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Abstract

No consistent conclusions have been drawn from ex-
isting studies regarding the effectiveness of different
approaches to learning from imbalanced data. In this
paper we apply bias-variance analysis to study the
utility of different strategies for imbalanced learning.
We conduct experiments on 15 real-world imbalanced
datasets of applying various re-sampling and induc-
tion bias adjustment strategies to the standard deci-
sion tree, naive bayes and k-nearest neighbour (k-NN)
learning algorithms. Our main findings include: Im-
balanced class distribution is primarily a high bias
problem, which partly explains why it impedes the
performance of many standard learning algorithms.
Compared to the re-sampling strategies, adjusting in-
duction bias can more significantly vary the bias and
variance components of classification errors. Espe-
cially the inverse distance weighting strategy can sig-
nificantly reduce the variance errors for k-NN. Based
on these findings we offer practical advice on apply-
ing the re-sampling and induction bias adjustment
strategies to improve imbalanced learning.

Keywords: Bias-Variance Analysis, Imbalanced
Learning

1 Introduction

In many applications class distribution is imbalanced,
and the minority class is by far of the primary interest.
In these applications, typically the purpose of classi-
fication learning is to correctly predict the minority
class. For example predicting defects in source code
is of uttermost importance in software development
projects, but defects only occur at a modest ratio of
5-10%. Accurate prediction of software defects can
significantly reduce costs for software development.

Class imbalance has been reported to hamper the
performance of standard classification models, whose
aim is usually to optimize the overall accuracy. For
example, the standard decision tree model tends to
be overwhelmed by the majority class and ignore the
minority class when making a decision about class
labels.

Re-sampling and adjusting induction biases have
been popular approaches to combating class imbal-
ance. Changing the prevalence of positive and neg-
ative examples by sampling is a widely used method
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for addressing class imbalance. Strategies include
random under-sampling of the majority class, ran-
dom over-sampling of the minority class and more
advanced intelligent over-sampling techniques (Kubat
& Matwin 1997, Chawla et al. 2002). Adjusting the
induction bias to favour the minority class is another
method to achieve accurate classification on the mi-
nority class.

A natural question is what effect these imbalanced
learning strategies have on the behaviour of standard
learning algorithms. In particular, how well a model
fits the problem under consideration and to what ex-
tent a model is affected by variation in class distribu-
tion. To this end we employ the bias and variance
analysis of classification errors (Kohavi & Wolpert
1996) to improve our understanding of the behaviours
of different learning algorithms in the presence of class
imbalance, and the effectiveness of sampling and im-
balance induction bias adjustment on different learn-
ing models.

With the bias-variance decomposition, three types
of classification errors are distinguished: the bias er-
rors are the systematic errors associated with the
learning algorithm and the problem domain, the vari-
ance errors are caused by variations in samples and
the intrinsic errors are associated with the inherent
uncertainty of the problem domain. Generally high
bias errors indicate that a model is not correct for the
problem domain and high variance errors indicate un-
stable classification by the model. Intrinsic errors are
associated with noise of the problem domain and is
independent of the learning algorithm.

We employ the bias and variance decomposition of
classification errors to study the behaviour of three
representative learning algorithms, the C4.5 deci-
sion tree algorithm (Quinlan 1993), the naive bayes
(NB) (Good 1965, Duda & Hart 1973, Langley et al.
1992), and the k-nearest neighbour (k-NN) (Aha &
Kibler 1991). We also study how random under- and
over-sampling and advanced sampling techniques (See
Section 3) vary the bias and variance components of
errors for learning algorithms. We conduct a large-
scale empirical study on 15 imbalanced datasets from
the UCI repository and other disciplines.

Our main findings include: Imbalanced class dis-
tribution impedes the performance of standard learn-
ing algorithms in general, but depending on the learn-
ing algorithm, having varying effects on the bias
and variance components of errors. The re-sampling
strategies have varying effects on the bias or variance
of learning algorithms. On the other hand adjusting
the induction bias can significantly reduce the bias or
variance components of errors, depending on learning
algorithms. Based on these analysis we offer practi-
cal advice on applying the various re-sampling and
induction bias adjustment strategies to combat the



imbalanced learning problem.

1.1 Related Work

A few empirical studies have studied and compared
different sampling techniques (Japkowicz & Stephen
2002, Drummond & Holte 2003, Hulse et al. 2007).
However, no consistent conclusions have been drawn
from these studies. Most of these studies use a few
datasets for experiments and so the conclusion is
hard to generalize. A large scale experimental study
was conducted in (Hulse et al. 2007), but datasets
used in the study are not publicly available. It was
found in (Hulse et al. 2007) that the effectiveness of
re-sampling for imbalanced learning depends on the
evaluation metrics and base learning algorithms. All
these previous studies have examined the effective-
ness of imbalanced learning strategies on classifica-
tion accuracy. In this paper we focus on explaining
the behaviour of imbalanced learning strategies with
the bias and variance decomposition of classification
errors. Our bias and variance analysis relates the in-
consistent behaviour of re-sampling to that it does not
generally have consistent effect on the bias or vari-
ance errors of learning algorithms. Importantly we
offer practical advice on how to combine re-sampling
strategies for effective imbalanced learning.

When classification errors (misclassification costs)
of different classes are distinguished, accuracy max-
imization is replaced with cost minimization – high
cost is associated with misclassifying minority sam-
ples. Cost-sensitive learning methods (Domingos
1999) have been proposed to learn from imbalanced
class distribution. In (Elkan 2001) the problem of
optimal learning with different misclassification cost
is studied. It is shown that in theory that rebalancing
the positive and negative distribution has little effect
on the decision tree and Bayesian methods. How-
ever this general theoretical result does not necessar-
ily suggest that re-sampling strategies do not work in
specific applications.

In an excellent survey by Weiss (Weiss 2004), tech-
niques for imbalanced learning were reviewed. Sam-
pling and adjusting decision bias are recognised as a
commonly used technique for dealing with rarity, but
no conclusion was drawn regarding their effectiveness.
With some recent developments, advanced sampling
techniques were proposed (Liu et al. 2006) for specific
imbalanced learning applications. However the gen-
eral utility of these techniques are yet to be studied.

The bias and variance analysis of classification er-
rors (Kohavi & Wolpert 1996) is a widely used ap-
proach to provide insight into the error performance
of classifiers. It has been used in various studies to
compare the relative performance of different learn-
ing models, for example (Bauer & Kohavi 1999, Webb
2000, Putten & Someren 2004). To the best of our
knowledge, it has not been used to study the problem
of imbalanced classification.

2 Re-Sampling Strategies for Imbalanced
Learning

Based on the assumption that standard learning
methods perform better with equal class distribution,
re-sampling training instances has been proposed for
imbalanced learning.

2.1 Random Under-sampling and Over-
sampling

Random under-sampling and over-sampling training
instances are two basic methods of re-sampling for
imbalanced learning. With under-sampling, exam-
ples of the majority class are randomly eliminated
so as to achieve balanced class distribution. With
over-sampling, examples of the minority class are ran-
domly duplicated to achieve even class distribution.
In essence random over-sampling does not introduce
new examples to directly bias the induction process.
Some studies have shown that, compared with under-
sampling, simple over-sampling is less effective at im-
proving recognition of the minority class (Drummond
& Holte 2003). However another study that used ar-
tificial domains came to the opposite conclusion (Jap-
kowicz & Stephen 2002).

2.2 Advanced Sampling Methods

A more advanced sampling method is to combine
under-sampling and over-sampling to achieve bal-
anced class distribution. This potentially can rem-
edy the drawbacks when under-sampling and over-
sampling are used separately. The Synthetic Minor-
ity Oversampling TEchnique (SMOTE) (Chawla et
al. 2002) generates minority-class examples by adding
examples from the line segments that join the k
miority-class nearest neighbours. This presumably
leads to better generalization compared with random
over-sampling. It was shown that a combination of
over-sampling the minority class using SMOTE and
under-sampling the majority class can achieve better
classifier performance than only under-sampling the
majority class. However, the effect of SMOTE alone
on imbalanced learning has not been extensively stud-
ied.

3 Adjusting Induction Bias for Imbalanced
Learning

In this section we discuss three popular base learning
algorithms and where applicable, strategies adjusting
their induction bias for imbalanced learning.

3.1 The Decision Tree

Some strategies have been proposed adjusting the de-
cision tree induction to be more sensitive to imbal-
anced class distribution (Hulse et al. 2007):

• For imbalanced class distribution, pruning a de-
cision tree can over generalize and completely ig-
nore the positive class, and so decision trees are
fully grown without pruning.

• Based on similar consideration, the minimal
number instances for leaves of a decision tree is
set to one rather than a number > 1 .

• With Laplace smoothing (Good 1965) the prob-
ability for the positive class at a leaf node is

estimated as
Lp+1

Lp+Ln+2 , where Lp and Ln are

respectively the number of positive and nega-
tive samples at the leaf. It has been shown
that Laplace smoothing improves the tree per-
formance for skewed class distribution.

3.2 The Naive Bayes

The Naive Bayes (NB) is a simple probabilistic in-
duction model based on the Bayes Theorem (Duda &



Algorithm Induction bias Correct Incorrect
bias error variance error bias error variance error

C4.5 medium varying varying varying varying
k-NN weak low high high high
NB strong low low high low

Table 1: The bias-variance relationship for C4.5, k-NN and NB

Hart 1973). NB estimates probabilities based on the
attribute independence assumption. Although this
assumption does not hold for many problems, NB of-
ten exhibits competitive classification accuracy com-
pared with other learning algorithms. NB has a
very strong induction bias and does not have any pa-
rameters that can be adjusted for imbalanced class
distribution.

3.3 The k-Nearest Neighbour

With the k-nearest neighbour (k-NN) (Aha & Ki-
bler 1991) algorithm, class labels of the k training
instances closest to a test instance help determine
the class label of the test instance. Inverse distance
weighting is to weigh the vote of each neighbour ac-
cording to the inverse of its distance from the test
instance (Mitchell 1997). By taking the weighted av-
erage of the k neighbours nearest to the test instance
smoothes out the impact of isolated noisy training in-
stances. Furthermore it lifts the weight of instances
from the minority class closest to the test instance —
a point that has been largely overlooked by existing
studies.

4 The Bias-Variance Analysis

The bias-variance analysis of classification errors is a
useful tool for analysing classifier behaviour. This
analysis decomposes classification errors into three
terms, derived with reference to the performance of a
learning algorithm when trained with different train-
ing sets drawn from some reference distribution of
training sets:

• Squared bias denotes the systematic compo-
nent of classification errors — how closely a
learner describes the decision surfaces for a do-
main.

• Variance describes the component of classifi-
cation errors from sampling — how sensitively
a learner responds to variations in the training
sample.

• Intrinsic noise measures the degree to which
the target quantity is inherently unpredictable,
which equals the expected cost of the Bayes op-
timal classifier.

There have been several proposals for the defini-
tion of the three terms for classification learning. The
definition by Kohavi and Wolpert (Kohavi & Wolpert
1996) is widely used and is the definition we will use
in this study. Given that an error has cost 1 and a
correct prediction has cost 0, the expected error rate
for a target function f and a training dataset of size
m is

err = sumxP (x)(noise2x + bias2x + variancex)

where x ranges over the instance space, and P (x) is
the prior probability of x.

In practical experiments it is impossible to esti-
mate the intrinsic noise. The algorithm proposed

in (Kohavi & Wolpert 1996) generates a bias term
that includes the intrinsic noise. In their method, the
training dataset is divided into a training pool and a
test pool randomly. Each pool contains 50% of the
training instances. Fifty training sets are generated
from the training pool by random sampling. Classi-
fiers are trained on each of the 50 training set, and
bias and variance errors are estimated from the clas-
sifiers on the test set.

Generally there is a bias-variance tradeoff (Ko-
havi & Wolpert 1996). When adjusting a learning
algorithm so that it is more sensitive to the training
samples, its bias errors shrink but the variance er-
rors increase. Learning models that overfit the given
training data often have high variance errors — their
results depend closely on the given training data and
thus vary for different training datasets. On the con-
trary learning models with a strong induction bias are
less likely to overfit and bias is a source of prediction
errors if the induction bias of the model is not correct
for a domain.

General description of the C4.5 decision tree, k-
nearest neighbour and Naive Bayes learning algo-
rithms in terms of their effect on the bias and variance
components of in classification errors is presented in
Table 1. With the strong attribute-value indepen-
dence assumption during classification, Naive Bayes
has a strong induction bias. If the induction bias
of NB is correct for the problem domain, then NB
demonstrates low bias errors otherwise high bias er-
rors. Without any representation model, the classifi-
cation decision of k-NN does not have induction bias
and its classification errors mainly come from vari-
ations in the distribution of training data. With a
decision tree as the representation model, C4.5 has
a medium level of induction bias. As a result the
classification errors of C4.5 can come from the bias,
variance or both components.

We can now characterise performance of the three
base learning algorithms for imbalanced learning in
terms of bias-variance decomposition. We can also
characterise the effect of various re-sampling and in-
duction bias adjustment strategies on the bias and
variance components of errors.

5 Experiment Design

Our study will focus on the two-class problem with
a minority (positive) class and a majority (negative)
class. We compile datasets from various sources to
study the utility of re-sampling and induction bias
adjustment strategies for classification.

Fifteen real-world datasets from highly imbal-
anced (the minority 4.35%) to moderately imbal-
anced (the minority 30%) are used in our exper-
iments, as listed in Table 2. UCI (Asuncion &
Newman 2007) imbalanced 2-class datasets include
those from natural 2-class domains, and those con-
structed by choosing a minority class as the posi-
tive and the remainder as negative instances. The
Oil dataset (Kubat et al. 1998) (marked with *) has
been extensively used in imbalanced learning exper-
iments. PC1, CM1 and KC1 (marked with *) con-



ID Dataset #instances #attr Class Minority %
(numerical, nominal) (minority, majority)

1 Oil∗ 990 47 (47, 0) (true, false) 4.35%
2 Hypo-thyroid 3163 25 (7, 18) (hypothyroid, negative) 4.77%
3 PC1∗ 1109 21 (21, 0) (true, false) 6.94%
4 Glass 214 9 (9, 0) (3, remainder) 7.94%
5 Flag 194 28 (10, 18) (white, remainder) 8.76%
6 Satimage 6435 36 (36, 0) (4, remainder) 9.73%
7 CM1∗ 498 21 (21, 0) (true, false) 9.84%
8 New-thyroid 215 5 (5, 0) (3, remainder) 13.95%
9 KC1∗ 2109 21 (21, 0) (true, false) 15.46%
10 SPECT 267 22 (0, 22) (0, 1) 20.60%
11 Hepatitis 155 19 (6, 13) (1, 2) 20.65%
12 Vehicle 846 18 (18, 0) (van, remainder) 23.52%
13 Splice-ei 3190 60 (0, 60) (EI, remainder) 24.04%
14 Haberman 306 3 (3, 0) (2, 1) 26.47%
15 German 1000 20 (7, 13) (2, 1) 30.00%

Table 2: Fifteen datasets for experiments, ordered in decreasing level of skewedness.

tain metrics data at the module level for predict-
ing defects in NASA software development projects
(http://mdp.ivv.nasa.gov/index.html).

In our experiments, we use classifiers J48, NB and
IBk of the WEKA (Witten & Frank 2005) data min-
ing software for the base algorithms C4.5 (Quinlan
1993) decision tree, NB and k-NN. The base algo-
rithms with default settings, which usually are de-
signed for uniform class distribution, are compared
against their settings for adjusting induction bias
for skewed class distribution. Specifically, for J48
the imbalance-favourable settings are without prun-
ing, with Laplace-smoothing and that minimum one
instance is allowed for a leaf node. For IBk, the
imbalance-favourable settings are k=3, and inverse-
distance weighted voting, There are not any param-
eter settings for adjusting bias for imbalanced distri-
bution.

We use the instance re-sampling filters in WEKA
to implement the re-sampling strategies in Section 3.
For under-sampling, the majority class is randomly
under-sampled with replacement so that it has the
same number of instances as the minority class. For
over-sampling, the minority class is randomly over-
sampled so that it has the same number of instances
as the majority class. The SMOTE filter in WEKA
is used for the SMOTE over-sampling strategy.

6 The Bias-Variance Analysis of Imbalanced
Learning

In our experiments we employ the bias and variance
decomposition software in the WEKA toolkit to es-
timate the squared bias and intrinsic noise combined
error and the variance error component for classifica-
tion algorithms. The bias and variance decomposition
algorithm in WEKA precisely follows the approach of
(Kohavi & Wolpert 1996), as described in Section 4.

6.1 The bias-variance decomposition for base
learning algorithms

Fig. 1 shows the bias and variance decomposition of
expected errors for the base algorithms C4.5, k-NN
and NB on 15 datasets in our experiments. Generally
for all three base algorithms, the bias component is
the dominant source of errors. Not surprisingly NB
has the highest bias component of errors — except on
Oil where bias comprises 43.94% of errors, on all other
datasets bias is the bigger proportion of errors, com-

prising on average 81.02% of errors. C4.5 and k-NN
demonstrates varying bias-variance decomposition on
15 datasets, with the bias portion of errors ranging
from 43.82% (C4.5 on Vehicle) to 98.10% (C4.5 on
Flag) .

The BVD profile for base algorithms differ on each
dataset. For example on the most imbalanced Oil
dataset, the bias component of errors for C4.5, k-
NN and NB are dramatically different, 57.89% for
C4.5, 79.79% for k-NN and 43.94% for NB respec-
tively. On the Vehicle dataset, the bias component
is respectively 43.82% for C4.5, 51% for k-NN and
92.94% for NB.

Our analysis suggests that imbalanced class dis-
tribution has different effect on the base learning al-
gorithms and it varies significantly for different prob-
lems. This complex profile of bias-variance compo-
nent suggests that learning from imbalanced class dis-
tribution is a challenging problem.

6.2 The bias-variance decomposition for sam-
pling techniques

A relatively large number of instances in the training
dataset is needed to ensure accurate estimation of er-
rors. In our experiments the smallest dataset (Hep-
atitis) contains 155 instances, which we consider suf-
ficiently large. Undersampling the majority class to
match the minority can result in some datasets have
a very small number of instances. We chose datasets
whose total number of instances is at least 100 af-
ter under-sampling. As a result only 10 datasets are
included in our experiments of the bias-variance de-
composition for the random under-sampling strategy,
as is shown in Fig. 2. To compare under-sampling
against other sampling techniques, the same datasets
were used for the experiments of the other sampling
strategies.

From Fig. 2 it can be seen that generally random
under-sampling increases both the bias and variance
errors for all three base learning algorithms, and the
increase in variance errors is more pronounced than
that in the bias errors. k-NN demonstrates the most
consistent and significant response to under-sampling
– on all 10 datasets both its bias and variance compo-
nents of errors significantly increase, and the increase
in variance is more pronounced. C4.5 is also very
sensitive to under-sampling, and shows increment in
both bias and variance errors on all 10 datasets. In
contrast NB is not so sensitive to the under-sampling
strategy. On KC1 the bias errors for under-sampling
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Figure 1: The bias-variance decomposition for base algorithms C4.5 (J48), k-NN (IBk) and NB
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Figure 2: The bias-variance decomposition for the under-sampling strategy
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Figure 3: The bias-variance decomposition for the over-sampling strategy
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Figure 4: The bias-variance decomposition for the SMOTE over-sampling strategy
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remain the same as that of the standard NB.
In Fig. 3, generally for random over-sampling, the

three base learning algorithms do not show significant
changes in the bias errors on most datasets. On the
other hand random over-sampling has different effects
on the variance of the three base learning algorithms
— C4.5 and k-NN show increase in variance, while
NB does not demonstrate change in variance errors
on most datasets.

In Fig. 4 generally SMOTE over-sampling does not
show significant changes in either the bias or variance
errors on most datasets (except for the bias compo-
nent of C4.5 on Haberman), and this is universally
true for all three learning algorithms.

As a summary, our experiments have demon-
strated that either random over-sampling or SMOTE
intelligent over-sampling does not significantly change
the bias errors of the three base learning algorithms.
This can be explained by that the generated new sam-
ples are either replicates or near replicates of existing
positive samples and they do not produce effect on the
decision boundary for classes. Over sampling gener-
ally can also negatively affect the variance errors of
the decision tree and k-nearest neighbour models, and
it does not change the variance of NB.

In contrast, under-sampling significantly changes
the bias and variance of base algorithms, due to the
fact that some “important” samples affecting the de-
cision for class boundary may have been removed.
However, generally the effect is “negative” , that is
the bias and variance errors of all algorithms are ex-
acerbated rather than reduced.

6.3 The bias-variance decomposition of in-
duction bias adjustment techniques

Fig. 5 and Fig. 6 show the bias and variance decom-
position of expected errors for C4.5 and k-NN respec-
tively on 15 datasets. It can be seen from Fig. 5
that for C4.5 the imbalance-favourable induction ad-
justment strategies, namely no pruning, minimal one
instance for leaf nodes and Laplace smoothing, do not
change the bias errors of the decision tree model on
most datasets, but they significantly increase the vari-
ance errors on many datasets (p-value=0.00055 in the
Wilcoxin signed rank test). Given that these strate-
gies mainly affect the decisions towards the leaves of
a decision tree, it is not surprising that the variance
of the decision tree algorithm increases significantly
on most datasets — most variance errors come from
leaves at the bottom of the tree. In contrast branches
towards the root of the tree are mostly unaffected
by these bias adjustment strategies and therefore the
bias errors of the algorithm do not change on most
datasets.

In Fig. 6 the “inverse distance weighting” heuris-
tic significantly reduces the variance component of
k-NN significantly on all 15 datasets, with p-value =
0.00083. It is also noteworthy that the strategy has
never exacerbated the bias errors on any dataset. Fur-
thermore on CM1, SPECT, Hepatitis, Splice, Haber-
man and German, bias errors are significantly re-
duced.

Comparing the imbalance bias adjustment strate-
gies of C4.5 and k-NN, the strategies in the deci-
sion tree algorithm has focused on modifying the rep-
resentation tree for classification, especially towards
the leaves at the bottom of the decision tree. Such
strategies exacerbate the variance errors of the deci-
sion tree model. As a learning algorithm without ex-
plicit model representation, the imbalance induction
bias adjustment of k-NN reduces both the bias and
variance errors of the learning algorithm. This shows

that the strategy has improved both the generality
and stability of the k-NN algorithm.

7 Discussions and Conclusions

In this paper we have studied the re-sampling ap-
proach and the adjusting induction bias approach
for employing standard learning algorithms for im-
balanced classification. The re-sampling strate-
gies we consider include random over-sampling, ran-
dom under-sampling and SMOTE intelligent over-
sampling. We employ bias-variance analysis to study
the behaviour of re-sampling and imbalance bias ad-
justment on 15 real-world imbalanced datasets for
popular algorithms, including the decision tree, Naive
Bayes and k-nearest neighbour.

We have found that imbalanced class distribution
impedes the performance of standard learning algo-
rithms in general, but depending on the learning al-
gorithm, having varying effects on the bias and vari-
ance components of errors. For the naive bayes algo-
rithm, class imbalance mainly presents as a high bias
problem, whereas for the decision tree and k-nearest
neighbour models, errors can come from either the
bias or variance component, depending on the appli-
cation domain.

Over-sampling alone, either randomly or intelli-
gently like SMOTE, does not have significant impact
on the bias of any of the three learning algorithms.
It exacerbates the variance errors of the decision tree
and k-NN to different degrees but does not change the
variance of the Naive Bayes. Random under-sampling
on the other hand, exacerbates the bias and variance
errors of all three learning algorithms. Our practi-
cal advice in this regard is therefore to apply the
sampling strategies on problems with low bias errors
and to intelligently combine the over-sampling with
under-sampling to reduce the variance errors. More
research is needed to investigate how to best combine
under-sampling and over-sampling.

Our experiments on C4.5 has shown that the
strategies adjusting the imbalance induction bias for
the decision tree model as described in Section 3 can
exacerbate the variance errors, while such strategy
for the k-NN model can reduce the variance as well
as bias errors. So for the decision tree model the
imbalance bias adjustment strategies should be exe-
cuted with care. Specifically they should be applied
to problems with low variance errors. In contrast the
imbalance induction bias adjustment strategy for the
k-NN algorithm is strongly recommended.

The simple Naive Bayes model, with a strong in-
duction bias, presents as a high bias problem with the
imbalanced class distribution. It is noteworthy that
our experiments show that the Naive Bayes model
is a stable model whose bias and variance are not
sensitive to the various sampling techniques. An al-
ternative promising approach to improving the Naive
Bayes model for imbalanced learning may be to re-
duce the bias component by relaxing the “naiveness”
of the induction process.
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