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Abstract

The last decade has witnessed the prevalence of sensor
and GPS technologies that produce a sheer volume
of trajectory data representing the motion history of
moving objects. Measuring similarity between tra-
jectories is undoubtedly one of the most important
tasks in trajectory data management since it serves
as the foundation of many advanced analyses such
as similarity search, clustering, and classification. In
this light, tremendous efforts have been spent on this
topic, which results in a large number of trajectory
similarity measures. Generally, each individual work
introducing a new distance measure has made spe-
cific claims on the superiority of their proposal. How-
ever, for most works, the experimental study was fo-
cused on demonstrating the efficiency of the search
algorithms, leaving the effectiveness aspect unverified
empirically. In this paper, we conduct a compara-
tive experimental study on the effectiveness of six
widely used trajectory similarity measures based on a
real taxi trajectory dataset. By applying a variety of
transformations we designed for each original trajec-
tory, our experimental observations demonstrate the
advantages and drawbacks of these similarity mea-
sures in different circumstances.

1 Introduction

Driven by major advances in sensor technology, GPS-
enabled mobile devices and wireless communication,
large amounts of data describing the motion history
of moving objects, known as trajectories, are cur-
rently generated and managed in many of application
domains such as environmental information systems,
meteorology, wireless technology, video tracking, or
video motion capture (Zheng et al. n.d., Shang et al.
2012, Zheng et al. 2011, Xie et al. 2009, Chen et al.
2010, Zheng et al. 2010, Chen et al. 2011). Typical
examples include collecting the GPS location histo-
ries of taxicabs for safety and management purpose,
tracking animals for their migration patterns, gath-
ering human motion data by tracking body joints, or
tracing the evolution of migrating particles in biolog-
ical sciences.

The trajectory of a moving object is typically mod-
elled as a time-stamped sequence of consecutive lo-
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cations in a multidimensional (generally two or three
dimensional) space. Such type of data has offered un-
precedented information to help understand the be-
haviour of moving objects, and resulted in growing
interest of data analysis in such data. An important
problem in such analysis is designing techniques for
identifying trajectories that are similar. Such tech-
niques can be used by many data analysis tasks in-
cluding trajectory clustering, classification, and k-
nearest neighbor search, which have a broad range of
real applications. For instance, in many sports such
as football and tennis, it is very useful for sports re-
searchers to figure out the movement patterns of top
players by finding similar trajectories of objects (play-
ers, balls) motions. By analyzing similar trajectories
of animals, it is possible to determine migration pat-
terns for them. In a city traffic monitoring system,
it is helpful to locate popular routes by comparing
similarity between vehicles trajectories.

A fundamental ingredient of such trajectory anal-
ysis tasks is the distance/similarity measure that can
effectively determine the similarity of trajectories.
But unlike other simple data types such as ordinal
variables or geometric points where the distance def-
inition is straightforward, the distance between tra-
jectories needs to be carefully defined in order to re-
flect the true underlying similarity. This is due to
the fact that trajectories are essentially high dimen-
sional data attached with both spatial and temporal
attributes, which needs to be considered for similarity
measures. Therefore, over ten of distance/similarity
measures have been proposed in the literature, e.g.,
Euclidean distance (ED) (Jonkery et al. 1980), Dy-
namic Time Warping (DTW) (Soong & Rosenberg
1988), distance based on Longest Common Subse-
quence (LCSS) (Kearney & Hansen 1990),Edit Dis-
tance with Real Penalty (ERP) (Chen & Ng 2004),
Edit Distance on Real sequence (EDR) (Chen et al.
2005). Many of these works and some of their ex-
tensions have been widely cited in the literature and
applied to facilitate query processing and data mining
in trajectory data.

Given the multitude of competitive techniques, a
good understanding the effectiveness of various sim-
ilarity measures is important. Very often a newly
introduced distance measure has claimed a particular
advantage over some others by using an exemplified
explanation. Also most of those works focused on
evaluating the efficiency of their pruning and search-
ing algorithms, while leaving the effectiveness study,
i.e., how their proposed distance measures truly re-
flects the similarity between trajectories under dif-
ferent circumstances, inadequate or even completely
omitted. In this light, we argue that there is a strong
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need for an empirical study on the effectiveness of
trajectory similarity measures. More specifically, in
this paper we have implemented 6 widely used trajec-
tory similarity measures (shown in following list), and
study their effectiveness in different circumstances us-
ing a common real world taxicab trajectory dataset.

• Euclidean Distance Measure

– Euclidean Distance

• Dynamic Time Warping based Measures

– DTW

– PDTW

• Edit Distance based Measures

– EDR

– ERP

• Longest Common Subsequence based Measures

– LCSS

In summary, we make the following contributions
in this work.

• We observe the absence and importance of an
objective effectiveness study on widely used tra-
jectory similarity measures.

• In order to overcome the lack of benchmark
dataset for effectiveness test, we devise a set of
reasonable transformation functions for the orig-
inal trajectory data, the variance of which is con-
trolled by parameters.

• We evaluate the similarity between original and
transformed trajectories, and study how the sim-
ilarity is reflected in six different distance mea-
sures.

The rest of the paper is organised as follows. Sec-
tion 2 presents the preliminary concepts and briefly
review the trajectory similarity measures we are
about to examine in this work. In Section 3, we dis-
cuss the trajectory dataset used in this study, the
types of transformations applied to the trajectories,
and the experimental observations regarding the ef-
fectiveness of the compared similarity measures. We
finally give our conclusion in Section 4.

2 Similarity Measures for Trajectories

Theoretically a trajectory represents the continuous
motion history of a moving object. However, due
to the limitation of location positioning devices (e.g,
sensors, GPS devices), a trajectory in real world is
a sequence of positions observed at discrete time in-
stances. This is also the reason that most of the exist-
ing works on trajectories assume the time is discrete
rather than continuous. Without loss of generality, we
make the same assumption in this paper. Formally, a
trajectory can be defined as the follows:

DEFINITION 1 A trajectory Tr is a finite se-
quence of geo-locations with timestamps, i.e., Tr =
(p1, t1), (p2, t2), ..., (pn, tn) with ti < ti+1 for i =
1, 2, ..., n − 1. pi is a sampling point that is observed
at time ti.

Generally the location of a sampling point of a tra-
jectory is represented by a coordinate in multidimen-
sional space. But for the sake of simplicity, in this pa-
per we focus on trajectories in two dimensional space
since it is applicable to a wide variety of application
scenarios. Thus, each sampling point is represented
by a pair (x, y), denoting longitude and latitude re-
spectively.

In the following subsections, we briefly review the
trajectory similarity measures studied in this work.
Notice that this is not meant to be a complete survey
for the respective field and is only intended to provide
the readers with a necessary background for following
our experimental evaluations.

2.1 Euclidean Distance Measure

Euclidean distance, also known as L2-norm, is dis-
tance measure in literature for a variety of applica-
tions. Given two trajectories T1, T2, the Euclidean
distance d(T1, T2) can be calculate as, d(T1, T2) =∑n

i=1
d(p1,i,p2,i)

n , where d(p1,i, p2,i) is the distance on
spatial space. Euclidean distance is easy to imple-
ment and indexable with many access methods, and
it is parameter-free. In addition, the complexity of
Euclidean distance measure is linear, which means it
can handle a large size of trajectory data set. Eu-
clidean distance is proposed as a distance measure
between time series and is one of most commonly
used similarity function since 1960s (Priestley 1980,
Pfeifer & Deutsch 1980, Faloutsos et al. 1994, Keogh
& Pazzani 2000). Later, Euclidean distance is also
extended to measure the distance between trajecto-
ries (Clarke 1976, Richalet et al. 1978, Jonkery et al.
1980, Sanderson & Wong 1980, Takens 1980), since
trajectories and time series have the similar represen-
tations.

2.2 Dynamic Time Warping based Measures

Dynamic Time Warping(DTW) is a well-known algo-
rithm for finding similar trajectory patterns between
two trajectories. The definition of DTW uses a re-
cursive manner to search all possible point combina-
tions between two trajectories for the one with min-
imal distance, which can be converted to dynamic
programming very easily. DTW allows to find a simi-
lar pattern between two given trajectories, which can
be of different lengths, with or without time informa-
tion. Moreover, the original DTW similarity measure
is also parameter-free. For example, two trajectories
are separately generated by a slowly moving object
and a fast moving object, DTW can still report their
similarity pattern. DTW was first introduced to com-
pute the distance of time series (Myers et al. 1980). In
1980s,(Kruskal 1983, Soong & Rosenberg 1988, Pic-
ton et al. 1988, Ostendorf & Roukos 1989) introduced
DTW to measure trajectory distance. For a huge data
set, DTW is time-consuming and I/O-consuming. To
speed up DTW and reduce I/O cost, several prun-
ing methods have been introduced such as FastMap
method and lower bound method (Sakurai et al. 2005,
Yi et al. 1998).
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Piecewise Dynamic Time Warping
(PDTW) (Keogh & Pazzani 2000) is another
dynamic time warping based similarity trajectory
function, which is improved from DTW. PDTW
speeds up DTW by a large constant c, where c is
data dependent. PDTW uses two steps to calcu-
late similarity trajectory pattern. The first step
called Piecewise Aggregate Approximation (PAA),
which cuts a given trajectory into c pieces, where
[pc∗(i−1)+1, pc∗(i−1)+2, · · · , pc ∗ i] is i-th piece. For
piece i, PAA computes p̄i as a representitive point
and transform trajectory T into piecewise approx-
imation T̄ = [p̄1, p̄2, · · · , p̄N ]. Then, in the second
step, PDTW process DTW distance to find similar
trajectory patterns between transformed trajectories
T̄1 and T̄2.

2.3 Edit Distance based Measures

Edit distance with Real Penalty (ERP) (Chen & Ng
2004) is an edit distance (ED) based trajectory sim-
ilarity measure. ERP uses L1-norm as the distance
measure. Introducing L1-norm makes ERP a metric
measure, which is a prominent advantage over DTW
and LCSS, as metric measures allow for efficient prun-
ing. In addition, ERP distance is defined on normal-
ized trajectory data for amplitude scaling and global
spatial shifting. ERP normalize a trajectory T by
shifting by its mean (µ) and scaling by its standard
deviation(σ): Norm(T ) = [p1−µσ , p2−µσ , . . . , pn−µσ ].

Edit Distance on Real sequence (EDR) (Chen
et al. 2005) is another edit distance (ED) based tra-
jectory similarity measure. EDR also uses a threshold
ε to detect sample points matching, which is similar
with LCSS. Like ERP, EDR also uses normalized tra-
jectory data, in order to be invariant to scaling and
shifting. Different with ERP, for each sample point
pi in T , the position values of x, y are normalized by
using the corresponding mean (µx), (µy) and stan-
dard deviation (σx), (σy), respectively: Norm(T ) =

[(
p1,x−µx

σx
,
p1,y−µy

σy
), · · · , (pn,x−µx

σx
,
pn,y−µy

σy
)]. The

matching defined by EDR is match(pi, pj) for a pair
of trajectories’ sample points, where pi ∈ T and
pj ∈ T ′, T 6= T ′. match(pi, pj) is true if and only
if |pi,x − pj,x| ≤ ε and |pi,y − pj,y| ≤ ε, where ε is
the matching threshold. If match(pi, pj) is true, the
subcost (i.e. edit distance) between pi and pj is 0,
otherwise the subcost = 1.

2.4 Longest Common Subsequence based
Measures

Some similarity measures work well based on the as-
sumption how the trajectory data are clean. However,
the trajectory data generated by GPS devices are not
clean enough due to device’s accuracy limitation, bad
GPS signals, and other factors. Therefore, a similar-
ity measure which is more robust for processing low
quality trajectory data attracts great research inter-
est. Longest common subsequence (LCSS) is one of
most popular measurements, which is used for string
similarity, (Ichiye & Karplus 1991, Robinson 1990)
apply LCSS as trajectory similarity measure. For de-
tecting sample points matching like string’s charac-
ters matching, a threshold ε is used, if two points’
distance less than ε, they are considered to match.
The basic idea of LCSS is that it allows some sample
points unmatched to match some sequences in trajec-
tories. LCSS is good for processing with low qual-
ity trajectory data (i.e. noisy trajectory data), which

can figure out similarity trajectories in high accuracy.
However, it may lead to some inaccuracy, since it does
not consider various unmatched sequences in trajec-
tories. We illustrate this case in our experiment.

3 Effectiveness Study

In this section we present the trajectory dataset used
in this study, the types of transformations applied to
the trajectories, and the experimental observations
regarding the effectiveness of the compared similarity
measures.

3.1 Dataset

We employed the dataset of Beijing taxi trajecto-
ries (Zheng et al. 2009) for our experimental study.
This is a real-world trajectory dataset generated by
30,000 taxicabs in Beijing in a period of 3 months.
Figure 1 shows an example of the taxi trajectories
superimposed on Google Map, in which the sample
points of trajectory are represented by square marks
on the map. The sampling rate of this data set is
approximately 30 seconds, which means the time du-
ration between consecutive sampling points is about
30 seconds. Since in this study we mainly focus on
effectiveness rather than scalability, we randomly se-
lected 1000 trajectories from the dataset, where each
contains at least 100 sampling points.

Figure 1: Trajectory Example

3.2 Trajectory Transformations

Evaluating effectiveness of different similarity mea-
sures objectively is a challenging task due to the lack
of a widely recognized benchmark dataset, where the
ground-truth distance between any pair of trajecto-
ries is known in advance. Therefore, while most previ-
ous works put emphasis on the scalability test for the
similarity measures, none of them have conducted ex-
periments on the effectiveness. In this work, we tackle
this problem from a novel aspect by having the fol-
lowing two observations. First, an identical motion
history can be represented by different trajectories
due to the variance in sampling time, sampling rate
or possible noises. Second, in spite of different repre-
sentations, they should still have high similarity based
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on any good similarity measure since they all actually
refer to the same motion record.

Based upon this, our evaluation procedure works
as follows. We firstly pick up a trajectory as the orig-
inal trajectory. Then we perform several types of
transformations on the original trajectory in a con-
trolled way (by using parameters), resulting in a set
of transformed trajectories. For each transformation,
we will evaluate the distance between the original and
transformed trajectories and tune the parameter to
see how their distance is affected. The rational be-
hind this is that, with a reasonable similarity mea-
sure, the trajectory with a lower degree of transfor-
mation should have higher similarity with the original
trajectory, and vice versa.

We devise three types of transformation functions,
namely re-sampling a trajectory, shifting trajectory
points, and adding noise. These transformations are
controlled by two parameters, rate and distance. The
parameter rate is used to specify the percentage of
the trajectory points that will be transformed; for in-
stance, rate = 0.1 means that 10% of the trajectory
points are to be transformed by the transformation
function, distance = 0.0001 means that the trajec-
tory points are to be shifted around 11 meters by
transformation function. The parameter distance is
a threshold on how far a trajectory point might be
shifted with respect to the original point. Table 1
summarizes all the transformation functions and the
parameters.

Re-sampling trajectory. There are two ways to
re-sample a trajectory, i.e., increasing sampling rate
and decreasing sampling rate. To increasing sampling
rate, we will randomly add rate extra points to the
original trajectory. Analogously, to decrease sampling
rate, we randomly remove rate points from the origi-
nal trajectory. Figure 2 and Figure 3 exemplify those
two opposite transformations.

Figure 2: Increase Sampling Rate Transformation
Function

Point shift. Unlike the re-sampling transforma-
tion, point shift does not change the number of tra-
jectory points. Instead, it changes the locations of
them. To do so, we randomly select rate of the tra-
jectory points and shift them by distance. There are
two ways to shift the points, i.e., random shift and
synchronized shift. Random shift will change the po-
sition of each selected point arbitrarily without con-
sidering the other shifted points, while synchronized
shift will translate all the selected points in the same
way (same offset and direction). Additionally, point

Figure 3: Decrease Sampling Rate Transformation
Function

shift transformation would not change the shape of
original trajectories. Figure 4 and Figure 5 illustrate
these two shift transformations.

Figure 4: Random Shift Transformation Function

Figure 5: Synchronized Shift Transformation Func-
tion

Adding noise. The last transformation function
is to add rate noises/outliers to the original trajec-
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Table 1: Types of Trajectory Transformations

Transformation Type Operation Adjustable Parameters

Re-sampling Increase sampling rate (add points) rate

Decrease sampling rate (remove points) rate

Point shift Random shift rate, distance

Synchronized shift rate, distance

Noise Add noise rate, distance

tory. The gap between the noisy points and the origi-
nal trajectory is controlled by the parameter distance.
We use an example to demonstrate this transforma-
tion in Figure 6.

Figure 6: Add Noise Transformation Function

3.3 Experimental Observations

In this part, we apply the set of transformations
to the original trajectories and compute the dis-
tance/similarity between the original and trans-
formed trajectories based on each similarity measure.
Specifically, for each similarity measure, we conduct
two sets of experiments. First, we fix the parame-
ter distance as constant (distance = 0.0015) , and
then vary the parameter rate from 0.1 to 0.6 with
the step of 0.1. However, EDR and LCSS measures
use another threshold ε to determine the matched
pairs of points. The relationship between distance
and ε will heavily affect the results. Therefore, we
conduct two sets of experiments for LCSS and EDR,
i.e., with ε = 0.002 being greater than distance, and
ε = 0.0004 being less than distance. Furthermore,
adding 10% − 60% noise points into trajectory are
too much and could change the shape of original tra-
jectory, hence we reduce the transformation rate of
adding noise function from 0.1 to 0.06 with the step
of 0.01, which is one-tenth of previous parameter rate.

Second, we fix the parameter rate as constant
(rate = 0.3)1, and change the value of parameter
distance from 0.0005 to 0.004 (Euclidean distance in
spatial space) with the step of 0.0005. We only change
the transformation distance for random shift, syn-
chronised shift and adding noise as only these trans-
formations are affected by this parameter.

1Transformation rate of add noise function is set to 0.03

For all the similarity measures except LCSS and
EDR, we report the distance between the original and
transformed trajectories. Hence a greater value indi-
cates a lower similarity.
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Euclidean Distance Measure. The result of
Euclidean distance with varying rate is shown in Fig-
ure 71 . We can see that, the distance between
the original and transformed trajectories with re-
sampling and noise increases quickly as the transfor-
mation rate rises. This implies that the Euclidean
distance is sensitive to sampling rate or noise. On
the other hand, shifting sampling points within cer-
tain range has little influence on the distance.

Next, we illustrate the result of Euclidean distance
with different transformation distance in Figure 8.
As expected, the distance between the original and
transformed trajectories with point shift gradually in-
creases as the transformation distance increases. But
adding noises will make the transformed trajectory
completely dissimilar with the original one, which
again indicates that Euclidean distance is sensitive
to outliers.
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tion rate
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Dynamic Time Warping based Measures.
The performance of DTW with changing rate is

1Transformation rate of add noise function is one-tenth of x-
axis’s value, the follow figures use same setting for transformation
rate of add noise. The y-axis distance value is defined by definition
of trajectory similarity measures

shown in Figure 9. It can be observed that DTW
achieves a relatively good performance with low
transformation rate (i.e. rate < 20%). DTW is more
robust to the random shift transformation. Besides it
is more sensitive to decreasing sampling rate than in-
creasing sampling rate. Also DTW may not be a good
choice when the trajectory data is contaminated by
noises.

We then evaluate the DTW distance with dif-
ferent transformation distances. As shown in Fig-
ure 10, DTW is more sensitive to transformation dis-
tance than transformation rate as all distances in-
crease quickly when the transformation distance gets
enlarged. DTW may not handle dramatic sampling
points shift well especially for the synchronized shift.
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Figure 11: Result of PDTW with different transfor-
mation rate
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Figure 12: Result of PDTW with different transfor-
mation distance

Figure 11 shows the results of PDTW with dif-
ferent transformation rate, which are similar with
DTW, since PDTW is a variant improved from DTW.
However, after applying the PAA method, the effec-
tiveness of PDTW is better than DTW. With the
same scale and unit as in the experiments of DTW,
we can see the distance reported by PDTW are less
than DTW for all transformation rates, especially for
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increasing sampling rate, adding noise and synchro-
nized shifting function.

The performance of PDTW with different trans-
formation distance is shown in Figure 12. Unlike
DTW, PDTW is not sensitive to length of distance of
transformation. As a result, PDTW may work well in
measuring the similarity for trajectories with a large
number of inaccurate points (i.e, point with large de-
viation from its true location).
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Figure 13: Result of EDR with different transforma-
tion rate and ε less than distance of transformation
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Figure 14: Result of EDR with different transforma-
tion rate and ε larger than distance of transformation

Edit Distance based Measures. We first eval-
uate the effectiveness of EDR with different trans-
formation rate. In Figure 14, the distances between
the original and transformed trajectories are all large,
since the transformation distance of the sample points
is larger than its threshold ε. In this case, most
shifted points will have no matched point in the orig-
inal trajectory, hence increasing the EDR distance.

We also conduct another set of experiments by re-
stricting the transformation distance to be smaller
than ε, the result of which is shown in Figure 14.
Based on the result, we can see that EDR is very sen-

sitive to altering sampling rate or adding noise. How-
ever, EDR still serves as a good distance measure for
handling sampling point shift.
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Figure 15: Result of ERP with different transforma-
tion rate
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Figure 16: Result of ERP with different transforma-
tion distance

Second, we illustrate the experiment result of ERP
distance with different transformation rates in Fig-
ure 15. From the result we observe that ERP is robust
to sample points shifting. Even the transformation
rate goes very high, ERP still achieve good perfor-
mance in capturing the similarity between trajecto-
ries with sample point shifting. ERP can also handle
the trajectories with a small number of noises. How-
ever, it is sensitive to the changes in sampling rate of
trajectories.

Figure 16 shows the experiment result of ERP dis-
tance with different transformation distance. Based
on this distance measure, the transformed trajectory
with random shift is very similar to the original one,
which means ERP distance is robust to random shift.
But still, ERP is quite sensitive to noisy data since
adding noise to the original trajectory will result in a
large distance value.
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Table 2: Comparative Results of Trajectory Similarity Measures

Euclidean Distance DTW PDTW EDR ERP LCSS

Add noise Sensitive Sensitive Fair Sensitive Sensitive Robust

Increasing sampling rate Sensitive Fair Fair Sensitive Sensitive Robust

Decrease sampling rate Sensitive Sensitive Sensitive Fair Fair Sensitive

Random shift Robust Robust Robust Robust Robust Fair

Synchronized shift Robust Sensitive Robust Robust Robust Fair
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Figure 17: Result of LCSS with different transforma-
tion rate and ε less than distance of transformation
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Figure 18: Result of LCSS different transformation
rate and ε larger than distance of transformation

Longest Common Subsequence Measure.
Finally, we evaluate the distance based on LCSS
for different transformations, which is shown in
Figure 17. Due to different definition of LCSS,
we use normalized similarity as the output, which
is instead of distance. Interestingly, LCSS has
perfect performance for the transformation with
increasing sampling rate, but bad performance
for transformation with decreasing sample rate.
This is due to the fact that LCSS is calculated
based on common subsequences shared between

trajectories, which is not affected by increasing
sampling rate. For instance, given a trajectory
sequence Tr = [(1, 1, t1), (2, 2, t2), ..., (10, 10, t10)]
with length l = 10. By increasing sampling rate,
we have a transformed trajectory TrI = [(1, 1, t1),
(1.5, 1.5, t′1), (2, 2, t2), (2.5, 2.5, t′2), ..., (10, 10, t10)]
with length l = 20; by decreasing sam-
pling rate, we have a transformed trajectory
TrD = [(1, 1, t1), (3, 3, t3), ..., (9, 9, t9)] with length
l = 5. Clearly, the length of common sequence that
is reported by LCSS between Tr and TrI is larger
than that between Tr and TrD. Besides, LCSS has
a good performance to process noisy trajectory data,
but might not be suitable for measuring trajectories
that contain shifted sampling points.

At last, we provide an extra experiment for LCSS
by setting threshold ε larger than the transformation
distance, the result of which is shown in Figure 18. As
expected, the transformed trajectories are all treated
as identical to the original one, except the one with
decreasing sample rate.

In conclusion, there is no trajectory similarity
measure that can beat all the others in every cir-
cumstance. Table 2 is shown summarized results for
each trajectory similarity measures, which are com-
pared based on transformation functions (first col-
umn). There are three levels, “Sensitive” , “Fair”
and “Robust”, which are illustrated the results. In
general, Euclidean distance is a good choice when
the trajectory data have similar sampling rate and
high quality (small point shift) due to its simplicity
in implementation and low computation complexity.
PDTW is more robust to most transformations than
DTW since it adopts the piece-wise aggregation to the
raw trajectory before the distance computation. Edit
distance based measures (EDR and ERP) achieve
good effectiveness with point shift transformations,
but are sensitive to altering sampling rate and out-
liers. On the contrary, LCSS is almost immune to
increasing sampling rate and noises but sensitive to
point shift. It seems no similarity measure works well
for decreasing sampling rate, implying that process-
ing low-sampling-rate trajectories can be a challeng-
ing problem (Lou et al. 2009)(Zheng et al. 2012).

4 Conclusion

In this work, we have made the effort to re-implement
the investigated similarity measures and evaluate
their effectiveness in an objective manner. Further
we have devised a set of transformation functions for
trajectory data that can serve as a basis for a com-
parative efficiency tests. The purpose of this work
is to provide a quantitative analysis on the effective-
ness of the trajectory similarity measures. We hope
this work can serve as a starting point for providing
benchmarks for future research on trajectory similar-
ity measures.
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