
An Online Programming Assessment Tool

Graham H.B. Roberts and Janet L.M. Verbyla
Embedded Systems Laboratory and

School of Informatics and Engineering
Flinders University of South Australia

PO Box 2100, Adelaide 5001, South Australia

{graham,janet}@infoeng.flinders.edu.au

Abstract
The role of assessment in modern university curricula has
become far more diverse and open to scrutiny in recent years.
Although its most significant role is as a measure of a student's
knowledge and skills, the role as a learning device has become
increasingly important and as a consequence informative and
useful feed back is critical to achieve good learning outcomes

This paper describes a tool that provides a self-contained, easy
to use, programming environment that facilitates the
development, testing and marking of programming tasks in
addition to the presentation and marking of "standard"
examination questions. The tool takes responsibility for many of
the tasks that program development normally requires so that the
student can focus on the task of writing program source code. It
has been used in a Java programming topic for two consecutive
years.�

Keywords: Java, Online Assessment

1 Introduction

The motivation for this work comes from both a response
to the need for more efficient, effective and flexible
assessment procedures and a belief that assessment, and
in particular examinations, should approximate the
context in which the activity would normally be
performed. This is supported by complaints from students
with respect to examinations that required the writing of
code segments where they did not have access to the
usual programming related information and tools (for
example, API documentation).

Although a lot of effort has been put into the study of
varying forms of online assessment, very little has been
done on environments that support automated assessment
of the ability to write and debug programs. The most
common mode of assessment is through assignment work
where demonstrators and tutors give students the
opportunity to improve their programming skills and
knowledge in a supportive environment. Pairing can act
to enhance the learning outcome even more (Williams
and Kessler 2000).

�Copyright 2002, Australian Computer Society, Inc. This paper
appeared at the Australasian Computing Education Conference
(ACE2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 20. Tony Greening
and Raymond Lister, Eds. Reproduction for academic, not-for
profit purposes provided this text is included.

When assessment is the only goal, one of the most
expedient methods is through multiple-choice
examination such as Sun’s Java Certification
Examination or Novell’s certification examinations. In
courses where one of the primary goals is to produce
competent programmers, then it is reasonable to expect
examinations to contain programming tasks that can be
solved in an environment that is similar to the “normal”
program development environment.

2 Related Work
The teaching of introductory programming topics has
been one of the most studied and contentious areas of
Computer Science education since the field became an
identifiable discipline. The assessment of students’ ability
to program is a similarly difficult and contentious issue
(for example, see MCCRAKEN 2001).

Systems like WebCT (WebCT 2002) provide a range of
question types, such as, multiple-choice, matching,
calculated etc. While it is typically possible to specify
patterns to define correct answers, this approach is not
generally extensible to testing the correctness of answers
to programming problems.

The system developed by Preston and Shackelford (1999)
seeks to improve the ease with which assessors can mark
assignments and provide feedback and to also automate
some of the processes involved. While their system has
some goals in common with ours, its focus is clearly on
post-submission processing and not on the presentation
and automated feedback required for an online
programming examination

Jackson (2000) uses a composite approach to the
assessment of assignment work, including applying style
metrics to student programs and allowing tutor input into
the process. Again, the focus is on post-submission
assessment and not an interactive examination
environment. Similar comments apply to Joy and Luck
(1998) and Jackson and Usher (1997), just to name a few.

3 The Tool
The examination tool we have developed is a client/server
application with “fat” clients and “thin” servers. While
the system could have been designed with thinner clients,
reasons of security and load distribution have dictated its
structure.

3.1 The Server
While typically there need only be one examination
server running, in an environment with several physical
servers it may be beneficial to run a server on each
machine, particularly if student processes are also running
on those machines. Consequently, when a client is started
it looks for a server, first on the local host machine, and
then on a configurable list of machines.

A server application is responsible for:

• User name and password checking - a client's
user name and password are checked against a
list contained in a password file.

• Connection management - establish and close
socket connections with clients

• Storing the time (on disk) for which a client has
been connected, issuing warnings when there is
only a small amount of time left, and
disconnecting clients, if necessary, at the end of
the exam

• Delivering questions to the client in response to
a request

• Comparing the output of program execution with
the expected output and delivering the results of
that comparison to the client

• Storing each client's answers (on disk).
• Creating a log file of client connections and

other information.
• Marking clients' answers and recording their

scores for each question.

A number of scripts provide other server related
functionality. For example, once students have completed
their examinations, a (Unix specific) script can be run that
emails them their answers, marks, the data their programs
were tested on, the output from their programs and
solutions to all questions. Future versions of the server
will incorporate this functionality into platform
independent server code.

All servers store answers in the same directory and so, for
example, if a student is disconnected (for example, if the
machine their client is running goes down or for some
other reason their session needs to be restarted) they can
reconnect to any server and their stored answers will be
available to them. Further, their clock is not stopped but
an administrator can modify the timer to make allowance
for missing time. There is also a facility to allocate
different total examination times for different classes of
students (for example, students whose first language is
not English can be given extra time).

The server has a simple GUI interface that displays a list
of the user IDs of clients that are connected and buttons
to exit, reload the password file and to mark all
examinations (see figure1).

Figure 1: Server GUI

3.2 Clients
The aim of the design of the client was to provide an
environment in which student can focus on developing
solutions rather than on the mechanics of writing,
compiling and testing programs. It is a type of Integrated
Development Environment (IDE) that has inbuilt test
stubs and test input data sets that takes a pessimistic view
of system reliability (it saves program source code
whenever the client initiates testing or changes to a
different question).

The client application is responsible for:

• Attempting to connect to a server by searching a
list of machines on which a server may be
running. The first server that is willing to accept
a connection will be sent a user name and
password.

• Allowing answers to be entered and sent to the
server.

• Allowing the font size to be increased or
decreased

• Allowing the selection of questions.
• Allowing either j ikes (IBM’s native Java

compiler - see Jikes 2002) or javac (Sun’s
standard Java compiler) to be selected.

• Displaying the amount of time remaining to
complete the exam and to give warnings when
end of the exam is near.

• Displaying the status of each question (visited or
not, answered or not, errors, correct).

• Allowing the testing of programs on user-
supplied test data (rather than the standard test
data).

• Reverting to the original answer provided for the
question.

• Reverting to the last version of the answer (that
resulted from saving the source file, testing or
change of question).

A client application has two primary windows:

1. A question/control/answer window that is divided
into four areas (see figures 2 and 3):

a. A fixed height area containing a timer that
gives the time remaining in hours and
minutes.

b. A variable height question display area.
c. A fixed height menu bar that is comprised

of six click-buttons and two drop down
selection menus.

Figure 2: Initial Screen (multiple choice question)

Figure 3: Programming Question

d. A variable height answer area. For multiple
choice questions this consists of radio
buttons and for programming questions it is
a text area that initially contains skeleton
code.

2. A message window that is divided into two variable
sized areas (see figures 5, 6 and 7):

a. An area in which diagnostic messages are
displayed. For example, compilation error
messages and runtime exception messages.

b. An area used for data entry and the display
of information related to the differences in
expected program output and actual output.

The Rationale behind the division into windows and areas
is based on the idea that simplicity leads to ease of use -
creating too many windows makes the interpretation of
the actions of the application difficult to follow,
particularly in a stressful examination context. A user
should know immediately where to look for anticipated
output and how to control the application to maximize its
effectiveness. The areas within each window allow easy
(relative) resizing of areas with key roles. The initial
configuration consists of the two windows, side-by-side,
occupying most of the screen.

3.3 Examples

A client’s session begins with entering their password
(see figure 4).

Figure 4: Login Dialogue Box

If the password is correct, a connection will be
established with the server. The two primary windows
will then be displayed, with question 1 being displayed in
the question area in the question/control/answer window
(see figure 2). Figure 3 shows a programming question
being displayed together with the skeleton answer. The
answer window is a Java Swing text-area component that
allows program editing though its predefined editing
functions. While it would be clearly better to implement a
more sophisticated interface, for questions requiring only
small segments of code it is less of an issue. This will be
discussed further in section 6. For multiple-choice
questions, each option is displayed with a radio button
that allows its selection. Multiple-choice questions can
either be multi-valued (one or more options can be
selected) or single-valued (only one option can be
selected). Figure 2 shows an example of a multiple-
choice question.

For programming quest ions , the typical
edit/compile/execute cycle has been implemented as a
single operation. The point at which a student should
enter code must be specified in the skeleton (figure 3 has
the comment line “//enter your code here”).
After entering the code, the test button is used to tell the
tool to compile the answer and, if the compilation is
successful, execute the program with its pre-defined test
data. If compilation is not successful, the line containing
the first error is highlighted and the compilation error
message is displayed in the top area of the message
window (see figure 5).

Figure 5: Syntax Error Reporting

If compilation is successful, the tool will run the program
on test data and report if there were differences between
the expected output and the output produced by the
student’s program. Figure 8 gives an example of the
output produced if there are differences. The tool displays
all the output before the error and the next line after it (if
it exists) to ensure the context is clear to the user.

Figure 6: Output Differences

Although it is not possible to predict infinite loops, the
tool takes the pragmatic approach of terminating
execution after a fixed period of time. This covers the
usual cases of infinite computations and the less common
case of the program waiting for a non-existent event. The
only potential danger is that a correct program may be
terminated due to the host system being overloaded and
this execution taking an inordinate amount of time. A
generous period has been allowed for a program to
complete its execution in the hope that this will avert miss
reporting of infinite computations most of the time. In the
case of computations that are judged to be non-
terminating, the test input is displayed and an appropriate
message displayed (see figure 7).

Figure 7: Infinite Loop Detection

Prior to each attempt to compile and run a program, the
source code is transmitted to the server where it is saved
to disk. Previous versions are lost, although it would be
clearly beneficial for earlier versions to be recoverable.
There are reasonable arguments that support the idea that
providing a wealth of options typically increases the
complexity of the tool and can have an impact on a
student’s ability to make effective use of the tool,
particularly in the case of novice programmers.

Once a student has successfully answered a question (the
status of the current question is displayed on the question
menu button), or has decided to skip to another question,
they can use the question menu to review the status of
each question and select the next question to answer.

A question can be in one of the following states:

• Unvisited – the question has yet to be viewed

• Visited – the question has been viewed but not
answered

A multiple-choice question can have the following status:

• Answered – at least one option has been selected

A programming question can be in one of the following
states:

• Correct – the answer has been run and its output
was the same as the expected output.

• Error(s) – the testing of the program resulted in
a compilation error, an execution error or the
resulting computation was non-terminating.

Figure 8 gives an example of the question selection menu
showing various questions and their corresponding
statuses.

Figure 8: Question Menu

Other buttons provided in the control area are:

• Save – send the current answer to the server to
be stored on disk.

• Test – test the current answer with the default
test data.

• Test< - test the current answer with input
provided by the user (in the bottom message
area).

• Revert – revert to the original program provided
for the question

• Refresh - Revert to the last version of the
answer.

• Font+ - Increase the size of the font used to
display text.

• Font- Decrease the size of the font used to
display text.

• Exit – Exit the client.

Each critical action associated with a button requires
confirmation though a dialogue box.

3.4 Limitations
The client will run on any platform that has a Java
Development Kit, version 1.2 or later (JDK 2002), and
that can execute command scripts. The client has been
tested on Solaris, Windows NT and Mac OS X. It is
packaged as a JAR file and can be downloaded from the
Web.

Server scripts are Unix specific and while versions of the
scripts could be provided for different platforms, it would
be clearly beneficial to include their functionality directly
in the server.

4 Configuration and Set-up

An examination is set up by creating a directory with the
following contents:

• Question files named Q1, Q2 etc. where the file
specifies one of the following types of questions.
Part of that specification must be the number of
marks that have been allocated to the question.

o Simple multiple-choice (only one
option can be selected)

o General multiple-choice (one or more
options can be selected)

o Programming question

• Files named Q1.in, Q2.in etc. containing input
data for testing during the examination.

• A directory named “test” that contains files
named Q1.in, Q2.in etc. containing input data
for marking.

• A file called UIDS that must contain the
usernames, passwords and class of candidate
(“normal time” or several levels of “extended
time”) for all valid candidates.

Part of setting up an examination is to provide solutions
to all questions. This can be done using a client logged in

as a supervisor. During the marking process the
supervisor’s answers to programming questions are run
and their output stored so that it can be compared with the
output of candidates’ answers. The duration, and the
durations of extended time examinations, must be
specified when a server is started.

5 Experiences
The examination tool has been used for two consecutive
years in a level two, Java programming course whose
primary aim is to consolidate the programming skills and
knowledge gained in the introductory programming
course. The course’s focus in on improving the
programming proficiency and the assessment has been
designed with that in mind. Students sit two online
examinations, one mid-semester and the other in the usual
examination period.

One of the main complaints students had with
examinations that required the writing of code segments
was they did not have access to the usual information and
tools they had in the normal programming context (such
as the Java API documentation and topic Web pages); a
deficiency the tool was designed to address. While this
problem was mostly solved with the examination tool,
students reported the follow concerns (very vocally!) the
first time the tool was used.

• The duration of the examination was too short.
Although this is not an uncommon complaint for
most examinations, the protests were clearly
more heart felt than usual.

• The opportunity to demonstrate competence was
too limited. In particular, since programming
questions were graded as either incorrect (0
marks) or correct (whatever marks were
allocated to the question) students felt that it was
wrong to not reward solutions that were almost
correct.

• The reporting of incorrect output (differences
between expected and actual output) was not
always clear.

• More practice with trial examinations was
needed.

• The development environment did not match
their usual IDE, GRASP (GRASP 2002).

• The indexing of the topic’s web pages was
inadequate.

While most of the concerns were easily addressed, or
could be addressed with more development time and
cooperation with other researchers (for example, using a
grasp-like window for the answer area), by far the most
pressing issue to address was that of “sufficient
opportunity to demonstrate competence”.

Drawing on past experience in using a simple form of an
online exam in a course that taught programming in
Scheme (Abelson, Sussman and Sussman 1996), we
anticipated that designing a question set that ranged in
difficulty from basic to difficult would be sufficient to
ensure the correspondence between competence and

achieved marks. While this was relatively easy to achieve
with Scheme, in the case of Java, with its less regular
semantics and greater complexity, particularly in is type
structure and API, it was apparent that “sufficient
opportunity to demonstrate competence” was not
achieved to a reasonable degree.

For the final exam, despite attempting to ensure there
were sufficient basic competence questions, with a gentle
gradient in the difficulty of questions, the resulting raw
mark distribution, a double bell curve, indicated there
were still problems with marginal students being giving
sufficient opportunity to demonstrate their competence. It
could be argued that, at least for the 2001 version of the
topic, the online examinations were only one of three
types of assessment components and thus there were
opportunities to demonstrate competence in the written
examination, the goal was to use only online
examinations.

At least some of the poor performance of marginal
students could be attributed to poor examination
technique, in particular, spending disproportionate
amounts of time on some answers because they were
“very close to working” and subsequently not having
enough time to make reasonable attempts at other
questions. Prior to the examination students were advised
to apportion their time roughly equally between questions
but clearly some students chose to ignore the advice.

Since the course included some material on graphical user
interfaces, the examination tool needed to allow for
questions that required the use of graphical components.
Questions were designed with code that interrogated
graphical components to produce textual output that
could be compared in the usual way. Further, events (for
example, button presses), separated by sufficient delays
to allow students to see the effect on the GUI, were
artificially constructed by the test code to allow answers
to be fully tested. Segments of code from the skeleton
answer to one of these types of questions are given in
figure 9.

6 Conclusions and Future Directions

The examination tool described in this paper proved to be
a self-contained, easy to use, programming environment
that facilitates the development, testing and marking of
programming tasks in addition to the presentation and
marking of "standard" examination questions. The tool
takes responsibility for many of the tasks that program
development normally requires so that the student can
focus on the task of writing program source code. Our
experiences with its use in a Java programming topic for
two consecutive years have been generally positive. Two
of the key issues are the design of questions that primarily
examine one aspect of programming and the construction
of a question set that gently ranges in difficulty from
basic to difficult, ensuring marginal students have
sufficient opportunity to demonstrate their knowledge and
skills.

Figure 9: Skeleton Answer Code Segments

A step towards remedying one of the most fundamental
problems with the tool, that is does not allow for the
awarding of partial marks for approximate solutions,
would be to test programs on several sets of data, ranging
from simple to comprehensive. Both the in-exam testing
component and post-exam marking component of the tool
could easily be modified to allow testing on several data
sets. The more problematical issue is the design of tasks
where sub-tasks can be cleanly separated for individual
testing.

The tool has some deficiencies that will be remedied in
future versions. In particular, a more sophisticated, or
even “pluggable”, program-editing window would allow
students to use a familiar editing tool. Also, to be of
general use, documentation needs to be provided that
would cover installation, configuration and a guide to
constructing questions.

Finally, we acknowledge that we have not made reference
to a number of other developments in the area that relate
to the automation, to varying degrees, of the testing and
grading of programming exercises (for example, REEK
1989 and KAY et. al. 1994). In developing our system
further, we will draw on the experiences of the
researchers involved.

7 References

ABELSON, H., SUSSMAN, G.J. and SUSSMAN, J.
(1996): Structure and Interpretation of Computer
Programs – 2nd Edition, MIT Press, Cambridge,
Massachusetts.

GRASP (2002): Graphical Representations of
Algorithms, Structures, and Processes, available at
http://www.eng.auburn.edu/department/cse/research/gr
asp, accessed 23/9/2002.

JACKSON, D. and USHER, M. (1997): Grading Student
Programs using ASSYST, SIGCSE 1997.

JACKSON, D (2000): A Semi-Automated Approach to
Online Assessment, Proceedings of the 5th Annual
Conference on Innovation and Technology in
Computer Science Education, Helsinki, Finland.

JDK (2002): available at http://java.sun.com, accessed
23/9/2002.

J I K E S (2 0 0 2) , a v a i l a b l e a t
http://oss.software.ibm.com/developerworks/opensourc
e/jikes/, accessed 23/09/2002.

JOY, M. and Luck, M. (1998): Effective Electronic
Marking for On-line Assessment, Proceedings of the
3rd Annual Conference on Innovation and Technology
in Computer Science Education, Dublin, Ireland.

KAY, D. G., ISAACSON, P. C., SCOTT, T. A., and
REEK, K. A (1994): Automated grading assistance for
student programs (panel presentation). In Proceedings
of the 25th SIGCSE Technical Symposium, p. 381.

MCCRACKEN, M. (2001): Assessment of Programming
Skills of First Year CS Students: Do they know how to
program. Working Group Proposal, Proceedings of the
6th Annual Conference on Innovation and Technology
in Computer Science Education, Cantebury, UK.

PRESTON, J.A. and SHACKELFORD, R. (1999):
Improving On-line Assessment: an Investigation of
Existing Marking Methodologies, Proceedings of the
4th Annual Conference on Innovation and Technology
in Computer Science Education, Cracow, Poland.

REEK, K. (1989): The TRY system – or – how to avoid
testing student programs. In Proc. 20th SIGCSE
Technical Symposium On Computer Science
Education, pp 112-116.

WebCT (2002): available at http://www.webct.com/,
accessed 23/9/2002.

WILLIAMS, L.A. and KESSLER, R.R. (2000):
Introducing Pair-Learning into Computer Science
Education: Journal on Computer Science Education.

class A13 {
 public static void main(String[] args) …
 MyFrame p = new
 MyFrame(stdin.readLine()) ;
 … // code omitted
 for (int i = 0 ; i < reps ; i++) {
 ((MyButton)p.getComponent(0)).
 setBackground(Color.blue) ;
 try {
 Thread.sleep(1000) ;
 } catch (Exception e) {} ;
 … // code omitted
 ((MyButton)p.getComponent(0)).pe(
 new ActionEvent(
 p.getComponent(0),1,"action"));
 }
 System.out.println(p.getComponent(0)) ;
 System.exit(0) ;
 } // end main
}
class MyButton extends Button
 … // code omitted
class MyFrame extends Frame {
 MyFrame(String name) {
 super(name) ;
 … // code omitted
// Your code goes after this line - add a
// BListener to b1

 } // end of MyFrame constructor
}
class BListener implements ActionListener {
// More of your code goes after this line.
// Complete the declaration of the class
// Blistener

}

