataLow/10 'Tens place
 DataHigh = DataHigh * 16 'Shift bits up
 DataLow = DataLow//10 'Ones place
 Datalow = DataLow + DataHigh 'Combine
 return

'''
''
' RTCread '
'Read Minutes and Hours from Real Time Clock, uses '
'BCDtoBinary to convert to binary values
 '
'''
''

RTCread: i2cslave RTC, i2cslow, i2cbyte 'RTC i2cslave
setup
 readi2c 1, (Minutes, Hour, Day) 'Read min,
hour
 DataLow = Minutes 'Convert
Minutes
 gosub BCDtoBinary
 Minutes = DataLow 'Store Minutes
 DataLow = Hour 'Convert Hour
 gosub BCDtoBinary
 Hour = DataLow 'Store Hour
 return

'''
''
' TransStart '
'Sensor Transmission Start Sequence, used to begin
 '
'communication '

Appendix F 111

'''
''
TransStart: low sensclock 'START sequence
 high sensout
 high sensclock
 low sensout
 low sensclock
 high sensclock
 high sensout
 low sensclock
 return

'''
''
' WriteData '
'Write Data byte in DataLow to Sensor '
'''
''

WriteData: for Counter = 1 to 8
 if bit7 = 1 then Write1
 low sensout 'Output a low
 goto Writing
Write1: high sensout 'Output a high

Writing: pulsout sensclock,10 'Pulse clock
 DataLow = DataLow*2 'Shift to next
bit
 next Counter
 return

'''
''
' AckHigh '
'High Acknowledge to Sensor
 '
'''
''
Ackhigh: high sensout 'Output High
 pulsout sensclock,10 'Pulse clock
 return

'''
''
' AckLow '
'Low Acknowledge to Sensor '
'''
''
Acklow: low sensout
 pulsout sensclock,10
 return

'''
''
' ReadData
'Read Byte from Sensor into DataLow
 '
'''
''
ReadData: high sensout 'Output
pullup high
 for Counter = 1 to 8

Appendix F 112

 high sensclock 'Clock high
 DataWord = DataWord*2
 bit0 = sensin
 low sensclock 'Clock low
 next Counter
 return

'''
''

Appendix G 113

Appendix G – CRC Data

Appendix G 114

Appendix H 115

Appendix H – Raw Temperature Sample Data

Appendix H 116

41

41

41

41

41

41

40

41

43

42

42

42

41

43

43

40

40

40

39

38

37

37

37

36

36

35

36

35

35

35

35

35

35

35

35

35

35

35

38

37

37

37

37

37

36

36

36

36

36

36

36

35

35

36

35

35

36

36

36

36

36

36

35

35

35

35

35

35

35

35

35

35

35

35

35

36

35

36

36

36

36

36

37

36

37

37

38

37

38

38

38

38

38

38

38

39

39

39

39

39

39

40

40

40

40

40

40

40

40

40

40

39

39

39

38

38

37

37

37

37

37

37

37

37

37

37

37

37

36

36

36

36

36

36

36

36

36

36

35

36

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

36

35

36

35

36

36

36

36

37

37

36

37

38

38

38

39

38

38

38

39

39

38

39

39

38

38

38

40

38

38

38

39

38

38

38

40

40

38

38

38

37

38

38

38

38

39

38

38

38

38

38

38

37

37

37

37

37

37

37

37

36

36

36

36

36

36

36

36

35

35

35

34

34

35

35

35

34

34

34

34

34

34

34

34

34

34

34

35

34

34

34

34

34

33

34

34

34

35

35

35

35

36

36

36

36

36

36

37

36

36

36

36

36

37

36

36

36

36

37

36

36

36

36

37

36

36

36

36

35

35

35

35

35

34

34

34

34

34

34

34

33

33

32

32

32

32

32

32

31

31

31

30

30

30

30

30

30

30

30

30

30

29

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

29

29

29

29

29

29

29

30

31

31

31

32

33

35

35

36

33

33

33

33

34

34

34

33

35

34

34

34

35

35

35

35

34

36

36

35

36

35

35

35

34

34

34

33

34

33

33

33

33

33

33

32

33

32

32

32

32

31

31

31

31

31

31

31

31

30

30

30

30

30

30

30

30

30

30

30

30

29

29

Appendix H 117

29

29

29

29

29

28

29

28

28

28

28

28

28

28

28

28

28

27

27

27

27

27

27

26

27

28

28

29

30

31

31

32

32

32

32

33

33

33

33

33

33

33

33

34

34

34

34

34

35

35

36

35

36

37

36

37

36

35

36

35

35

35

34

34

34

34

33

33

33

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

31

32

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

30

30

30

31

30

30

30

29

29

29

29

29

30

30

31

32

32

33

33

34

34

34

34

35

35

35

36

36

36

36

35

36

37

37

37

37

39

39

39

39

38

40

38

39

39

39

39

39

38

38

38

39

38

38

38

37

37

37

36

35

35

34

33

33

32

31

32

31

31

32

33

34

34

34

34

34

34

33

34

33

33

33

33

33

33

33

33

33

33

33

33

33

33

33

33

33

33

32

32

32

32

32

32

32

32

32

32

32

33

32

33

33

33

33

33

33

33

33

33

34

35

34

34

34

35

36

36

36

37

39

41

39

39

39

40

39

39

40

41

40

40

42

41

40

40

40

40

40

38

40

41

39

38

39

38

37

36

36

35

35

35

35

35

34

35

35

36

36

36

36

36

36

36

36

35

35

35

35

35

36

35

35

35

35

35

35

35

35

36

35

36

36

36

36

36

36

36

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

36

36

36

37

36

36

37

37

37

37

37

38

37

37

37

38

39

39

40

40

38

39

39

38

38

37

37

37

37

37

37

37

37

37

37

37

36

36

37

36

36

36

36

36

36

37

37

37

37

37

37

37

37

37

37

37

36

36

36

36

36

36

36

36

36

36

36

36

36

35

35

35

35

35

35

35

35

34

34

34

34

34

34

34

34

34

34

34

34

34

35

35

36

36

36

37

37

37

37

37

38

38

39

40

40

40

41

41

42

42

42

42

Appendix I 118

Appendix I – Simulation Code

Appendix I 119

%MATALAB Simulation of Set-points
%Written by Andrew Charles
figure(1)
buffer = 288; %Buffer Length
length = 576; %Length of sample data
val = csvread('test.csv'); %Read Data from CSV file
val = val(1:576); %Select only Length Required
range = 0:1:30; %Temperature Range

title('Temperature')
xlabel('Sample Number')
ylabel('Temperature')

normal = zeros(1,length); %Set up empty array
rapid = zeros(1,length); %Set up empty array

for c = buffer+1:length %Sliding window
data = val((c-buffer):c); %Data in sliding window
x = histc(data,[range]); %Take Histogram
a = 0; %Clear variable
b = 0; %Clear variable

while a < (0.15*buffer) %Normal Percentage
 a = a + x(b+1);
 b = b+1;
end
pt = range(b); %Find index
normal(c) = pt; %Store

a = 0;
b = 0;
while a < (0.5*buffer) %Rapid Percentage
 a = a + x(b+1);
 b = b+1;
end
pt = range(b); %Find index
rapid(c) = pt; %Store

end
plot((1:length),val)
hold on
plot((1:length),normal,'k')
plot((1:length),rapid,'r')
title('Second Test')
xlabel('Sample Number')
ylabel('Temperature (degrees C)')
legend('Temperature','Normal Set-point','Rapid Set-
point')

Appendix J 120

Appendix J – Resource Planning

Requirement

Purpose Cost Solution

Workshop To construct and test
design

Nil University workshop
facilities are
available and my
own facilities exist

Computer Research, project write
up, Protel software and
design software

Nil On campus and my
personal computer
available for use, Pic
software not yet
known as PIC has
not been chosen

Small consumables Electronic components
such as resistors and
capacitors

<$20 Most common
components can be
obtained from
electronic stores and
University store

Electronic
components- PIC,
sensors,
programmers

These components are
critical to the design

$50 to
$250

Budget limited to
approximately $250
Online suppliers:
Microzed, Futurelec
etc

The budget for the components has been deemed around $250. Expenditure
beyond this budget should be avoided but could be facilitated.

Appendix K 121

Appendix K – Timeline

April

May

June

July

August

September

November

October

Project Specification

First Seminar

Project Appreciation

Extended Abstract for
Project Conference

Present at
Project Conference

Complete and Submit
Final Dissertation

Investigate
Control
Methods

Investigate Sensors
and PIC’s, order
hardware

Begin Software
Development

Assemble and test
hardware

Load Software into
PIC and test

PCB

Complete First Draft
Dissertation

March

Revise and edit
software as needed

Research remote
monitoring if time
permits

