
Analysis of Busy Beaver Machines via Induction Proofs

James Harland

School of Computer Science and Information Technology
RMIT University
GPO Box 2476V
Melbourne, 3001

Australia
jah@cs.rmit.edu.au

Abstract

The busy beaver problem is to find the maximum
number of 1’s that can be printed by an n-state
Turing machine of a particular type. A critical
step in the evaluation of this value is to determine
whether or not a given n-state Turing machine
halts. Whilst this is undecidable in general, it is
known to be decidable for n ≤ 3, and undecidable
for n ≥ 19. In particular, the decidability question
is still open for n = 4 and n = 5. In this paper we
discuss our evaluation techniques for busy beaver
machines based on induction methods to show the
non-termination of particular classes of machines.
These are centred around the generation of induc-
tive conjectures about the execution of the ma-
chine and the evaluation of these conjectures on a
particular evaluation engine. Unlike previous ap-
proaches, our aim is not limited to reducing the
search space to a size that can be checked by hand;
we wish to eliminate hand analysis entirely, if pos-
sible, and to minimise it where we cannot. We
describe our experiments for the n = 4 and n = 5
cases appropriate inductive conjectures.

1 Introduction

The busy beaver is a well-known example of a
non-computable function. It was introduced by
Rado[18] as a simple example of such functions,
and is defined in terms of a particularly simple
class of Turing machines [21]. This class of ma-
chines has a single tape, infinite in both directions,
which is blank on input. There are only two tape
symbols, 0 and 1, and the machine is required to
be deterministic, i.e. that for any state and input
symbol there is exactly one transition. Each ma-
chine also contain a special state known as the halt
state, from which there are no transitions. A ma-
chine is said to have n states when it has one halt
state and n other states. The busy beaver function
for n is then defined as the largest number of 1’s
that can be printed by an n-state machine which

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Thirteenth Computing: the Australasian The-
ory Symposium (CATS2007), Ballarat, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 65. Joachim Gudmundsson and Barry Jay, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

halts. This function is often denoted as Σ(n); in
this paper we will use the more intuitive notation
of bb(n). The number of 1’s printed by the machine
is known as its productivity.

This function can be shown to grow faster than
any computable function. Hence it is not only
non-computable, it grows incredibly quickly. Ac-
cordingly, despite over 40 year’s worth of exponen-
tial increases in hardware capabilities in line with
Moore’s famous law, its value has only been es-
tablished with certainty for n ≤ 4. The values for
n = 1, 2, 3 were established by Lin and Rado [11] in
the 1960s and the value for n = 4 by Brady in the
1970s [3]. Larger values have proved more trou-
blesome [14, 13, 10, 20], and the lower bounds for
n = 6 are already spectacularly large [13]. There
are some interesting analyses of the current cham-
pion machines for the n = 5 and n = 6 cases
[17, 16], but due to the sheer size of the numbers
involved, bb(n) for n ≥ 7 may never be known.

The current state of knowledge is given in the
table below. We denote by ff(n) (for frantic frog)
the maximum number of state transitions per-
formed by a terminating Turing machine with n
states.

n bb(n) ff(n)
1 1 1
2 4 6
3 6 21
4 13 107
5 ≥ 4098 ≥ 47, 176, 870
6 ≥ 1.29 ∗ 10865 ≥ 3 ∗ 101730

There is some strong evidence that bb(5) =
4, 098, and Kellett [10] has shown this for the
quadruple version of 5-state Turing machines (i.e.
those in which each transition can either change
what is on the tape, or move the tape pointer,
but not both). This is tantalisingly close, but in
the absence of a proof of equivalence between this
variant and the quintuple one (or more particu-
larly a proof that for every 5-state quintuple ma-
chine there is a 5-state quadruple equivalent), we
cannot state definitively that bb(5) = 4, 098.

There are a number of other points of inter-
est in this area, such as the placid platypus prob-
lem discussed in [8], and investigating busy beaver
functions for machines with 3, 4, 5 and 6 symbols.

In this paper, we concentrate on providing a
simple and extensible technique for establishing

non-termination. In particular, we want to find
a method which can be extended, as larger classes
of machines generally require more sophisticated
techniques than smaller ones, and one that max-
imises the possibilities for automated analysis. In
other words, we want to have a decision procedure
for all decidable cases of this problem.

Our technique is based on an analysis of ex-
ecution history, which is used to produce induc-
tive conjectures, which are then passed to a par-
ticular engine for evaluation. The extensibility of
this techniques can thus be found in the ability to
produce more inductive conjectures, with a corre-
sponding increase in the complexity of the compu-
tations that can be performed by the engine.

This paper is organised as follows. In Section 2
we discuss various cases of non-terminating ma-
chines and how they may be detected, and in Sec-
tion 3 we discuss our conjecture method in some
detail. In Section 4 we discuss the hypothetical en-
gine and in Section 5 we discuss our experiments
with it. Finally in Section 6 we present our con-
clusion and some areas of further work.

2 Classification of Machines

There are a number of ways in which a given ma-
chine may fail to terminate, or to otherwise be of
no interest for the search for busy beaver machines.
The machine generation process is based on the
tree normal form method [11, 3], in which a par-
tially complete machine is executed until it reaches
a transition which is not yet defined. Some con-
straints are applied at this point, to ensure that
only “sensible” machines are generated. These
constraints include not allocating the halt transi-
tion until all other transitions are defined, ensuring
that no state is isolated (i.e. unreachable from any
other state) and performing some simple checks for
loops. We refer to all machines pruned in this gen-
eration process as ignoble iguanas. These include
both machines which we can determine not to ter-
minate, as well as some others which may termi-
nate, but which will have no bearing on the busy
beaver or placid platypus problem. One example
is a machine which returns the tape to all blanks at
some point in the computation (we refer to such a
machine as a phlegmatic phoenix1). This machine
may terminate, but as far as the calculation of its
productivity is concerned, the computation per-
formed up to this point is wasted. In particular,
there is another machine in the search space which
will perform whatever computation takes place af-
ter this point without this initial loop. By building
checks such as these into the generation process,
we eliminate a number of cases in which we gener-
ate machines which are then quickly shown to be
irrelevant.

Having generated and stored a particular ma-
chine, we then attempt to classify it as either a
terminating machine, or as one of a variety of non-
terminating machines.

1A phlegmatic phoenix is also an ignoble iguana. Thus,
our inheritance relation is thoroughly counterintuitive from a
zoological perspective.

One obvious class of non-terminating machines
are those which repeat exactly the same tape con-
figuration. We refer to these machines as perennial
pigeons. These machines are comparatively rare in
our search, as they can be largely eliminated by the
generation process.

Another class of non-terminating machines are
those which move infinitely in only one direc-
tion. We refer to these machines as road runners.
Again these are largely eliminated in the genera-
tion process.

A further class of non-terminating machines are
those which move in one direction, but in a cyclic
process involving movement in both directions.
Essentially this involves re-creating the same tape
sub-section and shifting it in one direction. For
example, consider Machine 1 in Figure 1.

This machine has the following execution trace.
Note that the notation 1{B}0 denotes that the
machine in state B with the tape head pointing at
the 0).

{A}0
1{B}0
{A}10

{A}010
1{B}10
{C}110
{C}0110
{D}00110
{A}010110
1{B}10110
{C}110110
{C}0110110
{D}00110110
....

This machine repeatedly moves one step to the
right and then four to the left. We can see this
by noting that from the configuration {A}01 it
never moves past the 1, and has a net movement to
the left which re-recreates this configuration three
places to the left, i.e. {A}01001.

Brady [3] refers to these machines as “travel-
ling loops”; following the literary lead of the busy
beaver, we refer to them as dizzy ducks.

A fourth class of non-terminating machines are
those for which the halt transition cannot be ex-
ecuted. For example, consider Machine 2 in Fig-
ure 1.

Now in order to reach the halt state, this ma-
chine must be in state C with input 0. The only
way in which this configuration could be reached
is to previously be in state B with input 1, which
in turn can only arise from state A with input 0.
Hence the only way to reach the halt state is to
execute the sequence {A}01 → 1{B}1 → {C}11
However, this clearly cannot reach the halt state,
as by the time we enter state C, the input must
be 1, not 0. Hence we can show that this machine
will never terminate by showing that the halt state
is unreachable. We refer to this class of machines
as meandering meerkats.

None of these machine types are particularly
difficult to detect. Ignoble iguanas are pruned in
the generation process (see Section 5), and some
simple checks when executing a machine suffices

A

11L

B
01R

00L
C

11L

11L

D

00L

01L H
11R

A

11L

B01R

00L

C
11L

D

10L

H
01R

10L

01R

Machine 1: dizzy duck Machine 2: meandering meerkat

A

11L

B
01R

01L
C

11R

11R
H

01R

A
B

01R

C10L

00L

D

11R

01L
11L

00R
H

11R

Machine 3: Christmas tree Machine 4: phlegmatic phoenix

A B
01R

11R,00L

A B
01R,11R

00L A B
01R

0*R

Machine 5: ignoble iguana Machine 6: perennial pigeon Machine 7: road runner

Figure 1: Some basic machine types

to detect perennial pigeons, phlegmatic phoenices
and road runners (see examples of these in Fig-
ure 1). Dizzy ducks require a little more care, as
at least some part of the history of execution of
the machine is required. The way we have imple-
mented the test for these is to execute the machine
for a given length of time (say 100 steps), extract
the history of execution and examine it for pat-
terns of this form. As well shall see, this fits in
well with our detection methods for the remaining
machines.

3 Inductive Proofs of Non-termination

One of the classic cases for non-termination is that
of Christmas trees, as coined by Lin and Rado [11].
These machines basically continually add a num-
ber of 1’s (or some other string) to each end of the
tape. For example, consider Machine 3 of Figure 1.

The execution of this machine proceeds as fol-
lows.

{A}0
1{B}0
{A}11

{A}011
1{B}11
11{C}1
111{B}0
11{A}11
1{A}111
{A}1111
{A}01111
1{B}1111
11{C}111
111{B}11

1111{C}1
11111{B}0
1111{A}11
111{A}111
11{A}1111
1{A}11111
{A}111111

{A}0111111
1{B}111111
11{C}11111
111{B}1111
1111{C}111
11111{B}11
111111{C}1
1111111{B}0
111111{A}11
11111{A}111
1111{A}1111
111{A}11111
11{A}111111
1{A}1111111
{A}11111111
{A}011111111
1{B}11111111
11{C}1111111
111{B}111111
1111{C}11111
11111{B}1111
111111{C}111
1111111{B}11
11111111{C}1
111111111{B}0
11111111{A}11
...

It is clear by looking at the trace that this ma-
chine endlessly adds 1 to either end of the tape.
Whilst Lin and Rado [11], Brady [3] and Kellett
[10] have all given methods for recognising Christ-

mas trees and similar machines, they are all based
on recognising particular structures in the ma-
chine, such as a particular configuration of tran-
sitions. Clearly this an appropriate method, but
the difficulty lies in knowing what cases remain un-
covered by such analyses. Moreover there is some-
thing intuitively appealing about looking directly
at the behaviour of the machine itself and using the
trace as the basis for analysis. Our approach is to
examine the execution history, in much the same
manner as a human would when looking at the
above trace, to formulate some appropriate con-
jectures about the pattern of behaviour observed,
and to then evaluate these conjectures on a partic-
ular execution engine. This differs from a standard
Turing machine emulator in that we commence ex-
ecution with a particular tape pattern and attempt
to execute the machine until this pattern recurs.
If so, we have established that the machine does
not terminate.

This processes appears to aggregate several
heuristics together, as well as provide a common
basis for dizzy duck detection and the pattern-
based non-termination proofs. In addition, as
the analyses of Michel [16] and the techniques of
Holkner[9] have shown, similar methods will be re-
quired to establish termination for at least some
5-state and 6-state machines.

For example, consider the machine above.
From looking at the trace, we can determine that
the following sequence occurs:

11{C}1 → 11{C}111 → 11{C}11111
We then form the conjecture that the pattern

11{C}1(11)m occurs infinitely often in the trace,
i.e. once for every non-negative integer m. We
know that as 11{C}1 is in the trace that this pat-
tern occurs at least once. In order to complete the
proof, we need to show that if the machine com-
mences in a state of the form 11{C}1(11)m for any
m, then the computation will eventually reach a
state of form 11{C}1(11)m+1, which we can write
as 11{C}111(11)m. Performing this computation
is the job of what we term the hypothetical engine.
This engine is discussed in more detail in Section 4.

Naturally there can be more than one such pat-
tern to be found in the trace, but clearly one such
proof suffices to establish non-termination. All
proofs of non-termination can be thought of as
particular methods for showing that the halt tran-
sition is never executed. This particular technique
is based on showing that once a particular state
and pattern on the tape is reached, it recurs infi-
nitely often.

Hence, once we have the execution trace, we
search it firstly for a combination of state and in-
put symbol which is repeated in the trace (such
as state C and input 1, or state A and input 0 in
the above example). We then examine the con-
figurations in the trace which contain this combi-
nation, and look for what we call a progression.
This can be thought of as a pair of configurations
which conform to the same pattern, but for which
the earlier configuration is a simpler form of the
later one. For example, in the above trace we note
that the first two occurrences of state C with in-
put 1 are 11{C}1 and 11{C}111. As the first con-

figuration is a sub-pattern of the second, we find
that there is a progression. In more complicated
cases, we look at occurrence counts for particu-
lar strings. For example, given the two configu-
rations 11{A}0011 and 111{A}0010011, by repre-
senting these as 12{A}(001)111 and 13{A}(001)211

respectively, we find that there is a progression, as
the basic patterns of 1∗{A}(001)∗1∗ are the same,
and the number of occurrences in the second con-
figuration are all at least as large as those in the
first. Finally, before accepting this as a hypothesis,
we insist that there be at least three instances of
the pattern occurring in the trace. In the Christ-
mas tree example above, we note that the con-
figurations 11{C}1, 11{C}111, 11{C}11111 and
11{C}1111111 all occur in the trace, and so this
requirement is met. In the latter case, we would
require that 1111{A}0010010011 also be present
in the trace before accepting this pattern as a hy-
pothesis.

The reason for this requirement is that there
are some machines for which a progression is not
merely the repeated addition of a particular string.
In particular, there are some for which the pro-
gression is multiplicative rather than additive. For
example, consider the machine below.

A

B

01R

C10L

01R

D
11R

01L

10R

01R
H

11R

Here we find the configurations 16{D}0 and
118{D}0. Treating these as additive progressions
would result in the hypothesis 16(112)m{D}0, pre-
dicting the third occurrence as 130{D}0 . How-
ever, the third instance in the trace is in fact
142{D}0, thus showing that this is not an addi-
tive progression. When treated as a multiplicative
progression, we find that the next occurrence af-
ter 1n{D}0 is predicted to be 12n+6{D}0. This is
confirmed by inspection of the trace, in which the
fourth occurrence is found to be 190{D}0.

Hence there are some 4-state machines which
cannot be handled by additive progressions alone.
Whilst making multiplicative hypotheses does not
seem overly difficult, the current implementation
of the hypothetical engine does not support mul-
tiplicative hypotheses. We are currently working
on ways to extend the engine to include such hy-
potheses. We refer to machines that require this
form of induction as killer kangaroos.

It should also be noted that it seems sensible
to use the heuristic that the first state tried in this
process is the one which contains the halt transi-

tion. We refer to this state as the pivotal state.
For example, in the machine above, state D with
input 1 will execute the halt transition, and hence
D is the pivotal state. Hence we first try to find
a progression for state D with input 0. If such
a progression cannot be found, possibly because
the machine never enters the pivotal state or does
so only once, we then proceed to consider other
states.

It is worth keeping in mind that for a fixed finite
tape length, a non-terminating machine will either
remain within this tape length and repeat a config-
uration, or move outside one or both of the tape
length’s boundaries. One can think of the dizzy
duck detection technique as capturing those ma-
chines which cross only one of these boundaries;
the methods based on progressions are used to
analyse those which cross both. Hence a typical
trace for these methods will involve moving from
one end of the tape to the other, and possibly sev-
eral times.

Hence our main points of difference from other
approaches can be summarised as:

• The use of execution history as a basis for
non-termination conjectures

• The use of an inductive execution engine to es-
tablish the truth of the non-termination con-
jectures (where possible)

• The aim to automate as much of the analysis
as possible

The third point is worthy of some further dis-
cussion.

Lin and Rado, Brady, and Kellett all use com-
putational methods to reduce the search space,
leaving some class of holdouts, i.e. some number
of machines which need to be analysed by hand
(although Brady does state that his automated
analysis could correctly analyse all the 40 hold-
outs found by Lin and Rado). In terms of deter-
mining the busy beaver function, this is entirely
appropriate. In our case, we wish to not only ex-
plore this question, but several others, such as the
placid platypus function. In addition, the decid-
ability of the termination problem for this class of
machines for particular values of n is not yet com-
plete. It is known that termination is decidable for
n ≤ 3 [12], and that it is undecidable for n ≥ 19
[12], as evidenced by a 19-state universal Turing
machine. To the best of the author’s knowledge,
the decidability of the cases for n = 4 and n = 5
is still open, although Michel [15] has argued that
the n = 5 case is likely to be undecidable, due to
the similarities between his analysis of the 5-state
machines of high productivity and the Collatz se-
quence.

4 The Hypothetical Engine

The main question for the hypothetical execu-
tion engine is how to deal with tape strings like
1(11)n where n is a variable. When n is a con-
stant, the techniques of Marxen and Buntrock[14],
Holkner[9] and others are directly applicable.

Roughly speaking, when n is a variable, we rely
on finding cycles in the machine. For example,
consider the machine below and the configuration
{B}(11)m010.

B C
11R

11R

Given that for any input X we have that
{B}11X → 1{C}1X → 11{B}X, we can then de-
duce that from the configuration {B}(11)m010 we
can get to (11)m{B}010. We can then compute
”as normal” until we encounter further variables.

Hence we need to determine what transition to
make when faced with a configuration of the form
L {S}IN R.2 There are three cases:

1. Computation commencing with the configu-
ration {S}I remains within the tape segment
containing I until it exits from the right hand
end of the tape segment in state S. Hence
{S}IX → NewI{S}X for any input symbol
X. Accordingly, any tape configuration of the
form L {S}IN R will result in the configura-
tion L (NewI)N{S} R.

Because this is independent of the contents of
L and R, this transformation can be thought
of as context-free. Continuing our linguistic
theme, we refer to this case as the wild wom-
bat.

2. Computation commencing with the configu-
ration {S}I exits from the left hand end of
the tape segment containing I. In this case
we continue the computation, until either we
exit the right hand side in state S, or we ex-
ceed some bound limit. In the latter case, this
proof attempt then fails. In the former case,
we then have a context-sensitive transforma-
tion of the following form:

L{S}IX → NewL{S}X

In order to repeatedly apply this transforma-
tion for the configuration L{S}INR, we re-
quire that L = L2.L1 and NewL = L2.L3.L1
so that we have

L2.L1{S}IX → L2.L3.L1{S}X

In other words, we divide L into two parts:
one that is unchanged in the computation
(L2) and one that is changed (L1). Either of
these may be empty. Then in order to repeat-
edly apply the same transformation, we re-
quire that the rightmost characters of NewL
be the same as L1; otherwise, this proof at-
tempt fails. If these conditions are satisfied,
we then have the following transformation:

L2.L1{S}I
NR → L2.(L3)

N .L1{S}R

2Similar remarks apply, of course, when the tape pointer is
at the right hand end of I

N . Without loss of generality we
discuss only the left hand case here.

Because this is dependent of the contents of
L, this transformation can be thought of as
context-sensitive. We refer to this case as the
slithery snake.

3. Computation commencing with the configura-
tion §}I exits from the right hand end of the
tape segment containing I, but not in state S.
In this case, we also proceed with the compu-
tation until it returns to this precise position
in state S, or we exceed some bound limit. In
the latter case, this proof attempt fails. Oth-
erwise, we have the problem of what symbols
the computation should proceed with. There
are two possibilities:

(a) “Switching” a string from elsewhere

(b) Splitting into cases

For the first case, consider the configura-
tion {S}(11)N110011. Now as (11)N11 and
11(11)N represent the same strings, we can
switch from this configuration to the equiva-
lent one {S}11(11)N0011, from which we can
then clearly proceed. In the second case, we
can do something similar, but by splitting
this case up into one where N = 0 and one
where N > 0. In our example, this means
we have to handle the cases for {S}110011
and {S}11(11)N0011. This latter configura-
tion we can compute with, as above. In the
former case, it seems natural to proceed from
this point to the appropriate instance of the
target case. However, in some experiments we
found that this point in the computation had
in some cases already passed the zero instance
of the target case. Hence we find the zero in-
stance of the initial configuration and then
proceed from there to (hopefully) the zero in-
stance of the target configuration.

In either case, we have that

L {S}IINR → NewL{S}INNewR.

As in the previous case, to be able to re-
peatedly apply this transformation, we re-
quire L = L2.L1 and NewL = L2.L3.L1 and
R = NewR. Hence we have that

L2.L1{S}IINR → L2.L3.L1{S}I
NR

from which we deduce that

L2.L1{S}IINR → L2.(L3)
N .L1{S}IR

We refer to this case as the maniacal monkey.

These three techniques have been implemented
in the hypothetical engine. As we have seen, there
is a need to extend this to the evaluation of mul-
tiplicative inductive conjectures as well.

5 The Blue Bilby, Ebony Elephant and
White Whale

We have implemented the above conjecture gen-
erator and hypothetical engine. The current im-
plementation is around 5,000 lines of Ciao Prolog
[5]. This code is available from the author’s web-
site at www.cs.rmit.edu.au/∼jah/busybeaver.

This implementation follows the tree normal form
method of generating machines, i.e. evaluating a
partially complete machine until an unallocated
transition is found, allocating it a value and then
performing various checks on the resulting ma-
chine. If the test fails, an alternative allocation
is sought. Otherwise, computation then proceeds
with the extended machine. This process contin-
ues until only the halt transition remains to be
allocated, at which point the machine generation
is complete.

We then have to classify the machine as either
terminating or non-terminating. As noted above,
the checks in the generation process catch most or
all of the phlegmatic phoenices, perennial pigeons,
and road runners. Hence we test for ignoble igua-
nas (basically a variety of simple loop tests), and
for meandering meerkats, which is done by running
the machine backwards from the halt state for up
to a bounded number of transitions. If we end up
in a dead end, the halt transition is unreachable
and the machine is a meandering meerkat. Oth-
erwise, the test fails and we proceed to the next
case.

We then emulate the machine for a fixed num-
ber of steps. This provides not only a means of
proving termination by emulating the machine and
showing it reaches the halt state, but also a record
of the execution history, which can then be mined
for dizzy ducks and used by the above inductive
methods.

The results of our experiments to date can be
found in Table 5. For cultural consistency with
other alliterative animals, we refer to machines
which terminate as terminating termites. In the
case for n = 3, we found that there were 2,112 ma-
chines to be analysed after the tree normal form
generation.3 Of these, only 26 required the induc-
tive methods; the rest either terminated or were
classified as dizzy ducks, meandering meerkats,
road runners, phlegmatic phoenices, or perennial
pigeons. Of the 26 requiring induction, 24 required
only the wild wombat case, 2 required the slithery
snake, and none required the maniacal monkey.

In the case for n = 4, we found that there were
350,440 machines to be classified. Of these, 5,112
were found to require induction, with 61 machines
remaining unclassified at the time of writing. Of
the remaining 61, 41 were killer kangaroos, i.e. re-
quiring multiplicative induction hypotheses, and a
corresponding addition to the hypothetical engine.
We are actively pursuing both of these extensions.
The remaining 21 cases do not require multiplica-
tive hypotheses, but do require a more sophisti-
cated means of evaluation. For example, consider
the machine below.

3We denote the search for beaver machines with 3,4, and5
states as the quest for the blue bilby, ebony elephant, and the
white whale respectively. We refer to the search for 6 state ma-
chines as the quest for the demon duck of doom, a term used
to describe an Australian Thunderbird from the megafauna
era thousands of years ago (http://www.abc.net.au/science/
features/megafauna/default.htm).

States Machines Termites Loops Ducks Wombats Snakes Monkeys Kangaroos Unclassified
2 11 7 2 2 0 0 0 0 0
3 2,112 903 436 747 24 2 0 0 0
4 350,440 134,048 84,482 126,735 3,292 1,803 18 41 21
5

A

B01R,10R

11R

C
01L

D

10L

H
01R

01R

11L

Execution of this machine produces the follow-
ing trace of the pivotal state:

{c}11
11{c}11

10{c}111
1111{c}11
1011{c}111
110{c}1111
111111{c}11
101111{c}111
11011{c}1111
1110{c}11111
11111111{c}11

From the trace it is straightforward to see that
a reasonable (additive) hypothesis is (11)mc11,
which has four instances in the trace. The dif-
ficulty is that between occurrences of this pat-
tern there are transitions of the form 1n01kc1m to
1n+101k−2c1m+1. Hence such machines require a
“secondary” induction in addition to that already
present in the engine. We are also actively this ex-
tension to the engine. We refer to these machines
as addictive adders.

The search for n = 5 is much less complete.
However, it is anticipated that widespread use of
the multiplicative inductive method will be re-
quired, and presumably some stronger methods
still. A summary of our results to date is in the
table below. The Machines column is the number
of machines after the generation process, which
eliminates many simple kinds of loop. The Loops
column records some easily detected loops, such as
meandering meerkats, but does not include dizzy
ducks or any of the machines counted in other
columns in the table.

Whilst our search for the ebony elephant is still
incomplete, we believe that our method has shown
itself to be useful. The most direct point of com-
parison is with the work of Brady [3]. His auto-
mated analysis (which was undertaken in the 1970s
with much less powerful equipment) left 218 cases
unclassified (or “holdouts”) and used a number of
different heuristics. We believe our method is con-
ceptually simple and can be readily extended to
further cases (such as the multiplicative hypothe-
ses discussed above). It is also leaves fewer cases
unclassified (although Brady did not attempt to
minimise the 218 unclassified cases; his aim was
to reduce the search space to a number manage-
able by hand rather than to maximise the number
of cases analyses automatically). It is interesting

to observe the behaviour of our methods on the 6
classified cases and 3 unclassified cases described
in [3]. Not only does our method show the non-
termination of all 6 classified case, it is able to
show that 2 of the 3 holdouts also do not termi-
nate. The final machine is a killer kangaroo, and
hence requires multiplicative induction.

The strength of the inductive conjectures re-
quired for each class of machines is also of interest.
The additive hypotheses used here are basically a
particular class of regular expressions. We think
it is particularly interesting that a small number
of 4-state machines require inductive hypotheses
of greater strength, similar to the way in which
there were 2 3-state machines requiring the slith-
ery snake technique rather than the wild wombat
case alone. A similar phenomenon is observed with
the 5-state busy beaver candidates, i.e. machines
with high productivities, in that there are 8 ma-
chines out of a total of 69,471,096 with productiv-
ities of more than 1,000. We refer to this as the
handful of holdouts phenomenon.

6 Conclusions and Further Work

We have seen how an inductive technique based on
the history of execution can be used as a means of
proving non-termination. This technique is con-
ceptually simple and readily extensible, and has
the potential to form a basis for techniques to
prove the termination of machines, as well as their
non-termination. We believe that this technique
will be an important tool in the quest for the de-
mon duck of doom (but it will be by no means the
only one).

We have seen how this technique can be used
to reduce the number of holdouts for the n = 4
case. Given that the decidability of the n = 4
case is still open, it is entirely possible that we can
reduce this number to 0. It is also intriguing to
note that whilst the largest number of transitions
used in a terminating computation in a 4-state ma-
chine is 107, it often takes significantly more steps
than that to establish non-termination. For ex-
ample, there some 4-state dizzy ducks for which
the pattern is only detected after 393 steps. In
our experiments we used a maximum of 750 steps.
However, it is not yet clear if this bound needs to
be increased or not.

An interesting correspondence was pointed out
by Brady [4] between the 4-state 2-symbol case
and the 2-state 4-symbol case. Given that the
number of transitions in each type of machine is
the same, a natural question is whether it is pos-
sible to translate machines from one type to the
other (or possibly for a sub-class of machines).

We have also seen how additive induction hy-
potheses (which are basically a sub-class of regular
expressions) can be used with the current hypo-

thetical engine to classify all 3-state machines and
almost all 4-state machines. We have also seen
how multiplicative conjectures and a correspond-
ingly more sophisticated engine will be required
to reduce the 4-state holdouts further. A ques-
tion of interest is then the precise level of induc-
tive strength that is required for the 5-state and
6-state machines.

References

[1] George Boolos and Richard Jeffrey, Com-
putability and Logic, 2nd edition, Cambridge
University Press, 1980.

[2] Allen Brady, Busy Beaver Problem of Ti-
bor Rado, http://www.cse.unr.edu/∼al/
BusyBeaver.html

[3] Allen Brady, The Determination of the value
of Rado’s noncomputable function Σ(k) for
four-state Turing machines, Mathematics of
Computation 40(162): 647-665, 1983.

[4] Allen Brady, private communication, August,
2006.

[5] The Ciao Prolog Development System
WWW Site, http://clip.dia.fi.upm.es/
Software/Ciao.

[6] A. Dewdney, The (New) Turing Omnibus,
Computer Science Press, 1993.

[7] Milton Green, A lower bound on Rado’s sigma
function for binary Turing machines, Pro-
ceedings of the Fifth Annual IEEE Sympo-
sium on Switching Circuit Theory and Logical
Design 91-94, Princeton, November, 1964.

[8] James Harland, The Busy Beaver, the Placid
Platypus and Other Crazy Creatures, Pro-
ceedings of Computing: the Australasian
Theory Symposium (CATS’06), Hobart, Jan-
uary, 2006. Published as Volume 51 - Theory
of Computation 2006 of the ACS Conferences
in Research and Practice in Information Tech-
nology (CRPIT) series.

[9] Alex Holkner, Acceleration Techniques for
Busy Beaver Candidates, in Gad Abraham
and Benjamin I.P. Rubenstein (eds.), Pro-
ceedings of the Second Australian Under-
graduate Students’ Computing Conference 75-
80, December, 2004. ISBN 0-975-71730-8.
Available from http://www.cs.berkeley.
edu/∼benr/publications/auscc04.

[10] Owen Kellett, A Multi-Faceted Attack on the
Busy Beaver Problem, Master’s Thesis, Rens-
selaer Polytechnic Institute, August, 2005.

[11] Shen Lin and Tibor Rado, Computer Stud-
ies of Turing Machine Problems, Journal of
the Association for Computing Machinery
12(2):196-212, 1964.

[12] Maurice Margenstern, Frontier between De-
cidability and Undecidability: A Survey, The-
oretical Computer Science 231(2):217-251,
January 2000.

[13] Heiner Marxen, Busy Beaver web page,
http://www.drb.insel.de/∼heiner/BB/
index.html.

[14] Heiner Marxen and Jürgen Buntrock, Attack-
ing the Busy Beaver 5, Bulletin of the EATCS
40:247-251, February 1990.

[15] Pascal Michel, Busy beaver competition and
Collatz-like problems, Archive for Mathemat-
ical Logic 32 (5) 1993, 351-367.

[16] Pascal Michel, Behavior of Busy Beavers,
http://www.logique.jussieu.fr/
∼michel/beh.html.

[17] R. Munafo, Large Numbers – Notes,
http://home.earthlink.net/∼mrob/pub/
math/ln-notes1.html.

[18] Tibor Rado, On non-computable functions,
Bell System Technical Journal 41: 877-884,
1963.

[19] Kyle Ross, Use of Optimisation Techniques
in Determining Values for the Quadruplorum
Variants of Rado’s Busy Beaver Function,
Masters thesis, Rensselaer Polytechnic Insti-
tute, 2003.

[20] Georgi Georgiev, Busy Beaver Prover, http:
//skelet.ludost.net/bb/index.html.

[21] Thomas Sudkamp, Languages and Machines:
An Introduction to the Theory of Computer
Science, (3rd ed.), Addison Wesley, 2005.

