
Applying a Test for Atomicity of Method Fragments
Ben Rogers1 and Brian Henderson-Sellers1

1University of Technology, Sydney, Broadway, NSW 2007, Australia

brian.henderson-sellers@uts.edu.au, benrogers@iinet.net.au

Abstract

One aspect of the conceptual modelling of processes is
their quality. Here, we examine one aspect of quality –
atomicity – as evaluated for a number of method
fragments. High quality fragments will increase the
quality of software development process models by
application of the tenets of situational method
engineering. Here, we identify a number of fragments
from a previously developed methodbase/repository as
being potentially non-atomic and suggest possible
revisions to increase their quality.

Keywords: Metrics, Method Fragments, Situational
Method Engineering, Atomicity

1 Introduction

For software development processes to be successful in
their enactment, they need to be modelled conceptually,
primarily in terms of a process model but also with
respect to the underpinning metamodel. The elements in
such a design-level process model need to be conformant
to a metamodel and, at the same time, provide the
templates needed for the creation and enactment of
processes enacted on a specific project. Here, we examine
these process models in the context of situational method
engineering (SME).

Situational method engineering relies on small
elements of methods being available from which a
complete methodological approach can be constructed
e.g. Henderson-Sellers and Ralyté (2010). Although there
are many ‘flavours’ of method parts, we focus here on
method fragments e.g. Brinkkemper (1996), which are
generally described as being ‘atomic’ parts of a method.

One approach that is based on the use of method
fragments is that of the OPEN Process Framework (OPF:
Graham et al. 1997, Firesmith and Henderson-Sellers
2002), which, in turn, employs the Software Engineering
Metamodel for Development Methodologies: SEMDM
(ISO/IEC 2007). Although the original OPF publications
presented method fragments that were atomic, subsequent
modifications and revisions led to some of them growing
to such a size that their atomicity could be challenged.
Indeed, Henderson-Sellers and Gonzalez-Perez (2011)
presented an analysis based on the granularity of method
fragments (Hobbs 1985, Mani 1998), a theory based in
turn on abstraction theory (Giunchiglia and Walsh, 1992,
__
Copyright © 2014, Australian Computer Society, Inc. This paper
appeared at the 10th Asia-Pacific Conference on Conceptual Modelling
(APCCM 2014), Auckland, New Zealand, 20-23 January 2014.
Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 154. G. Grossmann and M. Saeki, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

Kaschek 2004, Keet 2007), and concluded that at least
one Task fragment (Construct the object model) could no
longer be recognized as being of an atomic nature.
However, these authors did not use any measure to
determine objectively whether this particular fragment
(and others) are or are not atomic in nature. The current
study aims to define some metrics that can be applied to
method fragments to assess their quality. We focus on
only one aspect of quality: whether or not fragments are
atomic. That is, can the fragment be broken down into
smaller entities? In this project only the fragments
constructed from the OPF/SEMDM methodology
framework will be assessed to illustrate the
appropriateness of the proposed metric whilst recognizing
its more global applicability i.e. to fragments from
sources other than the OPF. Once some metrics have been
defined, they will be applied to existing fragments in the
OPF repository. This is not only to measure the quality of
the fragments but also to verify that the metrics do fulfil
their purpose. One of the objectives of the project is to
provide a means of evaluating the quality of new
fragments, so that fragment authors have a tool to help
them design fragments that are of good quality. This
paper describes the metrics and also the principles behind
them, so that fragment designers can understand what
makes a fragment atomic.

In Section 2 we describe what is meant by the
atomicity of method fragments. Section 3 discusses
software engineering metrics and how we might calculate
appropriate metrics for determining the atomicity of
method fragments. In Section 4, we present the results of
applying the atomicity calculations to a large number of
fragments conformant to the OPF and/or SEMDM
metamodels. Section 5 concludes, together with
suggestions for future research on this topic.

2 Fragment atomicity

An atomic fragment is one that is not made up of other
fragments, i.e. it has fine-grained granularity (Henderson-
Sellers and Gonzalez-Perez 2011). A fragment that is not
atomic is more likely to be usable in a limited set of
situations, as it will not have the flexibility to be reused in
a wide variety of circumstances. Furthermore, if
fragments are not atomic, the functionality of one
fragment could overlap that of another fragment. The
benefits of maximising fragment reuse include the
following. The more a fragment is reused, the greater the
chance it will become expert in what it does. This is
because it will be used in a wide variety of situations with
different demands placed on the fragment. As the
fragment is widely reused, all the uses of it will benefit
from the increased expertise. Furthermore, the reasons for
having atomic fragments are similar to why a software
class should have high cohesion. A class with high

Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM 2014), Auckland, New Zealand

49

cohesion enjoys the property of togetherness, while one
with low cohesion could be broken down into two or
more classes (Henderson-Sellers 1996). The elements of a
class with high cohesion work together in a consistent
purpose (Booch 1993). For example, a highly cohesive
Car class contains the behaviour for a car and nothing but
a car. The class with high cohesion is more likely to be
able to be reused because of its targeted purpose. Also a
class with high cohesion can be expert in its functionality
because of its tight focus. The same can be said about
atomic fragments in SME. They are more reusable and
they can be refined to be expert in their purpose.

3 Metrics for fragment atomicity

A metric “is the mapping of a particular characteristic of a
measured entity to a numerical value” (Lanza et al. 2006,
p.11). An example of an entity could be a person and the
characteristic could be the height of the person. Although
it is possible to measure a wide range of attributes such as
height, weight, age, sex of a person, the measurements
only have meaning if there is a clear purpose to the
exercise. For example, the purpose may be to determine if
the person would be a good athelete.

Basili and Rombach (1988) proposed the Goal/
Question/Metric paradigm to refocus on the measurement
goal rather than simply a procedure to count something
with no goal in mind. The first step is to define the goals
that the use of the metrics will achieve. From the goals, a
list of questions that need to be answered for the goals to
be met are compiled. For each question, the metrics are
chosen that will answer these questions. Two well-known
metrics are coupling and cohesion (Stevens et al., 1974).

An atomic fragment is like a class with high cohesion
and low coupling (as noted above). A class with low
cohesion implies that it should be divided into multiple
classes, and, conversely, one with high cohesion should
not be divided (Henderson-Sellers 1996). Thus, an atomic
fragment can be identified because of its high cohesion
value. Secondly, a class with low coupling makes it easier
to reuse and is also indicative of atomicity or near-
atomicity. Coupling could mean object-to-object coupling
only or could include coupling due to inheritance. For
atomic fragments, the interest is restricted to object-to-
object coupling, which is simply called coupling
hereafter. That is, two classes are coupled if the methods
in one class make use of methods or instance variables in
the other class.

A class has high cohesion if its methods work towards
one purpose that is easy to identify (Henderson-Sellers
1996). Cohesion in a class is often measured in terms of
its complement: the ‘lack of cohesion’ e.g. Chidamber
and Kemerer’s (1991) LCOM. This metric looks at each
method’s use of the class instance variables. The use of
instance variables by methods determines the
intersections of methods. If two methods access
completely different instance variables then probably they
should belong to different classes. However, there has
been an extensive debate on the precise definition of
LCOM and the mathematics to calculate it (Henderson-
Sellers et al. 1996). The problem with various formulae
for the Lack of Cohesion metric is that it may not be
possible to discriminate between dissimilar entities. That

is, two classes with obvious differences in cohesion may
be given the same score by the LCOM metric. Also,
although a high LCOM score would indicate low
cohesion, a score of zero does not necessary indicate high
cohesion (Henderson-Sellers et al. 1996). Despite the
problems with LCOM, the study of it does help in
understanding the nature of class cohesion.

Another metric to measure cohesion is Tight Class
Cohesion (TCC): “the relative number of method pairs of
a class that access at least one common attribute of that
class” (Lanza et al. 2006, p.17). Its value is between zero
and one, where a low value indicates low cohesion and a
high value indicates high cohesion.

There are also several existing metrics for coupling.
The coupling between objects metric CBO (Chidamber
and Kemerer 1994) applies to a given class. It counts the
number of classes that are coupled to the given class. Fan-
out for a given class measures the count of classes that the
given class makes use of (Henry and Kafura 1981). Fan-in
for a given class measures the count of classes that makes
use of the given class. A high fan-in value is desirable
because it indicates that the given class is being reused
extensively, while a low fan-out value is desirable
because that shows that the given class does not need too
many other classes to operate.

3.1 Metrics for fragment relationships
There are, at least, three methodological approaches

that have a common semantic core: the OPEN Process
Framework (OPF) (Graham et al. 1997, Firesmith and
Henderson-Sellers 2002), SEMDM (ISO/IEC 2007) and
the Software Process Engineering metamodel (SPEM)
(OMG 2008). All three identify three critical areas: work
units, work products and producers – although here we
focus on examples of fragments conformant primarily to
SEMDM.

Henderson-Sellers and Gonzalez-Perez (2011, p56)
have argued that the “Construct the object model” task
fragment described in the OPEN Process Specification is
not atomic because more than one technique had to be
chosen out of thirty seven techniques. Given this
precedent, of counting the number of techniques for a task
fragment to determine whether a fragment is atomic or
not, we postulate that other relationships could also be
used. Genero et al. (2005) used metrics to measure the
complexity of a Software Process Model conformant to
SPEM. For activities there are work product and role
counts, while for work products there are activity counts
where the work product is consumed or produced, and for
roles there are activity counts for which they are
responsible. Genero et al. (2005) carried out some
experiments to check the validity of the metrics thus
defined. In the first experiment, ratings made by students
and professors on a set of software process models were
compared with the results of the measurements performed
on the software process models. The null hypothesis was
that there was no significant correlation between the
structural complexity metrics and the students’ and
professors’ ratings. The ratings included
understandability, analysability and modifiability of the
software process models. For some of the metrics that

CRPIT Volume 154 - Conceptual Modelling 2014

50

applied to the software process model, the null hypothesis
was rejected (Genero et al. 2005).

It can be the case that a number of measurements are
needed for answering only one question (Lanza et al.
2006). That is the case for this research. For example, to
answer the question of whether a given Task fragment is
atomic there are the Technique Count, Work Product
Create Count, Work Product Update Count, Work
Product Read Count, Role Count and Team Count
metrics. Looking at relationships between fragments not
only gives a view on coupling, it also indicates cohesion –
does the fragment have more than one purpose?

Just as different fragment types have different
relationships with other fragments, different metrics are
applicable. In the SEMDM metamodel, producer
fragments have relationships with work unit and work
product fragments; so, for producer fragments, metrics
that count related work units and work products would be
used. In contrast, work unit fragments have relationships
with producer and work product fragments; so, for work
unit fragments, metrics that count related producer and
work products would be used. To facilitate identification
of pairings, a matrix was constructed, with the fragment
types listed vertically and the metric types listed
horizontally.

All the metrics used here are counts of distinct related
entities. For example, the role count is the number of
distinct producer roles related to the fragment type. The
relationship between work unit fragments and work
product fragments is defined by the use of Actions, which
define whether work products are created, updated or read
only. The proposed metrics are divided by these action
types. For instance, there is not just a Work Product
Count, there is also a Create Work Product Count, Update
Work Product Count and Read Work Product Count.

On producer fragment counts, only roles and teams are
included. This is because, at the repository level, persons
would not be defined. A role is only included in a role
count if it participates directly in a Work Performance; as
opposed to roles that are in teams and the teams that are in
the Work Performance.

As a metric for atomicity, we propose here counts of
relationships between each fragment and roles, teams etc..

3.2 Calculating the atomicity metric
It is important that measurements for metrics are easy to
calculate. If possible, it would be good for these to be
calculated automatically. To achieve this, a database has
been created to capture the repository of fragments and
their relationships. Then, SQL queries calculate the
measurements of metrics for all of the fragments. The
database schema and measurement SQL queries have
been constructed to cover all the elements in the SEMDM
metamodel.

3.3 Setting thresholds
Metrics themselves give no information on model quality.
They can be used indicatively if appropriate thresholds
are included (e.g. Szentes and Gras 1986, Kitchenham
and Linkman 1990). Thresholds can be used to specify
regions, so that conclusions can be made from the data
with respect to an appropriate threshold regarding

atomicity/non-atomicity. Although these can only be
statistical conclusions, the usefulness is increased if the
underlying statistical distribution is known or can be
assumed (Haynes and Henderson-Sellers 1997). Setting
two thresholds is useful: the first to indicate a “watch” if
exceeded and the second (higher) one to flag as
statistically likely to be an outlier. Explicable thresholds
are set based on good arguments and are rarely perfect
(Lanza et al. 2006). Some thresholds can be determined
by generally accepted knowledge. For example, people
expect to eat three meals a day. Another way to set
thresholds is through statistical measurements. For
example, is ten thousand hairs on a head a lot of hair or is
the person balding? The number of hairs could be counted
on a large population of people and an average calculated.
If the average is between eighty thousand and one
hundred and twenty thousand then we can conclude the
person is balding (Lanza et al. 2006).

For the case of a normal distribution, the average and
standard deviation are useful values. However, it is
expected that the distributions for the proposed metrics
will not only be discrete (i.e. the normality of the
distribution can only be approximate) but are also likely
to be skewed to the right since there will be no values less
than zero and most of the values will be in a low range
with only a few high values. This means that the
numerical summary needs to be resistant (Sullivan 2011).
That is, the value of the numerical summary does not
change much if an extreme value is added. The median is
resistant while the mean is not (Sullivan 2011). For
example, say there are five observations: 179, 201, 206,
208 and 217. The median is 206 and the mean is 202.2.
Now if an observation of 1000 is added the mean
increases substantially to 335.1666 while the median is
207. Since the underlying data here are discrete, the
median is the more useful.

The median is the fiftieth percentile. The percentile
gives the position of an observation within a set of data.
Quartiles are special cases of percentiles. They break the
set of data into four pieces. Like the median, quartiles and
percentiles are resistant numerical summaries. The
interquartile range, IQR, measures the range of values
between the first quartile and the third quartile; that is, the
range of the middle fifty percent of values. Outliers are
unusually very low or very high values. To identify
outliers, fences are calculated. Fences are thresholds used
as boundaries so that outliers can be found. If a value is
lower than the lower fence or higher than the upper fence
then it is deemed to be an outlier (Sullivan 2011). The
formulae for the fences are

Lower fence = Q1 – 1.5 x IQR
Upper fence = Q3 + 1.5 x IQR
(Sullivan 2011, p.160)
In this research, since the distribution of the

measurements will be right skewed with no negative
values, the outliers will only be unusually high values. It
is important to determine whether a measurement is an
outlier or not, because measurements that are outliers will
indicate that the relevant fragment is probably not atomic.
That is, the upper fence of each metric’s distribution will
be used as the threshold for fragment atomicity.

Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM 2014), Auckland, New Zealand

51

Figure 1: Sample fragment distribution using 20
fragments

Figure 1 provides an example of an artificially
constructed distribution of fragments over some metric
counts. Each fragment has an integer metric count value.
This is the case for all metrics proposed in this paper. In
this example, there are twenty fragments that have
measurements between one and four. The distribution is
right skewed. The median is given by the value at the
(n+1)/2 position when n is odd or by the average of the
values at the n/2 and the (n+1)/2 positions when n is even.
Thus, for n=20, the median is the average of the 10th and
11th values = (1+2)/2 = 1.5.

Q1 (25th percentile) is the average of the 5th and 6th values
= (1+1)/2 = 1

Q3 (75th percentile) is the average of the 15th and 16th
values = (2+2)/2 = 2

Hence the IQR = Q3 – Q1 = 2-1 = 1
Then the upper fence = Q3+1.5*IQR = 1+1.5x1 = 3.5
Outliers, in this case, are thus metric counts of four or
above.

Figure 2: Box plot for sample fragment distribution of

Figure 1.

Figure 2 shows the box plot diagram for the Sample

Fragment Distribution of Figure 1. The first quartile,
median and third quartile are shown on the box. The
square bracket indicates the upper fence, and the horizontal
line either side of the box indicates values that are not
outliers.

4 Results and discussion
For the first assessment, fragments were sourced from
Tran et al. (2009a) for Producer and Work Product and
from Tran et al. (2009b) for Work Unit fragments,
supplemented by fragments from the sample repository
provided with the software tool MethodMate, supplied by
Cesar Gonzalez-Perez.

Table 1 lists Tasks wherein the Technique Count for
the Task: Software Coding in Agile is an outlier (a value
of 4; upper fence value of 3.5). What is interesting about
Agile software coding is that it involves more than
traditional coding; for instance, Pair Programming
involves two developers working together on the same
task at the same computer (Beck 2000).

 The Create Work Product Count for the Initiation
Process is also an outlier (Table 2). It is reasonable that
the Initiation process creates a number of artefacts,
because of the planning involved in the process.

We also examined counts for Stage Types, Work
Product Types and Producer Types but were unable to
identify any other potentially non-atomic types.

The metrics do not prove atomicity, they only flag the
possibility that the fragments may not be atomic. For the
candidates identified above (Tables 1 and 2), one must
determine what action to take to ensure atomicity of these
tasks. For example, for the Task: Software Coding in
Agile, one solution may be to split the task into three: 1)
Coding plus Pair Programming and Collective Ownership
(as two techniques); 2) Integration Coding as a task
together with an associated technique.

What is encouraging about the metrics is that the
results in this paper have identified fragments that may
not be atomic. However, the metrics would be more
powerful if there was a larger repository of fragments in
the database. Furthermore, the fragments in the database
need to have a rich assignment of relationship fragments
such as WorkPerfomance, Action and
TaskTechniqueMapping. Also it would be useful for the
fragments to make use of the aggregation relationships
specified in the metamodel. The more information there
is, the greater the chance of resultant outliers correctly
identifying fragments that are not atomic.

 It proved not to be too onerous to load fragments into
the database and then run SQL queries to calculate the
measurements. That is, the metrics were easy to measure
once the fragments had been loaded into the database.
Furthermore, there is scope to introduce new metrics,
simply by crafting new SQL queries.

5. Conclusions and future work

5.1 Conclusions
In the context of situational method engineering and
process models, we have examined the atomicity of a
large number of method fragments that are conformant to
the SEMDM metamodel. Whilst most are found to be
atomic, our metric counts and thresholds employed
suggest that a small number of these fragments require
detailed scrutiny since there is a high likelihood that they
are not truly atomic in nature. Consideration is therefore
to be given to either splitting tasks into more than one

CRPIT Volume 154 - Conceptual Modelling 2014

52

task or converting multiple techniques to subtasks plus
associated techniques such that tasks and subtasks are all
atomic in nature.

5.2 Future Work
A useful contribution to this research would be to revise
the existing fragments by associating them with
relationship fragments. Increasing the sample size in the
database will improve the reliability of the results
(Sullivan 2011). That is the determination of the upper
fence will be more accurate.

Also useful would be to undertake further research on
the atomicity of fragments that have a whole-part
relationship with other fragments. This impacts the
construction of the SQL queries that perform the
measurement calculations.

A useful enhancement to systems like MethodMate,
which builds and uses fragment repositories, would be to
store fragment information in a relational database. This
is so that the system can automate the measurement of the
metrics proposed in this paper.

References

Basili, V. R. & Rombach, H. D. (1988), ‘The TAME project:
towards improvement-oriented software environments’,
IEEE Transactions on Software Engineering 14(6), 758-773.

Beck, K. (2000), Extreme programming explained: embrace
change, Addison-Wesley.

Booch, G. (1993), Object-oriented analysis and design with
applications, 2nd edn., Addison-Wesley.

Brinkkemper, S. (1996), ‘Method engineering: engineering of
information systems development methods and tools’, Inf.
Software Technol. 38(4), 275–280.

Chidamber, S. R. & Kemerer, C. F. (1991), Towards a metrics
suite for object oriented design, in ‘OOPSLA '91
Conference proceedings on Object-oriented programming
systems, languages, and applications’, Vol. 26(11), pp. 197-
211.

Chidamber, S. R. & Kemerer, C. F. (1994), ‘A metrics suite for
object oriented design’, IEEE Transactions on Software
Engineering 20(6), 476-493.

Firesmith, D. G. & Henderson-Sellers, B. (2002), The OPEN
Process Framework. An introduction, Addison-Wesley.

Genero, M., Piatinni, M., Calero, C. & Ebrary, I. (2005), Metrics
for software conceptual models, Imperial College Press.

Giunchiglia, F. & Walsh, T. (1992), ‘A theory of abstraction’,
Artificial Intelligence 57(2-3), 323–390.

Graham, I., Henderson-Sellers, B. & Younessi, H. (1997), The
OPEN process specification, Addison-Wesley.

Haynes, P. & Henderson-Sellers, B. (1997), ‘Bringing OO
projects under quantitative control: an output-, cash- and
time-driven approach’, American Programmer 10(11), 23-
31.

Henderson-Sellers, B. (1996), Object-oriented metrics:
measures of complexity, Prentice Hall.

Henderson-Sellers, B. & Gonzalez-Perez, C. (2011), Towards
the use of granularity theory for determining the size of
atomic method fragments for use in situational method
engineering, in J. Ralyté, I. Mirbel & R. Deneckère. eds.,
‘Engineering Methods in the Service-Oriented Context. 4th
IFIP WG8.1 Working Conference on Method Engineering,
ME 2011, Paris France, April 2011, Proceedings’, Springer,
Heidelberg, pp. 49-63.

Henderson-Sellers, B. & Ralyte, J. (2010), ‘Situational method
engineering: state-of-the-art review’, Journal of Universal
Computer Science 16(3), 424-478.

Henderson-Sellers, B., Constantine, L. L. & Graham, I. M.
(1996), ‘Coupling and cohesion (towards a valid metrics
suite for object-oriented analysis and design)’, Object
Oriented Systems 3, 143-158.

Henry, S. & Kafura, D. (1981), ‘Software structure metrics
based on information flow’, IEEE Trans. Software Eng.
7(5), 510-518.

Hobbs, J. (1985), Granularity, in ‘Procs. Int. Joint Conf. on
Artificial Intelligence, IJCAI 1985’

ISO/IEC (2007), Software Engineering – Metamodel for
Software Development. ISO/IEC 24744, Geneva,
Switzerland

Kaschek, R. (2004), A little theory of abstraction, in B. Rumpe
& W. Hesse, eds., ‘Modellierung 2004. Proceedings zur
Tagung in Marburg’, LNI, vol. 45, Gesellschaft für
Informatik, Bonn, pp. 75–92.

Keet, M. (2007), Enhancing comprehension of ontologies and
conceptual models through abstractions, in R. Basili & M. T.
Pazienza, eds., ‘AI*IA 2007’,. LNCS (LNAI), vol. 4733,
Springer, pp. 813–821.

Kitchenham, B. A. & Linkman, S .J. (1990), ‘Design metrics in
practice’, Inf. Software Technol. 32(4), 304-310.

Lanza, M., Marinescu, R. & Ducasse, S. (2006), Object-oriented
metrics in practice: using software metrics to characterize,
evaluate, and improve the design of object-orientated
systems, Springer.

Mani, I. (1998), A theory of granularity and its application to
problems of polysemy and underspecification of meaning, in
A. G. Cohn, L. K. Schubert & S. C. Shapiro, eds.,
‘Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixth International Conference (KR
1998)’, Morgan Kaufmann, pp. 245-257.

OMG (2008), Software Process Engineering Metamodel
Specification; adopted specification, version 2.0. Object
Management Group. April. Available in
http://www.omg.org/spec/SPEM/2.0/

Stevens, W.P., Myers, G.J. and Constantine, L.L., 1974,
Structured design, IBM Syst. J., 13(2), 115-139

Sullivan, M. (2011), Fundamentals of statistics, 3rd edn.
Prentice Hall.

Szentes, J. & Gras, J. (1986), Some practical views of software
complexity metrics and a universal measurement tool, in
‘First Australian Software Engineering Conference
(ASWEC), Canberra, May 14-16’

Tran, Q.-N. N., Henderson-Sellers, B. & Hawryszkiewycz, I.
(2009a), Some method fragments for agile software
development, in ‘Handbook of Research on Modern
Systems Analysis and Design Technologies and
Applications’, IGI Global, pp. 223-242.

Tran, Q.-N. N., Henderson-Sellers, B. & Hawryszkiewycz, I.
(2009b), Agile method fragments and construction
validation, in ‘Handbook of Research on Modern Systems
Analysis and Design Technologies and Applications’, IGI
Global, pp. 243-270.

Proceedings of the Tenth Asia-Pacific Conference on Conceptual Modelling (APCCM 2014), Auckland, New Zealand

53

Table 1: Counts for a number of SEMDM-conformant Tasks

Task Source
Technique
Count

Create
Work
Product
Count

Modify
Work
Product
Count

Role
Count

Analyse requirements MethodMate 1 2
Coding MethodMate 1 1
Develop class models MethodMate 1 2
Document requirements MethodMate 1 1
Elicit requirements MethodMate 1 2
Perform peer review MethodMate 3 2
Unit-test code MethodMate 1 1
Write user stories Agile Method 1 1 1
Explore architectural possibilities Agile Method
Analyze technologies Agile Method
Describe application Agile Method 1
Prototype the architecture Agile Method
Develop release plan Agile Method 1 1 1
Monitor Work Products Agile Method
Develop iteration plan Agile Method 2 2
Software Coding in Agile Agile Method 4 1
Design agile code Agile Method 1 1
Refactor Agile Method 1
Testing tasks Agile Method 3
Integrate software Agile Method 1
Write Manuals Agile Method
Manage Shared Artefacts Agile Method
Identify shared artefacts Agile Method
Allocate shared artefacts Agile Method
Specify Permissions to Shared
Artefacts Agile Method 1
Mediate/monitor the performance of
team’s tasks Agile Method
Meditate/monitor team’s interactions Agile Method
Conflict management Agile Method
Monitor members’ performance Agile Method
Member motivation Agile Method
Ensure workload balance Agile Method
Specify team policies Agile Method
Specify team structure Agile Method 1
Upper fence value 3.5 2.5 3.5 3.5

Table 2: Counts for a number of SEMDM-conformant Processes

Process Source
Create Work
Product Count

Modify Work
Product Count

High-Level Modelling MethodMate 1
Implementation MethodMate 1 1
Low-Level Modelling MethodMate 1
Quality Assurance MethodMate 3
Requirements Engineering MethodMate 1 1
Initiation Agile Method 4
Construction Agile Method 1
Delivery Agile Method 1
Usage Agile Method
Team Management Agile Method
Upper fence value 2.5 4

CRPIT Volume 154 - Conceptual Modelling 2014

54

