An Experimental Study on Algorithms for Drawing Binary Trees

2

Adrian Rusu! Radu Jianu

Confesor Santiago®

Christopher Clement!

! Department of Computer Science, Rowan University, Glassboro, NJ 08028, USA
2Department of Computer Science, Brown University, Providence, RI 02912, USA
3Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028, USA
rusu@rowan.edu, jr@cs.brown.edu, {santiaOQ s clemen55}@students .rowan.edu

Abstract

In this paper we present the results of a com-
prehensive experimental study on the four most
representative algorithms for drawing binary trees
without distorting or occluding the information,
one for each of the following distinct tree-drawing
approaches: Separation-Based approach (Garg
& Rusu 2003), Path-Based approach (Chan,
Goodrich, Rao Kosaraju & Tamassia 2002), Level-
Based approach (Reingold & Tilford 1981), and
Ring)ed Circular Layout approach (Teoh & Ma
2002).

Our study is conducted on randomly-generated,
unbalanced, and AVL binary trees with up to 50,000
nodes, on Fibonacci trees with up to 46,367 nodes,
on complete trees with up to 65,535 nodes, and on
real-life molecular combinatory binary trees with up
to 50,005 nodes. We compare the performance of
the drawing algorithms with respect to five quality
measures, namely Area, Aspect Ratio, Uniform
Edge Length, Angular Resolution, and Farthest
Leaf. None of the algorithms have been found to be
the best in all categories.

Keywords: binary trees, experimental study, drawing
algorithm, planar, straight-line

1 Introduction

Trees are ubiquitous data-structures, arising in a va-
riety of applications such as Software Engineering,
Business Administration, Knowledge Representation,
and Web-site Design and Visualization.

Visualizing a tree can enhance a user’s ability
in understanding its structure. Hence, a lot of re-
search has been done on visualizing trees, which
has produced a plethora of tree-drawing algorithms
(see for example, (Chan, Goodrich, Rao Kosaraju
& Tamassia 2002, Garg & Rusu 2003, Reingold &
Tilford 1981, Teoh & Ma 2002, Valiant 1981)).

An experimental evaluation of the practical per-
formance of tree-drawing algorithms can help a prac-
titioner in choosing the algorithm most appropriate
for her application. However, we are not aware of
any experimental study done to compare the prac-
tical performance of tree-drawing algorithms. As a
first step, in this paper, we present an experimental
study of some well-known algorithms for drawing bi-
nary trees. These algorithms represent the distinct

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at Asia-Pacific Symposium on Information Visu-
alization (APVIS 2006), Tokyo, Japan, February 2006. Confer-
ences in Research and Practice in Information Technology, Vol.
60. K. Misue, K. Sugiyama and J. Tanaka, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

approaches that have been used to draw binary trees
without distorting or occluding the information.

A binary tree is one where each node has at most
two children. In contrast to graphs, every tree ac-
cepts a planar drawing, i.e. without any crossings. A
straight-line drawing has each edge drawn as a sin-
gle line-segment. Grid-based algorithms place all the
nodes of a drawing at integer coordinates. A draw-
ing of a tree T has the subtree separation property if,
for any two node-disjoint subtrees of T', the enclos-
ing rectangles of the drawings of the two subtrees do
not overlap with each other. All algorithms in our
experimental study produce planar straight-line grid
drawings and exhibit the subtree separation property.

2 The Algorithms Under Evaluation

We have compared four different algorithms for pro-
ducing planar straight-line grid drawings of binary
trees. The four algorithms can be classified into four
categories on the basis of their approach to construct-
ing drawings.

Separation-Based: In the Separation-Based Ap-
proach, a divide-and-conquer strategy is used to re-
cursively construct a drawing of the tree, by perform-
ing the following actions at each recursive step: (1)
Find a Separator Edge: A separator edge of a binary
tree T is an edge, which, if removed, divides T into at
most five smaller, partial binary trees. Every binary
tree contains such an edge (Valiant 1981). (2) Divide
Tree: Divide T into several partial binary trees by
removing at most two nodes and their incident edges
from it (including the separator edge). (3) Assign
Aspect Ratios: Pre-assign a desirable aspect ratio to
each partial binary tree. (4) Draw Partial Trees: Re-
cursively construct a drawing of each partial binary
tree using its pre-assigned aspect ratio. (5) Compose
Drawings: Arrange the drawings of the partial binary
trees and draw the nodes and edges that were re-
moved from T to divide it such that the drawing of T'
thus obtained is a planar straight-line grid drawing.
We have chosen to evaluate the O(n)-area bottom-up
algo)rithm of (Garg & Rusu 2003) (we call it Separa-
tion).

Path-Based: The Path-Based Approach uses a re-
cursive winding paradigm as follows: first lay down
a small chain of nodes from left to right until near
a distinguished node v, and then recursively lay out
the subtrees rooted at the children of v in the oppo-
site direction. For our study, we have implemented
the O(nloglogn)-area algorithm described in (Chan,
Goodrich, Rao Kosaraju & Tamassia 2002) (we call
it Path).

Level-Based: The Level-Based Approach is charac-
terized by the fact that in the drawings produced, the
nodes at the same distance from the root are horizon-
tally aligned. For our study, we have implemented
the recursive algorithm described in (Reingold &

Tilford 1981) (we call it Level). This algorithm uses
the following steps: draw the subtree rooted at the
left child, draw the subtree rooted at the right child,
place the drawings of the subtrees at horizontal dis-
tance 2, and place the root one level above and
halfway between the children. If there is only one
child, place the root at horizontal distance 1 from the
child.
Ringed Circular Layout: The algorithms based on
the Ringed Circular Layout Approach place a node
and all its children in a circle. For our study, we
have implemented the algorithm described in (Teoh &
Ma 2002) (we call it Rings). Note that this algorithm
was designed for general trees. In this study, we have
implemented and studied its performance for the par-
ticular case of binary trees. In this algorithm, equal-
sized circles corresponding to children are placed in
concentric rings inside of the parent circle, around
its center, thus trying to minimize the space wasted
inside of the interior of the parent circle.

Figure 1 shows drawings of the Fibonacci tree with
88 nodes constructed by the algorithms of our study.

'EJ
£ et

Tl

1
NN S Sl S

(b)

f....I..I

.TI
L
th

1l
(c)
(d)

Figure 1: Drawings of the Fibonacci tree with 88 nodes,
generated by the algorithms in our study: (a) Separa-
tion, (b) Path, (c) Rings, and (d) Level.

3 Experimental Setting

Our experimental setting consists of (i) a large suite
of randomly-generated, unbalanced, complete, AVL,
Fibonacci, and molecular combinatory binary trees of
various sizes; (i) five quality measures: area, aspect
ratio, uniform edge length, angular resolution, and
farthest leaf.

3.1 Test Suite

Our test suite consists of five binary trees for each
of the following types: random, complete, AVL, Fi-

bonacci, and unbalanced. We consider a binary tree
T, with n nodes as unbalanced if its height is greater
than n/logn. A binary tree T, with n nodes is
unbalanced-to-the-left (unbalanced-to-the-right) if it is
unbalanced, and, in addition, the number of left
(right) children in 7, is greater than its number of
right (left) children. We have generated random, un-
balanced, and AVL binary trees with up to 50,000
nodes, complete trees with up to 65,535 nodes, and
Fibonacci trees with up to 46,367 nodes. In addi-
tion, our test suite includes binary trees from molec-
ular combinatory programs. The data was obtained
from the study in (MacLennan 2003) by Dr. Bruce
MacLennan at the University of Tennessee. For our
experimental analysis, he has generated molecular
combinatory binary trees with up to 50,005 nodes.

3.2 Quality Measures

The following four well-known quality measures have
been considered:

e Area: the number of grid points contained
within the enclosing rectangle.

e Aspect Ratio: the ratio of the smaller and the
longer sides of the enclosing rectangle.

e Uniform Edge Length: the variance of the
edge lengths in the drawing.

e Angular Resolution: the smallest angle
formed by two edges incident on the same node.

It is widely accepted (Di Battista, Eades, Tamas-
sia, & Tollis 1999) that small values of the area and
uniform edge length are related to the perceived aes-
thetic appeal and visual effectiveness of the drawing.
In addition, an aspect ratio is considered optimal if
it is equal to 1. High angular resolution is desirable
in visualization applications and in the design of op-
tical communication networks. For binary trees, the
degree of a node is at most 3, hence a trivial upper
bound on the angular resolution is 120°.

We have also considered a new quality measure,
specially designed for trees: Farthest Leaf: the
largest Euclidean distance between the root and a leaf
in the drawing. Farthest leaf helps determine whether
the algorithm places leaves far from the root. It is
important to minimize the distance between the root
and the leaves of the tree, especially in the case when
the user wants to visually analyze binary search trees.

4 Experimental Analysis

Let T, be a binary tree with n nodes that is provided
as input to the algorithms being evaluated.

Two of the algorithms chosen in this study, namely
Separation and Path, allow user-controlled aspect ra-
tio. The other two algorithms, namely Level and
Rings, generate unique drawings for each value of n.
In order to find the parameters for which Separation
and Path perform the best on each of the aesthetics
considered in our study, we used the studies in (Garg
& Rusu 2003) and (Rusu, Clement, & Jianu 2005),
respectively.

Since, for any tree, when the desirable aspect ra-
tio is set to 1, we can always find the actual aspect
ratio of the drawing produced by Separation close to
1 (Garg & Rusu 2003), we decided not to evaluate the
performance of Separation for this quality measure.

Since both Path and Rings produce orthogonal
drawings, the angles between the edges connecting the
nodes will always be either 90° or 180°. For this rea-
son, we do not consider Path and Rings in our analysis
of quality measure angular resolution.

Very interestingly, the performances for all algo-
rithms on the real-life molecular combinatory binary
trees resemble very closely those on unbalanced bi-
nary trees. Hence, we make many references to their
similarities.

In the case of unbalanced and molecular combina-
tory binary trees, Rings quickly becomes prohibitive
to use. For this reason, we have decided to not con-
sider Rings in our comparisons for unbalanced and
molecular combinatory binary trees.

Due to limited space, we only provide a textual
analysis of the algorithms under evaluation. For the
same reason, the analysis on unbalanced binary trees
is not included in this paper. The complete display of
performances for all categories of binary trees (which
includes 84 charts), as well as the analysis on un-
balanced binary trees and the performance of the al-
gorithms on several other aesthetics (such as Total
Edge Length, Average Edge Length, Maximum
Edge Length, Size, Closest Leaf, and Minimum
Angle Size), is provided in a technical report (Rusu,
Jianu, Santiago, & Clement 2005).

The analysis of the performance of the four algo-
rithms is summarized below:

Area:

o Complete trees: Order of performance: Rings,
Separation, Path, Level. While the difference
in the areas produced by Rings and Separation
grows slowly, the difference in the areas produced
by Separation and Path grows much faster. The
same behavior is exhibited by Level and Path.
For n = 65, 535, Level produces a drawing having
an area almost four times more than the drawing
produced by Path.

e Randomly-generated binary trees: Order of per-
formance: Separation, Path, Level, Rings. The
performances of all the algorithms are worse than
their respective performances on complete trees.
In comparison to its behavior on complete trees,
where it was the best, Rings exhibits the most
dramatic change: its behavior is now the worst of
all four algorithms. The area produced by Level
grows rapidly in comparison to the area pro-
duced by Path, being already three times more
for n = 50,000. Rings and Separation exhibit
similar behavior, with Rings being slightly bet-
ter. The differences in the areas produced grow
slowly.

e Fibonacci trees: Order of performance: Separa-
tion, Path, Level, Rings. Rings quickly becomes
prohibitive, with area ten times more than the
area of Separation, for 10,000 nodes. The dif-
ference between the areas produced by Separa-
tion and Path grows slowly, while the difference
between the areas produced by Path and Level
grows much faster.

e Molecular combinatory binary trees: Order of
performance: Path, Separation, Level, Rings.
Even though Path is the best performing algo-
rithm on both unbalanced and molecular com-
binatory binary trees, its behavior on molecu-
lar combinatory binary trees is much better: for
n = 50,000, the area of molecular combinatory
binary trees is 78, 360, as opposed to unbalanced-
to-the-left binary trees, with an area of 258, 355.
Level rapidly becomes prohibitive to use, produc-
ing an area over 1,000,000 for n = 5,989. This
is the best case for Path and the worst case for
Separation.

Uniform Edge Length:

Complete trees: Order of performance: Rings,
Separation, Path, Level. Rings and Separation
produce very low, almost constant values. Path
exhibits a non-linear growing behavior. Level
quickly becomes prohibitive to use.

Randomly-generated binary trees: Order of per-
formance: Rings, Separation, Path, Level. The
performances of Rings and Separation are very
similar to those on complete binary trees. Path
grows slowly and linearly. Level quickly becomes
prohibitive to use.

AVL trees: Order of performance: Rings, Sepa-
ration, Path, Level. The performances of Rings
and Separation are very good: they almost mimic
their performances on complete binary trees.
The results for Path do not have a consistent
rate of change and are about 50 times greater
than Rings.

Fibonacci trees: Order of performance: Separa-
tion, Path, Rings, Level. Separation outperforms
all other algorithms, by maintaining a nearly con-
stant value. The difference between the perfor-
mance of Path and Rings stays at an approxi-
mately constant 30 as n increases.

Molecular combinatory binary trees: Order of
Performance: Separation, Path, Level, Rings.
Separation has a slowly growing behavior, similar
to unbalanced-to-the-left binary trees. Interest-
ingly, Level performs very poorly, which is differ-
ent from unbalanced binary trees. Path quickly
becomes prohibitive with n = 9,973 resulting in
a uniform edge length of 60.

Farthest Leaf:

Complete trees: Order of performance: Rings,
Separation, Path, Level. While the performances
of Path, Rings and Separation are very good,
with a very slow growth rate, the performance
of Lewvel is unsatisfactory. For example, for n =
8,191, farthest leaf for Rings is 89.1, for Separa-
tion is 219.1, for Path is 355.7, and for Level is
4,095. For n = 65,535, farthest leaf for Rings
is 284.8, for Separation is 626, for Path is 811.3,
and for Level is 32,767.

Randomly-generated binary trees: Order of per-
formance: Separation, Rings, Path, Level. Sur-
prisingly, both Separation and Rings perform
just slightly worse on randomly-generated bi-
nary trees compared to complete trees. Perfor-
mances of Path and Rings are almost identical.
Again, the distance to the farthest leaf grows
much faster for Level than for Path, Separation
and Rings.

AVL trees: Order of performance: Rings, Sepa-
ration, Path, Level. The performances of the al-
gorithms on this measure are almost identical to
their respective performances on complete trees.

Fibonacci trees: Order of performance: Separa-
tion, Path, Rings, Level. For Separation and Path
the same pattern remains. On the other hand,
Rings still remains better than Level, but the rate
of growth exhibited by Rings has increased. Level
exhibits the same unsatisfactory behavior.

Molecular combinatory binary trees: Order of
performance: Separation, Path, Level, Rings. As
the case in all categories of binary trees, Level
rapidly becomes prohibitive. Separation pro-
duces satisfactory results, placing its farthest leaf

at a distance of 764.6 for n = 50,005. The behav-
ior of Path is approximately three times greater
than Separation.

Aspect Ratio:

o Complete trees: Order of performance: Sepa-
ration, Path, Rings, Level. Quite interestingly,
the behaviors of Path and Rings are very simi-
lar. Neither algorithm always produces drawings
with aspect ratios close to optimal. For example,
if n = 214 —1, the best aspect ratio Path produces
is around 0.5. Rings produces optimal aspect ra-
tios when n = 2* — 1, with 4 an odd number, and
aspect ratios close to 0.5, with ¢ an even number.
The aspect ratios of the drawings produced by
Level are very low (the highest value is close to
0.06), decreasing rapidly as n increases.

e Randomly-generated binary trees: Order of per-
formance: Separation, Path, Rings, Level. Level
produces drawings with better aspect ratios for
trees with a smaller number of nodes (the highest
value is close to 0.1). Still, its behavior is unsat-
isfactory, as the value of aspect ratio decreases
rapidly as n increases. Path and Rings have un-
even behaviors. Most of their aspect ratios are
over 0.8, and none is under 0.5.

e AVL trees: Order of performance: Separation,
Rings, Path, Level. Rings exhibits a very inter-
esting pattern: its aspect ratios are either 0.5
or optimal. The performances of Path and Level
decrease dramatically, with Level quickly produc-
ing very small aspect ratios, and Path producing
aspect ratios less than 0.01 for 50,000 nodes.

e Fibonacci trees: Order of performance: Separa-
tion, Rings, Path, Level. Interestingly, Rings ex-
hibits exactly the same behavior as in the case
of complete binary trees: alternating optimal as-
pect ratios with aspect ratios close to 0.5. The
behavior of Level is only significant for trees with
a small number of nodes.

o Molecular combinatory binary trees: Order of
performance: Separation, Path, Level, Rings.
Path produces close to optimal values until n =
5,989. After this point, the values plummet,
decreasing to 0.1 for n = 50,005. Very inter-
estingly, Level always produces values close to
0.1. In our analysis, it was discovered that Level
always produces drawings of width equal to n.
Hence, for molecular combinatory binary trees,
the height of the drawings produced by Lewvel is
almost always one-tenth of the width.

Angular Resolution: Order of performance: Path,
Rings, Separation, Level.

Path and Rings always produce orthogonal draw-
ings, hence their angular resolution is always 90°.
Separation produces orthogonal drawings for com-
plete, AVL, and Fibonacci trees. Level produces un-
satisfactory results, with angular resolution less than
10° for all types of trees. Separation exhibits good
behavior on randomly-generated and molecular com-
binatory binary trees with small number of nodes. For
unbalanced and molecular combinatory binary trees
with large number of nodes, Separation produces un-
satisfactory results.

5 Conclusion

The performance of a drawing algorithm on a tree-
type is not a good predictor of the performance of
the same algorithm on other tree-types: some of the

algorithms perform best on one tree-type, and worst
on other tree-types. Overall, if user-controlled aspect
ratio is important, Separation is the algorithm which
achieves best results in the majority of the aesthet-
ics. If user-controlled aspect ratio is important, Rings
should be the choice for AVL and complete trees, and
Path should be the choice for unbalanced-to-the-right
and molecular combinatory binary trees. If visualiza-
tion of leaf nodes is important, then Separation should
be the choice for randomly-generated, Fibonacci, and
molecular combinatory binary trees, Rings should be
the choice for complete and AVL trees, and Path
should be the choice for unbalanced binary trees. If
angular resolution is important, Rings, Path, and Sep-
aration are all good choices, only Separation is not
recommended for unbalanced binary trees. Level, the
algorithm used very often in practice, scores worse
in comparison to the other algorithms for almost all
tree-types and aesthetics considered in our study.

Acknowledgment

We are grateful to Dr. Bruce MacLennan from the
Department of Computer Science at the University of
Tennessee for providing to us the real-life molecular
combinatory binary trees.

References

T. Chan, M. Goodrich, S. Rao Kosaraju, & R. Tamas-
sia. (2002), Optimizing area and aspect ratio in
straight-line orthogonal tree drawings, in Com-
putational Geometry: Theory and Applications,
23:153-162.

G. Di Battista, P. Eades, R. Tamassia, & I. G. Tol-
lis. (1999), Graph Drawing, Prentice Hall, Upper
Saddle River, NJ.

A. Garg & A. Rusu. (2003), A more practical algo-
rithm for drawing binary trees in linear area with
arbitrary aspect ratio, in Proceedings 11th Inter-
national Symposium on Graph Drawing, volume
2912 of Lecture Notes Comput. Sci., pages 159-
165, Springer.

B. MacLennan. (2003), Molecular Combinatory Com-
puting for Nanostructure Synthesis and Control,
in Proceedings 3rd IEEE Conference on Nanotech-
nology, IEEE Press, pp. 179-182 vol. 2.

E. Reingold & J. Tilford. (1981), Tidier drawings of
trees, in IEEE Transactions on Software Engi-
neering, 7(2):223-228.

A. Rusu, R. Jianu, C. Santiago, & C. Clement. (2005),
Planar Straight-Line Grid Drawings of Binary
Trees: An Experimental Study, Technical Re-
port 2005-01, Department of Computer Science,
Rowan University, Glassboro, NJ.

A. Rusu, C. Clement, & R. Jianu. (2005), Perfor-
mance Analysis of a Path-Based Algorithm for
Drawing Binary Trees, in Proc. 5th International
Conference on Artificial Intelligence and Digital
Communications, Research Notes in Computer
Science, pages 84-102.

S. T. Teoh, K. L. Ma. (2002), RINGS: A Technique
for Visualizing Large Hierarchies, in Proceedings
10th International Symposium on Graph Drawing,
volume 2528 of Lecture Notes Comput. Sci., pages
268-275, Springer.

L. Valiant. (1981), Universality considerations in
VLSI circuits, in IEEE Trans. Comput., C-
30(2):135-140.

