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Abstract

We initiate the study of the Reliable Resource Allo-
cation (RRA) problem. In this problem, we are given
a set of sites equipped with an unbounded number
of facilities as resources. Each facility has an open-
ing cost and an estimated reliability. There is also a
set of clients to be allocated to facilities with corre-
sponding connection costs. Each client has a relia-
bility requirement (RR) for accessing resources. The
objective is to open a subset of facilities from sites
to satisfy all clients’ RRs at a minimum total cost.
The Unconstrained Fault-Tolerant Resource Alloca-
tion (UFTRA) problem studied in (Liao & Shen 2011)
is a special case of RRA.

In this paper, we present two equivalent primal-
dual algorithms for the RRA problem, where the sec-
ond one is an acceleration of the first and runs in
quasi-linear time. If all clients have the same RR
above the threshold that a single facility can provide,
our analysis of the algorithm yields an approximation
factor of 2+2

√
2 and later a reduced ratio of 3.722 us-

ing a factor revealing program. The analysis further
elaborates and generalizes the generic inverse dual fit-
ting technique introduced in (Xu & Shen 2009). As
a by-product, we also formalize this technique for the
classical minimum set cover problem.

Keywords: Reliable Resource Allocation, Approxima-
tion Algorithms, Time Complexity, Inverse Dual Fit-
ting Technique.

1 Introduction

Fault-tolerant design is essential in many indus-
trial applications and network optimization prob-
lems like resource allocation. In the Unconstrained
Fault-Tolerant Resource Allocation (UFTRA) prob-
lem studied in (Liao & Shen 2011), we are given a set
of sites F and a set of clients C. At each site i ∈ F ,
an unbounded number of facilities with fi as costs
can be opened to serve as resources. There is also a
connection cost cij between each client j ∈ C and all
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facilities of i. The objective is to optimally allocate a
certain number of facilities from each i to serve every
client j with rj ∈ R requests while minimizing the
sum of facility opening and client connection costs.
This problem can be formulated by the following in-
teger linear program (ILP) with variable yi denoting
in the solution the number of facilities to open at site
i, and xij the number of connections between site i
and client j.

minimize
∑
i∈F fiyi +

∑
i∈F

∑
j∈C cijxij

subject to ∀j ∈ C :
∑
i∈F xij ≥ rj

∀i ∈ F , j ∈ C : yi − xij ≥ 0
∀i ∈ F , j ∈ C : xij ∈ Z+

∀i ∈ F : yi ∈ Z+

(1)

UFTRA forms a relaxation of the Fault-Tolerant
Facility Location (FTFL) problem (Jain & Vazirani
2000) by allowing domains of yi’s and xij ’s to be non-
negative rather than 0-1 integers. In addition, by set-
ting ∀j ∈ C : rj = 1 these problems become the clas-
sical Uncapacitated Facility Location (UFL) problem.
Both FTFL and UFTRA measure the fault-tolerance
only by the number of connections each client makes.
We observe this measurement is not sufficient in many
applications like the VLSI design, and the resource al-
location we considered here. For instance, a client
j in UFTRA may connect to rj facilities that are
all susceptible to failure (with very low reliability)
and therefore j is still very likely to encounter faults.
This observation motivates us to study an alterna-
tive model called Reliable Resource Allocation (RRA)
that provides more solid fault-tolerance. In particu-
lar, RRA assumes all facilities of a site possess an
estimated probability (between 0 and 1) of being re-
liable (with no fault). Also, the fault-tolerance level
of the clients is ensured by their fractional reliabil-
ity requirement (RR) values to be provided by facil-
ities. In this paper, we only consider the case where
client-facility connection costs cij ’s form a metric, i.e.
they are non-negative, symmetric and satisfy trian-
gle inequality. This is because even the non-metric
UFL can be easily reduced from the set cover prob-
lem (Feige 1998) that is hard to approximate better
than O (log n) unless NP ⊆ DTIME

[
nO(log logn)

]
.

Related Work: Two important techniques in
designing good approximation algorithms for facility
location problems are primal-dual and LP-rounding.
For the non-uniform FTFL, the existing primal-dual
method in (Jain & Vazirani 2000) yields a non-
constant factor. Constant results were only for the
special case where rj ’s are equal. In particular, Jain
et al. (Jain et al. 2003) showed their MMS and
JMS algorithms for UFL can be adapted to the spe-
cial case of FTFL while preserving approximation
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ratios of 1.861 and 1.61 respectively. Swamy and
Shmoys (Swamy & Shmoys 2008) improved the re-
sult to 1.52 with cost scaling and greedy augmen-
tation techniques. On the other hand, LP-rounding
approach have met more successes in dealing with
the general case of FTFL. Guha et al. (Guha et al.
2001, 2003) obtained the first constant factor algo-
rithm with ratio 2.408. Later, this was improved
to 2.076 by Swamy and Shmoys (Swamy & Shmoys
2008) with more sophisticated rounding techniques.
Recently, Byrka et al. (Byrka et al. 2010) applied
the dependent rounding technique and achieved the
current best ratio of 1.7245.

UFTRA was first introduced by Xu and Shen (Xu
& Shen 2009). They used a phase-greedy algorithm
to obtain approximation ratio of 1.861, but their al-
gorithm runs in pseudo-polynomial time. The ratio
was later improved to 1.5186 by Liao and Shen (Liao
& Shen 2011) using a star-greedy algorithm. This
problem was also studied by Yan and Chrobak (Yan
& Chrobak 2011) who gave a rounding algorithm that
achieved 3.16-approximation. However, none of these
studies provide efficient strongly polynomial time al-
gorithms and consider the reliability issue.

In contrast to FTFL and UFTRA, UFL has been
studied extensively with mature results. For the
primal-dual methods, JV (Jain & Vazirani 2001),
MMS (Mahdian et al. 2001) and JMS (Jain et al.
2002) algorithms achieved approximation ratios of
3, 1.861 and 1.61 respectively. Charikar and Guha
(Charikar & Guha 2005) improved the result of JV
algorithm to 1.853 and Mahdian et al. (Mahdian
et al. 2006) improved that of JMS algorithm to 1.52,
both using the standard cost scaling and greedy aug-
mentation techniques. For the rounding approaches,
Shmoys et al. (Shmoys et al. 1997) first gave a ra-
tio of 3.16 based on the filtering and rounding tech-
nique of Lin and Vitter (Lin & Vitter 1992). Later,
Guha and Khuller (Guha & Khuller April 1999) im-
proved the factor to 2.41 by combing Shmoys’s result
with a simple greedy phase. Chudak and Shmoys
(Chudak & Shmoys 2003) again presented an im-
provement with ratio of 1.736 using clustered random-
ized rounding. Sviridenko (Sviridenko 2002) com-
bined this solution with the pipage rounding to ob-
tain 1.582-approximation. Afterwards, Byrka (Byrka
2007) achieved the ratio of 1.5 by combining round-
ing with a bi-factor result of JMS algorithm. Based
on his work, recently Li’s more careful analysis in (Li
2011) obtained the current best ratio of 1.488. For
the lower bound, Guha and Khuller (Guha & Khuller
April 1999) proved it is 1.463 for UFL. This holds
unless P = NP (Chudak & Williamson 2005). The
ratio also bounds FTFL and UFTRA since UFL is a
special case of them.

Our Contributions: We initiate the study of
the RRA problem towards provision of more robust
fault-tolerance in the resource allocation paradigm.
To the best of our knowledge, this is the first theory
work that takes into account the quality of service
(QoS) requirement for resource allocation. Further,
our ideas have potential to influence some classical
facility location problems. For the RRA problem,
we present two equivalent primal-dual algorithms in-
spired by the MMS algorithm (Mahdian et al. 2001)
for UFL. In particular, the second algorithm is a
significant improvement of the first one in runtime
that is quasi-linear, which is comparable to the cur-
rent best efficient algorithm for UFL (Mahdian et al.
2006). Since UFTRA is a special case of RRA, this
algorithm also implies the first strongly polynomial
time algorithm for UFTRA with uniform connection
requirements. For the approximation ratio analysis,

RRA is a harder problem than UFTRA and the main
difficulty we overcome is to deal with the fractional
reliabilities. We apply the inverse dual fitting tech-
nique introduced in (Xu & Shen 2009) as the cen-
tral idea for analyzing the algorithm. Our analysis
further elaborates and generalizes this generic tech-
nique, which naturally yields approximation factors
of 2 + 2

√
2 and 3.722 for RRA, where every client is

provided with the same RR that is at least the high-
est reliability among all facilities. Apparently, this
provided minimum threshold ensures the clients’ low-
est fault tolerance level. For the problem without the
threshold, which is theoretically valid, we leave the
approximation bound open. In the closing discus-
sions, we also formalize the inverse dual fitting tech-
nique for analyzing the minimum set cover problem.

2 The RRA Problem

In the RRA problem, we are given a set of sites F
and a set of clients C, where |F| = nf and |C| = nc.
Let n = nf + nc, m = n2 for convenience of runtime
analysis, Each site i ∈ F has an unbounded number of
facilities with fi as the cost and pi (0 ≤ pi ≤ 1) as the
reliability. Each client j ∈ C has a RR rj that must be
satisfied by facilities from sites in F . There is also a
connection cost cij between every client-facility pair.
The objective is to optimally open a certain number
of facilities in every site to satisfy clients’ RRs while
minimizing the total cost. The problem is formulated
into the ILP below in which yi denotes the number of
facilities to open at site i, and xij the total number
of connections/assignments between i and j.

minimize
∑
i∈F fiyi +

∑
i∈F

∑
j∈C cijxij

subject to ∀j ∈ C :
∑
i∈F pixij ≥ rj

∀i ∈ F , j ∈ C : yi − xij ≥ 0
∀i ∈ F , j ∈ C : xij ∈ Z+

∀i ∈ F : yi ∈ Z+

(2)

Its LP-relaxation and dual LP are the following:

minimize
∑
i∈F fiyi +

∑
i∈F

∑
j∈C cijxij

subject to ∀j ∈ C :
∑
i∈F pixij ≥ rj

∀i ∈ F , j ∈ C : yi − xij ≥ 0
∀i ∈ F , j ∈ C : xij ≥ 0
∀i ∈ F : yi ≥ 0

(3)

maximize
∑
j∈C rjαj

subject to ∀i ∈ F :
∑
j∈C βij ≤ fi

∀i ∈ F , j ∈ C : αjpi − βij ≤ cij
∀j ∈ C : αj ≥ 0
∀i ∈ F , j ∈ C : βij ≥ 0

(4)

Compare this formulation to UFTRA, the key dif-
ference is the introduction of pi’s and rj ’s that are
fractional. In addition, if ∀i ∈ F : pi = 1 and ∀j ∈ C :
rj is a positive integer, RRA becomes UFTRA. Never-
theless, none of the previous algorithms (Xu & Shen
2009, Yan & Chrobak 2011, Liao & Shen 2011) for
UFTRA are both efficient and easily adaptable.

2.1 The Algorithms

We present two primal-dual algorithms that incre-
mentally build primal solutions yi’s and xij ’s in
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LP (2) at different rates. Initially, they are all
0s. Nonetheless, both of them terminate when
all clients’ RRs are satisfied, i.e. the set U ={
j ∈ C |

∑
i∈F pixij < rj

}
is empty. Our first algo-

rithm inspired by the MMS algorithm (Mahdian et al.
2001) for UFL naively runs in pseudo-polynomial
time. Without loss of generality, assuming in the so-
lution a client j makes total dj connections in the
order from 1 to dj and each connection is associated
with a virtual port of j denoted by jvp (1 ≤ vp ≤ dj).
The algorithm can then associate every client j with

dj dual values α1
j , . . . , α

dj
j . Denoting φ (jvp) as the

facility/site client j’s vpth port connected with, we
can now interpret the termination condition of the

algorithm again as ∀j ∈ C :
∑dj
vp=1 pφ(jvp) ≥ rj . Note

that although unlike UFTRA, the required number
of connections dj is not pre-known for each client j
in RRA, the above steps are necessary since it estab-
lishes a relationship between the fractional rj ’s and
integral dj ’s for the algorithm’s analysis. In addition,
a virtual port in this setting can only establish one
connection with a facility of any site. Throughout
the paper we do not identify facilities within a site
individually (like the function φ we denote) because
they are identical and this will not affect the solution
and the analysis of the algorithm.

Algorithm 1 Primal-Dual Algorithm

Input: ∀i, j : fi, pi, cij , rj .
Output: ∀i, j : yi, xij .
Initialization: Set U = C, ∀i, j : dj = 1, yi =
0, xij = 0.

While U 6= ∅, increase time t uniformly and execute
the events below:

• Event 1: ∃i ∈ F , j ∈ U s.t. pit = cij and
xij < yi.

Action 1-a: Set xij = xij + 1, α
dj
j = t and

φ
(
jdj
)

= i;
Action 1-b: If

∑
i∈F pixij ≥ rj then set U =

U\ {j}, else set dj = dj + 1.

• Event 2: ∃i ∈ F s.t.
∑
j∈U max (0, pit− cij) =

fi.
Action 2-a: Set yi = yi + 1 and Ui =
{j ∈ U | pit ≥ cij}; ∀j ∈ Ui : do Action 1-a;
Action 2-b: ∀j ∈ Ui : do Action 1-b.

Remark 1. For the convenience of runtime analysis,
sequential actions of events are separated as above. If
more than one event happen at the same time, the
algorithm processes all of them in an arbitrary order.
Also, the events themselves may repeatedly happen at
any time t because unconstrained number of facilities
at a site are allowed to open.

Remark 2. If we adopt the approach of the JMS al-
gorithm (Jain et al. 2002) for UFL that also considers
optimizing clients’ total connection costs, it may ren-
der a feasible solution to RRA infeasible due to the
clients’ reliability constraints.

Moreover, the primal-dual algorithm shown above
is associated with a global time t that increases mono-
tonically from 0. In this event-driven like algorithm,
we use variable dj to keep track of the ports of client j

that connect in order, and the value of α
dj
j is assigned

the time at which j’s port dj establishes a connec-
tion to φ

(
jdj
)
. At any t, we define the payment of

a client j ∈ U to a site i ∈ F as pit and the con-
tribution as max (0, pit− cij). As t increases, we let
the action that j connects to a facility of i (solution
xij increased by one) happens under two events: 1) j
fully pays the connection cost of an already opened fa-
cility at i that it is not connected to (implying at this
time yi > xij); 2) the total contribution of clients in
U to a closed facility at i fully pays its opening cost
fi (implying at this time a new facility at i will be
opened) and pit ≥ cij . Note that in the algorithm’s
ratio analysis (Section 2.2), we will associate values
of dual variables αj ’s and βij ’s in LP (4) with values

of α
dj
j ’s and the contribution defined here.

Lemma 1. The Primal-Dual Algorithm computes a
feasible primal solution to RRA and its runtime com-

plexity is O
(
n2dmaxj rj

mini pi
e
)

.

Proof. The feasibility of the solution is obvious since
the output of the algorithm obeys the constraints and
the variable domains of ILP (2). For runtime, we use
two binary heaps (both sorted by time t) to store
anticipated times of Event 1 and Event 2 respec-
tively. For Event 1, t is computed as

cij
pi

according

to the algorithm, whereas t is
fi+

∑
j∈Ui

cij

pi·|Ui| for Event

2. Therefore, detecting the next event (with small-
est t) to process from two heaps takes time O (1)
and updating the heaps takes O (logm) in each it-
eration. Similar to the JV (Jain & Vazirani 2001)
and MMS (Mahdian et al. 2001) algorithms for UFL,
it actually takes O (nf logm) to process every Ac-
tion 1-b occurred, O (1) for Action 1-a and O (nc)
for Action 2-a. In addition, it is easy to see that
Action 1-b is triggered totally nc times, and Ac-
tion 1-a and 2-a both at most

∑
j∈C dj times. Since∑

j∈C dj ≤ nc maxj∈C dj ≤ ncdmaxj rj
mini pi

e, the total time

complexity is O
(
n2cd

maxj rj
mini pi

e
)

.

The previous algorithm runs in pseudo-polynomial
time that depends on both pi’s and rj ’s. However
through a more careful look at the algorithm, we are
able to speed it up to strongly polynomial time. First
of all, we can combine the repeated events into a sin-
gle event by growing solution yi’s and xij ’s at a faster
rate, and thereby reducing the total number of events
to process. This is because similar to UFTRA, RRA
allows multiple connections between each client-site
pair. Thus once a facility of a site is opened and con-
nected with a group of clients’ ports, according to the
previous algorithm, additional facilities at this site
will subsequently open and connect with this group
of clients’ other ports until one of these clients fulfills
its RR. Similarly, once a client’s port starts to con-
nect to an open facility at a site, its other ports may
connect to this site’s other open facilities. Formally
in Algorithm 2, let FRj denote the already fulfilled
reliability of client j and ToC the total number of
connections to make after combining repeated events.
The incremental rate of the solution can then be de-
termined by the value of ToC. Secondly, it is not nec-
essary to waste computation time to explicitly record

α
dj
j ’s and φ

(
jdj
)
’s for totally

∑
j∈C dj connections as

in Algorithm 1, because they implicitly exist only for
the algorithm’s ratio analysis. Therefore by making
these changes, the following algorithm in fact runs in
quasi-linear time in terms of m as defined.
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Algorithm 2 Accelerated Primal-Dual Algorithm

Input: ∀i, j : fi, pi, cij , rj .
Output: ∀i, j : yi, xij .
Initialization: Set U = C, ∀i, j : yi = 0, xij =
0, FRj = 0.

While U 6= ∅, increase time t uniformly and execute
the events below:

• Event 1: ∃i ∈ F , j ∈ U s.t. pit = cij and
xij < yi.
Action 1-a: Set ToC =
min

(
yi − xij , d rj−FRj

pi
e
)

;

Action 1-b: Set xij = xij + ToC and
FRj = FRj + pi · ToC;
Action 1-c: If FRj ≥ rj then set U = U\ {j}.

• Event 2: ∃i ∈ F s.t.
∑
j∈U max (0, pit− cij) =

fi.
Action 2-a: Set Ui = {j ∈ U | pit ≥ cij}, ToC =

minj∈Uid
rj−FRj

pi
e and yi = yi + ToC; ∀j ∈ Ui :

do Action 1-b;
Action 2-b: ∀j ∈ Ui : do Action 1-c.

Remark 3. If more than one event happen at the
same time, process all of them in an arbitrary order.

Lemma 2. The Accelerated Primal-Dual Algorithm
computes a feasible primal solution to RRA and its
runtime complexity is Õ (m).

Proof. The primal solution is feasible because the al-
gorithm is identical to Algorithm 1 in terms of the
solution yi’s and xij ’s produced. The difference is it
combines multiple repeated events in order to reduce
the total occurrences of the actions. Therefore for
runtime, we are able to bound the total number of
Event 2 and Action 2-a to nc rather than

∑
j∈C dj ,

since as mentioned before once a facility of a site is
opened, it will trigger at least one client’s RR to be
satisfied and there are nc clients in total. In addition,
the total number of Event 1 is at most nc times of
Event 2 because there will be maximum nc Event 1
following each Event 2. Thus total number of Ac-
tion 1-a and 1-b is bounded by n2c . Finally, same as
the Algorithm 1 it takes O (1) for Action 1-a and 1-
b, O (nc) for Action 2-a and O (nf logm) to process
each of total nc Action 1-c, the total time is therefore
O (m logm).

2.2 The Inverse Dual Fitting Analysis

We elaborate and generalize the inverse dual fitting
technique introduced in (Xu & Shen 2009) for the al-
gorithm’s analysis. We observe this technique is more
generic and powerful than the dual fitting technique
in (Jain et al. 2003) especially for the multi-factor
analysis. In the RRA problem, there are two types of
costs, so first we have the following definition.

Definition 1. An algorithm is bi-factor (ρf , ρc) or
single factor max (ρf , ρc)-approximation for RRA, iff
for every instance I of RRA and any feasible solu-
tion SOL (possibly fractional) of I with facility cost
FSOL and connection cost CSOL, the total cost pro-
duced from the algorithm is at most ρfFSOL+ρcCSOL
(ρf , ρc are both positive constants greater than or
equal to one).

Inverse dual fitting then considers the scaled in-
stance of the problem and shows that dual solution of
the original instance is feasible to the scaled instance.
Also, it is obvious that the original instance’s primal
solution is feasible to the scaled instance. As for the
RRA problem, we can construct a new instance I ′
by scaling any original instance I’s facility cost by ρf
and connection cost by ρc (ρf ≥ 1 and ρc ≥ 1). The
scaled problem will then have the following formula-
tion.

minimize
∑
i∈F ρffiy

′
i +
∑
i∈F

∑
j∈C ρccijx

′
ij

subject to ∀j ∈ C :
∑
i∈F pix

′
ij ≥ rj

∀i ∈ F , j ∈ C : y′i − x′ij ≥ 0
∀i ∈ F , j ∈ C : x′ij ≥ 0
∀i ∈ F : y′i ≥ 0

(5)

maximize
∑
j∈C rjα

′
j

subject to ∀i ∈ F :
∑
j∈C β

′
ij ≤ ρffi

∀i ∈ F , j ∈ C : α′jpi − β′ij ≤ ρccij
∀j ∈ C : α′j ≥ 0
∀i ∈ F , j ∈ C : β′ij ≥ 0

(6)

The constant factor analysis relies on the threshold
that ∀j ∈ C : rj = r and r ≥ maxi pi. We first denote
the total solution costs of LPs (3), (4), (5) and (6)
by SOLLP , SOLD, SOL′LP and SOL′D respectively.
In the original problem, let SOLLP = FSOL +CSOL,
where FSOL and CSOL represent the total facility cost
and connection cost (both are possibly fractional) of
any solution SOL, then it is clear that SOL′LP = ρf ·
FSOL+ρc ·CSOL. Also, we can get the corresponding
SOL′D = SOLD by letting α′j = αj .

Now we denote SOLP as the total cost of the fea-
sible primal solution (yi, xij) returned by the algo-
rithm and let SOLD represent the total cost of its cor-
responding constructed dual solution (αj , βij). We
will see later how this dual is constructed. Obvi-
ously, (yi, xij) is a feasible solution to both LPs (3)
and (5). By the weak duality theorem established
between LPs (5) and (6), and if the constructed so-
lution (αj , βij) from the algorithm is feasible to LP
(6) after letting α′j = αj and β′ij = βij , then we have
SOLD = SOL′D ≤ SOL′LP = ρf · FSOL + ρc · CSOL.
Further, if SOLP ≤ SOLD is true then it implies the
algorithm is (ρf , ρc)-approximation. The following
lemma is therefore immediate.

Lemma 3. The Primal-Dual Algorithm is (ρf , ρc)-
approximation if its constructed dual solution
(αj , βij) is feasible to LP (6) and the corresponding
SOLD ≥ SOLP .

The steps left are to construct a feasible dual
(αj , βij) from our algorithm and show SOLD ≥
SOLP . For the second step, we have SOLP =∑
j∈C

∑
1≤vp≤dj pφ(jvp)α

vp
j because the total dual val-

ues fully pay client connection and facility opening
costs in the algorithm. In order to bound SOLP
with SOLD, we aim to establish a relationship be-
tween rj ’s (fractional) and dj ’s (integral). With-
out loss of generality, we can set ∀i ∈ F , j ∈ C :

αj = 2α
dj
j , βij = max (0, piαj − ρccij). We then

have SOLD =
∑
j∈C 2α

dj
j rj =

∑
j∈C α

dj
j (rj + rj).

Next we use the threshold information ∀j ∈ C :
rj ≥ maxi pi and the key observation that although
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∀j ∈ C : rj ≤
∑

1≤vp≤dj pφ(jvp), rj + maxi pi ≥∑
1≤vp≤dj pφ(jvp) because before client j makes

the last connection rj ≥
∑

1≤vp≤dj−1 pφ(jvp) and∑
1≤vp≤dj−1 pφ(jvp) + maxi pi ≥

∑
1≤vp≤dj pφ(jvp).

Hence, SOLD ≥
∑
j∈C α

dj
j (rj + maxi pi) ≥∑

j∈C
∑

1≤vp≤dj pφ(jvp)α
dj
j ≥ SOLP (since α

dj
j ≥

αvpj ). Now the only step left is to show (αj , βij)
is a feasible solution. Obviously the second con-

straint of LP (6) holds from αj = 2α
dj
j and βij =

max (0, piαj − ρccij). The remaining is to show the
first constraint also holds. Built upon Lemma 3, we
have the following lemma and corollary.

Lemma 4. The Primal-Dual Algorithm is (ρf , ρc)-

approximation if ∀i ∈ F :
∑
j∈A

(
2piα

dj
j − ρccij

)
≤

ρffi, where A =
{
j ∈ C |αdjj ≥

ρc
2 ·

cij
pi

}
.

Corollary 1. Without loss of generality, for every
site i order the corresponding k = |A| clients in

A =
{
j ∈ C |αdjj ≥

ρc
2 ·

cij
pi

}
s.t. αd11 ≤ αd22 ≤ · · · ≤

αdkk . Then the Primal-Dual Algorithm is (ρf , ρc)-

approximation if ∀i ∈ F :
∑k
j=1

(
2piα

dj
j − ρccij

)
≤

ρffi.

We proceed the proof to find ρf and ρc that bound

all α
dj
j ’s. The next lemma captures the metric prop-

erty of the problem and Lemma 6 generates one pair
of satisfying (ρf , ρc).

Lemma 5. For any site i and clients j, j′ with rj =

rj′ = r, we have piα
dj
j ≤ piα

dj′

j′ + cij + cij′ .

Proof. If α
dj
j ≤ α

dj′

j′ , the lemma obviously holds.

Now consider α
dj
j > α

dj′

j′ , it implies j′ makes its fi-
nal connection earlier than j in our algorithm. At

time t = α
dj
j − ε, client j′ has already satisfied its

RR rj′ through connections with dj′ open facilities
while j has not fulfilled rj . Thus among these dj′
facilities there is at least one that j has not con-
nected to, because otherwise j will have rj′ = r = rj
fulfilled reliability which is a contradiction. Denote
this facility by i′, by triangle inequality we have
ci′j ≤ cij +cij′ +ci′j′ . Since i′ is already open at time

t, then piα
dj
j ≤ ci′j by our algorithm; j′ is connected

to i′, then piα
dj′

j′ ≥ ci′j′ . The lemma follows.

The next lemma and the subsequent bi-factor ap-
proximation ratio are naturally generated from the
inverse dual fitting analysis. On the other hand, they
are difficult to establish using the traditional dual fit-
ting technique.

Lemma 6. For any site i with s = |B| clients

s.t. B =
{
j ∈ C |αdjj ≥ x ·

cij
pi

}
, x > 0 and

αd11 ≤ αd22 ≤ · · · ≤ αdss , then ∀i ∈ F :∑s
j=1

(
piα

dj
j −

(
2 + 1

x

)
cij

)
≤
(
1 + 1

x

)
fi.

Proof. First, we claim ∀i ∈ F :∑s
j=1 max

(
0, piα

d1
1 − cij

)
≤ fi. This is clearly

true because at time t = αd11 − ε, all the clients in B

are also in U which implies from our algorithm their
total contribution should not exceed any facility’s
opening cost. So we also have:

∀i ∈ F :
s∑
j=1

(
piα

d1
1 − cij

)
≤ fi (7)

.
In Lemma 5, by letting j′ = 1 and because in B

αd11 ≥ x
pi
ci1, we get:

∀i ∈ F , j ∈ B : piα
dj
j ≤

(
1 +

1

x

)
piα

d1
1 + cij (8)

Therefore, after combining inequalities (7) and (8),
∀i ∈ F :

s∑
j=1

piα
dj
j ≤

s∑
j=1

(
1 +

1

x

)
piα

d1
1 +

s∑
j=1

cij

=

(
1 +

1

x

) s∑
j=1

(
piα

d1
1 − cij

)
+

(
2 +

1

x

) s∑
j=1

cij

≤
(

1 +
1

x

)
fi +

(
2 +

1

x

) s∑
j=1

cij

The lemma then follows.

Relating this lemma to Corollary 1, if B ⊇ A then
it implies (ρf , ρc)-approximation where ρf = 2 + 2

x

and ρc = 4 + 2
x . Also, B ⊇ A iff x ≤ ρc

2 = 2 + 1
x ,

i.e. 0 < x ≤ 1 +
√

2. Therefore, when x = 1 +√
2, the algorithm is

(
2
√

2, 2 + 2
√

2
)
-approximation.

However, this ratio can be reduced through the factor
revealing technique in (Jain et al. 2003). Consider the
following lemma that capture the execution of the
primal-dual algorithm more precisely than the claim
in Lemma 6.

Lemma 7. For any site i and the correspond-
ing k clients in A, we have ∀1 ≤ j ≤ k :∑k
h=j max

(
0, piα

dj
j − cih

)
≤ fi.

Proof. At time t = α
dj
j − ε, all clients ordered from

j to k are in set U (not fulfilled) and they have the

same dual value α
dj
j . The lemma then follows because

at any time in the primal-dual algorithm, the total
contribution of all clients in U will not exceed the
facility’s opening cost at site i.

Now if we let vj = piα
dj
j in Lemma 5 and 7, from

these lemmas it is clear vj , fi and cij here constitute
a feasible solution to the factor revealing program (4)
in (Jain et al. 2003). Also from its Lemma 3.6, we

can directly get
∑k
j=1 (vj − 1.861cij) ≤ 1.861fi, i.e.∑k

j=1

(
2piα

dj
j − 3.722cij

)
≤ 3.722fi. This result to-

gether with Lemma 2 and Corollary 1 lead to the
following theorem.

Theorem 1. The Accelerated Primal-Dual Algorithm
achieves 3.722-approximation for RRA in time Õ (m)
when all clients are provided with the same RR that
is at least the highest reliability among all facilities.
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Since the UFTRA problem is a special case of
RRA, we get the first strongly polynomial time al-
gorithm for the uniform UFTRA problem.

Theorem 2. The Accelerated Primal-Dual Algorithm
achieves 3.722-approximation in time Õ (m) for UF-
TRA with uniform connection requirements.

In fact, by adapting our Algorithm 2, in (Liao &
Shen n.d.) we are able to show that uniform UF-
TRA can be approximated with a factor of 1.861 in
quasi-linear time. Furthermore, both Marek Chrobak
(Chrobak n.d.) and the authors have observed
that uniform UFTRA is approximation-preserving re-
ducible to UFL.

3 Discussions

A majority of optimization problems target to ei-
ther minimize or maximize the aggregation (either a
linear combination or not) of various types of costs
described in the problem instances under some con-
straints of the solution. However, problems like the
shortest path only considers one type of cost—weights
of edges, whereas the facility location problems nor-
mally have two costs—facility and connection costs.
To approximate these problems involving different
costs, the concept of multi-factor analysis arose nat-
urally for balancing these costs in a solution and
thereby obtaining a tighter/more precise approxima-
tion ratio. Although the inverse dual fitting technique
may be seen as an extension of dual fitting, it actually
occupies greater advantage by tightly coupling with
the generic multi-factor analysis. Moreover in the ra-
tio analysis of the RRA problem, we have shown this
technique is able to simplify the analysis and work
seamlessly with the factor revealing technique. Next,
we will briefly see how the primal-dual method in
(Vazirani 2001, Jain et al. 2002) together with this
technique yields simpler analysis for the fundamental
set cover problem.

In the minimum set cover problem, we are given a
universe U of n elements and a collection S containing
s1, . . ., sk that are subsets of U with corresponding
non-negative costs c1, . . ., ck. The objective is to
pick a minimum cost collection from S whose union
is U . The problem can be easily formulated into the
following LP in which the variable xs denotes whether
the set s ∈ S is selected.

minimize
∑
s∈S

csxs

subject to ∀j ∈ U :
∑
s:j∈s

xs ≥ 1

∀s ∈ S : xs ∈ {0, 1}

Its LP-relaxation and dual LP are:

minimize
∑
s∈S

csxs

subject to ∀j ∈ U :
∑
s:j∈s

xs ≥ 1

∀s ∈ S : xs ≥ 0

maximize
∑
j∈U

αj

subject to ∀s ∈ S :
∑
j∈s∩U

αj ≤ cs (9)

∀j ∈ U : αj ≥ 0

In the primal-dual algorithm, all of the uncovered
elements j’s simply raise their duals αj ’s until the
cost of a set s in S is fully paid for. At this mo-
ment, s is selected (xs is set to 1) and duals of j’s in
s are frozen and withdrawn from the sets other than
s. The algorithm then iteratively repeat these steps
until there are no uncovered elements left. Clearly
at the end of algorithm,

∑
j∈U αj =

∑
s∈S csxs. In

the analysis that follows inverse dual fitting, we con-
sider to scale the costs of all sets in S by a positive
number ρ. Since the set cover problem has only one
type of cost, the inverse dual fitting technique will
only generate a single factor. Similar to the anal-
ysis in the RRA problem, if the solutions xs’s and
αj ’s produced here are feasible to the scaled problem,
then we have

∑
j∈U αj ≤

∑
s∈S ρcsxs by the weak

duality theorem and this implies the algorithm is ρ-
approximation. Obviously, xs’s are feasible and the
left to do is to show LP (9)’s scaled constraint holds,
i.e. ∀s ∈ S :

∑
j∈s∩U αj ≤ ρcs. Without loss of gen-

erality, we can assume there are ls elements in set s
and α1 ≤ α2 ≤ . . . ≤ αls . So now we need to show

∀s ∈ S :
∑ls
j=1 αj ≤ ρcs. Also, from the primal-dual

algorithm it is easy to see that at time t = αi − ε,
∀s ∈ S, 1 ≤ i ≤ ls :

∑ls
j=i αj ≤ cs (αj = αi) which

implies ∀s ∈ S :
∑ls
i=1 αi ≤

∑ls
i=1

1
ls−i+1cs. There-

fore, ρ = maxls
∑ls
i=1

1
ls−i+1 ≤ Hn (n-th harmonic

number where n = |U|) and the set cover is Hn-
approximation.

Finally, it would be very interesting to see how
other techniques and problem contexts can benefit
from the inverse dual fitting technique. Also, migrat-
ing the idea of reliability to some other classical prob-
lems remains theoretically challenging.
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