
Assessment in First-Year ICT Education in Australia: Research and
Practice

 Judy Sheard Michael Morgan Matthew Butler
 Monash University Monash University Monash University
 Australia Australia Australia
 michael.morgan@monash.edu judy.sheard@monash.edu matthew.butler@monash.edu

 Katrina Falkner Simon Amali Weerasinghe
 University of Adelaide University of Newcastle University of Adelaide
 Australia Australia Australia
katrina.falkner@adelaide.edu.au simon@newcastle.edu.au amali.weerasinghe@adelaide.edu.au

Abstract
This paper presents an investigation of assessment in first-
year Information and Communications Technology (ICT)
courses with a focus on Australian universities. This study
was part of a project that aimed to identify and
disseminate good practices in first-year ICT teaching in
Australian universities. Through a systematic review of
the last five years of research literature and interviewing
30 academics who were involved in the design and
delivery of the first-year learning experience in Australian
universities, we have formed a comprehensive view of
current assessment practices, and outlined the unique
challenges faced by teachers when designing assessment
for their first-year ICT students. Key findings of the
literature survey and the insights gained from the
academic participants have been collated to provide
examples of good practice in the field and to recommend
areas for further investigation..
Keywords: First Year; Student Experience; Assessment;
Academic Integrity.

1 Introduction
Assessment is a key component of the learning
experience of university students. Assessment is used to
measure the level of knowledge and skills that students
have obtained, and determines their grades and course
progression. Assessment can be used during the learning
process to give students feedback on their work. An
important consideration is that the form of assessment
influences how students approach their study, with a
consequent influence on learning outcomes (Biggs,
1996).

There are a variety of ways that students may be
assessed, and the form of assessment used is often
discipline-specific. For example, students learning to
program may be assessed by a practical task on a
computer. With recent moves to blended learning and

Copyright © 2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computing Education
Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 160. D. D’Souza and K. Falkner,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

technology-enhanced learning environments there are
now new imperatives and opportunities for different
forms of assessment.

Considering the central role of assessment in the
student learning experience, it is critical that teachers
choose the form of assessment that is appropriate for the
learning situation and desired learning outcomes. In first-
year courses it is also important to consider that students
may not have encountered some forms of assessment in
their previous education. The transition from secondary to
tertiary studies is a difficult process for many students,
first-year courses have high rates of attrition (Sheard,
Carbone, & Hurst, 2010) and it is important to consider
any possible influences on this experience.

In this paper we report findings of a study that
investigated assessment practices in first-year
Information and Communications Technology (ICT)
courses in Australia. The study comprised a review of
recent literature on assessment practices in ICT courses
and a survey of Australian academics involved in
teaching first-year ICT courses. The aims of the study
were: 1) to gain a comprehensive view of how students in
first-year ICT courses are assessed; 2) to determine
factors influencing choice of assessment used; and 3) to
identify examples of good practice in assessment in first-
year ICT courses in Australia that could be adopted and
disseminated widely. This study is part of a larger project
exploring teaching practices in first-year ICT courses.

2 Research Approach
This section describes the approach used to investigate
research and current practices in assessment in the first
year of ICT courses in Australia. The investigation was
conducted by the authors as part of a project that
investigated the broader topic of research and practice in
teaching ICT courses in Australia. To conduct the project,
the team developed a framework with six themes that
together describe the learning experience: ‘what we
teach’, ‘where we teach’, ‘how we teach’, ‘how we
assess’, ‘learning support’ and ‘student support’. As the
focus of this paper is about assessment, only findings
from the ‘how we assess’ theme will be reported.

Two phases were designed by the authors for this
project; a systematic review of research literature from
the previous five years, and interviews of academics
involved in the delivery of first-year programs in

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

91

Australia. A detailed description of the methodology used
in this project is reported in Experiences of first-year
students in ICT courses: good teaching practices: Final
Report: ICT student first year experiences
(http://www.acdict.edu.au/ALTA.htm); accordingly, only
a brief summary is presented below, focusing on the ‘how
we assess’ theme.

Phase 1 of the project consisted of a systematic review
of literature from 2009 to 2014 in the area of computing
education. Keyword searches were carried out in Google
Scholar and the IEEE Xplore and ACM Digital Library
databases, along with manual searches of key computing
education journals and conference proceedings.

In phase 2, semi-structured phone interviews were
conducted with academics from Australian universities in
February and March 2014. Participants were identified as
key staff involved with the design and/or delivery of ICT
courses to first-year students. Thirty academics from 25
Australian universities were interviewed. These included
six Group of Eight (go8), three Australian Technology
Network (ATN), six Innovative Research (IRU), and
three Regional Universities Network (RUN) universities.
The interviews averaged 53 minutes. Detailed notes were
taken, and the interviews were audio recorded so that
relevant comments could be transcribed at a later time.
The interview script focused on six key themes, and all
interviewees were sent the interview questions before
being interviewed. Questions asked to elicit responses
about initiatives in assessment practice included: ‘What
kinds of assessment items are used in the first-year
courses?’, ‘For which assessment items is feedback given
to students?’, ‘How much of the assessment is assessed
automatically?’, and ‘For work not done in test
conditions, what techniques are used to verify that the
work is the student’s own work?’. Follow-up questions
on specific issues related to the themes were asked where
appropriate.

3 How we assess
The investigation of assessment in first-year ICT courses
in Australian universities covered the areas of assessment
strategies, summative and formative forms of assessment,
and tools to assess student learning or to facilitate the
marking process. We begin our investigation of
assessment in first-year ICT courses with a review of the
literature. This gives a broad perspective of assessment in
first-year ICT courses during the past five years,
highlighting Australian studies. Following this, an
analysis of the interviews of academics provides insights
into assessment practices in Australian courses.

3.1 Literature Perspectives on Assessment in
ICT

The systematic literature review found 38 papers that
were concerned with assessment in university ICT
courses during the previous five years. The literature on
assessment was grouped into five topics:

• assessment design and strategies
• exam assessment
• non-exam assessment
• automated assessment
• assessment instruments and tools

All papers were set in the higher education sector. A
high number of papers (27, 79%) dealt with assessment in
first-year courses or assessment that was applicable to the
first year. Most papers (33, 87%) dealt with issues
concerning assessment of programming, and almost half
(18, 47%) were Australian studies.

Assessment design and strategies
A couple of papers were found that focused on
assessment of first-year students in university courses in
general. A review by Yorke (2011) of assessment and
feedback practices in the first year of university
highlights the importance of early and timely feedback
and a pedagogy that encourages students to reflect on
their learning. A comprehensive report by O’Neill and
Noonan (2011) presents a series of resources to assist in
designing assessment tasks. An underlying principle is to
build first-year students’ confidence with low-stakes
assessment before moving progressively to high-stakes
assessment. Staff are encouraged to restrict the amount of
assessment they build into their units to allow students
time and opportunity for in-depth engagement with the
teaching program. This strategy is based on the idea that
to be successful in learning, students need to be engaged
and empowered.

A number of papers deal specifically with assessment
strategies in ICT courses. Taking a holistic view of the
assessment process in programming courses, Australian
researchers Thomas, Cordiner, and Corney (2010)
propose the ‘teaching and assessment of software
development’ framework (TASD) and give examples of
its use across multiple year levels. Barros (2010)
discusses the importance of assessment strategies in
introductory programming and proposes a set of
techniques and criteria to consider when designing
programming assessment and grading. For assignment
work he incorporates a plagiarism detection tool and oral
assessment, and for the final practical exam, a minimum
acceptable grade. Both papers report positive results in
terms of student satisfaction and higher grades.

A problematic area for assessment in ICT courses is
group work. An Australian researcher (Richards, 2009)
discusses ways of assessing group work, including peer
assessment, and the challenges of providing a fair
distribution of marks to each group member. Hahn,
Mentz, and Meyer (2009) investigated different forms of
assessment for pair programming, and propose that a
combination of self, peer, and facilitator assessment can
increase the amount of feedback to the students, resulting
in higher levels of achievement.

Exam assessment
A final written exam is a common form of summative
assessment in computing courses. A number of papers
reported studies of exam assessment, and these were all in
the context of introductory programming. Much of this
work has been conducted by Australian researchers.

Petersen, Craig, and Zingaro (2011) analysed 15
introductory programming exams to determine the types
of question and the topics they covered. They concluded
that some questions were too difficult for introductory
programming students due to the high number of
concepts students were required to understand in order to
answer each question.

CRPIT Volume 160 - Computing Education 2015

92

A corpus of work led by Australian researchers has
investigated the use of formal examinations for the
summative assessment of programming. The initial phase
of this research investigated the structure of programming
exam instruments, including an in-depth study of the
types of question used. This involved development of a
scheme to classify programming questions on a number
of dimensions including style, course content, skill
required to answer, difficulty, and complexity (Sheard et
al, 2011). The classification scheme was applied to
questions in 20 programming exam papers from multiple
institutions (Simon et al, 2012). The study found that
introductory programming examinations vary greatly in
the coverage of topics, question styles, skill required to
answer questions, and the level of difficulty of questions.
Harland, D’Souza, and Hamilton (2013) used the same
classification scheme to further explore question
difficulty. The next phase extended this work to design a
set of questions suitable for benchmarking in introductory
programming courses (Sheard et al, 2014).

Another aspect of this work was an investigation of
the pedagogical intentions of the educators who construct
exam instruments (Sheard et al, 2013). This involved
interviews with programming teachers to gain an
understanding of how they go about the process of
writing an exam, the design decisions they make, and the
pedagogical foundations for these decisions. The study
found that the process of setting exams relied largely on
intuition and experience rather than explicit learning
theories or models. Exam formats are typically recycled
and questions are often reused. While there is variation in
the approaches taken to writing exams, all of the
academics take a fairly standard approach to preparing
their students for the exam. Although some academics
consider that written exams are not the best way to assess
students, most tend to trust in the validity of their exams
for summative assessment.

Another group of Australian researchers investigated
summative assessment of introductory programming,
focusing on the use of multiple-choice questions in exams
(Shuhidan, Hamilton, and D’Souza, 2009; 2010). Most
instructors in their study considered multiple-choice
questions appropriate for testing questions on the lowest
levels of the Bloom taxonomy (Bloom, 1956), but less
than half were confident that multiple-choice questions
could be used to test understanding of programming
concepts (Shuhidan, Hamilton, and D’Souza, 2009;
2010). A problem faced in the investigation of exam
questions is the difficulty in applying Bloom’s taxonomy
to classify exam questions according to their cognitive
level. An Australian research team has developed an
online tutorial to train researchers in the use of this and
other taxonomies (Gluga et al, 2013).

Another Australian researcher (de Raadt, 2012)
investigated the use of ‘cheat sheets’ in introductory
programming exams and found that students who took
permitted hand-written notes into their exam performed
better than students who did not have notes.

Non-exam assessment
Research studies on forms of assessment other than
examinations focused mainly on assessment of
programming. Studies of both summative and formative

assessment were found, with some reporting innovative
practices.

A common form of in-semester assessment is the
programming assignment. A grounded theory study by
Kinnunen and Simon (2010; 2012) explored introductory
programming students’ experience of their assignments,
and found that students’ self-efficacy is not necessarily
related to their experiences of success in programming.

A novel approach by Lee, Ko, and Kwan (2013)
embedded assessment into an educational computer game
designed to teach programming. A study of students’ use
of this game showed that incorporating assessment
increased students’ use of the game, the levels they
achieved, and the speed at which they played the game.

Portfolio-based assessment is rather less common than
assignments. Australian researchers Cain and Woodward
(2012) describe an introductory programming unit where
students are assessed entirely on a portfolio of work
produced during the semester. The design of the unit was
founded on Biggs’s constructive alignment (Biggs, 1996),
which proposes alignment between the learning activities,
assessment, and intended learning outcomes. An
evaluation showed that students were positive about their
learning experience. Pears (2010) reports on the use of
portfolio assessment in an introductory programming unit
for the purpose of implementing a continuous assessment
model. He found that students who completed the unit
produced code of a higher quality than typically produced
by first-year students.

Peer review is a form of assessment used for both
formative and summative assessment. Assessing the work
of peers can encourage student engagement and deeper
learning (Carter et al, 2011). Peerwise, a collaborative
web-based tool, enables students to create and share
multiple-choice questions and allows students to peer-
review questions submitted by others. Evaluation of the
use of Peerwise has shown that it can foster student
engagement and have a positive impact on learning
(Denny, Hanks, and Simon, 2010; Purchase et al, 2010).

The use of social media (web 2.0) in education has led
to new forms of assessment where students demonstrate
their learning through online tasks that are often co-
created and visible to their peers, and, in some cases, to
wider audiences. These new forms have brought
challenges for students and teachers in using unfamiliar
authoring tools and applying appropriate citation and
referencing to their work. Studies by Australian
researchers Gray et al (2010) investigated examples of
assessment using different web authoring tools and
showed how principles of good assessment practice were
reflected in each case. Further studies investigated the
affordances of web 2.0 technologies for assessment,
along with issues of ownership, privacy, and visibility of
work (Gray et al, 2012; Waycott et al, 2013). A case
study by Terrell, Richardson, and Hamilton (2011)
describes assessment of a web 2.0 task in an introductory
information management course under the framework of
constructive alignment.

Automated assessment
The time-consuming tasks of collecting, marking, and
giving feedback to students on their assessment work has
led to the development of tools to help manage these

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

93

processes. All of the assessment tools that we found were
specifically designed for use in introductory
programming classes.

Law, Lee, and Yu (2010) present PASS – Programing
Assignment aSsessment System. PASS provides feedback
for programming assignments by executing a set of
instructor-prepared test cases and then comparing the
expected output with the actual output. PASS also allows
the teachers to monitor the testing process of students’
submissions in real time and to share with the entire class
examples that demonstrate good practice. A study of
PASS showed a positive impact on students’ self-
efficacy.

Wang et al (2011) discuss the role of automatic
assessment in introductory programming and present a
tool, AutoLEP, for automatic analysis and assessment of
student programs. They describe their use of this tool for
in-semester formative assessment and for end-of-semester
exams. Students and staff were enthusiastic about the
tool, with staff reporting that students showed increased
interest in programming and improvement of their skills.

Llana, Martin-Martin, and Pareja-Flores (2012)
present an online free laboratory of programming
(FLOP), which hosts a repository of programming
problems that students can attempt and have
automatically assessed. Preliminary results indicate
positive improvement in students’ motivation, skills, and
self-efficacy.

Johnson (2012) presents a tool, SpecCheck, for testing
conformance of programs to the assignment specification
prior to submission. A small study showed that students
were willing to accept having to produce highly
structured homework in return for faster grades and
feedback.

Shaffer and Rossen (2013) present the Programming
Learning Evaluation and Assessment System for
Education (PLEASE), a code-checking and submission
system. Using data collected from the system, the
lecturers were able to identify parts of the course where
students were experiencing difficulties and make
adjustments to the teaching program. The results of a
small study indicated that the tool was useful in
optimising course structure.

Assessment instruments
A few studies report the development of specialised
assessment instruments. Ford and Venema (2010) trialled
the use of short objective tests to test students’ knowledge
of fundamental programming concepts after their
introductory programming course. Gouws, Bradshaw, and
Wentworth (2013) designed a test to determine students’
computational thinking ability prior to entering their
computer science course. Elliott Tew and Guzdial (2010)
propose a method for developing a language-independent
assessment instrument for introductory programming.

The apparent prevalence of plagiarism and collusion is
a topic of concern in the assessment of introductory
programming. Australian researchers Nguyen et al (2013)
present a source code similarity reporting tool developed
as a Moodle plugin. Studies of staff and student reaction
to the tool showed its usefulness in deterring and
detecting plagiarism and its potential as an educative tool.

Summary
The literature on assessment in first-year ICT courses
relates predominantly to programming. Nearly half of the
papers found were from the Australian context, indicating
research strength in this area. Although exam assessment
has attracted the most research, a number of other forms
of assessment have been investigated. Underlying
motivations for academics’ choice of assessment were
often pedagogical: to encourage student engagement,
provide timely feedback, or ensure academic integrity; or
they were pragmatic: to ease the burden of marking. With
the trend of an increased reliance by students on online
course materials, further research is suggested on
methods to improve the automation of assessment and
provide quality feedback on students’ work, while
maintaining the academic integrity of the assessment
process.

3.2 Current Assessment Practice in Australia
The interview questions sought information about
assessment practices in first-year ICT courses in
Australia. The responses gave insights into current
assessment practices and issues faced by teaching staff.
Thematic analysis was used to extract and code responses
and to identify the major issues raised. The responses to
these questions are discussed under the main topics that
were identified from the analysis of the interview data:
assessment design and strategies, exam and non-exam
assessment, and automated assessment. The issues of
provision of feedback, verification of student work, and
other issues associated with academic integrity are
discussed in terms of the different forms of summative
and formative assessment. In reporting the findings,
representative quotes have been included to further
elucidate the discussion.

Assessment design and strategies
Students in first-year ICT courses are typically assessed
via an end-of-semester written examination following in-
semester tasks that may include assignments, portfolios,
tests, tutorial exercises, or presentations. The most
common assessment models used are assignment work
and a final exam combined with either a mid-semester
test or tutorial assessment.

A couple of interviewees mentioned their university
having an overall assessment strategy. Interviewee U8
commented that at her university, “assessment revolves
around problem solving – looking at authentic
situations”. An assessment guide based on Biggs’s theory
of constructive alignment (Biggs, 1996) had been
developed at one university. Constructive alignment was
also mentioned as a theoretical basis of portfolio
assessment at another university.

A number of interviewees had designed assessment
strategies to address the issue of lack of student
engagement. Interviewee U7a explains:

“Previously, I have implemented some unit rules for
encouraging student engagement. For example, the
tutorial attendance is no lower than 85%. That will be
recorded. Secondly, students’ tutorial attendance is
marked and also we have some in-class quizzes.”

Most interviewees mentioned assessment policies at
their university. It is common practice to set thresholds

CRPIT Volume 160 - Computing Education 2015

94

that students must reach in exams in order to pass a unit.
Most often the threshold is 50%, but 40% is also used.
Several interviewees mentioned mandated percentages of
supervised work. In order to avoid over-assessment, some
universities limit the number of assessment tasks per
semester. In a couple of cases, a maximum of four
assessment items was allowed; and in another case two
major assignments and an exam were recommended. At
one university it was a policy to provide feedback on an
assessment task within 2 weeks, and to have an
assessment task within the first 5-6 weeks of the semester
in order to give early feedback to students.

Exam assessment
An end-of-semester written exam is the typical form of
summative assessment in first-year ICT courses. Exams
are seen as necessary to verify that it is the student’s own
work that is being assessed; however, some interviewees
expressed concerns that a written exam is not necessarily
a good method for establishing what the students have
learned. One interviewee mentioned a move away from
exams at her institution but not for first-year courses.
Most exams are weighted between 40% and 60% of the
overall mark for a unit, with 50% the most common
weighting. The lowest weighting was 20% and the
highest was 70% of the overall mark.

The use of multiple-choice questions in exams varies,
and appears to be controversial. One interviewee sets
most of the exam (and mid-semester test) as multiple-
choice questions due to a large enrolment (250 students).
Another uses multiple-choice questions in exams but says
that more than 50% of assessment using multiple-choice
questions would be frowned upon at his university.
Interviewee U17 sets an exam of multiple-choice
questions, arguing that: “the only other option I can think
of is to have programming problems on the exam paper
but the exam is not the place where you can do any
thinking.”

Non-exam assessment
In combination with an end-of-semester exam there are a
variety of other forms of summative assessment. The
most common is assignment work, done individually or
sometimes in a group. Often more than one assignment is
set during the semester. Some interviewees mentioned
checkpoints for assignments where students must show
their tutor their progress. Checkpoints are incorporated to
encourage students to start work early and to give them
feedback. However, they are also used to monitor their
work, which can help determine whether the student has
done the work submitted.

Tests held during semester are a common form of
assessment. These may be mid-semester tests worth from
10% to 20% or a series of smaller tests often conducted
online using the LMS or another tool, such as ViLLE
(Rajala et al, 2007). Some interviewees expressed a
preference for continuous assessment, with smaller tests
rather than one larger test. One interviewee commented
that he does not hold a mid-semester test as the semester
is only 11 weeks long.

Another common form of assessment is tutorial work.
This involves assessment of tasks performed in the
tutorial, often on a weekly or fortnightly basis. Typically
this is low-stakes assessment with a few marks (1-2%)

allocated for each assessment item. Interviewees
mentioned that assessment in tutorials is a strategy for
encouraging students to come to class and to work in
class. An additional benefit was that tutors could observe
students working and alert them to possible cases of
plagiarism. However, interviewee U18, while
acknowledging the benefits of lab assessment, found that
it was “more trouble than it was worth”.

Some universities use portfolio assessment. At one
university portfolio assessment is embedded into each
year level, and students are given training in their first
year to help them understand the expectations of this
form of assessment.

At another university portfolio assessment has been
used for the past five years in an introductory
programming unit. The portfolio assessment has been
designed using Biggs’s constructive alignment.
Interviewee U1 explains:

“This has been one of the changes that I think had a
big impact as well on the pass rates for the introductory
programming unit … a large change, moving away from
assignments and exams to submitting a portfolio of
assessments.”

Interviewee U1 describes the process:
“Each week the student will develop pieces of work

that demonstrate how they’ve met one or all of the unit
learning outcomes and each week we have a formative
feedback process. With the portfolio assessment it has
weekly feedback. It’s 100% portfolio assessed so they
don’t get a grade until the end of the semester.”

Interviewee U1 goes on to explain the grading process
at the end of semester:

“Each student has to submit a portfolio that
demonstrates how they have met all of the unit learning
outcomes. Then there is a scale by which they can meet
[the learning objectives]. To meet them to an adequate
level there are criteria. To meet them to a credit level
there are separate criteria, and so on for distinction and
high distinction. This allows students to work to their
expectations. Some students only want to pass the unit
and they’re not interested in doing really well … That’s
not what their goal is in life.”

At this university the portfolio assessment was a big
change in the way the introductory programming is taught
and students are assessed:

“Each week the students submit work to get feedback
so that they can improve that work and thereby improve
their understanding. There’s no punishment for doing
that. Previously if students did an assessment at the
beginning of semester and did poorly they lost those
marks and they can never get them back. ... With this
what we can do is go back and really focus on those very
first things they didn’t understand and make sure they
understand those before they move on to the next thing.
Some people might take a few weeks to get through the
first few tasks they have to complete whereas others
might get them done very quickly.”

Other less common forms of assessment mentioned
were presentations and submitted homework tasks; one
interviewee gave students a mark if they visited the
lecturer to ask a question.

There were indications of a growing use of social
media for assessment tasks. For example, interviewee

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

95

U7a allowed students to use social media to deliver an e-
learning information resource that they developed as an
assignment task. Interviewee U24 discussed how he uses
blogs and UCROO, an educational social-networking site
based on Facebook. However, another interviewee raised
a concern related to plagiarism when using social media:
“We’ve told them not to talk about the assignment but it’s
hard to police so I discourage it because of the
plagiarism issue.”

Automated assessment
Automated assessment is not used to any great extent in
most universities. The most common use is for quizzes
and multiple-choice question components of tests and
exams. There were some examples of automatic testing of
programming assignments. Interviewee U18 said that
automatic assessment was used for: “80% of the marks –
none of it is automatic, but all of it has automated
support.”

Feedback
The comments by interviewees indicate that feedback is
an important part of the assessment process. At most
institutions feedback is given on all forms of in-semester
assessment. Formative feedback on assignments is often
given verbally during tutorials or consultation times.
Portfolio assessment allows for continuous formative
feedback throughout the semester. Feedback on
summative assessment is typically given verbally for
tutorial tasks and is written on assignment work. In the
case of class tests, feedback is usually just a score.

A number of interviewees described providing detailed
critiques for summative assessment of assignment work
involving comments and scores for individual
components. Assignment work is often assessed using
rubrics. A couple of interviewees stated that they give
feedback on assignment work as a summary at a lecture.
In one case feedback on assignment work is given only in
this open forum; however, students are also given the
opportunity to discuss their work individually with their
lecturer.

Some interviewees mentioned particular approaches to
giving feedback for assignments submitted online. The
GradeMark tool from Turnitin was mentioned by some as
facilitating provision of feedback through dragging and
dropping of comments. Interviewee U9 details a
university-wide policy of e-assessment:

“All student work must be submitted online and
returned online, and that was trialled last year and has
gone live this year. So we have been embedding feedback
in online assessment.”

At interviewee U9’s university all assignment
submission times are recorded and therefore the
timeliness of the feedback provided to students is also
recorded. A permanent record of all feedback is also
stored, in case an issue arises. This university-mandated
policy has the potential effect of allowing an audit of the
quality and promptness of the feedback provided to all
students in every course. Therefore a systematic process
may be implemented to improve the standard and
responsiveness of the feedback delivered to students.

Some assessment tasks enable instant feedback on
performance. Examples are online quizzes and
programming assignments with automated assessment.

One interviewee commented that the instant feedback
was very popular with the students.

The only feedback on exams is through viewing the
exam script. Most interviewees indicated that very few
students do this. Interviewee U16 stated that at his
university comments are written on the exam scripts with
the expectation that at least some students will come and
look at them.

Academic integrity
Three subthemes emerged from analysis of the academic
integrity theme.

Verification of work
In trying to determine whether a submitted assessment
task is the work of the student submitting it, the
interviewees use a range of strategies including
interviewing, monitoring and observing.

Most agreed that interviewing students about their
submitted assignment work was an effective way of
verifying that the work was their own and identifying
possible cases of plagiarism or collusion. A couple of
interviewees described thorough interview processes. For
example, interviewee U18 commented “At the interview
they are expected to discuss the code they’ve written and
make changes to it.” Interviewee U15b proposed that an
interview does not have to be long to be effective:

“You can [ask] just a few pointed questions about
their motivation for the design they made, why they did it
that way, and you can start to poke them a bit and say ‘if
we change this what would happen?’; ‘if you wanted to
do this feature how would you do it?’. I’ve used the
interview and they tend to be pretty good at picking up
where it might not be all the student’s own work.”

Despite its acknowledged effectiveness, interviewing
every student as part of the assessment process is used in
only a few institutions, typically in programming units.
Many interviewees claimed that they have too many
students and too few resources to conduct interviews.
Interviewing had recently been abandoned at a couple of
universities. As interviewee U16 explained, interviewing
was “extremely effective but very time-consuming, so we
just couldn’t keep it up.” A number of interviewees said
that they interviewed students only if they were
suspicious of the work. Interviewee U12 said that
interviews are not used in her university because the
previous head of school was concerned that “it could
mean asking different questions of different students and
could cause [equity] issues.”

Sometimes there are opportunities for less formal
verification approaches where students can be questioned
in their tutorials during the formative stages of an
assignment. Some interviewees are alerted to possible
cases of plagiarism through monitoring students’ work
and observing patterns of participation. Interviewee U24
incorporates a tutorial participation mark as part of the
assignment mark, stating that: “it’s actually a way of
encouraging students to work every week and it’s also a
way of controlling plagiarism.”

Tools are sometimes used in verification of student
work. The plagiarism detection tool Turnitin is frequently
used for text-based assignments; however, the use of
plagiarism detection tools for programming assignments
appears less common. Tools such as MOSS (Measure of

CRPIT Volume 160 - Computing Education 2015

96

Software Similarity), JPlag, and ESP were mentioned for
detection of code plagiarism; however, one interviewee
suggested that plagiarism detection tools were not
suitable for first-year programming as there is usually too
much similar code. Interviewee U2 only follows up on
obvious plagiarism, seeing the assignments “as learning
opportunities as much as assessment.”

However, plagiarism detection tools are not useful in
detecting cases where students have commissioned their
assignment work. Some interviewees rely on the
assignment markers noticing disparities either within the
submitted work or between the submitted work and the
student’s normal work. As interviewee U6 explained:

“you get a pretty good eye for it once you’ve marked a
few things and you know the standard or the hallmark of
the student’s work and if something significantly deviates
from that you can start looking into that. I’ll always keep
an eye out for phrases or chunks of text that look like
they’ve been written in a different style.”

However, this becomes more difficult in large classes
with multiple markers, and does not always cover the
cases where someone else has done the work. A couple of
interviewees mentioned that they had found their
assignments advertised on a code-purchasing site. A
strategy used by interviewee U22 is to give each
assignment a unique name to make it easy to do a Google
search to find any plagiarised code. Another interviewee
mentioned a network of universities that monitored code-
purchasing sites to pick up on cases where assignments
had been commissioned.

Discouraging cheating
A number of strategies were used to discourage cheating.
All universities had invigilated assessment in at least the
exam component. As interviewee U20 noted, “the only
thing you can absolutely guarantee are the moderated
parts, which are the exams.” In a number of universities,
students were required to gain a minimum exam mark,
typically 40% or 50%, to pass a unit. A couple of
interviewees commented that they used exams to pick up
on students who had not done their own assignment work.
However, Interviewee U4 noted that his university has a
policy that “exams are not to be for the purpose of
ensuring that people haven’t cheated.”

Interviewees suggested a number of strategies to
encourage students to do their assignment work. These
were seen as preferable to punitive approaches. Some
stress to their students that writing code on their own will
help them with their exam. One interviewee uses careful
assessment design where assignments are not just taken
from the textbook; a couple of others set assignments
tailored to individual students, allowing students to
negotiate their own assignment. There was no consensus
about whether students should work individually or with
others on their assignments. Interviewee U19 permits
students to work their assignments in pairs as he
considered that “this makes it much less likely that they
will seek outside help”; whereas at another university all
first-year assignments are individual.

Two interviewees explained how they use email
messages to discourage plagiarism, either sent from the
lecturer …

“I would send an email to students normally around
that the time the assignment is due because I think most
plagiarism occurs when students get behind and the
assignment is due and they quickly find a friend to copy
from. I tell them that if they have fallen behind to ask me,
not their mate.” (U13)

… or sent from the head of the school every semester:
“…every semester the HoS sends an email to all

students saying there were X number of students found
guilty of plagiarism this semester and you should all be
taking this seriously. So he also gives feedback to
students about what students have been caught
plagiarising to show them that we’re actually catching
them and doing something about it.” (U17)

Two interviewees also mentioned how Turnitin is used
to discourage plagiarism through detection. Interviewee
U25 mentioned: “We advise the students that their
assignments would be put through Turnitin” and
interviewee U5 mentioned: “They’re all very well aware
of Turnitin because when they put their assignment in
they get a report back.”

Penalties for breaches of academic integrity
Every university has a standard procedure to deal with
academic breaches. Most universities have a designated
officer to ensure that standard penalties are imposed
across the school, the faculty, or the university.
Substantial breaches are dealt with at the higher levels of
management outside the particular school. For example, a
dean’s review was required to deal with substantial
breaches in one university. Many universities maintain
details of academic breaches in a central register or in the
individual student’s file.

The penalties imposed depend on the severity of the
breach, the weighting of the assignment, and whether it is
a repeat offence. Penalties range from zero marks for the
specific assessment, to failing the unit, all the way
through to being excluded from the university.
Interviewee U23 said that for repeat offenders “it could
go all the way to a student having their enrolment
terminated, which would be a very rare thing, but it has
happened in the past.”

Interviewee U12 discussed the importance of
understanding the overall situation when an academic
breach occurs:

“However, it’s not just ‘OK, you’ve plagiarised,
you’re going to get this penalty’. It’s looking at the
circumstances around it and what’s happened; whether
they’ve understood what plagiarism is. And whether
they’ve acknowledged what’s happened.”

When asked what would happen to a student who had
copied something from the Internet and it was their first
offence, interviewee U9 explained:

“They would be educated and make sure that they do
the quiz [students are expected to complete an academic
integrity quiz which is 5% of their overall grade]. They
would be told about proper paraphrasing and citing
sources etc.”

4 Discussion and Recommendations
Although a variety of forms of assessment were identified
in the literature, most interviewees mainly discussed
traditional forms of assessment. The few innovative

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

97

assessment practices found were designed to encourage
attendance (e.g. tutorial assessment), engage students in
learning activities (e.g. social media), or encourage good
work habits (e.g. portfolios). Interviewees’ comments
indicated the high importance they place on giving
feedback on work during semester. Academic misconduct
is a problematic area and there are a range of techniques
used to verify students’ work and discourage plagiarism
and collusion.

A number of areas identified concerning assessment
practice warrant further investigation. Overwhelmingly,
the context for research and discussion in assessment was
in the context of programming. There were a variety of
techniques and tools for assessment of programming, but
very few in other areas of study. We suggest that research
on assessment techniques for other areas of the first-year
ICT curriculum might be appropriate. The recent
adoption of social media has led to innovative forms of
assessment and there were reports of its use in a number
of universities; however, few studies were found that
evaluated the use of this assessment form in first-year
ICT courses. This is an area that could be further
investigated.

A key issue raised by interviewees was that the trend
for increased online delivery had placed demands on
academics to create appropriate assessment tasks for this
context and to verify the identity of the student
undertaking the assessment. There is a clear need for
work in this area. Related to this, there was a perceived
need for more tools to automate assessment and facilitate
feedback for large groups. We propose that these issues
require further research in order to ensure valid and fair
assessment for our first-year students.

5 Conclusions and Future Work
Our investigation of assessment in the first year of ICT
courses found that most of the literature is related to
assessment in programming courses. Assessment of
programming is an active area of research in Australia,
although most of the work is focused on exam
assessment. In contrast, the good practices in assessment
identified in Australian ICT courses are concerned with
portfolio assessment, interviewing students to verify
assignment work, and using appropriate tools to facilitate
and expedite provision of feedback for in-semester tasks
and assignments.

Assessment is a key part of the total learning
experience of our ICT students and has a major impact on
their educational outcomes. This study contributes to our
knowledge of assessment practices in first-year ICT
courses and motivations and impediments to their use.

6 Acknowledgements
This project was undertaken with the support of the
Australian Council of Deans of Information and
Communication Technology through the ALTA Good
Practice Reports Commissioned for 2013–2014 grant
scheme (http://www.acdict.edu.au/ALTA.htm).

The project team acknowledges the work of Dr Beth
Cook, who worked as a research assistant to conduct the
interviews and to prepare the detailed interview notes.

7 References
Barros, J.P. (2010). Assessment and grading for CS1:

towards a complete toolbox of criteria and techniques.
10th Koli Calling International Conference on
Computing Education Research, 106-111.

Biggs, J. (1996). Enhancing teaching through
constructive alignment, Higher Education, 32(3), 347-
364.

Bloom, B.S. (1956). Taxonomy of Educational
Objectives: Handbook I: Cognitive Domain.
Longmans, Green and Company.

Cain, A., & Woodward, C.J. (2012). Toward constructive
alignment with portfolio assessment for introductory
programming. IEEE International Conference on
Teaching, Assessment, and Learning for Engineering
2012, H1B-11.

Carter, J., Bouvier, D., Cardell-Oliver, R., Hamilton, M.,
Kurkovsky, S., Markham, S., McClung, O.W.,
McDermott, R., Riedesel, C., Shi, J., & White, S.
(2011). ITiCSE 2010 working group report: motivating
our top students. 16th Conference on Innovation and
Technology in Computer Science Education – Working
Group Reports, 1-18.

Denny, P., Hanks, B., & Simon, B. (2010). Peerwise:
replication study of a student-collaborative self-testing
web service in a US setting. 41st ACM Technical
Symposium on Computer Science Education, 421-425.

de Raadt, M. (2012). Student created cheat-sheets in
examinations: impact on student outcomes. 14th
Australasian Computing Education Conference, 71-76.

Ford, M., & Venema, S. (2010). Assessing the success of
an introductory programming course. Journal of
Information Technology Education, 9, 135-145.

Elliott Tew, A., & Guzdial, M. (2010). Developing a
validated assessment of fundamental CS1 concepts.
41st ACM Technical Symposium on Computer Science
Education, 97-101.

Gluga, R., Kay, J., Lister, R., Simon, & Kleitman, S.
(2013). Mastering cognitive development theory in
computer science education. Computer Science
Education, 23(1), 24-57.

Gouws, L., Bradshaw, K., & Wentworth, P. (2013). First
year student performance in a test for computational
thinking. South African Institute for Computer
Scientists and Information Technologists Conference,
271-277.

Gray, K., Thompson, C., Sheard, J., Clerehan, R., &
Hamilton, M. (2010). Students as web 2.0 authors :
implications for assessment design and conduct.
Australasian Journal of Educational Technology,
26(1), 105-122.

Gray, K., Waycott, J., Clerehan, R., Hamilton, M.,
Richardson, J., Sheard, J., & Thompson, C. (2012).
Worth it? Findings from a study of how academics
assess students’ web 2.0 activities. Research in
Learning Technology, 20(1), 1-15.

Hahn, J.H., Mentz, E., & Meyer, L. (2009). Assessment
strategies for pair programming. Journal of
Information Technology Education, 8.

CRPIT Volume 160 - Computing Education 2015

98

Harland, J., D’Souza, D., & Hamilton, M. (2013). A
comparative analysis of results on programming
exams. 15th Australasian Computing Education
Conference, 117-126.

Johnson, C. (2012). SpecCheck: automated generation of
tests for interface conformance. 17th Conference on
Innovation and Technology in Computer Science
Education, 186-191.

Kinnunen, P., & Simon, B. (2010). Experiencing
programming assignments in CS1: the emotional toll.
6th International Computing Education Research
Conference, 77-86.

Kinnunen, P., & Simon, B. (2012). My program is ok –
am I? Computing freshmen’s experiences of doing
programming assignments. Computer Science
Education, 22(1), 1-28.

Law, K.M.Y., Lee, V.C.S., & Yu, Y.T. (2010). Learning
motivation in e-learning facilitated computer
programming courses. Computers & Education, 55(1),
218-228.

Lee, M.J., Ko, A.J., & Kwan, I. (2013). In-game
assessments increase novice programmers' engagement
and level completion speed. 9th International
Computing Education Research Conference, 153-160.

Llana, L., Martin-Martin, E., & Pareja-Flores, C. (2012).
FLOP, a free laboratory of programming. 12th Koli
Calling International Conference on Computing
Education Research, 93-99.

Nguyen, T.T.L, Carbone, A., Sheard, J., & Schuhmacher,
M. (2013). Integrating source code plagiarism into a
virtual learning environment : benefits for students and
staff. 15th Australasian Computing Education
Conference, 155-164.

O’Neill, G., & Noonan, E., (2011). Designing First Year
Assessment Strategically, 1-46. http://www.ucd.ie/
t4cms/designifyassess.pdf, accessed 24 Jun 2014.

Pears, A. (2010). Conveying conceptions of quality
through instruction. 7th International Conference on
the Quality of Information and Communications
Technology, 7-14.

Petersen, A., Craig, M., & Zingaro, D. (2011). Reviewing
CS1 exam question content. 42nd ACM Technical
Symposium on Computer Science Education, 631-636.

Purchase, H., Hamer, J., Denny, P., & Luxton-Reilly, A.
(2010). The quality of a PeerWise MCQ repository.
12th Australasian Computing Education Conference,
137-146.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T.
(2007). VILLE: a language-independent program
visualization tool. Seventh Baltic Sea Conference on
Computing Education Research, 151-159.

Richards, D. (2009). Designing project-based courses
with a focus on group formation and assessment. ACM
Transactions on Computing Education, 9(1), 2.

Shaffer, S.C. & Rossen, M.B. (2013). Increasing student
success by modifying course delivery based on student
submission data. ACM Inroads, 4(4), 81-86.

Sheard, J., Carbone, A., & Hurst, A. J. (2010). Student
engagement in first year of an ICT degree: staff and
student perceptions. Computer Science Education,
20(1), 1-16.

Sheard, J., Simon, Carbone, A., D’Souza, D., &
Hamilton, M. (2013). Assessment of programming:
pedagogical foundations of exams. 18th Conference on
Innovation and Technology in Computer Science
Education, 141-146.

Sheard, J., Simon, Carbone, A, Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D’Souza, D., Harland, J.,
Lister, R., Philpott, A., & Warburton, G. (2011).
Exploring programming assessment instruments: a
classification scheme for examination questions. 7th
International Computing Education Research
Conference, 33-38.

Sheard, J., Simon, Dermoudy, J., D’Souza, D., Hu, M., &
Parsons, D. (2014). Benchmarking a set of exam
questions for introductory programming. 16th
Australasian Computing Education Conference, 113-
121.

Shuhidan, S., Hamilton, M., & D’Souza, D. (2009). A
taxonomic study of novice programming summative
assessment. 11th Australasian Computing Education
Conference, 147-156.

Shuhidan, S., Hamilton, M., & D’Souza, D. (2010).
Instructor perspectives of multiple-choice questions in
summative assessment for novice programmers.
Computer Science Education, 20(3), 229-259.

Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.-J.,
Clear, T., de Raadt, M., D’Souza, D., Lister, R.,
Philpott, A., Skene, J. & Warburton, G. (2012).
Introductory programming: examining the exams. 14th
Australasian Computing Education Conference, 61-70.

Terrell, J., Richardson, J., & Hamilton, M. (2011). Using
web 2.0 to teach web 2.0: a case study in aligning
teaching, learning and assessment with professional
practice. Australasian Journal of Educational
Technology, 27(5), 846-862.

Thomas, R. N., Cordiner, M., & Corney, D. (2010). An
adaptable framework for the teaching and assessment
of software development across year levels. 12th
Australasian Computing Education Conference, 165-
172.

Wang, T., Su, X., Ma, P., Wang, Y., & Wang, K. (2011).
Ability-training-oriented automated assessment in
introductory programming course. Computers &
Education, 56(1), 220-226.

Waycott, J., Sheard, J., Thompson, C., & Clerehan, R.
(2013). Making students' work visible on the social
web: A blessing or a curse? Computers & Education,
68, 86-95.

Yorke, M. (2011). Assessment and feedback in the first
year : the professional and the personal. 14th Pacific
Rim First Year in Higher Education Conference, 1-31.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

99

