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Abstract

In recent microarray experiments thousands of gene
expressions are simultaneously tested in comparing
samples (e.g., tissue types or experimental conditions).
Application of a statistical test, such as the t-test, would
lead to a p-value for each gene that reflects the amount of
statistical evidence present in the data that the given gene
is indeed differentially expressed. We show how to use
these p-values across the genes using the method of
empirical Bayes estimation so that each gene in turn
borrows evidence of differential expression (or non-
differential expression, whatever the case may be) from
all other genes on the microarray. A new set of
accept/reject decisions are reached for the differential
expressions using the empirical Bayes adjusted p-values
through a resampling based step-down p-value calculation
that protects the analyst against the overall (familywise)
type 1 error rate. The utility of incorporating the empirical
Bayes adjustment is illustrated via a number of simulation
experiments where we compute various performance
measures such as sensitivity, specificity, false discovery
rate and false non-discovery rate of the overall testing
mechanism with and without the empirical Bayes
adjustment.

Keywords: Differentially expressed genes, p-values,
multiple testing, microarray, empirical Bayes

1     Introduction

In a typical microarray experiment, expression levels of
thousands of genes are simultaneously  measured and
compared in two (or more) tissue types. A gene is
declared to be differentially expressed if its average
difference in expression in the two tissue types is judged
to be ‘statistically significant’ .  Statistical significance is
__________________________
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typically achieved by using a t-test for comparing the
mean expression levels of each genes in the two groups.
Since the number of genes involved is huge, setting the
type of error rate at 5% for each gene would lead to a
large number of false positives in the entire experiment.
One way to address this issue is to control the overall or
familywise error rate, say at 5%, which would mean that
there is a 5% chance that the procedure would declare at
least one gene to be differentially expressed in the two
tissue types when indeed no gene is differentially
expressed. Controlling the familywise error rate in the
context of microarray experiment is achieved by adjusting
the p-values (observed levels of significance) of each
gene via a permutation based step-down algorithm
(Dudoit et al., 2002).  Very recently, Datta et al. (2003)
advocated the use of an empirical Bayes adjustment of all
the t-test statistics prior to applying the step-down p-value
adjustment algorithm. The empirical Bayes idea is to
exploit the similarity in the structure of the statistical
testing problems for each gene and "borrow evidence" for
or against  differential expression from other genes
besides the data for a given gene. In this paper, we
propose another novel empirical Bayes adjustment that
applies to the p-values of multiple tests rather than the
tests themselves. It has the following three distinct
advantages over the earlier procedure in Datta et al.
(2003): (i) since it applies to the p-values, the tests don't
have to be t-tests; in particular they could be F-tests which
might arise in certain ANOVA formulation with
expression data (Kerr , 2000), (ii) the empiricalet al.
Bayes adjustment uses nonparametric techniques to
estimate the marginal density of the p-values rather than
using a parametric model for the prior distribution and is
therefore robust against model mis-specification, (iii)
since the null (marginal) distribution of each p-value is
uniform, the step-down procedure may simplify in certain
situation.  The rest of the paper is organized as follows.
The details, including the motivation of the empirical
Bayes adjustment is explained in Section 2. This section
also contains a description  of the step-down p-value
computation algorithm and when a particular gene will be
considered to be differentially expressed. In Section 3, we
report the results of a number of simulation studies where



the performance of our procedure is compared with the
step-down p-value alone. In all cases, the empirical Bayes
adjustment led to an increase in the overall sensitivity (a
commonly employed global measure of performance in
multiple testing). In many cases the increase is more
substantial than achieved by the earlier proposed
empirical Bayes adjustments (Datta , 2003).  Theet al
paper ends with a discussion section.

2     Method

2.1     The Empirical Bayes Formulation

Suppose, we have a number of tests of similar structure
with associated p-values denoted In���������	��
����
microarray studies, would equal the total number of

genes (probe sets etc.) on a microarray and for the th�
gene might be the observed level of significance for a���
test  that compares its average expression levels in two
tissue types, say normal versus cancer cells.  The p-values
indicate evidence against the null hypotheses in the sense
that the smaller a p-value, the more significant the
evidence is that the gene is indeed differentially
expressed. In general, it is defined as the chance of
observing a value of the test statistic that is as extreme as
(e.g., as large as) the value of the test statistic for the
sample at hand, when indeed the gene is not differentially
expressed. Thus, it is always a function of the sample test
statistic and hence a random variable. Under the null
hypothesis of no differential expression, is a uniformly���
distributed on the interval . In the empirical Bayes

��� �����
formulation, we embed these distributions in a larger
family of parametric distributions which also support the
alternative hypotheses. One such model would be to
consider a uniform distribution with a scale parameter � � �
for the th gene. Since our goal is to identify genes with�
“small”  -values, we would test a new set of hypotheses������ � ����� �� �

� �� �� �versus in this model. Since we
are faced with simultaneous testing of a (large) number of
hypotheses of similar structure, we

� �������	��
���
might do better by combining data of all genes using an
empirical Bayes approach (Robbins, 1964; Efron and
Morris, 1975). To that end, assume a common, but
unknown prior distribution , say, for each on 

� ��� ����� �� �
A Bayes test of  against would reject for small

� � �� � �� � �
values of  , that is, the posterior mean of � � � ! �#" �$� ��% � ��
Since the prior distribution is unknown, this posterior

�
mean needs to be estimated through nonparametric
function estimation techniques from data across all genes
that share this common prior distribution which we now
pursue. The resulting estimated posterior mean would be
called an empirical Bayes estimate of and is denoted� ��� �&'% .

2.1.1  Construction of ()+*,.-
It follows from straightforward calculation (Datta, 1991)
that the posterior mean of with respect to a

! �#" �$�� �� ��
prior  is given by

�
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where  is the common  marginal density of the D >XWBP
 

Therefore, we could estimate  by a kernel densityD P
estimator based on the >B

DYE[Z\F = ] A Z_^�`B abdc cZfe >BP g[hjik gl m n
,

where is a given kernel (density) and is a] c�o `
bandwidth. Both and are user selectable, and some] c
empirical guidelines are provided in subsection 2.3.

Next note that, for any ,Zp q rC D#EGFIH =ts C AK3L5uvN K[M�L5uvNP JRJ OT < VRV
which, in turn, can be estimated by its empirical
counterpart
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Combining these pieces we now obtain an empirical
Bayes estimate of given byV J
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where ] E���F = c ] E���� c F W~ w i
2.2     The Step Down P-value Calculation

After calculating the empirical Bayes estimates forVB AJ{'|
all genes the n

� A ext step would be to compute the
corresponding step-down adjusted p-values following>� J
the general algorithm of Westfall and Young (1993).

Step 1: Find the rank orders such that� J� V V VB B B�������d� � � = � � A a � � � b{'| {'| {'|J� � �� � <and let  be
the ordered values by their magnitudes.

Step 2: Generate a collection of random variables >�AB��Ja � � � b
 from the (approximate) null distribution of

the original >�A a � � � b WB J
Step 3: Convert the to the corresponding empirical>B��
Bayes estimates by formula (1), with in place ofVB >B� {'| �>B throughout and let  (Note that

� = � � A a � � � bBJ � � {'|V � <
the ordering  is not changed during resampling) and� J
monotonize them by min( , ), 

� = ��� � = E b e a F AJ J�J� ���
+1� A a W

Step 4: Repeat Steps 2 and 3 a large number of times, say� A and denote the 
� � E a F A � A � E � F W� � �J J J values by 



Step 5: Compute

> = � C7E � E � F ��� F� � < w i �
� hji| J Jl

 

and monotonize them as for ~> = E >�A > F A � =�� A� �� ��< < �\�<max� A b W
For any given (e.g., ) representing`�� � a A = ` W `	�
 

the familywise error rate control, declare genes � A � A �i �

�
to be differentially expressed, where = � a �  � b�� > ��� W� max ~ ��� 


Step 2 above can be carried out in a variety of ways
depending on the situation. In the simplest case, if all the
tests (genes) are assumed independent then s can be>B
generated by independently sampling from a  In

� E�` A a F W
the context of a two sample problem (e.g., t-tests), s>B
could be obtained by calculating the observed level of
significance of the test statistics calculated  using
randomly resampled or permuted vectors of observations
of all gene expressions from the original data (Dudoit et
al  et al. . ).  Datta 2002 (2003) suggested creating pseudo
datasets by resampling the residuals in an  ANOVA
model for the gene expression in multiple tissue types.
This is described in more detail in Section 3.

2.3     Bandwidth and Kernel Selection

The values near zero would typically correspond to the
differentially expressed genes and, in microarray studies,
often there will only be a handful of them. It is thus
important to preserve the narrow pick near zero. As a
result, it is best to undersmooth the estimated density by
selecting a smaller bandwidth  than usual. Figure 1

c
shows the two density estimates for two choices of
bandwidths for a typical sample from a simulation study.
Based on empirical studies we recommend using as

c
small as  We have used the standard normal kernel` W ` ` a W
for our simulations.

3     Results

In this section, we report the results of a number of
simulation studies where we compute various
performance measures for multiple p-values with and
without the empirical Bayes adjustment. They are
(i) Sensitivity: proportion amongst differentially
expressed genes that were declared significant,
(ii) Specificity: proportion amongst non-differentially
expressed genes that were not declared significant,
(iii) False discovery rate (FDR): proportion amongst
genes declared significant that were not-differentially
expressed,
(iv) False non-discovery rate (FNR): proportion amongst
genes declared not significant that were differentially
expressed.

3.1     ANOVA Models for Expression Data

Linear models (ANOVA) have been successfully used to
describe the (log-transformed) expression levels of genes
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Figure 1: Estimated density of  for the same sample��

using two different bandwidths

in experiments involving multiple tissue types (Kerr ,et al.
2000, Kerr 2002,Kerr and Churchill, 2001 and et al., 
Datta , 2003, etc.).  Consider an experiment in whichet al.  
we have measured the expression level  (appropriately

�
normalized and transformed) for individuals,  genes� �
and  tissue types (varieties). Consider a design where a
�

single microarray consisted of the expression levels of all
genes for an individual in a given tissue type. We model�

as
� � � �!�#"$�#%&�('��)"+*,�('-".%+*/�0 132 2 0 1 0 2 0 1 0 132546 7

here   and  index genes,
8:9<;=9#>)?@8:9#AB9�C 8:9EDF9HG

tissue types (variety) and individuals, respectively.  The7 0 132 's denote mean zero random errors, which will be
generated from a normal distribution. In this model 6
represents the overall or mean expression level; main
effects ,  and  reflect the overall differences in the

�I" %2J0 1
expression levels for individuals, genes and varieties,
respectively and the interaction term accounts for

KML�)" 0 2
the variability of expression of the th gene among

;
individuals.   Our primary interest lies in the
gene tissue-type interaction  which measures theN '-".%+* 0 1
effect of gene in tissue type .  The null hypothesis of no

; A
differential expression of gene  in two tissue types and

; APO
A Q R '-".%+*TS<'-".%+*U�(V)WX 0 1 0 1Y 0 4 1[Z 1is expressed as \B] ] \
The -statistic testing  is 
^ Q ^ �0 4 1[Z 1Y 0 4 1[Z 1\B] \B]

_ '3� S`� S`� �a� *
b0 1[c c 1[c 0 1[c c 1[c] ] \ \d

with



d �b � ?
� S`� S`� �a�

X 0 132 0 132 0 1-c 0 c 2 0 c c X��� �

� � > ' G S 8 * ' C S 8 * _ � > G�����	 ' > S 8�
 W
, and   The

�
 S ;

value for testing differential expression of gene 
between tissue types and  is given by

A AO X
� � 	�� 8 S '�� ^ � *�� ?b 0 4 1[Z 1 ����� �����0 4 1[Z 1\B] \B]

� �� �
where  is the

cumulative distribution function of a central distribution
^

with  degrees of freedom.
�

 3.1.1     The Simulated Data

W used the same simulation setup as in Datta e et al.
(2003) with  genes for  individuals, each

> ��� V V G ���
with  tissue types.  Data were simulated using the

C ���
ANOVA model introduced above, for a variety of
differential expression patterns generated using the
following gene-variety interaction terms.
'-".%+*$� 8 � ? '-".%+*$�$S�� ? '-".%+*$�$S 8 	,?0 O 0 0 X 0 0 ! 0" " "

 for 
8:9<;=9#	 � V ?

and '-".%+*$�$S 8 � ? '-".%+*$��� ? '-".%+*$� 8 	0 O 0 0 X 0 0 ! 0" " "
,

 for .
	 � 8:9<;=9 � V V

The errors were generated as  standard normali.i.d.
variates and , , ,  and theall the main effect terms 6 ��" %2 0 1
individual-gene interaction terms 

'��)"+* 0 2  were set to zero.

In our four simulations, only a small number of genes
(ranging from ten to thirty) were differentially expressed
(i.e., .  

" "0 0$ V
) The values of  for the differentially

expressed genes are shown in Figure 2.
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Figure 2: Patterns of differential expressions
used in the simulated datasets

3.1.1     Performance

For each set of parameters (differential expression
pattern) mentioned earlier, we generated thirty
independent data sets. P-values for the ANOVA based t-

tests are adjusted using a resampling-based step-down
procedure, as in subsection 2.2,  both with and without the
proposed empirical Bayes modification for comparison.
The resampling scheme used was the same as in Datta et
al. (2003) and is usually referred to as a ‘model based
bootstrap’  for a regression model in the bootstrap world.
Under this scheme, one fits an ANOVA model and
computes the model residuals. A bootstrap resample is
obtained by randomly resampling the model residuals and
adding  the estimated main effects etc. but not the gene-
variety interaction. See Datta  (2003) for furtheret al.
details. For each gene and each comparison, significance
was declared if the adjusted P-value was less than% �(V)W V�� W  The performance measures (proportions) were
calculated for each sample and averaged over thirty
independent samples for each simulation. The specificity
in all cases was over 99% and the FNR was less than 4%,
with slightly reduced rate for tests with the empirical
Bayes adjustments. They are not reported further in Table
1.

 without EB with EB
Model Tissue 

types Sen  FDR Sen  FDR
                  

1 1 vs. 2     12  
2 vs. 3 71 6  

2 1 vs

V)W & V V)W V 8 V)W &'� V)W
V)W ('� V)W V 8 V)W V)W V

. 2 0.01 9
2 vs. 3 0.44 0.01 0.57 0. 6

3 1 vs. 2 4 6
2 vs. 3 3 3

4 1 vs. 2 6 8
2 vs. 3

V)W ) 	 V)W )'& V)W V
V

V)W & 8 V)W V V V)W & V)W V
V)W (�* V)W V V V)W ) V)W V
V)W ('& V)W V V V)W ) V)W V
V)W �'( V)W V 8 V)W V)W V

51 7

Table 1. Sensitivity and FDR with and without the 
empirical Bayes adjustments

in an ANOVA setting for gene expressions

Overall, we notice improvement in sensitivity (denoted
‘Sen’  in Table 1) in all cases and a moderate increase in
the FDR, a fate shared by an earlier empirical Bayes
adjustment proposed in Datta (2003). Moreover, inet al. 
comparison to the results in Datta (2003), we noticeet al. 
substantial additional gain in applying the new procedure
in most cases (e.g., up to forty percent improvement in
sensitivity).

4     Discussion

In this paper, we propose a novel empirical Bayes
modification to multiple test statistics. This adjustment
works with the p-values of the original test statistics and
in turn produces a new set of test statistics such that each
member borrows ‘evidence’  from others along with the
evidence in itself. The multiplicity adjusted step down p-
values of the resulting empirical Bayes tests can be
computed via  resampling algorithms.

It is hoped that the empirical Bayes procedure would
detect additional differentially expressed genes compared



to the step-down procedure using the p-values without
this adjustments, while maintaining a comparable level of
familywise (or overall) type 1 error rate control. The
increase in sensitivity in the simulation studies certainly
gives such an indication. The simulation studies also
show, however, that the increase in sensitivity comes at
the cost of a modest increase in the false discovery rate.
At present, we are attempting to  combine FDR control
with the empirical Bayes adjustments while maintaining
an edge over sensitivity. One difficulty in achieving this
goal is the lack of  available procedure for precise control
of the FDR, especially for dependent test statistics such as
the empirical Bayes tests. In our experience, the currently
available procedures are too conservative and are not
suitable for our purpose.

Unlike our previously proposed empirical Bayes
adjustment (Datta et al., 2003) that applies to the
studentized test statistics (such as the t-tests), the
adjustment proposed here works on the p-values of
multiple tests. Therefore the current procedures would
have broader applicability to other types of tests such as
the F-tests. For example, in a microarray experiment
involving multiple tissue types (e.g., normal, adenoma
and carcinoma) one would be able to detect genes that are
differentially expressed amongst the various types of
tissues (without restricting attention to a particular tissue
pair).

In this paper, we have used the standard kernel  estimator
for estimating the marginal density of the p-values under
the Bayes model. It will be interesting to investigate other
nonparametric methods such as density estimators based
on wavelets in this context.

We are currently applying the empirical Bayes adjusted p-
values to a dataset on colon cancer  studied in Datta et al.
(2003) and the results will be forthcoming.
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