
Application of Personas in User Interface Design for Educational
Software

Ursula Dantin
Department of Information Systems and Operations Management

School of Business, The University of Auckland
Private Bag 92019, Auckland, New Zealand

u.dantin@auckland.ac.nz

Abstract

In the current cautious business climate, development of
large new software has become rarer as the cost pressure
has increased. User interfaces (UI), the most important
part of a system for end users and critical for system
success, remain notoriously user-unfriendly. This makes it
imperative to identify practical tools that small software
projects can use to help them maximise UI design quality
while minimising cost.

This research looks at two similar small systems and
investigates the usefulness of the concept of personas for
UI design evaluation. Following the Goal-Directed
Design approach, personas are defined along classes of
users. The tasks of each persona are established via user-
centred requirements. Each task is then performed with
consideration to established usability heuristics. Overall,
the question is whether the initial use of personas in the
design phase might have resulted in fundamentally
different UI choices.

It was concluded that the approach of identifying personas
and performing their tasks in evaluating the UIs of both
software systems was most definitely a process that
helped introduce clarity and a form of accountable
reasoning into the UI evaluation process. For both
systems, it could be reasoned that the UI design would
have been fundamentally different in some aspects if
personas were used. However, personas were less helpful
when it came to diagnose and describe user frustrations
that had not so much to do with UI design as such, but
with general usability issues. In this case they were
mainly related to discrepancies and inconsistencies in the
underlying business logic or simply bad programming,
pointing to deficiencies in other areas of the software
development life cycle (SDLC). .

Keywords: persona, user interface design, educational
software, e-learning.

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference 2005, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 42.
Alison Young and Denise Tolhurst, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

1 Introduction

User interface (UI) design seems still to be a neglected
part of the software development life cycle (SDLC). But
also is it usually the last step in designing new software,
with the well documented difficulties of IS projects to
stay on time and on budget, this is when the developers
are running out of both (Paynter et al., 2001). As a
consequence, UIs are notoriously user-unfriendly. Good
experts on UI design are rare and expensive because the
skill set and expertise in this area cannot be developed on
a broad base of working experience. Especially in small
software development (SD) projects, UIs are designed
when the software is already in the final stages of
development to accommodate the logic of the underlying
code rather than an identified set of user needs. The
“entire development process has to be turned around so
that it starts with user needs and ends with engineering”.
(Norman, 1998)

2 Research Method

Heuristics to evaluate UI design quality and,
consequently, design better UIs are for example proposed
by Nielsen (www.useit.com). (Appendix 9.2) In SD, it is
generally argued that the UI design must be fully
integrated into the SDLC and users must be considered
right from the start of a design. Attempts to integrate UI
design by developing integrated design tools relate
usually to large expensive software projects. However,
with the design of large new software becoming rarer in
the current cautious business climate, what practical tools
can small software projects use to help them maximise UI
design quality while minimising cost?

In the SDLC teaching literature, prototyping seems the
standard way to address UI design for smaller SD
projects. However, Randolph (2004) suggests that the
concept of personas, developed by Cooper (1999) in his
Goal-Directed Design approach, could be useful in this
environment. This tool could help developers of small
software packages to start thinking about their users early
in the SDLC and integrating the UI design without huge
cost. User-centred requirements using personas are for
example suggested by RedHat (www.redhat.com).
(Appendix 9.1)

Randolph wants us to think of personas as “hypothetical
users – fictional people who represent classes of users”
(2004). To help the software designer make these
personas real they are fully fleshed out with personal
attributes and personal goals. This could also help with

the often difficult task of capturing and considering non-
system related issues and creating intrinsic value for users
of a system. Not all the personas identified may be
considered in a UI design, but each UI would be designed
for at least one primary persona. Later, in the evaluation
phase of the SDLC, Randolph suggests that this primary
persona’s needs and goals must be satisfied to declare the
system a success.

Personas were developed following Randolph, using also
RedHat’s user-centred requirements (Appendix 9.1) to
ensure all goals and interactions of the personas were
captured. During the evaluation of the UI designs for each
persona, the ten usability heuristics suggested by Nielsen
(Appendix 9.2) were considered.

This research applied Randolph’s persona approach to
evaluate two existing small educational software
packages used in the Business School at the University of
Auckland, NZ. This type of software was chosen because
it seems increasingly to be used in tertiary course
administration worldwide. Competing applications have
become available in recent years. But as their initial
versions tended to be rather basic, most are currently
experiencing further expansion of functionality and
sophistication, which may include changes in UI design.

In the following chapter, we describe the two small
educational applications chosen. In chapter 4, we describe
the personas developed from the person profiles and
informal interviews of staff using each system. They
reflect different task sets and IS capabilities of the users .
(Appendix 9.3, 9.4) We consider how each of these
personas might use the system to do their tasks. This
leads in chapter 5 to the description of user interface
functions needed for user groups based on the personas
identified in the previous chapter. In chapter 6, the
existing UIs of the two applications are evaluated in some
detail for their task logic and ease of use, i.e. user-
friendliness for each persona. In the final chapter, we
consider whether the initial use of personas in the UI
design phase might have resulted in fundamentally
different interface choices.

3 Software evaluated

In this chapter, we describe the two small educational
applications. The two small software packages used to
follow up on the usefulness of personas in UI design were
chosen because they are both concerned with similar
aspects in managing tertiary courses.

3.1 Cecil

Cecil is a custom-designed enterprise learning
management system developed and used at the University
of Auckland, New Zealand (www.cecil.auckland.ac.nz).
Of the more than 32,000 students enrolled at this
university, during 2003 27,500 students were enrolled in
courses that were using Cecil in some form. This was an
increase from approximately 22,000 in 2002, and 15,000
in 2001. Cecil has two completely different interfaces, on
the one hand for the students and on the other hand for
the staff administering the courses. Both interfaces are
web-based. Students and staff can access the system on

campus as well as over any Internet connection. The
number of staff involved in teaching these courses and
using the administration interface of Cecil increased even
more dramatically than the student numbers from just 500
in 2001 to 1,000 in 2002, to 1,400 in 2003. The reason is
that the advantages of electronic course administration
were first recognised by large courses. Small courses with
a higher staff/student ratio adopted Cecil later. The
turnover of course administration staff is high due to the
nature of a university with many senior students working
as temporary part-time staff. There will be a large number
of first time users for both interfaces each semester.

For this study, we are only concerned with the
administration interface of Cecil. The main features that
are used at the moment on this interface seem to be:

• Course details , such as course objectives and staff
contact details , are made accessible to students.

• Course materials such as lecture slides, PDF files,
website links, and even video files of taped
lectures are made available on the student
interface for viewing or download.

• Announcements which can be posted on the
student interface of a course and simultaneously
emailed to the students’ university mailboxes.

• Final course grades for students, usually
composed of marks for single activities like tests,
assignments, and exams, are stored on the Cecil
administrator interface by the course coordinator
or lecturer and accessed by the central university
registry.

Cecil has further facilities that especially ease the
management of large courses:

• A streaming facility, where students can enrol
into tutorials or lab classes where seats are
limited, or where they can form project groups.

• A facility to create and electronically administer
multi-choice tests. The tests are marked
automatically. This is already efficient for courses
of 20-30 students, but even more so for large
courses of several hundred students.

• All marks for partial assessments during a course
can be managed and stored on the Cecil
administrator to be added and even scaled in the
end.

The administrator interface has four staff roles
(coordinator, lecturer, tutor, and marker) reflecting the
different possible job titles of staff involved in a course.
At the moment there is only one small difference in the
interface capabilities: Only coordinators can add
somebody to the staff of a course. In all other aspects, the
interface look and feel, and capabilities are identical. To
help staff getting through the most common course
administration tasks each course has a ‘Task pad’ with six
wizards. The task wizards are:

• Create New Announcement (= send a message to
students)

• Put Files Online (= make material/files available)
• Create New Activity Session (= create the course

structure)

• Course Import Wizard (= re -use an existing
course structure)

• Create Question (= create multiple choice
questions for on-line tests and exams)

• Create New Test (= create the test itself using the
questions)

3.2 Turnitin

Turnitin, created by the iParadigms team, is used “by
thousands of institutions in over fifty countries” and
recognised “worldwide as the standard in online
plagiarism prevention” (www.turnitin.com).

Like Cecil, Turnitin has a student interface and a staff
interface. Students can check their own work for
plagiarism (if this feature has been enabled) and make
necessary changes before officially submitting their paper
to the course. A peer review facility can also be set up by
the instructor of a course for students to assess each
others work. We are not investigating this area of
Turnitin, but are solely interested in the course
administration interface of the product. Turnitin offers,
apart from student and staff, a third user type – the
administrator. This gives each participating institution the
option to appoint one person to be the overall Turnitin
administrator to assert a certain level of control over the
access to Turnitin within their own organisation. Because
this function is not involved in any actual work in any
course we ignore this role for the purpose of the
comparison.

Turnitin offers the following staff features:

• Plagiarism prevention (=identification of copied
material)

• GradeMark (= an advanced grading tool)
• GradeBook (= assignment and grade

administration)
• Digital Portfolio (= document archiving of

submitted assignments)
The iParadigms team is working towards integration of
Turnitin with existing student administration systems like
Blackboard.

4 Application of personas

In this chapter, we describe the personas developed from
the person profiles and informal interviews of staff using
each system.

The administrative job structure for course delivery at the
University of Auckland was analysed and informal
discussions were conducted with real users from various
departments. The user profiles, user responses on the
tasks performed and how they used each system were the
basis for the development of the personas and their
associated tasks. The blueprint for the personas was
adopted from Pind (2001). The responses of the
interviewees on what they were happy/unhappy with
were later used in assessing the user-friendliness of the
existing system.

The administrative structure can be different for each
course. This is up to individual departments or even
lecturers. It means that a “tutor” can have a different job

description and tasks/authority in different courses. The
task structure of large courses is usually more
differentiated, even hierarchical, compared to a course
with small student numbers. The complexity of the task
structure affects the analysis of Cecil because it offers a
sophisticated administration tool for most aspects of a
course. Turnitin is only concerned with the management
of student assignment documents, their check for
plagiarism and the recording of marks. As a result, we
considered mo re personas for Cecil than for Turnitin.

4.1 Cecil users

A large course (over 850 students per semester) was used
to explore a differentiated task structure. In this case, the
course coordinator is the overall administrator of the
course. S/he would like to control read/write permissions
for her/his course on an individual staff and time basis. It
means that two “tutors” may have different types of
access at different times during a course. This enables the
coordinator to respond flexibly to administration demands
as they arise. Using the electronic administration
capabilities of Cecil can result in a big efficiency gain and
improved communication with students.

Courses with 20-40 students are considered small. The
main difference to the large courses is that the lecturer is
the administrator of the course and has few, if any,
assistants. The number of students is small enough for
personal contact to be established easily. The electronic
administration of communication and tests via Cecil does
not lead to a big efficiency gain compared to existing,
more traditional methods. It replicates these traditional
methods rather than replacing them with something more
efficient.

4.2 Cecil personas
• Lecturer (super user)
• Course Coordinator (constant user)
• Lecturer small courses (casual user)
• Lecturer large courses (technophobe - reluctant

user)
• Tutor (infrequent user with limited authority)

These personas could be further reduced. The super user
is in a sense a combination of a course coordinator and a
lecturer of small courses. The difference is that s/he
chooses to use many features in Cecil on principle,
because s/he is an early adopter even though they bring
no considerable time saving for his/her smaller courses.
(Appendix 9.3)

4.3 Turnitin users

We look at courses with word based assignments like
essays and programming code as part of the course
assessment. In this case, it does not matter whether the
course has large or small student numbers. Either way, it
must be established whether the assignment handed in is
the student’s own work. The annotations and rubrics
facility is convenient to use as feedback tool to students
for a course of any size. However, for large courses it
may make more sense than for small courses to use the
marks facility of Turnitin and export the assessment

marks later into the internal marks administration of the
course (like Cecil or Blackboard).

4.4 Turnitin personas
• Instructor (full access user)
• Teaching Assistant (infrequent user with limited

authority)
It is up to the instructor to decide how much authority the
teaching assistant should have. In the extreme, the access
rights would be identical and we would effectively have
just one persona. (Appendix 9.4)

5 Proposed user interfaces

Now, we describe user interface functions needed for user
groups based on the personas identified in the previous
chapter.

By looking at the tasks and needs of the personas
identified, it seemed possible to further group these
personas. This could be seen as an attempt to create what
Randolph (2004) calls primary personas with one distinct
UI for each. For each software examined however, it was
felt that moving away from the personas identified to just
primary personas would mean loosing too much valuable
information. The picture would become too generalised
and peculiarities of certain personas would be lost. It
seemed a case of forcing a “one size fits all” which often
really results in nobody being satisfied.

5.1 Cecil user interfaces

From the personas identified, it seems possible to define
at least two distinct user groups, warranting two distinct
user interfaces for Cecil.

One group would include the lecturers with large courses,
technophobes, and the tutors. This group is not very
comfortable with a complex system and user interface.
They want to infrequently perform some core tasks, like
sending an announcement or making lecture slides
available, without having to wade through a labyrinth of
clicks and screens. They are not interested in student
administration tasks because they can delegate these, are
not allowed to do them, or they cannot cope yet with the
complexity of the task.

The other group would be the people involved in
administration of larger courses and special projects, and
people interested in using the technology. Especially for
large courses of several hundred students it makes sense
to use the on-line test facilities, the marks administration,
announcements and bulk email communication with
students. With big groups like this personal contact with
students is limited. Electronic student administration and
communication are a good way of reducing the workload
and insuring equitable access for students to resources.

Staff running small courses fall somewhere in between.
They could use all the same facilities as are used for the
large courses but they could manage without Cecil. With
small student numbers, personal contact can be readily
guaranteed and even manual administration of marks
during the semester would be possible. So it really

depends on the individual lecturer which user level s/he
wants to join. The super user persona would be an
example of a staff member who has chosen to use the full
facilities even for smaller courses without coordinator
support. This persona could even jump between both
groups and interfaces depending on the task at hand.

5.1.1 Interface 1

The interface for the first group, the non-confident user
with limited tasks should be easy, clean, non-cluttered
with only one window visible at any time and a clear
sequencing of screens. This kind of interface is usually
supplied by wizards. The tasks for this group are:

• Making simple announcements
• Making materials available using a simple course

structure
• Final marks to go electronically to the Registry

office

5.1.2 Interface 2

These personas are technically confident and tend to use
the system frequently which means they can cope with
more complex interfaces, with multiple windows open at
the same time. They may have the system running all day
and want to switch ad hoc between tasks.

The interface for the second group could be concerned
with:

• All electronic student course administration tasks
• Adding and deleting students
• Making materials available using a complex

course structure
• Sophisticated communication
• Full marks administration
• Running on-line tests
• Ability to check if test is actually working (trial

runs)
• Checking what students can see and access.

The personas in this group will need access to the tasks of
Interface 1 as well. But these users might appreciate a
more sophisticated approach to task capabilities. They
may want to email an announcement just to a single or
sub-group of the students. They may want to use
discussion groups to enable communication in large
courses. They publish a plethora of course material and
may want to make materials available under various sub-
headings or folders to help students cope with
information overload on their screens. They want to
administer their marks completely on Cecil with all
partial results like lab tests accumulating over the
duration of a course. To help with decisions about
scaling, they want to get statistical reports and graphs,
maybe even use what-if scenarios.

5.2 Turnitin user interfaces

From the personas identified, it seems possible to work
with just one user interface for Turnitin.

Apart from the setup of new users, classes, and
assignments, the tasks performed could be identical. It

depends more on the division of responsibilities in each
course. To have one interface and use passwords for the
protection of sensitive task allows for full flexibility in
each individual course situation.

5.2.1 Interface

Because the interface should cater for all users, it should
be easy to use and not cluttered. The user should be able
to step through a task intuitively. The tasks for the
interface are:

• Setup of courses/classes and assignments
• Process student submissions (text)
• Look at reports

6 Evaluation

In this chapter, the existing UIs of the two applications
are evaluated in some detail and compared to the
proposed UIs from the previous chapter.

Evaluations of the existing UIs of the two applications
were performed by stepping through the various tasks
identified for the personas. (Appendix 9.3, 9.4) Nelson’s
heuristics for good UI design were taken into account.
The existing UIs were evaluated for their task logic and
ease of use, i.e. user-friendliness for each persona. Is the
step-through for each task logical and easy to follow for
the persona? To what extent are the persona’s needs and
goals satisfied? Does the access to tasks granted by the
system reflect the authority of this persona in the
organisation’s administration hierarchy? Overall, the
question is whether the initial use of personas in the UI
design phase might have resulted in fundamentally
different interface choices.

The existing Cecil administration UI follows closely the
design rules of Microsoft Windows. This is not only
evident in the way the course structure is visualised in the
left hand window, but goes right through to the choice of
colours and icons used for generic buttons. Turnitin takes
more a “one-window” approach. The window design is
mainly consistent with a web site approach. It does not
follow Microsoft Windows design conventions but uses a
custom design in white / light grey / light blue with
important information standing out in various shades of
red.

Turnitin has a task-sensitive help; Cecil only has a search
facility by key words for various help documentation.
Both have downloadable manuals.

6.1 Cecil

Cecil in its current form seems to provide interface
options for both groups – basic and advanced users.

6.1.1 Interface 1

The basic Interface 1 is contained in the wizards
accessible by large symbols on the task pad of each
course. They cover the design and setup of tests as well as
the basic tasks identified here for Interface 1. Small
problems exist with the lack of meaningful explanations
in some wizards. This will result in possible stress for

new users and technophobes. Frequent users have taken
that hurdle and remember simply how to work through
the wizard. They usually even do not notice the lack of
explanations anymore. The same applies for strange
explanations clearly written by non-native English
speakers and small inconsistencies in naming conventions
between the wizards and the non-wizard areas.

A particular oddity seems to be that the last “next” in
most wizards is not marked as the final important step
which actually invokes the action. Instead, a message box
comes up only afterwards telling what the system has just
done. All one is left with is to click the finish button to
close the wizard. Following usual wizard design, the last
“next” button should be labelled differently plus an
additional “yes/no” message should come up to ask for a
final confirmation before the task is actually performed.
Ideally, there should even be an “undo” facility.

To get the final student marks into Cecil is quite easy but
still requires insider knowledge because the existing
wizard style interface is hidden behind a right-click and
the whole process consists of two independent steps in
Cecil. A wizard guiding through the whole process and
residing on the task pad would be a big improvement.

What Cecil cannot provide so far is an effective limitation
of access to particular tasks. A tutor for example cannot
have access to record students’ marks just for a particular
test. They will be able to access all student data
(including personal records) and change all marks in the
course. As a consequence, some coordinators or lecturers
do not give their tutors access to the Cecil administrator.
This means they are not able to delegate simple tasks like
writing routine announcements and making lecture slides
available.

6.1.2 Interface 2

The advanced Interface 2 can be seen as the whole of the
Cecil administrator. It consists of a window to the left
showing the course structure and usually two more
windows to the right showing details using an additional
tab structure where necessary (sometimes even at the top
and bottom of a sub-window) to display rich information.
Sometimes, the structure becomes even more complex
with pop-up windows accessible on double click. From
this pop-up window the task can be accessed, again from
within a double window and/or tab structure. In principle,
this structure follows Windows conventions and should
be familiar to anybody with intermediate computer
literacy. But the screen appears cluttered and the structure
may become less experienced users of the system. Not all
windows visible are refreshed when necessary. Drill
down is inconsistent and not in all cases possible from all
windows. The user cannot easily remember the
navigation the next time the task is required. Tasks
performed in pop-up menus cannot be interrupted to
quickly check on something else within Cecil. In some
cases, the user must have performed a certain task before
a wizard is started. The system only prompts the user
halfway through the task sequence in the wizard on the
need for this task, without giving the opportunity to
actually do it at that point. As a result, the task sequence

must be aborted and the initial task must be performed
somewhere else. Then the user must start the wizard
again and can finally complete the task sequence.

The file structure in the left window is the only way to
access the contents. Staff members can access in this way
course contents of courses they were involved with in
previous years. Over time, this can build up to a
considerable amount of data. Since the system has no
other search facility, the user can only get to a piece of
information if they can remember exactly in which folder,
within which course, within which year and semester the
piece of information they want to access is stored.

Problems for users seem to occur from a lack of clarity
about the steps involved in a complex task they wish to
perform or where the functionality is ‘hidden’. Some
tasks can be accessed through a right mouse click.
Another similar task may only be accessible within a
particular tab. Functionality on the main menu bar is
limited and not consistently available. This could be an
indication for a system that is still under development
towards full functionality. ‘Copy’ and ‘Paste’ are for
example sometimes possible using the shortcut keys, but
not, or only partially, available on the main menu or with
right clicks. To rename a file or folder is sometimes
possible, sometimes not. When a test question is copied
into a completely different folder, a rename to “copy of
…” is always enforced. This is inconsistent with
Windows principles and inconvenient for most users.
However, there is also no facility to backtrack to where
the copy came from which makes version control
problematic.

Some tasks, like creating a number of streams and
making them available for students to book into a lab,
require multiple steps hidden behind various right clicks
and tabs. The logic is complicated to remember and
inconsistent with the business logic of all users
interviewed. To successfully perform the task is made
even more difficult , since it is usually done only at the
start of a course. So, when the next semester or year
comes around, the task sequence will need to be re-
discovered by trial and error or by reading a help file.

Some concepts in the underlying business logic of Cecil,
like the difference between “copy” and “link” when
importing a course structure from an existing course in a
new course, are not sufficiently explained, even in the
wizard. Documents for importing into the course must
first be saved onto an A, C, or D drive because Cecil
cannot access the network.

Many problems advanced users experience are not so
much related to the user interface but to the underlying
business logic of Cecil, and affect the usability of the
system. At the University of Auckland the rules on “how
we do things” are as diverse as the courses on offer since
the internal course administration Cecil is trying to
support is up to each department or even lecturer. Like in
any other business environment, users get frustrated and
often refuse to use a system if it requires them to change
the way they “do things”. Options for doing things
differently are not available or hidden somewhere,
frustrating less experienced or infrequent users. On the

other hand, when the business logic is changed to
accommodate some users, established users are often
taken by surprise when the system suddenly “does weird
things” and they cannot perform a task the way they used
to do it or cannot do it any longer when an update is
implemented. One can argue that this is really not strictly
a problem of user interface quality as such but more one
of general system usability. Both are related to user
satisfaction within ongoing software development
management.

Another issue falling more into the general area of
usability and not strictly UI design is the sometimes
annoying, even confusing, lack of proper window content
update. In the chosen UI design with its multiple
windows it happens quite often that old content is left in
one of the windows when the user has moved already on
to another task or area of content within the main
window. In a sense, all windows usually displayed are
hierarchical, like Windows Explorer, with the left
window displaying the file structure and the right
window(s) displaying the contents of whatever is selected
in the left window. In Cecil, this update of the right
windows, when selecting another file in the left window,
does not always happen. Either the old contents turns to
“gobbledygook” or what is much worse, it remains
unchanged and accessible. This means the user really still
works in the old environment when s/he actually thinks
s/he has moved on to a different place. This can easily
remain unnoticed at first with contents and internal
structure of courses being very similar over the years, as
well as between some courses.

The walk-through exercises for all personas, as well as
the feedback from real users highlighted for Cecil many
frustrations that users experience. They are not so much
related to UI design but to usability of a system. It
became clear that most frustrations users - mostly
advanced and super-users – experienced, were related to
issues like incorrect or inconsistent business logic within
the programming or simply bad programming (faults or
bugs). These users were very vocal about their
frustrations with insufficiently tested updates, hidden
changes to the business logic within an update, and good
and much used features like hidden wizards suddenly
missing in an updated version. In general, these were
complaints about a lack of communication and
consultation between users and developers. This is
especially surpris ing in the case of Cecil, as both groups
are belonging to the same tertiary organisation, some
even work in the same building. This seems to indicate
that an academic environment can have the same
problems in this area as commercial enterprises.

6.2 Turnitin

Turnitin currently provides one consistent interface. The
set up of the structure is protected by password. It seems
that the look of the interface can be customised to a
certain extent. Each user can specify for example the
maximum number of items that should be displayed on a
page. The customisation of the turn-around time for the
plagiarism check is not regarded as a UI feature.

6.2.1 Interface 1

At the upper left side is a kind of page title “Now
viewing:…”, followed by an instruction / help area
similar to wizard walk-through explanations. Applicable
tasks are located at the top of each window as links
and/or tabs. Above the window are mo re tabs to change
quickly to other areas of Turnitin. At the top of the
screen, the company logo as well as user info tabs and the
logout remain constant through navigation. Information is
accessed with web links that allow access into the layers
of course related information. Selective views are made
accessible via drop-down choices where applicable. Some
links generate a separate browser window, but this is
usually only used to display more detailed information.
An actual student assignment for example appears in a
separate browser window.

The choice on the maximum number of items to appear
on a page can potentially make the structure appear too
deep and require too many navigation steps if the number
is set too low. If it is set too high, the page can become
cluttered and difficult to read.

Class materials and announcements can be made
available to students on a calendar. They can be uploaded
from any place on the Intranet. This is different to Cecil
which can only access local drives such as A, C, D drive.
However, the library/archive contents in Turnitin cannot
be rolled over into another course.

The process of setting up a Teaching Assistant is not
intuitive. Individual students can not be assigned to a
specific teaching assistant once students have been
imported into the course. Student documents cannot be
moved into another course if they were submitted
incorrectly. The processing options for student work
between ‘archive’ and ‘delete’ seem confusing, as is the
Library / Archive areas.

The walk-through exercises for all personas, as well as
the feedback from real users of Turnitin highlighted not
as many frustrations that users experienced. This will in
part relate to the fact that Turnitin tasks are less complex.

7 Conclusion

It seems that the approach of identifying personas and
performing their tasks in evaluating the UIs of both
software systems was most definitely a process that
helped introduce clarity and accountable reasoning into
the UI evaluation process. It is felt that considering
usability heuristics such as those of Nielsen could be less
fuzzy if the time was invested to first identify the
personas for a system. The usability heuristics then are
applied for each of these personas . This combination was
used here and resulted in a good understanding of the UI
quality issues for both applications. The UI evaluation
can be summarised as follows:

The Cecil interface tries to cater for users with more basic
levels of capability by providing wizards for core tasks.
These wizards have some design flaws. Still, the full
interface with its multiple windows is accessible to all
users and can confuse or intimidate novice users. The
possibility of differentiated access rights for special

groups, such as tutors for example, is not meaningfully
developed yet. If personas had been used for the interface
development, the need for at least two distinctive
interfaces (basic – advanced) might have been clearer in
the mind of the developers. It might have also been
clearer that the majority of the personas/users are not
highly computer literate and would prefer to use the basic
interface. This could have resulted in the main interface
having more guided step-through tasks and a simpler
interface with less tabs and windows on any given screen.

Turnitin takes the “keep it simple” road with its
predominantly on-window-only approach. This more
uncluttered screen, together with a generous amount of
help information provided, makes it a more easily
accessible system. The help information is unobtrusive
and should not annoy experienced users. The only
complaint here might be that the single window approach
requires too much clicking and moving through multiple
screens to navigate to a particular point in the system
layers. The persona approach could have resulted in more
clarity on the need for limited, customised access to
teaching assistants. Turnitin relies on a small obscure
preference feature (number of items per page) for some
screen customisation.

In conclusion, we believe that the UI design of both
systems would have benefited from using the persona
approach as proposed by Randolph. The UI evaluations
performed, using personas in combination with Nielsen
usability heuristics, was not time consuming and required
no any additional software applications. This suggests
that it is indeed an inexpensive yet effective option for UI
design of small software applications. Even after
implemention, personas can be a valuable tool to assess
usability and pinpoint areas for imp rovement.

8 References

Carroll, J.M. (2002): Making Use: Scenario-Based
Design of Human-Computer Interactions. San
Francisco, Morgan Kaufmann Publishers.

Cooper, A. and Saffo, P. (1999): The Inmates are
Running the Asylum. Why high tech products drive us
crazy and how to restore the sanity . SAMS.

Nielsen, J. (1994): Heuristic evaluation. In Usability
Inspection Methods. NIELSEN , J., and MACK, R.L.
(eds). New York, NY, John Wiley & Sons.

Nielsen, J. (1993): Usability Engineering . San Diego,
Academic Press.

Norman, D.A. (1998): The Invisible Computer. Why
Good Products Can Fail, the Personal Computer Is So
Complex, and Information Appliances Are the Solution,
MIT Press.

Paynter, J., Ahmed, M.D., Everett, A., and Llanes, V.
(2001): An Analysis of Software Development Project
Management Failure: Two New Zealand Cases . In
Business Case Studies in Operations Management.
152-161. BATLEY, T. (ed). Auckland, NZ, Prentice
Hall for Pearson Education.

Pind, L. (2001) (Ed.): Personas,
http://ccm.redhat.com/user-centered/personas.html.
Accessed 12 Aug 2003.

Pind, L. (2001) (ed): User-Centered Requirements,
http://ccm.redhat.com/user-centered/user-centered-
requirements.html . Accessed 12 Aug 2003.

Pressman, R. (2001): Software engineering: A
practitioner’s approach. Boston, McGraw Hill.

Randolph, G. (2004): Use-Cases and Personas: A Case
Study in Light-Weight User Interaction Design for
Small Development Projects. Informing Science
Journal 7: 105-116.

Smith, R. S. (2003): Using Scenarios to Gather
Requirements,
http://www.sonoma.edu/csse/edtech/560/scenarios.pdf.
Accessed 13 Aug 2003.

Goal Directed Design:
http://www.cooper.com/content/why_cooper/modeling.
asp. Accessed 13 Aug 2003.

Nielsen's usability heuristics:
http://www.useit.com/papers/heuristic/heuristic_list.ht
ml. Accessed 31 Mar 2004.

User-Centered Requirements:
 http://ccm.redhat.com/user-centered/user-centered-
 requirements.html. Accessed 12 Aug 2003.

Cecil: http://www.cecil.auckland.ac.nz. Accessed 30 Mar
2004.

Turnitin: http://www.turnitin.com. Accessed 30 Mar
2004.

9 Appendices

9.1 User-centred requirements using personas
• What personas are going to use this software

component?
• What are the goals of these personas when using

this software?
• For each primary persona, write all relevant

scenarios, each telling the story of the persona
achieving a goal.

• For each scenario, determine the individual tasks
involved.

• Do the matrix of tasks and scenarios.
Source: RedHat
http://ccm.redhat.com/user-centered/user-centered-
requirements.html . 12 Aug 2003.

9.2 Ten Usability Heuristics

These are ten general principles for user interface design.
They are called "heuristics" because they are more in the

nature of rules of thumb than specific usability
guidelines.

Visibility of system status
The system should always keep users informed about
what is going on, through appropriate feedback within
reasonable time.

Match between system and the real world
The system should speak the users' language, with words,
phrases and concepts familiar to the user, rather than
system-oriented terms. Follow real-world conventions,
making information appear in a natural and logical order.

User control and freedom
Users often choose system functions by mistake and will
need a clearly marked "emergency exit" to leave the
unwanted state without having to go through an extended
dialogue. Support undo and redo.

Consistency and standards
Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow
platform conventions.

Error prevention
Even better than good error messages is a careful design
which prevents a problem from occurring in the first
place.

Recognition rather than recall
Make objects, actions, and options visible. The user
should not have to remember information from one part
of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever
appropriate.

Flexibility and efficiency of use
Accelerators -- unseen by the novice user -- may often
speed up the interaction for the expert user such that the
system can cater to both inexperienced and experienced
users. Allow users to tailor frequent actions.

Aesthetic and minimalist design
Dialogues should not contain information which is
irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant
units of information and diminishes their relative
visibility.

Help users recognize, diagnose, and recover from
errors
Error messages should be expressed in plain language (no
codes), precisely indicate the problem, and constructively
suggest a solution.

Help and documentation
Even though it is better if the system can be used without
documentation, it may be necessary to provide help and
documentation. Any such information should be easy to
search, focused on the user's task, list concrete steps to be
carried out, and not be too large.

Source: Nielsen, J.
http://www.useit.com/papers/heuristic/heuristic_list.html.
31 Mar 2004.

9.3 Cecil personas

9.4 Turnitin personas

