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Abstract 
 
Aeration is an important component in the successful bulk storage of grain.  

Without it, grain can degrade in quality, destroying profits.  To achieve the best 

results from aeration, an automatic aeration controller should be used.  This 

device monitors the condition of ambient air and automatically activates aeration 

fans, during the coolest period of the day, to cool the stored grain.  The system has 

been designed by researching existing control methods, in quest of improvements 

and alternatives, and developed into a working prototype. 

 
A PICAXE microcontroller is used to process data and determine the optimal 

period to operate the aerators.  A combined Relative Humidity and Temperature 

sensor is utilised to measure the state of the ambient air.  The Relative Humidity is 

combined with a lookup table to determine an approximate wet-bulb temperature.  

By utilising wet-bulb temperature, a greater cooling effect is achieved through an 

evaporative cooling effect.  A LCD display provides a user interface exhibiting 

useful data in relation to the device.  The CSIRO Time Proportioning Control 

Method was implemented, providing Normal and Rapid outputs.  An alternative 

method of calculating set-points, involving cumulative probability, was applied. 

 

The final prototype constructed was tested successfully, logging data and 

determining set-points for operation.  Improvements and further work aimed at 

improving the design are discussed. 
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Chapter 1 – Introduction 
 

1.1 Background Information 

 
Grain in agriculture is generally stored for periods of time after harvest.  This is 

usually done as a stack of grain in the open air, or in a silo that contains the grain.  

A typical silo is shown in figure 1.1.  Silos in agricultural applications generally 

range in size from a few tonnes to several hundreds of tonnes.  Using a silo 

presents advantages over an open heap.  The grain in a silo is not directly exposed 

to atmospheric conditions such as rain, this avoids wetting which can result in 

possible shooting of the seed.  The likelihood of rodent infestation is also reduced 

significantly.  Silos are available in either sealed or unsealed varieties, unsealed 

are not air tight while sealed silos can be made air tight for fumigation purposes.  

By storing the grain in a sealed container, it is exposed to complications that have 

the potential to degrade the quality of the grain. 

 

 

Figure 1.1: A Sealed Silo 

 

Aeration is used successfully in bulk grain storage to prevent quality degradation 

and can potentially offer improvements in quality.  The process involves forcing 
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air through the grain bulk to cool and remove moisture from the grain.  To achieve 

these benefits the air used in the aeration process must be carefully selected.  An 

aeration controller monitors ambient air parameters and switches fans on at 

optimal times to condition stored grain according to the prevailing air conditions.  

The controller must switch the fans to provide a cooling effect to the grain, hence 

reducing insect/mould development, grain spoilage and moisture migration.  Such 

an automated system has significant advantages over other control methods such 

as a timer or a manual switched system.  These can be extremely inaccurate 

methods, operating at inappropriate times with the potential of undoing any gains 

previously made. 

 

For highest efficiency the coolest possible air available must be used.  As the day 

to day temperature cycle varies, a method of prediction must be utilized to 

forecast the minimum temperature for the current daily cycle.  This data is used in 

order to calculate set-points for the aeration motor control.  Most existing aerators 

are driven by mains supplied electric induction motors which offer no form of 

speed control.  The controller operates as a simple on/off switch to the motors 

providing a variable, long pulse width run signal.  This is demonstrated in figure 

1.1 below. 
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Figure 1.2:  Fan Switching Periods 



 
 
Chapter 1 – Introduction  3 
      

 

 

1.2 Project Aim 

 
The aim of this project is to develop an aeration controller that will automatically 

switch aeration fans on and off depending on ambient air temperature.  This will 

ensure the grain in storage is conditioned during the optimal time of coolest air. 
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1.3 Project Objectives 

 
The following objectives were chosen to facilitate the completion of the project. 

 

1.   Research information on aeration control methods in grain storage. 

 

2.   Research and select sensors appropriate for ambient air measurement. 

 

3.   Research and select microprocessor with other hardware components. 

 

4.   Design and simulate software required for control of aeration fans. 

 

5. Construct prototype and evaluate. 

 

As time permits 

  

 6.   Investigate remote monitoring of controller operation. 
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1.4 Dissertation Structure 

 
The dissertation is organized as follows: 
 
Chapter two covers the findings of the literature review carried out on the aeration 

process.  The general process, categories, benefits and control methods will be 

discussed. 

 

Chapter three is a risk assessment of the project.  It outlines the possible risks in 

development and use of the controller and the measures required to minimise 

these risks.  The development of a budget and timeline is also discussed. 

 

Chapter four contains the detailed design information.  Included is comprehensive 

information of components selected for the system, an explanation of how they 

are interfaced, the system schematic and the PCB design. 

 

Chapter five presents the methods used for building the prototypes.  Firstly the 

initial design that was built on a breadboard will be discussed.  Secondly the final 

prototype, housed within a protective case will be presented. 

 

Chapter six describes the software development for the project.  Firstly, the 

PICAXE programming editor is introduced.  The explanation of the software 

modules and their operation then follows. 

 

Chapter seven presents the methods and analyses the results of the tests conducted 

on the design.  Simulation is carried out to test the result of changing the sampling 

buffer size. 

 

Chapter eight discusses the performance of the design compared to the aims, 

objectives and specifications.  Recommendations for future work that would 

improve the system are made. 



 
Chapter 2 – Aeration Process  6 

 

 

 

Chapter 2 – Aeration Process 
 
This section will review current literature to establish the problems that need to be 

overcome and the processes that are best for achieving this.  The following points 

will be considered: 

 

1. The problems involved with the bulk storage of grain 

2. Aeration benefits 

3. Aeration categories and flow rates necessary 

4. Aeration control methods currently used or in development 

 

 

2.1 Storage Problems 

 

There are a multiple reasons grain is stored for long periods of time.  In 

agricultural situations the most common is usually an attempt to maximize profits.  

Other reasons include extending the harvest window (Newman 2002), allowing 

earlier harvest and also in managing income tax by delaying profits until the next 

financial year.  These reasons justify grain storage but there are also problems 

inherent in the process. 

 

Grain deteriorates while in storage, this may result in potential profit losses.  The 

major causes of deterioration in bulk stored grain are insect activity, mould 

growth and moisture migration (McPhee 1998).  Temperature difference gradients 

in the grain bulk cause moisture migration by convection currents.  This moisture 

condenses on silo surfaces, causing spoilage of the grain in that area (McPhee 

1998).   Mould can develop if the moisture within the grain is too high.  Insect 

development within the grain will naturally occur, however it is accelerated at 

higher temperatures.  This can be a serious concern in some circumstances.  Insect 

activity can cause hot spots within the grain; these areas promote extra insect 

growth and contribute further to moisture migration (Newman 2002). 
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2.2 What is Aeration 

 

Fusae (2004) defines aeration as the process of passing cool air through grain to 

reduce its temperature to a level where insect development, mould growth and 

moisture migration are dramatically inhibited.  The condition of this air needs to 

be chosen carefully to achieve any benefit.  Aeration is accomplished with fans 

and ducting used to force the air through the grain.  The fans are generally 

electrically driven as it is the most cost effective. 

 

 

2.3 Aeration Benefits 

 

Aeration provides many benefits and is very important to successful grain storage.  

Fusae (2004) lists the benefits as the following: 

 

1. Insect and mould activity is dramatically suppressed, reducing spoilage 

and weight loss of grain. 

2. Temperature and moisture variations within the grain are prevented, thus 

avoiding hot spots and condensation due to moisture movement. 

3. Cooling helps maintain grain quality – especially important for grain kept 

for seed. 

4. Insecticides maintain their effectiveness for far longer when grain is 

cooled by aeration. 

5. Aeration is a low energy process – running costs are low.  Aeration can 

dramatically improve the storage life of dry grain.  This practice has met 

with a wide acceptance in the past few years with farmers installing many 

of these units for improving the storage conditions in their silos. 

 

Aeration can also be an effective means of relieving pressure on a drying system 

by stalling the immediate need to dry over wet grain (Fusae 2004).  The wet grain 

may be stored under aeration for a limited period while other grain is dried.  
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Aeration not only helps to keep the storage temperature in a safe range but will 

also reduce the decay rate of protectants by 3 to 5 times (McPhee 1998). This 

reduces the quantity of insecticide required; this reduction limits the extent of 

insects becoming resistant to the chemical. 

 

 

2.4 Aeration Categories 

 

Aeration can be divided into general categories based on air flow rate.  Darby 

(1998) defines these categories as maintenance, up to 0.5 L/s/tonne, cooling, 0.5 

to 2.5 L/s/tonne and drying, 2.5 to 20 L/s/tonne.  The air flow rates of the aeration 

fan equipment used dictate the extent of ability of the aeration system.  Most 

existing installed aeration systems are capable of air flows in the low cooling 

range.  The air flow of the system must be sufficient for the application otherwise 

it will not perform effectively.  This must be considered when designing the 

controller.  The lower functions of maintenance and cooling can be performed by 

most systems (Darby 1998).  Outputs from the controller to perform these 

functions can be interfaced to most existing systems.  Higher functions, such as 

drying control periods, will be useless unless attached to a fan capable of the 

necessary air flow. 

 

 

2.5 Aeration Control Methods 

 

In aeration, there are a number of general methods available to switch the aeration 

fans on and off.  Fully manual control involves the operator estimating and 

activating the fans at the appropriate times.  This can be improved by manual 

charting of the temperature at various times and activating accordingly.  

Advancement on this method is through the use of an adjustable timer switch for 

control.  The operator pre-sets the running time interval based on the estimate of 

time that will provide the most benefit.  This provides the same accuracy as 

completely manual operation, but the operator will be relieved from manual 
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switching at inconvenient times.  Clearly these methods are exceedingly 

inaccurate which is the reason a dedicated aeration controller, that monitors and 

selects the most beneficial air is the best option. 

 

Commercial aeration controllers are available on the market.  These devices are 

expensive for what is essentially a self adjusting thermostat.  Many of these 

systems provide no way of viewing when the system ran the aerators, making 

verification of successful operation impossible.  While monitoring the air 

temperature, existing systems do not display the value.  An accurate present 

temperature display would be very useful in a grain storage environment.  Many 

test devices used for measuring moisture of grain require the air temperature to be 

known.  A readout of this value would eliminate the need for an additional 

thermometer.  The control method employed by commercial aeration controllers 

are presented in the following sections.  An alternative statistical method, logging 

a buffer of samples which can be used to verify system operation is explained. 

 

 

2.5.1 Time Proportioning Controller 

 

Research into controllers currently available, showed that the most common form 

of control was based on the CSIRO Time Proportioning Control Method.  This 

process tracks the daily fluctuation of ambient air temperature and switches the 

aeration fan on during the coolest times in order to meet one of the two available 

aeration time fractions, 0.15 (normal mode) or 0.5 (rapid mode) (CSIRO, SGRL).  

A graphical example of this is shown in below in figure 2.1, the normal mode 

time period is displayed. 
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Figure 2.1: Time Proportioning Controller (Stored Grain Research Laboratory, 

CSIRO) 

 
This method is simple in that it is essentially an open loop function.  The 

temperature of the grain is ignored and the system attempts to keep the grain as 

cool as possible.  The only input to the system is the current temperature; the 

output is selected from the two modes as appropriate. 

 

The Rapid mode of 50% time duration is designed for use with hot, recently 

harvested grain.  The longer running period provides a greater cooling effect, 

quickly removing the harvest heat from the grain before damage can result.  Once 

this heat has been removed the Normal mode, active for 15% time duration is 

selected.  This mode maintains the grain in a cool state by activating the fans long 

enough to remove heat absorbed from the surroundings and reach a point of 

stabilisation. 

 

 

2.5.2 Adaptive Discounting 

 

Research also revealed a new method of control recently became commercially 

available, it is called Adaptive Discounting.  This method contains two 

components operating simultaneously.  The adaptive component sequentially 
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propagates complete individual fronts through the store until the target average 

grain condition is achieved. The discounting action monitors the air selection 

process and ‘releases’ the set points to maximize the propagation rate (Darby 

2000).  Adaptive Discounting is a closed loop method utilising sensors within the 

grain to monitor its condition.  This can also prove a disadvantage in that these 

sensors are a possible point of failure that other methods do not utilise.  Each silo 

of grain being cooled requires its own sensor and control loop.  This is an added 

complexity when compared to the time proportioning controller which can be 

simply multiplexed by connecting the outputs in parallel. 

 

 

2.6 Temperature Prediction 

 

As discussed in earlier sections, the success of aeration is based on the use of the 

coolest possible available air.  The selection of the coolest period of air is not a 

simple process.  The day to day weather pattern, and hence temperature is 

continuously changing.  Due to these daily temperature fluctuations it is not 

known exactly what the coolest temperature will be and when it will occur.  The 

controller is therefore required to forecast the coldest period, this prediction is 

generally based on previous temperature data.  Two methods capable of 

performing this prediction are discussed below. 

 

 

2.6.1 Gradient Control Method 

 
Research available regarding existing aeration controllers using Time 

Proportioning Control, showed that they use a slope method for temperature 

prediction.  A commercially available aeration controller, the Rimik AC12, is 

based on the CSIRO Time Proportioning Controller.  It uses a self adjusting 

thermostat method to predict the relevant set-points.  The process is shown 

graphically in figure 2.2. 
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Figure 2.2: Slope Control Set-point Method (Fusae 2004) 

 
Fusae (2004) describes the operation as follows.  When first activated an initial 

set-point is established by the controller.  In the case of figure 2.2, the initial 

temperature is less than the set-point.  This being the case, the output is activated 

and the set-point is slowly ramped downwards.  When the set-point intercepts the 

current temperature, the fans are switched off and the set-point gradient changes 

sign.  The set-point is now ramped upwards until it intercepts the temperature.  At 

this point the fans are again switched on.  In this way the fans are only activated 

while the temperature is below the set-point slope, this being the coolest part of 

the temperature cycle.  The gradient of the On Rate and Off Rate slopes determine 

the duty cycle of the fans.  Due to the initial set-point used when the device is first 

switched on, it takes a number of cycles for the controller to stabilize and truly 

select the correct period of the coolest air. 

 

Pros 

• Simple operation and calculation within processor 

 

Cons 

• Takes time to stabilize 

• Gradients must be pre calculated from typical temperature data 

• On and Off set-points are skewed to different temperatures due to on rate 

slope, therefore not optimal selection of coolest period 
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To implement this method of control, temperature data must be analysed to 

determine the appropriate gradients.  In figure 2.2, the temperature cycle is 

represented by a sine wave.  The true temperature cycle will appear as a cyclic 

curve with a noise component due to the small fluctuations caused by atmospheric 

changes such as varying cloud cover. 

 

 

2.6.2 Statistical Control Method 

 
An alternative method proposed for predicting the coldest temperature is by 

statistical analysis of prior temperature data.  This method involves storing a 

buffer of temperature samples and using these as a basis for the prediction of the 

current day’s minimum temperature.  This can be easily demonstrated by studying 

figure 2.3 below. 
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Figure 2.3: Statistical Method 

 

In this example one hundred samples represent a days temperature cycle.  To 

select the coolest 50% of the time, the lowest 50 samples are chosen.  The buffer 

of samples must be a multiple of complete days to ensure the time percentage is 

correct.  The temperature at which there are fifty samples below can be used as 

the predictive set-point for the current day. 
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In statistical terms, this is referred to as using the cumulative probability of the 

data.  The cumulative probability of the samples is the probability of the signal 

being below a certain level (Leis 2002).  This expressed mathematically for a 

continuous signal is: 

 

X}   x(t){Pr   F(X) ≤=        (2.1) 

 

Where  F(X) is the cumulative probability 

  x(t) is the continuous signal 

X is the value which the cumulative probability is found to be 

below 

 

For the value of X shown in figure 2.4 the cumulative probability is found by: 

 

T

tttt
  F(X) 4321 +++
=

     (2.2) 

 

Where   F(X) is the cumulative probability 

  T is the total time 

  t1 – t4 are the intervals for which the signal is below X 
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Figure 2.4: Cumulative Probability Below Value X 

 

In an aeration control sense, to use the coolest F(X) percent of the time, the 

corresponding temperature value for X is found and this used as the predictive set-

point.  The Normal mode percentage of 15% is used as an example.  The number 

of samples required to be below the set-point is established as 15% of the buffer.  

Starting at the lowest recorded temperature, the number of samples measured at 

this temperature is added to a total tally.  The tally is incremented with the number 

of times the temperature occurred as the temperature is stepped through in 

ascending order.  Once the required number of samples is reached the process is 

stopped.  The temperature at which this occurs is the set-point. 

 

The following figures provide an example of this process.  A day’s log of 

temperature, taken at a sampling interval of 15 minutes and resolution of one 

degree, is used as the statistical data.  The histogram represents the number of 

times each temperature occurred.  The cumulative probability graph is simply a 

cumulative sum of the histogram, scaled to a percentage.  The lowest temperature 

which encompasses 15% of the samples is the set-point.  Due to the one degree 

resolution in this example, there will be some error as a temperature bar 

containing exactly 15% of the samples is highly unlikely. 
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The dotted line in the figure shows the calculated set-point of 12 degrees.  If the 

temperature drops below this value the Normal fan output will be activated.  The 

Rapid set-point is calculated in the same way using 50% of the samples.
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When using this method, a number of previous day’s data may be used to smooth 

out daily fluctuations by effectively taking an average. 

 

Pros 

• Self calculating to climate 

• Optimal symmetrical on and off switching based on data 

 

Cons 

• Takes time to collect samples initially 

• Storage required for data 

• More complex than Gradient Method 

 

 

2.7 Temperature Sensing 

 

The basis of aeration is air of correct condition being passed through the grain.  

The basis of aeration control is the selection of appropriate air.  Ambient air 

contains an amount of water vapour.  This amount can be measured in terms of 

Relative Humidity.  A method of calculating Relative Humidity (RH) is by means 

of a hygrometer, also known as a Wet and Dry Bulb Thermometer.   

 

 

Figure 2.8: Hygrometer (source: 

http://www.bom.gov.au/info/weatherkit/section2/hygro.shtml) 
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This method involves comparing the temperature indicated by a normal 

thermometer to that given by a thermometer which has its bulb wrapped in a wet 

moisture absorbent material.  The rate of evaporation from the wet-bulb 

thermometer depends on the humidity of the air - evaporation is slower when the 

air is already full of water vapour.  For this reason, the difference in the 

temperatures indicated by the two thermometers gives a measure of atmospheric 

humidity (BOM, 2006).  The RH is calculated from a table comprising the dry 

bulb temperature and the difference between dry and wet bulb temperatures.   

 

Wet bulb temperature itself is an obscure measurement, usually only used to 

determine RH.  It is however a means of factoring the amount of evaporative 

cooling potential available by the air.  Aeration controllers using wet-bulb 

temperature rather than dry-bulb temperature achieve greater cooling due to an 

evaporative cooling effect.  Air that is dryer than the grain will absorb some of the 

moisture as it is blown through the grain bulk.  This is the same principal used in 

evaporative type air conditioners; the efficiency of these is reduced during times 

of high humidity.  Despite aeration controllers that use wet bulb thermometers 

being more expensive, the increased efficiency is a desirable characteristic.  One 

solution is that rather than using an actual wet and dry bulb thermometer, the wet-

bulb temperature can be approximated using the dry-bulb temperature and the 

relative humidity.  These two characteristics can be measured relatively cheaply 

and the same table used to calculate RH can be used in reverse to approximate the 

Wet Bulb temperature of the air. An excerpt from a typical table is shown in 

figure 2.9. 
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Figure 2.9: Relative Humidity Table Excerpt 

Source: (BOM 2001) 

 

A complete copy of this table is presented in Appendix B.  As an example 

calculation take the red lines shown on the table.  A dry bulb temperature of 15°C 

is measured along with a Relative Humidity of 52%.  By finding these values 

within the table a wet bulb depression of 5°C is found.  The depression is 

subtracted from the dry bulb temperature, 15°C - 5°C = 10°C, and thus the wet 

bulb temperature is estimated. 

 

The accuracy of this method of determining wet-bulb temperature varies.   

At lower temperatures the humidity range is much smaller.  Thus the depression 

value will vary less with a change in humidity.  To obtain a very accurate value a 

larger table would be required.  This would require larger memory storage within 

the controller to accommodate a larger lookup table.  The table presented in the 

above figure is deemed accurate for this prototype.  The depression resolution is 

half a degree and the dry-bulb resolution is in whole degree intervals. 

 

Monitoring the humidity of the air also provides a further advantage.  The device 

is aimed solely at using cool air.  Early dewy mornings, and when the temperature 

drops just before rain storms, are times when the controller may operate the fans 

(Fusae 2005).  The cool temperature associated with these conditions will be less 

than the set-points, activating the fans.  These are cool periods where the RH of 

the air will be high.  This high humidity will transfer moisture to the grain along 

with the cooling.  Usually there is a great gain in cooling during these times and 
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the amount of wetting occurring is small (Fusae 2005).  If however drying is 

preferred to cooling, the humidity may be used as a form of high moisture cut out.  

The system could be prevented from running during times of high moisture.  Such 

a feature would be unavailable in a system monitoring dry-bulb temperature only. 
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Chapter 3 – Risk Analysis and Project Management 
 

3.1 Assessment of Consequential Effects 

 

The controller intended to be produced will be responsible for the control of 

aeration fans maintaining a stockpile of grain.  Failure of the device could 

potentially result in loss of product income.  Incorrect operating times could 

possibly result in grain swelling; this could potentially cause damage to the silo 

structure as the grain volume increases to more than the silo can hold.  Adequate 

testing of the design is necessary to ensure that the controller is capable of the task.  

Use of this device should be relatively simple as incorrect operation could 

produce catastrophic results. 

 

The small scale of this project, containing few parts and limited production does 

not present any significant hazard to the environment during production, operation 

or disposal.  Devices of this kind already exist and the project poses no major 

ethical questions.  The device produced should be designed to be safe to use, 

install and dispose of.  This product can be considered safe for all foreseeable 

actions involving its use. 

 

 

3.2 Safety Issues 

 
To evaluate and reduce safety hazards during and after this project the following 

risk assessment was developed. 

 

To evaluate the level of risk posed, the likelihood of an event happening and the 

potential consequences are assessed.  Definitions for the probability scale used for 

assessing risk are: 

 

Extremely Slight = Practically impossible 
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Very Slight = Conceivable but very unlikely 

Slight = Possible but unlikely 

Significant = Possible 

Substantial = To be expected 

 

 

3.3 Risk Management Chart 

To limit the risks associated with this project, the possible risks are firstly 

identified.  These risks perceived include those present during the construction 

and use of the device.  Measures for controlling and limiting these risks are also 

included.  These risks have been checked and reviewed during the project interval. 

Table 3.1 Risk Assessment 

Description of 

Hazard 

People at 

Risk 

Risk Severity Probability 

Equipment being 
dropped on feet 

Myself Bruising Slight 

Control Measures Always wear fully enclosed footwear 
Take extra care 

Injury during 
construction of 
prototype 

Myself Cuts or scratches 
to hands and 
fingers 

Slight 

Control Measures 
 
 

Use correct tools for the task 
Use tools in the correct manner 
Handle components carefully 

Injury from heat from 
soldering/ electrical 
components 

Myself Burns Slight 

Control Measures Allow components to cool 
Avoid touching components when on 

Soldering fumes Myself Toxic inhalation 
Eye irritation 

Very slight 

Control Measures Keep well ventilated 
Stop if irritation occurs 

Electrocution Myself 
Future users 

Small shock to 
death 

Significant to me 
Future uses 
slight 

Control Measures Carry out as much testing as possible without power 
Test using low voltage power supply to avoid mains 
voltages 
Exercise caution 
Installation of live wiring by a licensed electrician 
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3.4 Resource Planning and Timeline 

 

To facilitate the completion of the project, a list of expected resources and 

associated costs were compiled.  From this a budget of approximately $250 was 

calculated.  The table of resources is presented in Appendix J.  To set deadlines 

for work to be completed, a timeline was constructed consisting of work to be 

completed, and time allotted.  This timeline was updated through the course of the 

project as required, as a better understanding of activities and their timeframes 

became available.  The timeline is presented for reference in Appendix K.
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Chapter 4 – System Design 

 

4.1 Description of Intended Use 

 
The Aeration Controller is intended to be permanently mounted in an undercover 

position and not exposed to environmental factors such as rain.  The temperature 

sensor will be remote and attached to the main unit by a cable, allowing it to be 

mounted in an open location that will reflect the true atmospheric conditions.  As 

this system is being designed for control of electrically driven motors a 240v 

mains supply should be available and the power supply for the system will be 

derived from this source. 

 

The outputs from the controller will be separate Normal and Rapid signals for 

control of contactors.  This will allow selection of required cooling rate for each 

silo external to the aeration controller and minimize the number of outputs 

required by the microcontroller. 

 

Due to the slow rate of change that occurs with ambient temperature, high clock 

speed of the microprocessor was not considered an important characteristic.  A 

display will provide a visual indication of current temperature along with other 

useful features such as time and set-point levels. 

 

 

4.2 Control Method 

 

In order to determine the required hardware such as memory type and amount, it 

was first necessary to select the control method to be used.  The statistical control 

method described in chapter 1.6.2 was chosen for this design.  The advantage of 

self tuning will allow the controller to adapt to any climate by simply collecting 

samples.  These samples however will need to be stored in memory, contributing 
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to the complexity of the hardware.  A potential benefit of the stored samples is the 

possibility for them to be read back to a PC allowing the aeration controller to 

also perform the function of a data logger.  The symmetrical set-points for both on 

and off switching were also deemed beneficial compared to the gradient method, 

which by using a slope and intercept would switch on and off earlier than ideal, 

thus using warmer air than necessary and then wasting cooler air time respectively.  

For these reasons the statistical method was chosen over the gradient method. 

 

An initial period of measurements was decided to be three days.  This period 

would allow a quick response to climatic changes while also preserving averaging 

information.  Ambient temperature changes slowly, sampling too frequently 

would only serve to increase the amount of storage needed without increasing 

accuracy.  An initial estimate of fifteen minutes was chosen as the sampling 

interval.  Over a three day period this amounts to a total of 288 samples that 

require storing in the buffer. 

 

The two operational modes, Normal and Rapid, require operational periods of 

14% and 50% respectively.  To achieve this, the cumulative density is found from 

the buffer of samples, the temperature that is higher than the lowest 14% or 41 

samples is used as the Normal set-point.  Similarly the temperature higher than 

50% or 144 samples is used as the Rapid set-point.  At each fifteen minute 

interval, a new temperature reading is measured and stored, the new set-points 

will be calculated and the current temperature compared to these set-points.  The 

outputs will be activated as appropriate. 

 

The figure below demonstrates the set-points and the output states which 

correspond. 
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Figure 4.1: Rapid and Normal Output Conditions  

 

To perform the calculation, the histogram will firstly be found.  From the 

histogram the cumulative distribution will be found by addition of the histogram 

in ascending order.  To encompass all likely temperatures that may occur, the 

range of wet-bulb temperatures stored is from -20 to 49°C.  Any values that may 

occur outside this range will be clipped.  The resolution of measurement is in 

whole degrees.  This requires temporary storage of 70 individual bytes, each 

containing the number of times the corresponding temperature has been recorded 

in memory.  An 8 bit variable can store a maximum value of 255.  The total 

number of samples within memory is 288.  If a temperature value were to be 

recorded more than 255 times, then an overflow condition would occur within the 

histogram.  This is an unrealistic situation as the same temperature occurring 

88.5% of the time over the course of three days would never occur.  The only 

possible cause for this would be a failure of the sensor; the same temperature 

could possibly then be read from the sensor continually.  The error handling 
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routines within the temperature measurement protocols will prevent this from 

occurring. 

 

To utilise the improved cooling effect of wet-bulb temperature the lookup table 

must be stored in memory.  The table is split into 20 rows and 56 columns.  This 

is equivalent to 1120 bytes.  This capacity must be added to the measurement 

buffer when selecting memory requirements. 

 

 

4.3 Component Selection 

 
This section will review and select appropriate components to perform essential 

functions within the aeration controller system.  The main task involved is the 

development of the processor that will control all I/O.  The important functions 

include sensing temperature, determining optimum period, controlling the display, 

checking input switches and switching two sets of contacts to control the fan 

motors.  These functions are not speed critical and will not require a high speed 

processor. 

 

Selection criteria were determined based on the above requirements. 

• Affordability 

• Ease of programming 

• Moderate memory capacity 

• Low power consumption 

• Ease of interface with peripherals 

 

Based on the above criteria a Programmable Integrated Circuit or PIC 

microcontroller was considered the most suitable option for the tasks.  The 

PICAXE family of chips was chosen due to the low cost, freely available 

programming software and basic programming language to facilitate ease of 

software development. 
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4.3.1 PICAXE Microcontroller 

 

A PIC is an integrated circuit that comprises memory, I/O ports, processor and its 

program in a single chip.  This has the major advantage of less hardware 

complexity and cost compared to a microprocessor.  The PICAXE microcontroller 

is a PICmicro pre-loaded with a bootstrap program, allowing the chip to be 

programmed in circuit from a PC serial port.  The bootstrap program downloads 

and stores the new program to memory without the need to completely erase and 

reprogram the chip.  The PICAXE chips utilize flash memory, which depending 

on the particular model, allows reprogramming from one thousand to one hundred 

thousand times.  This is extremely valuable in a development environment where 

a single write chip would have to be disposed of after each write.  The program 

assembler using the BASIC language is freely available for download from the 

PICAXE website, www.picaxe.co.uk.  A particularly useful ability is the debug 

command which displays all variables on the programming PC, speeding up 

debugging. 

 

The PICAXE system is available in a range of I/O pin sizes and program memory 

lengths.  Special functions are available in the higher end families.  The X range 

of parts have the maximum program memory at 2K Bytes, this is equal to 

approximately 600 lines of basic code.  The smallest pin-out X part, the 18X, 

having 18 pins was selected.  The base chip used and loaded with the bootstrap 

program is the PICmicro 16F88-I/P.  All hardware specifications are obtained 

from its datasheet. 

 

A major reason for the choice of this component is its ability to communicate with 

devices using the I2C (Inter Integrated Circuit) protocol.  This interface allows a 

large number of peripherals to be connected in parallel to a single bus, driven by 

two microcontroller pins.  A large range of devices are readily available that 

utilise the I2C protocol.  The I2C protocol is capable of two clock speeds, 100 

kHz and 400 kHz.  Some devices can operate at the higher speed while others are 
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limited to the lower.  The 18X utilises an internal clock oscillator.  This is less 

accurate than an external ceramic oscillator commonly used with the larger 

PICAXE parts.  As a result the 18X is limited to the lower 100 kHz clock speed; 

this is to reduce the likelihood of errors that could result from the less accurate 

clock frequency. 

 

 

Figure 4.2: PICAXE 18X Pin-out  

Source: www.picaxe.co.uk 

 

Table 4.1: PICAXE 18X Features 

Pins Program Memory 

(lines) 

I/O Pins Outputs Inputs ADC Data Memory 

18 600 14 9 5 3 256 

 

 

This chip has sufficient I/O to fulfil the requirements of the project, with most 

devices utilising the I2C bus.  The 18X was selected in preference to the 28X or 

40X to reduce the unnecessary cost of extra I/O pins. 

 

While extremely versatile, the PICAXE family of chips is also limited in its 

capabilities.  Variables can not contain negative numbers, also fractions or 

floating point numbers are also unavailable.  Numbers that exceed the variable 

size will overflow without any warning.  These limitations may be overcome by 

careful programming.  Ensuring that a variable can never overflow by checking its 
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maximum possible size is one solution.  Floating point numbers can be avoided to 

a limited accuracy by multiplying the number by ten for example to preserve one 

tenth accuracy.  Negative numbers can also be avoided by adding an offset so that 

the lowest negative number does not go below zero. 

 

 

4.3.2 Memory 

 

The method of control requires a buffer of temperature samples to be stored in 

memory.  This could be volatile or non-volatile.  Using non-volatile memory has 

the advantage that the samples will be retained in the event of a power failure.  If 

the sample data is lost the system will be unable to calculate the appropriate set-

points until new data can be recorded.  This would result in lost running hours, an 

unwanted occurrence.  For this reason a non-volatile memory has been chosen for 

the sample buffer.  The lookup table for wet-bulb temperature calculation must be 

non-volatile.  It can be combined with the sampling buffer as both are of a non-

volatile nature. 

 

Possible non-volatile memories considered include EEPROM (Electrically 

Erasable Programmable Read Only Memory) and static ram with a backup battery.  

Both forms are able to be written to and read from at will.  Static ram has the 

advantage of an unlimited number of write cycles, whereas EEPROM is capable 

of approximately one million write cycles.  By using a circular buffer, the number 

of writes to each EEPROM location can be dramatically reduced.  This reduction 

is sufficient to make EEPROM the most suitable choice as it will not require extra 

hardware in the form of a backup battery that would be necessary for memory 

retention if using static ram. 

 

Serial EEPROM was selected in order to minimize data lines.  An I2C interface 

was chosen as it can be easily connected to the PICAXE 18X.  The 24LC range of 

parts by Microchip was deemed suitable for this application.  These range in 

memory capacity from 128 bytes to 64K bytes.  An estimate was made to the 
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amount of memory required, with some extra capacity included for expansion.  

The 24LC16B was chosen with a capacity of 2K bytes.  This device is shown in 

the figure below. 

 

 

Figure 4.3: Microchip 24LC16B   

Source: Microchip (2005) 

 

The specifications state that this EEPROM can be written to a minimum of one 

million times.  The 2K of memory is split into 8 blocks, each of 256 bytes in size.  

To address the device a four bit control byte must be sent, followed by a further 

four bits selecting the desired block.  This configuration minimizes cost but limits 

the I2C bus to a maximum of one 24LC16; otherwise an address conflict will 

occur. 

 

 

4.3.3 Temperature Sensor 

 

Temperature sensors are available in a wide range of types, accuracies and 

interfaces.  Electrical temperature measurement is usually performed by a 

temperature sensitive component which changes resistance according to 

temperature.  This can be as simple as a basic thermistor or as complicated as a 

fully integrated chip.  Common interfaces are a variable voltage, variable current, 

variable frequency or a digital output signal.  Thermistors have the advantage of 

being inexpensive and simple; however this lack of complexity is also a 

disadvantage.  Integrated chip type temperature sensors are available fully 

calibrated, greatly increasing accuracy. 
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The PICAXE 18X has a function for reading the temperature from a Dallas 

Semiconductor DS18B20 one wire temperature sensor.  This sensor is capable of 

measurement in the range of -55°C to 125°C.  Using this sensor allows 

simplification of software development as a single basic command can be used to 

take a reading.  This sensor is suitable for monitoring the dry-bulb temperature of 

the air.  This sensor was selected for initial software development, to allow the 

set-point calculation to be tested without other routines. A more suitable sensor 

however was selected for use in the final prototype. 

 

 

Figure 4.4: Dallas Semiconductor DS18B20  

Source: Dallas Semiconductor  

 

The temperature sensor selected for the final version of this project was the 

Sensirion SHT15.  It is an integrated single chip temperature and humidity sensor, 

pre-calibrated at production.  It uses a digital two wire interface, allowing for 

minimal I/O.  It is extremely small and has a very low power requirement.  By 

combining the temperature and humidity sensor into a single unit with a digital 

output, a minimum number of data lines are required.  To ensure accurate 

communications the sensor is also capable of a CRC-8 (Cyclic Redundancy 

Check 8 bit).  This ensures to a high degree of certainty that the received 

measurement has not been corrupted by noise. 
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Figure 4.5: Typical SHT1x Connection 

Source: Sensirion (2003) 

 

The sensor has two configurable measurement resolutions; these are 14bit 

Temperature and 12 bit Relative Humidity, or 12bit Temperature and 8 bit 

Relative Humidity.  Auxiliary features include low voltage detection and a heating 

element that will increases the temperature of the sensor by approximately 5°C.  

This heater can be used to prevent condensation in high humidity environments. 

 

The extremely small size of this device would make hand soldering extremely 

difficult.  A supplier was found that provided the device on its own small PCB, 

with a connector plug supplied. 

 

 

Figure 4.6: Sensirion SHT15 

 

The serial interface used by this device is not compatible with I2C.  To interface 

with the PICAXE custom routines were written that operate at the bit wise level.  

The timing diagram for this device can be found in Appendix C. 

 

The standard configuration of the SHT15 temperature system requires a clock line 

and a bi-directional data line, pulled high by a pull up resistor.  The PICAXE 18X 

does not have bi-directional data line.  To overcome this problem a resistor was 

placed between an output and an input line.  When the SHT15 is transmitting, the 
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output line is made high by the microcontroller.  The SHT15 then pulls the line 

low to signify a low bit or leaves the collector open to signify a high; this is read 

by the input pin of the microcontroller.  To transmit to the SHT15, the 

microcontroller switches the output line either high or low as appropriate.  

Unfortunately this configuration uses an extra line that would not be needed if a 

bi-directional line was available.  The second output line is a clock signal, which 

is toggled high and low when the data is ready to be transmitted or received.  This 

configuration uses a total of three pins of the microcontroller, two outputs and one 

input.  The configuration is shown in the following figure. 

 

Figure 4.7: Sensor Pin Connections 

 

 

4.3.4 Contact Switching 

 

Most aeration fans are powered by electric induction motors and powered by the 

mains supply.  This being a 240V single phase or even a 415V three phase supply.  

Switching of these motors is usually conducted by a set of electrical contactors.  

In order for the microcontroller to activate the fans and to provide electrical 

isolation, a set of relays was chosen to perform the switching of the larger 

contactors.  Each output, Normal and Rapid, has its own relay for connection to 

the appropriate contactor.  In typical installations each silo has its own switch, 

with the positions Off, Normal, Rapid and Manual.  This allows the use of a single 

output for each mode being switched by the controller, while still being capable of 
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operating a large number of fans at the appropriate rate for the condition of the 

grain each silo is storing. 

 

The relays selected for this application are produced by OMRON.  They contain 

12V coils with a resistance of approximately 275Ω, equating to 0.53W power 

consumption and 44mA of current.  The switching side is a SPDT (Single Pole 

Double Throw) contact rated at 240VAC and 10A.  These ratings are sufficient 

for switching industrial contactors which use minimal current at 240VAC. 

 

 

Figure 4.8: Switching Relay 

 

 

4.3.5 Relay Driving Circuitry 

 

The 16F88-I/P chip has a limited maximum output current per pin.  The datasheet 

states the absolute maximum current either sourced or sunk by an I/O pin as 

25mA.  This is not sufficient to drive one of the selected relays as they require 

approximately 44mA each.  Therefore a form of current driving circuitry is 

required to operate the relays.  The selected device is a ULN2003A IC which 

contains 8 high current Darlington pairs.  All outputs are capable of sinking 

500mA of current.  Each Darlington pair has a 2.7kΩ base resistor built in, 

allowing direct connection to TTL or 5V CMOS outputs. 
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Figure 4.9: ULN2803A 

Source: Texas Instruments (2005) 

 

All Outputs are situated along one side of the IC with their respective inputs 

directly opposite, allowing easy routing of connections.  The ULN2803A will be 

used to sink current powering the two relays and also two LED’s that will provide 

a visual indication of the status of the Normal and Rapid outputs. 

 

 

4.3.6 Power Supply 

 

To ensure accuracy of the system it is important to have a continuous string of 

samples.  A backup power supply is therefore required to allow the controller to 

keep sampling in the event of a failure of the mains supply.  A sealed lead acid 

battery has been chosen as the backup supply source.  These are completely 

maintenance free and sealed, preventing explosive gases escaping during charging.  

To simplify the design the battery will be continuously float charged, with the 

controller permanently drawing power from the battery.  The power requirements 

for the controller are estimated as very small, less than 200mA.  Most power 

outages are limited to a maximum of a few hours, as a result the smallest 12V 
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sealed lead acid battery easily available was selected being 1.3AH.  This capacity 

should allow the system to continue sampling data for a period of approximately 6 

hours, longer than any power outage can be expected for.  The service life of the 

battery under constant float charging should be up to 10 years. 

 

 

Figure 4.10: Sealed Lead Acid Battery 

 

The PICAXE chip, LCD and EEPROM require a 5V power supply.  A L7805CV 

voltage regulator has been selected to step down the voltage to a constant 5V 

supply.  This component is rated at a maximum of 1 Amp and utilises overheating 

protection, making it virtually indestructible.  Filter capacitors were also included 

to eliminate any unwanted ripple component introduced by the charger.  A TO-

220 package has been chosen. 

 

 

Figure 4.11: L7805CV 5V Regulator 

Source: STMicroelectronics (2003) 
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This configuration ensures that there will be no power outage experienced by the 

microcontroller.  Measurements will thus be taken uninterrupted, preserving 

accuracy. 

 
 

4.3.7 Real Time Clock 

 
In order to free the microprocessor from time keeping tasks, and provide an 

accurate time base, an external RTC (Real Time Clock) is used.  RTC’s are 

available in a range of configurations and interfaces.  The part selected is a 

DS1307 serial clock produced by Dallas Semiconductor.  It is an I2C device and 

can be easily connected with the other devices on the I2C bus, without the need 

for any extra interfacing hardware.  The chip counts seconds, minutes, hours, date, 

month, day of the week and year, including leap year compensation to the year 

2100.  Once the chip is initialized with the current time and date it will 

automatically keep the correct time with no further input needed. 

 

 

Figure 4.12: DS1307 RTC 

Source: Dallas Semiconductor 

 

The DS1307 also contains 56 bytes of ram, non-volatile when backed up by a 

lithium cell.  The address map of the device is shown below. 
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Figure 4.13: DS1307 Address Map 

Source: Dallas Semiconductor 

 

The device has extremely low power consumption, less than 500nA when using 

the backup battery.  The device switches from its main supply to the backup 

battery automatically when the voltage level drops. 

 

 

4.3.8 Human Interface 

 

A user friendly interface is necessary to convey information about operation and 

easily set/monitor parameters.  For basic status information, two LED’s will be 

used to constantly display the state of the Normal and Rapid outputs.  For more 

detailed information, a Liquid Crystal Display (LCD) will be incorporated.  

LCD’s are available in a range of types.  These include number displays such as 

on a wrist watch, graphical displays used for displaying graphics and character 

displays, such as a typical fax machine may use.  These may be selected in backlit 

or non-backlit models.  The AXE033 display module was chosen as it has a 

number of advantages over a standalone LCD.  An onboard driver chip allows 

display information to be sent via a single serial line or by I2C interface.  The I2C 

mode was once again chosen to conserve I/O.  Pull up resistors are built into the 
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module and therefore not needed for the EEPROM when the module is connected 

to the same I2C bus. 

Fitted is also a connector for the DS1307 RTC to plug straight in, along with a 

battery holder for a CR2032 lithium coin cell backup battery.  This battery allows 

the RTC to keep time in the event of a power failure.   

 

 

Figure 4.14: AXE033 LCD Module 

 

The firmware chip decodes the I2C information sent and converts it to parallel 

data which is then sent to the display.  The LCD display is a HD44780 compatible 

model, this being the most common standard for character LCD displays.  The 

LCD is a double line type with sixteen characters per line.  It contains a full 

ASCII character map, allowing any character in the following figure to be 

displayed at any position on the screen. 
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Figure 4.15: LCD Character Map 

Source: Revolution Education (2004) 

 

To write to the LCD the I2C slave address is set to binary 11010000.  To display a 

character the character string is sent followed by the byte 255, this signifies the 

end of transmission and causes the firmware chip to write to the LCD.  To send an 

instruction to the LCD, the byte 254 is first sent, followed by the instruction and 

finally byte 255.  A wide range of instructions are available to perform a number 

of functions such as change the position of the cursor, switch the display on or off, 

scroll the display left or right and many others.  A list of these commands is 

presented in Appendix D.   

 

To input data it was initially decided that two switches would be sufficient.  

Parameters would be changed similar to a digital wrist watch, a single key 
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incrementing the value, and another key to switch modes.  Spare input lines on the 

PICAXE were ensured so that additional buttons could be added if this setup was 

found to be difficult to operate.  The switches selected are of simple push button 

SPST (Single Pole Single Throw), momentary, normally open design.  The switch 

input lines are to be high when the switch is operated.  This is achieved by use of 

pull down resistors.  When a switch is pushed the supply voltage is lost across the 

pull down resistor and the microcontroller pin sees 5V, signalling a high.  With 

any form of mechanical switch, switch bounce will exist.  To simplify and 

minimise hardware, switch bounce was compensated for in software. 

 

The two LED’s used are green and contained within a 16mm bezel.  They are 

rated at 2V and 20mA.  To achieve the correct current from the 5V supply 120Ω 

resistors are placed in series with each LED.  The Darlington driver chip is used to 

sink the current activating each LED. 

 

 

4.4 System Schematic 

 

The schematic for the system was drawn using AutoCAD, it is presented in figure 

4.16. 
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Figure 4.16: System Schematic 
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4.9 PCB 

 

The Protel DXP software package was used to design a PCB (Printed Circuit 

Board) for the system components.  Due to time constraints, the PCB was 

designed but not constructed.  The PCB designed is a double sided type.  The auto 

route command was used to automatically place the tracks on the PCB.  The 

figure below is a representation of the design; the red is the top layer while the 

blue is the bottom layer. 

 

 

Figure 4.17: PCB 

 

Further design details are provided in Appendix E. 
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Chapter 5 – Hardware Implementation and Testing 

 

5.1 Initial Testing and Construction 

 
To test the viability of the hardware and that the configuration would operate as 

expected, the design was initially bread boarded.  This allowed any hardware 

problems to be identified and any necessary modifications to be easily made.  To 

begin the PICAXE was mounted on the bread board and the required serial 

interfacing circuitry added.  The 5V regulator was used and this connected to a 

12v source for testing and the serial cable connected.  This was to verify the 

ability of the chip to communicate with the programmer.  Once successful the 

EEPROM and ULN2803A IC’s were mounted on the board and connected as per 

the schematic.  A LED and current limiting resistor were connected to the 

ULN2803A.  The LCD display module required some assembly.  The display was 

mounted on the firmware PCB and the header pin connections soldered into place.  

The display was powered and the contrast turned to maximum to check the 

display was active. 

 

This breadboard platform was used as a base to become familiar with the PICAXE 

system.  Simple test programs were written to perform straightforward functions, 

such as flash the LED at intervals. Once simple functions were mastered, the 

display and switches were connected to the prototype.  Further simple programs 

were written to display strings on the display after a key press.  Additional testing 

was undertaken with routines to test the writing and reading to the EEPROM, and 

display these values on the LCD.  The RTC was tested in similar fashion, by 

setting the time with the keys and also displaying the time on the LCD.   

 

Finally the connections to the DS18B20 Temperature sensor were added.  A basic 

routine was written to read the temperature from the device and display this on the 

LCD.  Correct operation was verified by using heat from the hand to warm the 

sensor and check the displayed temperature rose accordingly.  The sensor was 
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then placed within a freezer and negative values checked.  The reading of the 

ambient temperature was compared to a digital thermometer, the result was a very 

similar reading, and thus the sensor was deemed to be operating correctly.   

 

After the bulk of the program appeared to be working correctly, the SHT15 sensor 

was integrated into the design.  An image of the completed breadboard prototype 

is shown below. 

 

 

Figure 5.1: Bread Board Prototype 

 

 

5.2 Final Prototype Construction 

 
The main controller was designed to be mounted in an undercover area.  This 

being the case and in an agricultural environment, the main concern is 

accumulation of dust.  The final prototype was housed in a case containing the all 

peripherals except the temperature sensor, which was mounted remotely to allow 

mounting in a position that will reflect an accurate ambient temperature and 
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humidity.  As the design is intended to be mounted undercover, UV radiation is of 

no concern.  A polycarbonate box with 3mm walls measuring 222(L) x 146(W) x 

55(H) mm was selected, large enough to contain all the components including the 

SLA battery.  It features a tongue and groove sealing system with a neoprene 

gasket, and the stainless-steel lid-fixing screws thread into brass inserts that are 

outside the sealed area.  The case has a claimed IP65 rating, meaning total 

protection from dust and low pressure jets of water.  The case was expected to be 

mounted with its base on a wall and the lid forming the front and user interface. 

 

The positions of components were marked on the lid and holes were drilled in the 

case to fit the LED’s, programming cable connector and switches.  The mounting 

holes for the display were drilled next.  Initial holes were drilled to allow a 

hacksaw blade to be used to cut out the slot to allow the display to be viewed.  A 

file was then used to create a smooth finish to the slot. 

 

Holes were drilled in the body of the box to allow cable glands to be mounted for 

entry of the power and sensor cables.  A separate smaller case was selected to 

house the temperature/humidity sensor.  A hole was drilled in the side of this box 

to fit a cable gland.  The SHT15 sensor was mounted inside this box. 

 

The LED’s, switches, connector and display were fitted to the lid.  A piece of 

clear plastic was stuck to the inside of the lid over the LCD slot.  This was to 

provide sealing to prevent dust or moisture from directly contacting the LCD 

screen.  Wires were connected and soldered to the appropriate connections.  

Header pin connector plugs were soldered to the LCD and PCB ends of the wires 

to allow easy connection. 

 

The remaining hardware components were assembled and soldered to a small 

prototyping board, using single core insulated wire as connections.  The bare 

prototyping board is shown below. 
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Figure 5.2: Prototyping Board 

 

Connecting pins were kept towards the outside edges, header pins provide the 

connection between the lid and also the sensor.  A screw type connector allows 

connection to the battery.  The completed board is shown in figure 5.3. 

 

 

Figure 5.3: Completed Circuit on Prototyping Board 

 

The charging cable was passed through the cable gland and connected to the 

battery.  The battery leads also attach to the connectors on the board, providing 

power.  Initially the sensor was connected to the board by a piece of 5 core round 

cable approximately 1.5 metres long.  Only four of the wires were used with the 

fifth left unconnected.  Communication with the sensor could not be established 

through this cable.  After investigation it was deemed that the length of cable was 

resulting in cross-talk between the clock and data lines.  To solve this problem the 

type of cable was changed.  A piece of ordinary 4 core phone cable was used 

again of length approx 1.5 metres.  To minimise cross-talk the power and ground 

lines were run as the middle two conductors, separating the data and clock lines.  
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This configuration presented no problems with communication being established 

straight away. 

 

The completed prototype housed in the protective case is shown in the following 

figures. 

 

Figure 5.4: Controller Displaying Main Page 

 

 

Figure 5.5: Controller Displaying Set-points 
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Figure 5.6: Controller Internals        Figure 5.7: Remote Sensor 
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The simulation and parameters determined for the statistical method of control in 

previous sections were adopted as the aim for the PICAXE software.  The 

intended approach was bottom up implementation, the lower modules performing 

specific functions were separated from the main program.  This approach allowed 

testing of individual sub-sections of code without reliance on the main loop.  The 

final BASIC code is presented in Appendix F. 

 

 

6.1 PICAXE Programming Editor 

 
The development of the code for this project was completed entirely within the 

PCIAXE Programming Editor.  This application is designed for use exclusively 

with PICAXE chips; as such a range of special features for use with them has 

been built in.  The programming language used is BASIC, this language is simple 

and easy to follow, but without some of the useful commands available in higher 

level languages such as C. 

 

The Editor can interface directly with a PICAXE chip through use of a serial port.  

The laptop PC used to program the chips was not fitted with a serial port.  As a 

result a USB to Serial adapter was needed.  This connected to the serial 

programming cable which through a 3.5mm stereo plug provides the connection 

to the PICAXE. 

 

The editor also contains a data link terminal, for retrieving data from the chip via 

the programming cable and a debug window, which allows the value of all 

variables to be displayed at the time a debug command is used in the program.  A 

syntax check can be performed, alerting the programmer to a syntax error and also 

displaying the amount of memory the program will occupy.  The figure below is 

an example of the PICAXE Programming Editor window. 
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Figure 6.1: PICAXE Programming Editor 

 

 

6.2 Code Development 

 

The measurement, logging and calculation of set-points are the main functions of 

the program.  Auxiliary functions include the display of information on the LCD 

display, outputting data for graphing and receiving input from the switches.  A 

simplified flow chart for the system operation is shown below in figure 6.2. 
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Figure 6.2: System Flow Diagram 
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The code will be discussed according to functional sections.   

 

The PICAXE contains 14 general byte variables that may be used in mathematical 

calculations and program branches.  These variables are allocated to storage as in 

the table below. 

Table 6.1: Variable Allocation 

Byte 0 DataLow  Temporary Byte DataWord   

(Temporary Word) Byte 1 DataHigh Temporary Byte 

Byte 2 DataLow2 Temporary Byte DataWord2 

(Temporary Word) Byte 3 DataHigh2 Temporary Byte 

Byte 4 NormalSet Normal Set-point  

Byte 5 RapidSet Rapid Set-point 

Byte 6 Day Current day of week  

Byte 7 Counter Temporary Counter  

Byte 8 WbTemp Wet-bulb Temperature  

Byte 9 Hum Humidity 

Byte 10 Temp 

Byte 11 

 Dry-Bulb Temperature 

Byte 12 Minutes Current Minute  

Byte 13 Hour Current Hour 

 

 

6.2.1 Temperature and Humidity Sensor Interfacing 

 

The purpose of this section of code is to interface the PICAXE with the SHT15 

combined temperature and humidity sensor.  As the device is not compatible with 

I2C devices, a custom routine had to be written.  To begin communication with 

the device a transmission start sequence must be performed.  This sequence is 

shown below. 
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Figure 6.3: Transmission Start Sequence 

Source: Sensirion 

 

From this point a range of commands may be entered, these are summarized in the 

table below. 

Table 6.2: SHT15 Commands 

Source: Sensirion 

 

 

Each command byte must be followed by an acknowledge signal.  The SHT15 

controls the data line and pulls it low for a ninth clock cycle, signifying the 

successful receipt of the command byte.  The initial code performs a status 

register write, setting the resolution of the sensor output to a 12bit temperature 

measurement and an 8bit humidity measurement.  To achieve this binary byte 

00000001 is written to the status register upon start-up.  The status register 

contents and corresponding configurations are shown below. 
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Table 6.3: SHT15 Status Register 

Source: Sensirion 

 

 

Upon receiving a measurement command for either temperature or humidity, the 

microcontroller must wait a period of time for the measurement to be completed.  

This period is dependant upon the resolution of the measurement.  In the 12/8 bit 

configuration used the measurements require 11/15 ms respectively.  During this 

time the sensor must control the data line, keeping it high until the measurement is 

complete.  At this time the sensor pulls the data line low, signifying completion 

and the microcontroller may again start toggling the clock line.  Two bytes of data 

are then sent by the sensor.  These are most significant bit first, right justified.  If 

the measurement is only of 8 bits size then the first byte transmitted is empty.  

Following the measurement data is an 8 bit CRC checksum.  Following each byte 

of data transmitted by the sensor, the microcontroller must provide an 

acknowledge signal by pulling the data line low and toggling the clock line.  If the 

CRC byte is not used communication can be terminated after the last 

measurement byte by a high acknowledge.  The sensor will automatically return to 

low current sleep mode once the measurement and communication have ended. 

 

With the communication protocol needs established code was developed to 

perform these functions.  A subroutine called TransStart performs the 

transmission start protocol by toggling the data and clock lines as appropriate.  

Separate subroutines named WriteData and ReadData were written to send and 
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receive data to and from the sensor.  Each bit operation is performed by 

multiplying the byte by two; this is equivalent in binary to a right shift of one bit.  

Acknowledge routines were created to provide a high or low acknowledge routine 

as appropriate.  With these lower directly interfacing routines written it was 

possible to construct the measurement routines that would convert the read in 

bytes to physical values. 

 

The temperature sensor output is inherently linear, to convert the digital value to a 

corresponding temperature the following formula is used. 

 

    (6.1) 

 

The values for this formula vary with supply voltage and desired temperature unit 

according to the following tables. 

Table 6.4: Temperature Conversion Coefficients 

Source: Sensirion 

 

 

The measurement scale to be used for this project is °C, the supply voltage for the 

sensor is 5V.  Due to the inability of the PICAXE to perform decimal calculations, 

the formula must be reconstructed.  To preserve one decimal place of accuracy, 

the measurement value must be multiplied by ten.  The multiplication coefficient 

d2 can be rewritten in terms of a division by taking the reciprocal, 1/0.04 = 25.  

The coefficient d1 must also be multiplied by ten, resulting -400.  The value d1 is 

the offset above zero that converts the range to start at -40°C.  Due to the inability 

of the PICAXE to handle negative numbers, the negative offset of 400 will not be 

added, data will be stored in this offset form with the value zero signifying a 

temperature of -40°C.  Multiplication by ten results in a number too large to be 
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stored in a single byte variable, a double byte or word variable was therefore 

allocated to hold the temperature value. 

 

The digital relative humidity measurement unlike the temperature measurement is 

non-linear.  A conversion formula requiring floating point multiplications results 

in a maximum error of ±0.1%.  This formula can not be performed by the 

PICAXE, instead a simpler two range linear formula was be used.  This simpler 

formula results in a maximum error of ±0.8%.  This formula is presented below 

with the ranges it is validity. 

 

     (6.2) 

Where SO is the 8 bit humidity sensor output 

 

Table 6.5: Temperature Conversion Coefficients 

Source: Sensirion 

 

 

This equation can be performed by the PICAXE in this form.  While performing 

the calculation a temporary word variable is required to prevent overflow.  

Underflow must also be checked in the event that SO×143 is less than b.  In this 

case the intermediate value is set to b so that after subtraction the final result is 

zero. 

 

 

6.2.2 Cyclic Redundancy Check 

 

The SHT15 temperature sensor is capable of performing an 8bit CRC checksum.  

This check can be performed in two ways, a bitwise method and a byte wise 

method.  To perform the bitwise method, the receiver must emulate the structure 

of the generator.  The process is presented in Appendix G.  The final byte after all 
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steps are complete is the CRC value.  Figure 6.4 shows the internal structure of 

the CRC-8 generator. 

 

 

Figure 6.4: Internal CRC-8 Generator Structure 

Source: Sensirion 

 

The byte wise method requires the CRC data to be stored within a 256 byte 

lookup table.  Values are XOR’d and the result used as an index into the table.  

The final byte obtained is the CRC value.  In both these methods the CRC value 

calculated is compared to that received.  If the values are identical then the data 

has been transmitted successfully and is not corrupt.  If the values differ then the 

data has been corrupted and is not valid.  The CRC has not been implemented in 

this prototype due to limited memory capacity. 

 

 

6.2.3 Wet Bulb Temperature Calculation 

 

This section of code has the specific function of calculating an approximate wet-

bulb temperature from the dry-bulb temperature and relative humidity 

measurements.  The conversion table presented in Appendix B is the basis for this 

calculation.  The initial step prior to device operation is to load the EEPROM with 

the lookup table.  The maximum number of elements in a column is twenty.  As 

discussed in the System Design section, the EEPROM is divided into eight blocks, 

each of 256 bytes.  The maximum number of columns that will completely fit 

within a block is twelve.  Therefore five EEPROM block are used, each 

containing twelve columns of the lookup table.  Each column represents a whole 

degree of dry-bulb temperature from the range -5°C to 50°C.  Each row within a 

column contains a humidity value, each step through the column to reach a 
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humidity value is equivalent to half a degree depression.  This is graphically 

represented in Figure 6.5 below. 

 

 

Figure 6.5: Wet Bulb Lookup Table Calculation 

 

This lookup table must firstly be loaded into the EEPROM memory.  A dummy 

BASIC program was written with the sole purpose of storing this table in the 

memory.  The values were hard coded as instructions within the program memory 

for transfer to the EEPROM.  This software was loaded into the PICAXE and 

allowed to run, values were transmitted back to the PC serial interface and 

verified. 

 

The table is quantized into half degree steps of depression.  This results in a non-

continuous range of humidity values within the lookup table.  This causes an 

element of rounding within the calculation, however this will impact minimally on 

the overall operation of the design as the resolution of data storage used is one 

degree.  Dry bulb measurements below -5°C or above 50°C should rarely occur.  

In the event of a measurement outside this range occurring, the depression will be 

calculated based on the closest extreme of data within the lookup table. 

 

To implement this in software a separate sub-routine was written.  The dry-bulb 

temperature is used to determine which block of EEPROM contains the relevant 

lookup table column.  The temperature is used as an index into the block, each 

element of the column is then stepped through and compared to the humidity 
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value.  Once the value from the table is less than the measured humidity, the index 

into the table column is multiplied by five.  This is the depression in degrees 

scaled by 10, the form the dry bulb temperature is in.  The depression is subtracted 

form the dry-bulb temperature and then divided by ten.  This results in a wet-bulb 

temperature value, quantized to one degree intervals and offset above zero by 40 

to avoid negative numbers.  This value will always be smaller than 255 and 

therefore is stored in a single byte variable.  The values are clipped to a minimum 

of 20 and a maximum of 89, these correspond to -20°C and 49°C.  This will be 

further discussed in the data storage section. 

 

 

6.2.4 Real Time Clock Interface 

 
Reading the time from the RTC is a simple task.  An I2C read is performed at the 

RTC address.  The data is received in the BCD format.  To simplify clock 

adjustment in later modules, this data is converted by a subroutine from BCD 

(Binary Coded Decimal) into binary data.  The values of hours and minutes are 

stored in separate single byte variables of RAM within the PICAXE during each 

RTC read. 

 

 

6.2.5 Measurement Time Determination 

 

This section of the code determines when the next measurement and set-point 

adjustment needs to be made.  As explained in previous sections, measurements 

are taken at fifteen minute intervals. 

 

The RTC read is performed prior to this module of code.  To determine when a 

period of fifteen minutes has elapsed, the minute data is divided by a modulus 15.  

The result is zero when the minutes are either 0, 15, 30 or 45.  This value is used 

as a conditional branch when equal to zero.  The main loop will complete in less 

than one minute.  To avoid the branch from occurring more than once during the 

same minute, a further condition is stipulated.  The non-volatile RAM available in 
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the RTC is used to store the minute value of the last measurement.  If the minutes 

of the current measurement is not the same as the minutes of the last measurement, 

the program will branch to allow further action.  Otherwise if the minute is the 

same as the current time then the measurements has already been taken dor the 

current minute.  During the read from the RTC the circular buffer position and 

block of EEPROM currently in use is also read back.  The usage of these values 

will be discussed in the next section.  The memory map of the ram locations used 

within the RTC is displayed in the figure below. 

 

 

Figure 6.6: RTC RAM Locations Used 

 

 

6.2.6 Storing Measurements 

 

As previously discussed the temperature measurements are stored in a circular 

buffer of samples, containing three days of data.  At this sampling rate the buffer 

requires a total of 288 samples.  To store this information in EEPROM, two 

blocks are required, as each block contains 256 bytes.  Block six is filled 

completely while block seven contains only 32 samples.  This configuration is 

shown below. 
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Figure 6.7: Sampling Buffer 

 

The values read back form the RTC in the previous section are used here.  On 

initial activation of the device the circular buffer position is set to zero, and the 

EEPROM set to block 6.  The circular buffer position is incremented with each 

measurement until it reaches 255.  At this point it reverts to zero and the block is 

changed to block 7.  The position is once again incremented with each 

measurement until position 31 is reached.  The block is then reset to block 6 and 

position zero, old data is overwritten. 

 

The calculation of the set-points relies upon a complete set of samples.  This 

means that the set-point can not be calculated until the buffer of 288 samples is 

complete.  A bit flag is used to signify when the data set is complete.  Upon a 

master reset the flag is cleared to a zero.  When the block is set to block 6 after 

block 7 is complete, the flag is set to a one.  This signifies that the samples are 

complete and the set-points can be calculated.  While the sample buffer is 

incomplete and the outputs inactive, the display provides a notification.  The 

message “INACTIVE” is flashed alternatively with the main screen. 

 

 

6.2.7 Calculating Number of Occurrences 

 

This code calculates the number of times each temperature value occurs within the 

buffer, in sequential order of lowest to highest temperature.  The entire buffer of 

samples is stepped through sequentially.  The temperature value stored within 
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each element is used as an index into the PICAXE RAM.  Each time a value is 

encountered within the EEPROM, the count of that value in the RAM is 

incremented by one.  This is continued until the entire buffer has been read.  As a 

result the RAM contains the number of times each temperature has been recorded 

in the last 3 days, organized in ascending order from -20 to 49°C.  The RAM is 

split into two blocks, as a result the first block contains the data from -20 to 27°C 

and the second block from 28 to 49°C.  This is represented graphically in the 

figure below. 

 

 

Figure 6.8: Temperature Histogram Locations 

 

 

6.2.8 Calculating Cumulative Probability 

 

To determine the set-points for the Normal and Rapid modes the cumulative 

probability is used.  The sample buffer of 288 samples represents three days of 
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data.  As discussed in previous sections the appropriate percentage running time 

for the Normal and Rapid modes is 14% and 50% respectively.  This equates to 41 

and 144 samples.  The cumulative density is taken starting at the -20°C.  For each 

temperature the number of occurrences is added to the total stored within a word 

variable.  Once a total of 41 samples are reached this temperature is stored as the 

Normal set-point temperature.  The process is repeated for the Rapid set-point, 

once 144 samples are reached this temperature corresponds to the Rapid set-point 

temperature and stored as such. 

 

 

6.2.9 Checking Set-points 

 

This subroutine checks the current temperature against the Normal and Rapid set-

points and activates outputs accordingly.  There are three output state conditions 

possible based on the temperature relative to the set-points, these are summarized 

in the following table. 

 

Table 6.6: Temperature Output Conditions 

Temperature Condition Normal Output Rapid Output 

Normal < Rapid < Temp Off Off 

Normal < Temp < Rapid Off On 

Temp < Normal < Rapid On On 

 

 

6.2.10 User Interfacing 

 

The most challenging piece of code encountered in the development of this 

project was the user interface.  This is split into two sections, a routine to display 

the main page of information and a routine to handle menu information.  The main 

page contains the current relative humidity, dry-bulb temperature, wet-bulb 

temperature and the time.  A layout was determined which would allow these 
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values to be displayed concurrently on the two sixteen character lines of the 

display.  This layout is shown in the figure below. 

 

 

Figure 6.9: Display Main Page Layout 

 

Due to the relatively quick execution of the main loop, an interrupt was deemed 

unnecessary for entering the menu.  The buttons on the front of the display are 

assigned as mode and adjust.  The mode button is used for moving through the 

menu, while the adjust button increments, selects or changes the value of the 

current parameter. 

 

The mode button is checked at the beginning of the main loop.  If active a branch 

is executed to the setting routine.  This is a permanent branch and not a subroutine.  

This is due to the large number of possible exit points from within the menu code.  

The mode button must be held for three seconds to initiate the menu or the 

program returns to the main loop.   

 

 

6.2.11 Switch Bounce 

 

Any mechanical switch with contacts will exhibit switch bounce.  This 

phenomenon will cause an oscillatory voltage to be present at the microcontroller 

input.  Such an input may cause erratic behaviour of the system such as multiple 

key presses being registered as a result of a single key press.  Switch bounce may 

be countered using hardware or software methods.  Hardware methods would 

have required extra components, as such a software solution was chosen. 
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A subroutine within the code named Debounce was developed to eliminate switch 

bounce interference.  On entry the DataLow variable is cleared to zero.  The 

subroutine contains a counter; the counter is incremented at periods or 50ms.  If 

the counter reaches 255 the routine is exited with a value of 0 in the temporary 

byte.  A press of either button during this timing period will set a bit flag to 1.  

The subroutine will then exit at this point.  The program uses these bits to 

determine program flow.  The bit flags used to signify button presses are 

illustrated in the following figure. 

 

 

Figure 6.10: Debounce Bit Flags 

 

 

6.2.12 Menus 

 

The menus within the program allow data to be displayed on the screen.  The time 

can be set in a fashion similar to a digital wrist watch.  The menu items available 

are presented below in a flow chart form. 
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Figure 6.11: Menu items 

 

 

6.2.13 Pre-defined Messages 

 

To conserve program memory space the 256 bytes of EEPROM within the 

PICAXE are utilised to store strings.  Display messages are pre-defined in blocks 

of sixteen bytes, each byte containing the ASCII code a character.  Each sixteen 

block segment contains a string that fills one line of the LCD display.  A sub-

routine called PrintLine prints this string to the display at the position initialized 

prior to the function being called. 

 

The EEPROM command is issued at the start of the program, followed by the 

ASCII characters to be used for the string.  The programming editor loads these 

values into the PICAXE internal EEPROM during the program download.  The 

strings stored within EEPROM are shown in the figure below. 
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SEND SERIAL DATA 

YES           NO 

MASTER RESET? 

SET CLOCK 

SHOW SET-POINTS 

RESET COMPLETE 

    INACTIVE 

Figure 6.12: Pre-Defined Messages 

 

 

6.2.14 Sample Downloading 

 

The program allows for the data buffer to be transmitted serially to a PC.  This is 

performed when selected from the controllers menu.  The PICAXE 18X is capable 

of transmitting serial data via the programming cable.  The “Sertxd” command is 

used to transmit the data.  The data is transmitted at 4800 baud rate.  The data 

from block 6 is sent followed by block 7.  Each value is followed by $0D, a 

carriage return.  The programming editor data terminal is capable of receiving the 

serial data.  It can then be copied into a CSV (Comma Separated Variable) file, 

and used to form a plot of the temperature data.  To simplify this process, a simple 

DOS command line program was found that was capable of receiving the data and 

storing it in a CSV file automatically.  The program used is serialterm.exe, written 

by A. Schmidt, 2001.  The serial port, baud rate and output file are set upon 

calling the function.  The complete CSV file can be opened in MS Excel, the 

graphing facilities can be used to view the data graphically. 
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Chapter 7 – Analysis and Performance 
 
Once the final prototype was completed and software modules written, testing was 

able to be carried out.  The success of the tests were measured based on the 

operational requirements.  This chapter outlines the tests and results obtained. 

 
 

7.1 Initial System Test 

 
The first test of the completed prototype was aimed at successfully recording a 

complete buffer of temperature samples.  The prototype was placed outside with 

the main box undercover and the sensor box in an open environment.  The power 

supply was connected to mains and the clock set to the correct time.  A master 

reset was performed to clear the buffer entirely.  As expected, the display began to 

flash the message “INACTIVE”, signifying the sample buffer was not complete.  

The prototype was left uninterrupted for three days to log the ambient temperature 

data. 

 

Upon recoding the 288th sample, the system screen returned to normal and the 

Rapid light illuminated.  This signified that a complete buffer of samples had been 

stored.  The programming cable was connected and the sample data read out.  The 

figure below shows the recorded wet-bulb temperature, at a sampling interval of 

15 minutes, over a period of three days. 
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Figure 7.1: Initial Test Data 

 

The graph clearly shows the temperature cycling over the three day test period.  It 

is evident that the temperature can vary considerably in the short term; this is 

likely caused by atmospheric fluctuations such as varying cloud cover.  It must 

also be noted that this is the wet-bulb temperature.  The wet-bulb temperature is 

dependant on both the humidity and dry-bulb temperature components, for this 

reason the results are not intuitive.  It is also apparent that the average daily 

temperature is falling over the course of the test. 

 

The results of the test appear to be acceptable, the three days temperature 

fluctuations are clearly visible.  No problems were observed with the device or its 

operation.  With this test rated as successful, further testing was now possible to 

check the function of the set-point calculation. 

 

 

7.2 Second System Test 

 

The second system test was aimed specifically at checking that the set-points 

determined by the controller were providing correct operation.  To save time, the 

data collected in the initial test was kept.  This meant that the system operation 

could be monitored immediately, avoiding the need for another three days 
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sampling prior to the system functioning.  The device was left mounted in the 

same position as during the first test. 

 

The controller was allowed to operate uninterrupted until the buffer was again full.  

The sample log was downloaded to a PC prior to the circular buffer wrapping 

back to the first memory location and overwriting old samples.  The data was 

formatted sequentially within MS Excel to create a graph of the entire test.  This 

temperature data is included in Appendix H. 

 

The results of the test are presented in Figure 7.2. 
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Figure 7.2: Second Test Results 

 

The graph shows the temperature data collected over the six days.  The set-points 

for the Normal and Rapid outputs are clearly visible.  Each output is active when 

the temperature is equal to or below its respective set-point.  The first three days 

data is required to initialise the system.  Once this time has elapsed the set-points 

are calculated and the system is ready for operation.  The average temperature 

observed over this six day test period appears to be falling, followed by a rise on 

the last day.  The set-points reduce slowly to follow the temperature trend.  It is 
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evident that the set-points are not reacting quickly enough to maintain the correct 

time percentages of 15 and 50%.  These periods equate to sample lengths of 43 

and 144 respectively. 

 

 

7.3 System Improvements 

 

Due to the slow response of the set-points to changing climate, an adjustment was 

deemed necessary to the system.  To speed up the response, the buffer size was 

reduced to two days.  This reduces the number of older samples stored and should 

speed up the response time. 

 

To determine the effect of a reduced buffer size, the same data will be used.  As it 

is impossible to reproduce the same temperature data the system was simulated in 

MATLAB.  The code used to perform this function is included in Appendix I.  

The algorithm was reproduced with a buffer length of 192, equivalent to two days 

of samples.  The data collected during the tests was used as the temperature and a 

sliding window represented the buffer.  As the sample buffer required is only two 

days in length, the system will become operational one day earlier.  The results of 

the simulation are presented in figure 7.3, along with the original three day buffer 

set-points for comparison. 
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Figure 7.3: Buffer Size Simulation 

 

It can be seen that the buffer of two days reacts quicker to the temperature average 

changing than the three day buffer.  Analysis of the time percentages that the 

system would run in this case reveals that the two day buffer provides output 

periods significantly closer to the ideal percentages. 

 

 

7.4 System Discussion 

 

The system tests revealed the set-points adapting to follow the average 

temperature.  The temperature data used for the tests is the worst case possible, 

this being a sudden drop in temperature, quickly followed by a rise.  This results 

in the set-points adapting downwards and then being forced to adapt upwards.  

Tests using a continuous sine wave input showed that the set-points stabilise with 

the correct time percentages.  This shows that the error encountered is caused 

solely by the temperature prediction component of the system.  This problem of 

accurately predicting temperature minimums will be present for any method of 

prediction implemented.  The two day buffer of samples provided the best results, 

increasing speed of reaction over the three day buffer. 
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Chapter 8 – Conclusions and Recommendations 
 

8.1 Achievement of Objectives 

 

The project specification in Appendix A contains the objectives of this project.  

The tests carried out have been analysed in regards to the project objectives and 

the success of the project has been judged in terms of the project specification. 

 

As stated in the specification, the aim of the project was to “develop a controller 

that will automatically switch aeration fans based on ambient air state, to 

condition grain in storage during the optimal time.”  The general aim of the 

project has been completed.  The controller provides automatically switched 

outputs, for interfacing with aeration motor controls.  The optimal times of coolest 

air occur during the temperature troughs.  The results show that the system does 

operate the outputs during these periods. 

 

Research into control methods suitable for the control of aerators was successful 

and the design based on this.  The air parameters required to be monitored were 

investigated and chosen as temperature and relative humidity.  From these the 

wet-bulb temperature is derived. 

 

The PICAXE 18X was selected as the microcontroller and interfaced successfully 

with other required components.  A program capable of automatically controlling 

aeration fans, by operating them when appropriate, was completed.  The final 

prototype was constructed and tested successfully. 

 

The major outcomes of the project are outlined below: 

 

• The system provides a user interface for the operator to allow monitoring 

of the device.  The time can be set with the two keys on the device.  The 

display provides a readout of the air parameters being monitored by the 
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device.  The set-points temperatures for the Normal and Rapid modes can 

be checked. 

 

• The system measures temperature and relative humidity.  These are used 

to calculate the wet-bulb temperature. 

 

• The system calculates Normal and Rapid mode set-points from previously 

stored temperature data.  The Normal and Rapid outputs are switched on 

and off as necessary. 

 

• Remote monitoring of the device was not investigated due to time 

limitations. 

 

Overall the system has performed well.  The system was designed and integrated 

into a fully functional prototype.  The initial research was paramount to this 

success and the timeline followed to ensure completion. 

 

 

8.2 Recommendations for Further Work 

 

There are areas of further work that could enhance the operation of the system.  

Some recommendations are outlined below: 

 

1) Noise Immunity 

Adding a CRC check to the sensor interface would ensure that measurements 

were not corrupted during transmission.  By improving code efficiency, memory 

could be released for this function.  The noise immunity could also be improved 

by using shielded cable for connection to the sensor. 

 

2) Manufacture the device on the designed PCB 

The designed PCB could be constructed and the components fitted.  This would 

then be tested to verify correct operation. 
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3) Add Power Management Algorithm 

It was originally envisaged that a power optimisation algorithm would be present 

in the system.  When active this would alter the running period to utilise the less 

expensive electricity tariff times.  Daily cooling efficiency would be sacrificed as 

necessary to minimise running costs.  The system could then catch up on lost 

hours during the weekend off-peak period. 

 

4) Investigate remote monitoring 

Remote monitoring of the system would allow its operation to be verified and any 

malfunctions recognised.  This could also extend to the device remotely operating 

aerators from a distance.  Such a feature would allow the device to operate fans in 

a remote location, rather than purchasing further aeration controllers, thus 

minimising cost. 

 

These recommendations provide a platform for further work to be undertaken in 

this area. 
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University of Southern Queensland  
 

Faculty of Engineering and Surveying  
 

ENG 4111/4112 Research Project  

PROJECT SPECIFICATION  
 

 
FOR: ANDREW CHARLES 
 
TOPIC:  AMBIENT AIR TEMPERATURE TREND 

AERATION CONTROLLER. 

 
SUPERVISOR:  Mr. Mark Norman 
 
ENROLMENT: ENG 4111 – S1, D, 2006 
   ENG 4112 – S2, D, 2006 
 
PROJECT AIM: The project aims to develop a controller that will 

automatically switch aeration fans based on ambient air 
state, to condition grain in storage during the optimal time. 

 
 
PROGRAMME: Issue A, 27 March 2006 

  
1.   Research information on aeration control methods in grain storage. 
 
2.   Research and select sensors appropriate for ambient air measurement. 
 
3.   Research and select microprocessor with other hardware components. 
 
4.   Design and simulate software required for control of aeration fans. 
 
6. Construct prototype and evaluate. 

 
As time permits 
  
 6.   Investigate remote monitoring of controller operation. 

 
 
 
 

 
AGREED: __________________ (student)           __________________ 

(Supervisor) 

(date)___/___/___ 
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Appendix B – Wet-Bulb Temperature Lookup Table 
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Appendix C – SHT15 Sensor Timing Diagram 
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Appendix D – LCD Display Commands 
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Appendix E – PCB 
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Appendix F – Software Listing 
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'Written by Andrew Charles 
'Student No. 0050009343 
'Written with PICAXE Programming Editor 
 
'Aeration Controller Project 
'For use with PICAXE 18x 
'Memory used: 1852 bytes 
 
'--------------------Outputs-------------------------------
-- 
 
symbol Rapid = 2 
symbol Normal = 3 
symbol Sensclock = 6 
symbol Sensout = 7 
 
'--------------------Inputs--------------------------------
-- 
 
symbol Mode = pin0 
symbol Adjust = pin1 
symbol Sensin = pin6 
 
'-------------------Variables------------------------------
-- 
 
symbol DataLow = b0 'Working Byte Low 1 
symbol DataHigh = b1 'Working Byte High 1 
symbol DataWord = w0 'Working Word 1 = b0 & b1 
 
symbol DataLow2 = b2 'Working Byte Low 2 
symbol DataHigh2 = b3 'Working Byte High 2 
symbol DataWord2 = w1 'Working Word 2 = b2 & b3 
 
symbol NormalSet = b4 'Normal Set-point Temperature 
symbol RapidSet = b5 'Rapid Set-Point Temperature 
 
symbol Day = b6  'Current number of Day, 1-7 
symbol Counter = b7 'Universal Loop Counter Variable 
symbol WbTemp = b8 'Wet-bulb temperature 
symbol Hum = b9  'Relative Humidity 
symbol Temp = w5   'Dry-bulb temperature =b10 & b11 
symbol Minutes = b12 'Current time minutes 
symbol Hour = b13  'Current time hour, 24hr format 
 
'------------------Constants-------------------------------
-- 
 
symbol TempMeas = %00000011  'Measure Temp 
command 
symbol HumMeas = %00000101  'Measure Humidity command 
symbol StatRegWrite = %00000110 'Write to Status Register 
command 
symbol StatRegRead = %00000111 'Read from Status Register 
command 
symbol Setup = %00000001  'Status Register write, 
set precision 
 
 
symbol EEPROM1 = %10100000  'EEPROM BLOCK I2C 
Addresses 
symbol EEPROM2 = %10100010 
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symbol EEPROM3 = %10100100 
symbol EEPROM4 = %10100110 
symbol EEPROM5 = %10101000 
symbol EEPROM6 = %10101010 
symbol EEPROM7 = %10101100 
symbol EEPROM8 = %10101110 
 
symbol RTC = %11010000   'Real Time Clock I2C 
Address 
symbol LCD = $C6    'LCD I2C Address 
 
'----------Pre-defined Display Strings---------------------
-- 
 
EEPROM 0,  ("SEND SERIAL DATA") 
EEPROM 16, ("YES           NO") 
EEPROM 32, ("MASTER RESET?   ") 
EEPROM 48, ("SET CLOCK       ") 
EEPROM 64, ("SHOW SET-POINTS?") 
EEPROM 80, ("RESET COMPLETE  ") 
EEPROM 96, ("    INACTIVE    ") 
 
'__________________________________________________________
__ 
 
 
'-------------------MAIN PROGRAM---------------------------
-- 
 
Main:  'Initial Setup 
 
  pause 2000   'Wait For Peripherals to 
Initialize 
   
  'Setup Temp/Hum Sensor 
  Datalow = StatRegWrite  'Status Register adress 
  gosub TransStart  'Initiate Transmission 
  
  gosub WriteData  'Write data to sensor 
  gosub Acklow  'Provide Low Acknowledge 
  DataLow = Setup  'Precision data 
  gosub WriteData  'Write setup 10/8 bit 
accuracy 
  gosub Acklow  'Provide Low Acknowledge 
   
  gosub RTCRead  'Read Real Time Clock 
   
  goto SetTrue  'Set initial Parameters 
Upon Startup 
   
   
  'Main Repetative Loop 
     
Repeat: if Mode = 1 then Settings 'Check Switch, jump 
to settings if activated 
 
After: gosub TempRead 'Read Temperature 
 
  gosub HumRead 'Read Humidity 
   
  gosub RTCRead 'Read Time 
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  gosub WbCalc 'Calculate Wet Bulb Temperature 
   
   
  gosub DispMain 'Display Main Page 
   
  gosub CheckTime 'Check if time for Calculation 
   
  pause 2000  'Pause for period to avoid 
heating sensor 
   
  goto Repeat  'Repeat Main Loop 
   
'__________________________________________________________
__ 

 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Menu        ' 
'User interface menu routines. This is a branch and not a
 ' 
'subroutine.  Options are View Set-points, Send Serial 
Data,' 
'Master Reset and Set Time      ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''  
  
Settings: pause 3000    'Pause to 
elminate accidental press 
  if Mode = 1 then SetTrue 'Continue if Mode 
button still pressed 
  goto repeat    'Else Exit 
   
SetTrue: i2cslave LCD,i2cslow,i2cbyte 'Set I2C Address to 
LCD 
 
  DataLow = 64   'String 'Show Set-
Points?' 
  gosub MenuItem   'Display Menu Item 
   
  if bit0 = 1 then ShowSetPts 'If adjust key 
pressed branch 
 
  DataLow = 0    'String 'Send Serial 
Data' 
  gosub MenuItem   'Display Menu Item 
   
  if bit0 = 1 then SendData 'If adjust key 
pressed branch 
   
MasterRst: DataLow = 32   'String 
'MASTER RESET? 
  gosub MenuItem   'Display Menu Item 
   
  if bit0 = 1 then Reset  'If adjust key 
pressed branch 
 
SetTime: gosub DispClear   'Clear LCD 
  DataLow = 48   'String 'Set Clock' 
  gosub PrintLine   'Print 
  pause 1000 
   
HourSet: gosub TimePrint   'Print Time 
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  gosub DayPrint   'Print Day 
   
  gosub Debounce   'Debounce 
   
  if bit0 = 1 then IncHour 'If Adjust pressed 
branch 
  if bit1 = 1 then Minset  'If Mode pressed 
branch 
  goto Writetime   'Else Write time to 
RTC 
   
IncHour: Hour = Hour + 1   'Increment Hour 
  Hour = Hour//24   'If 24 then set to 
zero 
  pause 200 
  goto Hourset   'Update Display 
   
MinSet: pause 500 
 
Minset2: gosub TimePrint   'Print Time 
   
  gosub Debounce   'Debounce 
   
  if bit0 = 1 then IncMin  'If Adjust pressed 
branch 
  if bit1 = 1 then SetDay  'If Adjust pressed 
branch 
  goto Writetime   'Else Write time to 
RTC 
   
IncMin: Minutes = Minutes + 1  'Increment Minute 
  Minutes = Minutes//60  'If 60 then set to 
zero 
  pause 200 
  goto MinSet2   'Update Display 
   
SetDay: pause 500 
   
SetDay2: gosub DayPrint   'Print Day 
  pause 10 
   
  gosub Debounce   'Debounce 
   
  if bit0 = 1 then IncDay  'If Adjust pressed 
branch 
  goto WriteTime   'Else Write time to 
RTC 
    
IncDay: Day = Day + 1   'Increment Day 
  Day = Day//8   'If 8 then set to 
zero 
  if Day = 0 then IncDay  'If 0 then set to 1 
  pause 500 
  goto SetDay2   'Update Display 
 
WriteTime: i2cslave RTC,i2cslow,i2cbyte 'Set I2C 
Address to RTC 
  DataLow = Minutes    
  gosub BinarytoBCD   'Convert minutes to 
BCD 
  writei2c 1,(DataLow)  'Write Minutes to 
RTC 
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  DataLow = Hour 
  gosub BinarytoBCD   'Convert hour to BCD 
  writei2c 2,(DataLow,Day) 'Write Hour and Day 
to RTC 
   
  goto ExitToMain   'Branch to Exit 
 
 
Reset: 'Master Reset, Clear Memory Buffer 
  i2cslave EEPROM6, i2cslow, i2cbyte 'Set I2C 
Address to EEPROM6 
  DataLow = 15    'Length of 16 
bytes in block 
  gosub Clearing    'Clear buffer 
  i2cslave EEPROM7, i2cslow, i2cbyte 'Set I2C 
Address to EEPROM7 
  DataLow = 1     'Length of 16 
bytes in block 
  gosub Clearing    'Clear buffer 
  i2cslave RTC, i2cslow, i2cbyte 'Set I2C 
Address to RTC 
  writei2c $08, (1, 0, 0)   'Reset Flags 
in RTC 
 
  i2cslave LCD,i2cslow,i2cbyte 'Set I2C Address to 
LCD 
  gosub DispClear   'Clear Display 
  DataLow = 80   'String 'RESET 
COMPLETE' 
  gosub PrintLine   'Print 
  pause 2000 
   
ExitToMain: goto After    'Exit Menu, 
return to Main loop 
 
 
ShowSetPts: 'Display Set-Points on LCD 
  writei2c 0,(254,1,255)  'Clear Display 
  pause 30 
  writei2c 0,(254,128,255) 'Position Top Left 
  pause 10 
  DataLow2 = NormalSet - 40 'Change format 
  writei2c 0,("Normal = ",255) 'Print 'Normal = ' 
  pause 10 
  if NormalSet >= 40 then skipneg3 'Account for 
possible negative 
  writei2c 0,("-",255) 
  pause 10 
  DataLow2 = 40 - NormalSet 
skipneg3: gosub calcnum 
  writei2c 0,(DataHigh,DataLow,%11011111,"C",255) 
'Print Set-Point 
  pause 10 
   
  writei2c 0,(254,192,255) 'Position Bottom 
Left 
  pause 10 
   
  DataLow2 = RapidSet - 40 'Change format 
  writei2c 0,("Rapid = ",255) 'Print 'Rapid = ' 
  pause 10 
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  if RapidSet >= 40 then skipneg4 'Account for 
possible negative 
  writei2c 0,("-",255) 
  pause 10 
  DataLow2 = 40 - RapidSet 
skipneg4: gosub calcnum 
  writei2c 0,(DataHigh,DataLow,%11011111,"C",255)
 'Print Set-Point 
  pause 4000    'Pause to allow 
viewing 
  goto ExitToMain   'Branch to Exit 
   
SendData: 'Send Serial Data via programming cable  
 
  i2cslave EEPROM6, i2cslow, i2cbyte 'Block 6 
   
  for Counter = 0 to 255 
  readi2c Counter, (DataLow) 
  sertxd(#DataLow,$0D) 
  next Counter 
 
  i2cslave EEPROM7, i2cslow, i2cbyte 'Block 7 
 
  for Counter = 0 to 31 
  readi2c Counter, (DataLow) 
  sertxd(#DataLow,$0D) 
  next Counter 
  goto ExitToMain   'Branch to Exit 
   
'__________________________________________________________
__ 
 
 
'***********************Subroutines************************
** 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    Clearing     ' 
'Clears the EEPROM memory in a block of 16 bytes  ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''   
   
Clearing: for Counter = 0 to DataLow 'Loop for 
Datlow blocks 
  DataHigh = Counter * 16  'Start Address 
16*DataLow 
  'Write 255 into block, this signifies empty 
  writei2c 
DataHigh,(255,255,255,255,255,255,255,255,255,255,255,255,2
55,255,255,255) 
  pause 10 
  next Counter 
  return 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    TimePrint     ' 
'Prints the Time stored in the PICAXE RAM to the LCD 
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''   
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TimePrint: writei2c 0,(254,192,255) 'Position Line 
2 
  pause 10 
  DataLow2 = Hour 
  gosub calcnum 
  writei2c 0,(DataHigh,DataLow,":",255) 'Print 
Hours 
  pause 10 
  DataLow2 = Minutes 
  gosub calcnum 
  writei2c 0,(DataHigh,DataLow,255)  'Print 
Minutes 
  pause 10 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    DayPrint     ' 
'Prints the Day stored in the PICAXE RAM to the LCD 
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''   
   
DayPrint: writei2c 0,(254,200,255) 'Position Line 
2 
  pause 10 
  'Select day 
  if Day = 1 then Mon 
  if Day = 2 then Tue 
  if Day = 3 then Wed 
  if Day = 4 then Thu 
  if Day = 5 then Fri 
  if Day = 6 then Sat 
  if Day = 7 then Sun 
   
  'Print Day to LCD 
Mon:  writei2c 0,("Mon",255) 
  return 
   
Tue:  writei2c 0,("Tue",255) 
  return 
   
Wed:  writei2c 0,("Wed",255) 
  return 
   
Thu:  writei2c 0,("Thu",255) 
  return 
     
Fri:  writei2c 0,("Fri",255) 
  return 
   
Sat:  writei2c 0,("Sat",255) 
  return 
   
Sun:  writei2c 0,("Sun",255) 
  return  
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    MenuItem     ' 
'Prints the String within DataLow to first line of LCD. ' 
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'Prints Yes No on second line, checks for key presses, 
exits' 
'when pressed or time out      ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''   
   
MenuItem: gosub DispClear   'Clear Display 
 
  gosub PrintLine   'Print String in 
DataLow 
  pause 1000 
  writei2c 0,(254,192,255) 'Shift Cursor to 
Line 2 
  DataLow = 16   'Display String 'Yes  
No' 
  gosub PrintLine   'Print 
  pause 10 
   
  gosub Debounce   'Debounce 
  return 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    Debounce     ' 
'Debounces the two input keys.  Sets flag bit0 for adjust,
 ' 
'bit1 for Mode.  Exist after approximately 12 seconds if no
 ' 
'key pressed.        ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
  
Debounce: Datalow = 0    'Clear flags 
  for counter = 1 to 255 
  if Adjust = 1 then Debounce1 'If adjust pressed 
branch 
  if Mode = 1 then Debounce2 'If Mode pressed 
branch 
  pause 50    'Pause for timeout 
  next counter 
  goto ExitDbnce   'Exit if no key 
pressed 
   
Debounce1: pause 10    'Debounce 
Adjust 
  if Adjust = 1 then Debounce3 
  goto Debounce 
   
Debounce2: pause 10    'Debounce Mode 
  if Mode = 1 then Debounce4 
  goto Debounce   'Branch to exit 
   
Debounce3: bit0 = 1    'Set Adjust 
key flag 
  goto ExitDbnce 
   
Debounce4: bit1 = 1    'Set Mode key 
flag 
ExitDbnce: return 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
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'    PrintLine     ' 
'Print EEPROM string starting at index stored in datalow to 
' 
'LCD display        ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
PrintLine: DataHigh2 = DataLow + 15  'String 
Length 
  for Counter = DataLow to DataHigh2 
  read Counter, DataHigh   'Read 
character from EEPROM 
  writei2c 0, (DataHigh,255) 
  next Counter 
  return 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    Check Time     ' 
'Performs a read of RAM from RTC and determines if a new    
' 
'Measurement is required      ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
CheckTime: i2cslave RTC,i2cslow,i2cbyte 'Set I2C 
address to RTC 
 
  'Read minutes of last measurement, Circular Buffer 
Position and EEPROM Bank 
  readi2c $08, (DataLow2, DataHigh, DataLow) 
    
  'Modulus of Minutes = 0 if quarter hour interval 
  DataHigh2 = Minutes // 15 
   
  'If a quarter hour interval and not same interval 
as last measurement then Measure 
  if DataHigh2 = 0 and DataLow2 != Minutes then 
Measure  
   
  if bit1 = 1 then ExitCkTime 'If buffer complete 
flag is active then exit 
  i2cslave LCD,i2cslow,i2cbyte 'Set I2C address to 
LCD 
  pause 2000 
  gosub DispClear   'Clear Display 
  DataLow = 96   'String 'INACTIVE' 
  gosub PrintLine   'Print 
   
ExitCkTime: return   
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    Measure     ' 
'Stores Measurement in EEPROM Bank, may call   
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
   
Measure: if bit0 = 1 then UseBlock7  'Check flag, 
choose EEPROM Block 
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  i2cslave EEPROM6,i2cslow,i2cbyte 'Set I2C 
address to EEPROM Block 6 
   
BlckChosen: DataHigh2 = WbTemp - 20   'Adjust 
WbTemp to start at -20 degrees C 
 
  writei2c DataHigh,(DataHigh2)  'Store Current 
Measurement in EEPROM 
  pause 10 
   
  i2cslave RTC, i2cslow, i2cbyte 'Set I2C 
address to RTC 
   
  'If next measurement is in second block change 
block 
  if DataHigh = 255 and bit0 = 0 then BlockChng1 
   
  'If next measurement is in first block change 
block 
  if DataHigh = 31 and bit0 = 1 then BlockChng2  
         
  DataHigh = DataHigh + 1   'Else 
increment location within current block 
   
  goto WriteLoc    'Branch to 
Write index location to LCD RAM 
   
UseBlock7: i2cslave EEPROM7,i2cslow,i2cbyte 'Set I2C 
address to EEPROM Block 7 
  goto BlckChosen    'Branch to 
block operations 
   
BlockChng1: bit0 = 1     'Set 
flag to Block 6 
  goto Changed       
   
BlockChng2: bit0 = 0     'Set 
flag to block 7 
  bit1 = 1     'Set buffer 
complete flag 
   
Changed: DataHigh = 0    'Location zero 
in block 
   
WriteLoc: 'Write current measurement minutes, next 
measurement location and block 
  writei2c $08, (Minutes, DataHigh, DataLow) 
   
  if bit1 = 0 then ExitMeas  'If Buffer not 
complete then exit 
   
  'Else 
 
  gosub CalcOccur1 'Calculate Occurance of 
Temperatures 
  gosub CumProb 'Calculate Cumulative 
Probability 
  gosub ChkSetPts 'Activate outputs if necessary 
   
ExitMeas: return   
     
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
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'' 
'    CalcProbs     ' 
'Calculates number of occurences for each temperature in 
the' 
'range of -20 to 49 degrees C, stores histogram in RAM ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
CalcOccur1: for Counter = 80 to 127 
  poke Counter, 0    'Clear Ram 
block 1 
  next Counter 
   
  for Counter = 192 to 239 
  poke Counter, 0    'Clear Ram 
block 2 
  next Counter 
 
  i2cslave EEPROM6,i2cslow,i2cbyte 'Set I2C 
address to EEPROM6 
  for Counter = 0 to 255   'Step through 
block 
  gosub RamProb    'Increment 
histogram 
 
  next Counter 
 
CalcOccur2: i2cslave EEPROM7, i2cslow, i2cbyte 'Set I2C 
address to EEPROM7 
  for Counter = 0 to 31   'Step through 
block 
  gosub RamProb    'Increment 
histogram 
 
  next Counter 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    RamProb     ' 
'Reads data from EEPROM and increments number of occurances 
' 
'of that temperature in the range of -20 to 49 degrees C '
     ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
  
RamProb: readi2c Counter, (DataLow)  'Read in 
Measurement Data 
  if DataLow > 47 then Ram2  'Store in 2nd 
block of Ram 
  DataHigh = 80 + DataLow   'Adjust to 
suit Ram location 
  peek DataHigh, DataLow2   'Peek location 
DataHigh into DataLow2, current number of occurances 
  DataLow2 = DataLow2 + 1   'Increment 
value 
  poke DataHigh, DataLow2   'Poke 
incremented value back into ram 
  goto ExitRamp 
 
Ram2:  DataHigh = 192 + DataLow -48  'Adjust 
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to suit Ram location 
  peek DataHigh, DataLow2   'Peek location 
DataHigh into DataLow2, current number of occurances 
  DataLow2 = DataLow2 + 1   'Increment 
value 
  poke DataHigh, DataLow2   'Poke 
incremented value back into ra 
ExitRamP: return 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Calc Cumulative Probability    ' 
'Finds cumulative probability of data to determine Normal 
 ' 
'and Rapid set-point temperatures    
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
CumProb: DataWord2 = 0    'Clear 16 bit 
word 
 
  'Calculate Normal Set-Point 
   
  for Counter = 80 to 127   'Step through 
first block of Ram 
  peek Counter, DataLow   'Peek location 
Counter into DataLow, number of occurances 
  DataWord2 = DataWord2 + DataLow 'Increment 
cumulative density to include current temperature 
  if DataWord2 >= 41 then SetNormal 'If time 
percentage reached branch 
  next Counter 
   
  for Counter = 192 to 204  'Step through 
second block of Ram 
  peek Counter, DataLow   'Peek location 
Counter into DataLow, number of occurances 
  DataWord2 = DataWord2 + DataLow 'Increment 
cumulative density to include current temperature 
  if DataWord2 >= 41 then SetNormal 'If time 
percentage reached branch 
  next Counter 
   
  end      'Error if this 
point reached 
   
SetNormal: if Counter >128 then SetNorm1  'Check 
which block of ram value was in use 
 
  NormalSet = Counter - 80 + 20  'Adjust to 
range 
  goto nextpt 
   
SetNorm1: NormalSet = Counter - 192 + 20 + 48 'Adjust 
to range 
 
nextpt: DataWord2 = 0    'Clear 16 bit 
word 
 
  'Calculate Rapid Set-Point 
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  for Counter = 80 to 127   'Step through 
first block of Ram 
  peek Counter, DataLow   'Peek location 
Counter into DataLow, number of occurances 
  DataWord2 = DataWord2 + DataLow 'Increment 
cumulative density to include current temperature 
  if DataWord2 > 144 then SetRapid 'If time 
percentage reached branch 
  next Counter 
 
  for Counter = 192 to 204  'Step through 
second block of Ram 
  peek Counter, DataLow   'Peek location 
Counter into DataLow, number of occurances 
  DataWord2 = DataWord2 + DataLow 'Increment 
cumulative density to include current temperature 
  if DataWord2 > 144 then SetRapid 'If time 
percentage reached branch 
  next Counter 
   
  end      'Error if this 
point reached 
   
SetRapid: if Counter >128 then SetRap1  'Check 
which block of ram value was in use 
 
  RapidSet = Counter - 80 + 20  'Adjust to 
range 
  goto ExitCumP    'Branch to 
exit 
   
SetRap1: RapidSet = Counter - 192 + 20 + 48 'Adjust to 
range 
ExitCumP: return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    CheckSetPts     ' 
'Checks current temperature against set-points and 
activates' 
'outputs as required       ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
ChkSetPts:  
  if WbTemp > RapidSet then Case1 'If 
Temperature is above Rapid 
  if WbTemp > NormalSet then Case2 'If 
Temperature is above Normal but below Rapid 
   
  'Else temperature is below Normal and Rapid 
  high Rapid      
  high Normal     'Activate 
Normal and Rapid 
  goto FinChk 
 
 
Case1: low Rapid     'Activate None 
  low Normal 
  goto FinChk 
 
Case2: high Rapid     'Activate 
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Rapid 
  low Normal 
   
FinChk: return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    DispClear     ' 
'Clears both lines of LCD Display and returns cursor to top
 ' 
'left         
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
DispClear: writei2c 0,(254,1,255)  'Clear Display 
  pause 30 
  writei2c 0,(254,128,255) 'Position Top Left 
  pause 10 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'   Display Main Page     ' 
'Displays the main idle page.  Contains Relative Humidity, 
 ' 
'Wet-bulb temp, Dry-bulb temp and time    ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
DispMain: i2cslave LCD,i2cslow,i2cbyte 'Set I2C 
address to LCD 
  writei2c 0,(254,128,255) 'Position Top left 
  pause 10 
   
  DataLow2 = Hum   'Load Relative 
Humidity 
  gosub Calcnum   'Convert to Ascii 
values 
   
  'Write static data 
  writei2c 0,("RH ",DataHigh,DataLow,"% 
DB",%11011111,"C WB",%11011111,"C",255) 
  pause 10 
  writei2c 0,(254,192,255) 'Next Line 
  pause 10 
   
  DataLow2 = Hour   'Load Hours 
  gosub Calcnum   'Convert to Ascii 
values 
 
  'Write Hours 
  writei2c 0,(DataHigh,DataLow,":",255) 
  pause 10 
   
  DataLow2 = Minutes  'Load Minutes 
  gosub Calcnum   'Convert to Ascii 
values 
   
  'Write minutes 
  writei2c 0,(DataHigh,DataLow,"  ",255) 
  pause 10 
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  'Prepare Dry-bulb temp for display 
  DataWord = Temp - 400  'Change form 
  if Temp >= 400 then SkipNeg 'Check negative 
  writei2c 0,("-",255)  'Display negative 
  pause 10 
   
  DataWord = 400 - Temp  'Change because 
negative 
   
  'Convert into places for display 
SkipNeg: DataHigh2 = DataWord /100 + $30 
  DataLow2 = DataWord //100 
  DataHigh = Datalow2//10 + $30 
  Datalow2 = Datalow2/10 + $30 
   
  'Write dry-bulb temp to LCD 
  writei2c 0,(DataHigh2,DataLow2,".",DataHigh," 
",255) 
  pause 10 
   
  'Prepare wet-bulb temp for display 
  DataLow2 = WbTemp - 40  'Change form 
  if WbTemp >= 40 then SkipNeg2 'Check negative 
  writei2c 0,("-",255)pause 10 'Display negative 
   
  DataLow2 = 40 - WbTemp  'Change because 
negative 
   
  'Convert into places for display 
SkipNeg2: gosub Calcnum   'Convert to 
Ascii values 
 
  'Write wet-bulb temp to LCD 
  writei2c 0,(DataHigh,DataLow,"  ",255) 
  pause 10 
  return 
    
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    Calcnum     ' 
'Converts binary value to charater to display on LCD, value
 ' 
'to convert is in DataLow2 and outputs in DataHigh and  ' 
'DataLow         ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
Calcnum: DataHigh = DataLow2/10 + $30  'Find tens 
place   
 
  DataLow = DataLow2//10 + $30  'Find ones 
place 
  return 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Perform Temprature Measurement   ' 
'Read temperature from sensor and store in Temp variable ' 
'12 bit value is multiplied by 10 and offset by +400 
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
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'' 
 
TempRead: DataLow = TempMeas 'Load temperature 
measure instruction 
  gosub Transstart  'Transmission start 
sequence 
  gosub WriteData  'Write instruction 
  gosub Acklow  'Provide low acknowledge 
  pause 100   'Wait for Measurement 
  DataWord = 0  'Clear variable for 
measurement 
  gosub ReadData  'Read first byte 
  gosub Acklow  'Provide low acknowledge 
  gosub ReadData  'Read second byte 
  gosub Ackhigh  'Provide high acknowledge 
   
  'Convert word into temperature value 
  'Temp * 10, offset by +400 
  DataWord = DataWord * 10 /25  
  Temp = DataWord  'Store value  
  return   
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Perform Humidity Measurement    ' 
'Read humidity from sensor and store in Hum variable, 8 bit
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
HumRead: DataLow = HumMeas  'Load humidity measure 
instruction 
  gosub TransStart  'Transmission start 
sequence 
  gosub WriteData  'Write instruction 
  gosub Acklow  'Provide low acknowledge 
  pause 50   'Wait for Measurement 
  DataWord = 0  'Clear variable for 
measurement 
  gosub ReadData  'Read first byte, empty 
  gosub Acklow  'Provide low acknowledge 
  gosub ReadData  'Read second byte 
  gosub Ackhigh  'Provide high acknowledge 
   
  'Convert into humidity value 
  if DataLow <= 107 then less  
  DataWord = DataLow*111 + 2893  'First linear 
range 
  goto finish 
less:  DataWord = DataLow*143   'Second 
linear range 
  if DataWord >= 512 then subtract 'Check for 
underflow 
  DataWord = 512 
subtract: DataWord = DataWord - 512 
finish: DataWord = DataWord/256 
  Hum = DataLow  'Store Value 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Calculate Wb Temp      ' 
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'Use lookup table to find wet bulb temperature from dry-
bulb' 
'and relative humidity, offset by +40    ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''   
WbCalc: 'Determine block of table     
  
  if Temp < 470 then Bank1 'up to 7 degrees 
  if Temp < 590 then Bank2 'up to 19 degrees 
  if Temp < 710 then Bank3 'up to 31 degrees 
  if Temp < 830 then Bank4 'up to 43 degrees 
  goto Bank5    'else up to 50 
degrees 
  
  'Adjust for index into table 
Bank1: i2cslave EEPROM1, i2cslow, i2cbyte 
  DataLow = Temp - 350 
  goto WbWorking 
   
Bank2: i2cslave EEPROM2, i2cslow, i2cbyte 
  DataLow = Temp - 470 
  goto WbWorking 
   
Bank3: i2cslave EEPROM3, i2cslow, i2cbyte 
  DataLow = Temp - 590 
  goto WbWorking 
   
Bank4: i2cslave EEPROM4, i2cslow, i2cbyte 
  DataLow = Temp - 710 
  goto WbWorking 
   
Bank5: i2cslave EEPROM5, i2cslow, i2cbyte 
  DataLow = Temp - 830 
  goto WbWorking 
 
  'Find index into section of table 
WbWorking: DataLow = DataLow / 10 * 20 'Table index 
  DataHigh = DataLow + 19  'Find end of column 
  for Counter = DataLow to DataHigh 
  readi2c Counter,(DataLow2) 'Read value feom 
table 
  if DataLow2 < Hum then WbDone 'If value is less 
than humidty then branch 
  next Counter 
 
  'Calculate depression from table index when exited 
WbDone: WbTemp = Counter - DataLow 'Find index 
  DataWord2 = WbTemp * 5  'Temp difference in 
half degree times 10 
  WbTemp = Temp - DataWord2 /10 'Subtract depression 
   
  'Clip range from -20 to 49 degrees C 
  if WbTemp < 20 then TooLow   
  if WbTemp > 89 then TooHigh 
  goto ExitWbCalc 
   
TooLow: WbTemp = 20 
  goto ExitWbCalc 
   
TooHigh: WbTemp = 89 
ExitWbCalc: return 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Convert BCD to Binary     ' 
'Uses BCD value in DataLow and converts to binary, returns  
' 
'result in DataLow       ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
 
BCDtoBinary: 
  DataHigh = DataLow & %11110000 'Remove lower 
4 bits 
  DataHigh = DataHigh/16 * 10  'Tens place 
  DataLow = DataLow & %00001111  'Remove upper 
4 bits, ones place 
  DataLow = DataLow + DataHigh  'Add together 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'  Convert Binary to BCD     ' 
'Uses Binary value in DataLow and converts to BCD, returns  
' 
'result in DataLow       ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
   
BinarytoBCD: 
  DataHigh = DataLow/10   'Tens place 
  DataHigh = DataHigh * 16  'Shift bits up 
  DataLow = DataLow//10   'Ones place 
  Datalow = DataLow + DataHigh  'Combine 
  return   
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    RTCread     ' 
'Read Minutes and Hours from Real Time Clock, uses  ' 
'BCDtoBinary to convert to binary values   
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''  
  
RTCread: i2cslave RTC, i2cslow, i2cbyte  'RTC i2cslave 
setup 
  readi2c 1, (Minutes, Hour, Day)  'Read min, 
hour 
  DataLow = Minutes    'Convert 
Minutes 
  gosub BCDtoBinary 
  Minutes = DataLow    'Store Minutes 
  DataLow = Hour    'Convert Hour 
  gosub BCDtoBinary 
  Hour = DataLow    'Store Hour 
  return    
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    TransStart     ' 
'Sensor Transmission Start Sequence, used to begin  
 ' 
'communication        ' 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
TransStart: low sensclock  'START sequence 
  high sensout 
  high sensclock 
  low sensout 
  low sensclock 
  high sensclock 
  high sensout 
  low sensclock  
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    WriteData     ' 
'Write Data byte in DataLow to Sensor    ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
    
WriteData: for Counter = 1 to 8   
  if bit7 = 1 then Write1   
  low sensout     'Output a low 
  goto Writing 
Write1: high sensout    'Output a high
   
Writing: pulsout sensclock,10   'Pulse clock 
  DataLow = DataLow*2   'Shift to next 
bit 
  next Counter 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    AckHigh     ' 
'High Acknowledge to Sensor      
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''  
Ackhigh: high sensout    'Output High 
  pulsout sensclock,10   'Pulse clock 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    AckLow     ' 
'Low Acknowledge to Sensor      ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''   
Acklow: low sensout 
  pulsout sensclock,10 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
'    ReadData 
'Read Byte from Sensor into DataLow    
 ' 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
''    
ReadData: high sensout    'Output 
pullup high 
  for Counter = 1 to 8 



 
Appendix F  112 

 

 

  high sensclock    'Clock high 
  DataWord = DataWord*2 
  bit0 = sensin 
  low sensclock    'Clock low 
  next Counter 
  return 
   
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
'' 
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Appendix G – CRC Data 
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Appendix H – Raw Temperature Sample Data 
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Appendix I – Simulation Code 
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%MATALAB Simulation of Set-points 
%Written by Andrew Charles 
figure(1) 
buffer = 288; %Buffer Length 
length = 576; %Length of sample data 
val = csvread('test.csv'); %Read Data from CSV file 
val = val(1:576); %Select only Length Required 
range = 0:1:30; %Temperature Range 
 
title('Temperature') 
xlabel('Sample Number') 
ylabel('Temperature') 
 
normal = zeros(1,length); %Set up empty array 
rapid = zeros(1,length); %Set up empty array 
 
for c = buffer+1:length %Sliding window 
data = val((c-buffer):c); %Data in sliding window 
x = histc(data,[range]); %Take Histogram 
a = 0;  %Clear variable 
b = 0;  %Clear variable 
 
while a < (0.15*buffer) %Normal Percentage 
    a = a + x(b+1); 
    b = b+1; 
end 
pt = range(b); %Find index 
normal(c) = pt; %Store 
 
a = 0; 
b = 0; 
while a < (0.5*buffer) %Rapid Percentage 
    a = a + x(b+1); 
    b = b+1; 
end 
pt = range(b); %Find index 
rapid(c) = pt; %Store 
 
end 
plot((1:length),val) 
hold on 
plot((1:length),normal,'k') 
plot((1:length),rapid,'r') 
title('Second Test') 
xlabel('Sample Number') 
ylabel('Temperature (degrees C)') 
legend('Temperature','Normal Set-point','Rapid Set-
point') 
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Appendix J – Resource Planning  

 

Requirement 

 

Purpose Cost Solution 

Workshop To construct and test 
design 
 

Nil University workshop 
facilities are 
available and my 
own facilities exist 

Computer Research, project write 
up, Protel software and 
design software 

Nil On campus and my 
personal computer 
available for use, Pic 
software not yet 
known as PIC has 
not been chosen 
 

Small consumables Electronic components 
such as resistors and 
capacitors 
 

<$20 Most common 
components can be 
obtained from 
electronic stores and 
University store 

Electronic 
components- PIC, 
sensors, 
programmers 

These components are 
critical to the design 
 

$50 to 
$250 

Budget limited to 
approximately $250 
Online suppliers: 
Microzed, Futurelec 
etc 

 
 
The budget for the components has been deemed around $250.  Expenditure 
beyond this budget should be avoided but could be facilitated. 
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Appendix K – Timeline 
 

 

 
April 

 
May 

 
June 

 
July 

 
August 

 
September 

 
November 

 
October 

Project Specification 

First Seminar 

Project Appreciation 

Extended Abstract for 
Project Conference 

Present at 
Project Conference 

Complete and Submit 
Final Dissertation 

Investigate 
Control 
Methods 

Investigate Sensors 
and PIC’s, order 
hardware 

Begin Software 
Development 

Assemble and test 
hardware 

Load Software into 
PIC and test 

PCB 

Complete First Draft 
Dissertation 

 
March 

Revise and edit 
software as needed 

Research remote 
monitoring if time 
permits 


