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Abstract 

 
Remote sensing is increasingly being applied to agricultural applications.  It offers 

the ability to quickly and efficiently supply information about the spatial 

variability that occurs within fields.  Recently remote sensing technology has been 

successfully applied to identify and mapping weeds within crops.  Weeds pose a 

serious threat to crop health and can adversely affect yield.  The opportunity exists 

to explore new applications of remote sensing in the agricultural setting 

particularly measuring crop health. 

 

This study covers the application of remote sensing to detect weed-induced stress 

in grain crops.  The aim of the study was to determine the ability of spectral data, 

captured by a low cost balloon-borne camera system and a spectroradiometer, to 

discriminate between a healthy and stressed crop.  Spectral data was collected 

from a weed trial site that contained several sorghum varieties planted at different 

planting densities and with or without weeds.  Discriminant function analysis was 

conducted on the data captured by the two sensors to analyse the ability of 

spectral data to be used to differentiate between the crop containing weeds and the 

crop without weeds.  The results of the analysis indicate that the spectral data 

from both sensors can be used to distinguish between the healthy and stressed 

crop.  These results provide sufficient cause to suggest further research is 

warranted into the application of remote sensing as a tool for measuring crop 

health. 
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Glossary Of Terms And Abbreviations 

 

Agronomy   The applied Aspects of soil science and several  

plant sciences often limited to crops. 

 

Anthesis    The time of a flower's opening. 

 

Band    A wavelength interval within the electromagnetic  

spectrum. 

 

Cultivar   Plant variety produced by cultivation.  

 

Digital Number  Value assigned to a pixel in a digital image,  

commonly from 0 to 255. 

 

DPI&F   Department of Primary Industries and Fisheries. 

 

Geometric Correction The process of mapping a remotely sensed image 

onto a chosen projection such as latitude longitude 

or a coordinate system. 

 

GIS    Geographic Information System, is a set of tools for  

collecting, storing, retrieving at will, transforming  

and displaying data from the real world for a set of  
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purposes (Burrough, 1986). 

 

Reflectance    The ratio of radiant energy reflected by a body to  

the energy incident upon it.  Reflectance is 

independent of units. 

 
Spectrum   Continuous sequence of electromagnetic energy  

arranged according to wavelength or frequency. 

 

Wavelength   The distance between adjacent peaks or troughs,  

measured in the direction of propagation, in  

harmonic wave. 

 

Georeferencing/Registration See geometric correction. 

 

Root Mean Squared Error  The error is calculated for each transformation  

performed and indicates how good the derived 

transformation is. 

 

USQ    University of Southern Queensland 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 
Weeds pose a serious threat to the health of crops.  They compete directly with 

crops, act as host for crop disease and pests and contaminate harvests. The 

Cooperative Research Centre for Australian Weed Management (2003) indicates 

that Farmers spend approximately $70 per hectare per annum on weed 

management and the total cost of weeds to the Australian agriculture industry now 

exceeds $4 billion per year.  

 

Effective weed control is required to maximise crop yields, prevent weed seed 

contamination at harvest, ensure good water use efficiency, and reduce weed seed 

banks (DPI&F 2002).  With a move away from conventional tillage to zero till 

practices over the past decades, farmers have seen an enormous increase in the use 

and reliance on herbicides to control weed populations (DPI&F 2002).  This has 

caused concern over the effect herbicides are having on the environment and the 

resistance that weeds are developing to herbicide use.  To reduce the reliance on 

herbicides farmers are moving to integrated weed management practices. 

Integrated weed management systems are designed to reduce weed numbers with 

minimal herbicide use.  This is achieved by implementing other control practices 
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such as biological control, crop rotation, planting configurations and densities, 

and other techniques.    

 

The CRC for Australian Weed Management (2003) is advocating research be 

conducted into developing new technologies that will assist farmers to reduce 

weed populations.  Some of this research is being directed at opportunities remote 

sensing provides in detecting and measuring spatial variation on a broad scale.  

 

  

1.2 Statement of the Problem  

 
Research into agricultural applications of remote sensing has been conducted 

since at least the 1970’s.  Since that time remote sensing technology has been 

applied to many agricultural applications.  This process continues today with 

innovative remote sensing technology being employed to detecting weeds within 

crops, through real-time detection and weed mapping. 

 

Current research into weeds and crops appears to be concentrating on the 

discrimination of weeds and crops.  Little evidence has been found of research 

being conducted into measuring stress in crops caused by the presence of weeds or 

other environmental factors.  With the incentives being provided by the CRC for 

Australian Weed Management and other agricultural bodies to conduct innovative 

research into new technologies that will allow farmers to better manage weeds and 
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other crop stress, the opportunity exists to research new methods of applying 

remote sensing technology to these situations.   

 

1.3 Rationale of the Study 

 
This project was established with the assistance of the DPI&F, in the aim to 

measure spatial variability within crops.  In particular, to use remote sensing to 

detect and identify areas of crop stress so as to provide the ability to alter crop 

management in-season.  This study will attempt to achieve these goals through the 

use of cost effective remote sensing, image processing techniques and statistical 

analysis. 

 

 

1.4 Objectives 

 
The broad objective of this study is to ascertain whether remote-sensing 

techniques can be used to differentiate between healthy and stressed crop.  For the 

purpose of these objectives, healthy crop is considered a crop without weeds, and 

a stressed crop a crop with weeds.   

 

The specific objectives of this project were to: 

 

1) Obtained spectral data of the two crop types using a spectroradiometer and 

low cost aerial images; 



Chapter 1 - Introduction   4 

 

2) Determine the ability of the spectral data captured by the 

spectroradiometer to discriminate between healthy and stressed sorghum 

crops; 

 

3) Determine the ability of the data extracted from the aerial images to 

discriminate between healthy and stressed sorghum crops; and 

 

4) Determine if correlation exists between the two data sources.  

 

 

1.5 Scope and Limitations of the Study 

 
This project has been substantially limited by the spectral data captured 

particularly for the spectroradiometer.  Two trial sites were identified as potential 

research sites for this project.  The research has been conducted on the second of 

these two trial sites.  This site however was not the first choice.   

 

A site located near the township of Brookstead was considered the most 

favourable site.  Spectral data was captured at this site with the spectroradiometer 

on the 27 January 2004.  Over two hundred spectral samples were taken at the site 

along with observations about plant maturity and weed and plant density.  

Spectral data capture was to occur within the week for the Balloon-borne camera 
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system.  However due to time constraints and unfavourable weather, data capture 

could not occur with the balloon-borne camera system.   

 

During this time data capture for both sensors did occur at the Kingsthorpe trial 

site.  It was not anticipated that this data would be used and the quantity and 

quality of data reflect this situation. 

 

After realising the window for data capture for the balloon-borne camera had 

passed, it was decided to progress with the spectral data from the second site even 

with its limitations.    

 

 

1.6 The Organisation of the Dissertation 

 

This dissertation is organised into six main chapters plus ancillary material.  

Chapter 1 introduces the study, including project aims and objectives, rationale of 

the study and the scope and limitation of the study.  Chapter 2 comprises a 

literature review.  It introduces the concepts and theory relevant to the study.  

Chapter 3 outlines the research methodology.  It describes the study area, data 

capture, image pre-processing and the statistical analysis employed.   

 

Chapter 4 presents the results of the discriminant function analysis for both 

sensors, the regression analysis and other statistical results.  Chapter 5 discusses 

the results of this study.  This discussion is presented in four sections.  The first 
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section discusses the results of the discriminant function analysis for the 

spectroradiometer.  The second discusses the results of the discriminant function 

analysis for the aerial images.  The third compares the results of the discriminant 

function analysis for both sensors.  Finally the results of the regression analysis 

are discussed.   

 

Chapter 6 presents the conclusions derived from this study and makes suggestions 

for application of this research and recommendations for further research. 
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CHAPTER 2 

LITERATURE REVIEW 
 
 

2.1 Introduction 

 

This chapter outlines the background information that was reviewed in order to 

conduct this project.  It starts by introducing the effect weeds have on plants.  This 

is followed by a brief outline of the characteristics of sorghum, which is the crop 

the spectral samples were collected from.  A brief review of precision agriculture 

is supplied along with the remote sensing techniques used to detect weeds.  A 

review of vegetation spectral responses is presented followed by a review of the 

previous studies that have been conducted into detecting vegetation stress with 

remote sensing techniques.  Finally, insights into previous studies undertaken to 

detect plant stress were sought to provide direction and indicate were gaps in 

knowledge occurred for the application of remote sensing to detecting weed stress 

in crops. 
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2.2 Weeds 

 

Weeds are plants that interfere with the development or harvest of crops, or 

reduce the value of harvested crops (de Kantzow & Sutton 1988).  The Weed 

Society of America (1967) simply defines weeds as a “plant that is growing where 

it is not desired”. 

 

Weeds can be categorised as direct competitors, indirect competitors, or 

contaminants (de Kantzow & Sutton 1988).  This project is concerned with the 

effect of direct competitors, which compete directly with the crop for space, light, 

nutrients and water and thereby reduce yield. 

 

Competition between crops and plants occurs when nutrient, water or light 

supplies falls below the combined demand of both species.  Crops and plants 

compete for nutrients and water when roots explore the same soil mass, and they 

compete for light when weed or crop leaves shade the other (de Kantzow & 

Sutton 1988).  Competition for nutrients, light and water between weeds and crops 

results in yield loss for both species (de Kantzow & Sutton 1988; Zimdahl 1999). 

 

The competition between weeds and crops for nutrients, light and water is an 

interrelated relationship.  If the accessibility of one of these factors is reduced so 

is the availability of the others due to the limiting factor of the reduced resource 

(Zimdahl 1999).  Thus if the competition between weeds and the crop reduces the 

amount of light the crop receives than the crops ability to compete for nutrients 
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and water will in turn be reduced.  The effect a weed has on a crop is generally in 

proportion to the amount of light, water and nutrients weeds use at the expanse of 

crops (Zimdahl 1999). 

 

Zimdahl (1999) states that weeds in nearly all cases are far more efficient and 

effective at obtaining nutrients from the soil than crops.  Increasing the 

availability of nutrients does not reduce the completion for nutrients.  Rather 

increased application of fertiliser stimulates weed growth and causes competition 

for light. So at lower fertility competition is primarily for nutrients but at high 

fertility competition is for light. 

 

Lack of water is often the primary environmental factor limiting crop production 

and is probably the most critical requirement for plant growth (King 1966).   

Weeds tend to use water more efficiently than crops, have a greater capacity to 

consume water and are often more successful at acquiring water (Zimdahl 1999).  

The reason for this is that weeds generally have a greater rooting depth and have a 

larger feeding diameter and volume (Zimdahl 1999). 

 

Light regulates many aspects of plant growth and development.  Competition 

between crop and weeds for light is most rigorous when there is high fertility and 

adequate moisture.  Plants with large leaf area indices have a competitive 

advantage and normally out compete plants with smaller leaf area (Zimdahl 

1999). 
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2.3 Sorghum 

 
Grain sorghum is the main summer grain crop grown in most regions of North-

Eastern Australia.  Approximately sixty percent of the crop is grown in 

Queensland and the remainder in northern New South Wales. Sorghum plays a 

key role in providing feed grains to the beef, dairy, pig and poultry industries 

(DPI&F 2004). Sorghum is not used for human consumption in Australia, but is a 

staple food for many people living in the developing nations in the semi-arid 

tropical areas of Africa and Asia (Grundon, Edwards, Takkar, Asher & Clarklow 

1987).  

 

Sorghum requires a warm, summer growing period of about 4-5 months.  Planting 

times are usually between September to January. The crop is highly drought 

tolerant, but responds well to rainfall.  

 

The total area of sorghum planted in northern Australia has been increasing, with 

the 2000-2001 crop totaling 818,000 ha (DPI&F 2004). Farm yields vary with the 

avarage yield for the north-eastern cropping region being approxmatley 2 t/ha,  

and maximum yields may reach 6 t/ha (DPI&F 2004).   

 

The major limiting factor to production is water stress during grain fill, which can 

result in reduced yield. If not properly managed, weeds will compete with 

sorghum for water and nutrients which can lead to crop stress and yield loss.  In-

crop weeds must be controlled within 4 to 5 weeks of a crops life to avoid 

significant yield loss.  
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2.4 Precision Agriculture 

 
The development of precision agriculture, based on remote sensing and 

geographic information systems (GIS), is beginning to revolutionise the way 

farmers manage their crops.  Instead of managing their farm on a field-by-field 

basis, farmers are now able to manage resources and limitations such as the 

presence of weeds on an infield basis.   

 

The aim of precision agriculture or site-specific crop management is to vary 

management practices according to the spatial variation within fields.  Unlike 

conventional agricultural practices where uniform application of fertilisers, 

herbicides or even irrigation occurs, precision agriculture concentrates on 

delivering variable application within the field.  The result of this technique is that 

inputs are delivered proportionally to the capability or limitations of the land.   

 

By using variable infield management, precision agriculture has the ability to 

increase efficiency and productivity.  This is achieved by minimising inputs, 

through more efficient application of resources and by maximising yields by 

overcoming site-specific limitations (Kelly & Jensen 2003).   

 

2.5 Weed Detection 

 
There has been considerable research into distribution of weeds within crops.  

Much of this research has determined that weeds are not distributed uniformly but 
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form aggregated spatial patterns (Rew & Cussans 1995; Nordmeyer, Hausler & 

Niemann 1997).  Weed patches through surveys have been demonstrated to cover 

from 80 percent to as little as a few percent (Brown et al 1990).  The concept of 

precision agriculture is now being developed to incorporate the management of 

weeds.  Two methods for site-specific weed control are being concurrently 

investigated and developed.  These are real-time detection where weed assessment 

and spraying are carried out simultaneously, and using weed maps created prior to 

the spraying operation (Nordbo, Christensen, Kirstensen & Walter 1994). 

 

Walter, Hiesel and Christensen (1997) suggest weed mapping has a number of 

advantages over real-time detection.  First, it can be used for planning treatment 

maps that integrate crop-weed competition.  Secondly the optimum time to detect 

weeds may not coincide with the optimum time to spray.  Finally, weed maps are 

more appropriate for mapping multi-species weed populations in cereal crops.  

Lamb & Brown (2001) also suggest that weed maps give farm managers the 

ability to monitor the effectiveness of past or current weed management strategies. 

 

Weed maps can be generated by a number of methods.  Either through manual 

surveying, which is labour intensive and suffers from the operator’s 

subjectiveness, or by machine assisted/automatic techniques.   

 

The latter method incorporates remote sensing and weed discrimination by image 

analysis.  Research has progressed significantly in this area, with a number of 

researches reporting success at discriminating weeds.  Jurado-Exposito, et al. 
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(2003) were able to discriminate between sunflower, wheat stubble, and weed 

species in a controlled trial.  Problems were experienced in distinguishing 

particular weed species from other species, but three groups of species were able 

to be distinguished.   

 

Whilst research has focused on developing techniques to identify weeds, little or 

no research has been conducted into discriminating the impact of weed stress on 

crop performance using remote sensing. 

 

 

2.6 Spectral Response of Vegetation 

 
 
Lamb & Brown (2001) suggest that there are two requirements necessary for 

remote sensing to detect and map weeds.  These are suitable differences in 

spectral reflectance and that the remote-sensing instrument has appropriate spatial 

and spectral resolution to detect the presence of weeds.  These two requirements 

are equally valid for detecting weed-induced stress in crops.  The following 

section investigates the ability of weed-induced stress to be detected through 

changes in spectral response. 

 

The spectral reflectance curve of healthy green vegetation almost always has the 

“peak-and-valley” configuration (Lillesand & Kiefer 1994) that is represented in 

Figure 2.1.  The valleys in the visible portion of the spectrum are primarily caused 

by the chemical compound chlorophyll (Campbell 1996; Lillesand & Kiefer 



Chapter 2 - Literature Review  14 

1994).  Chlorophyll is contained in plant leaves and used in the process of 

photosynthesis. Chlorophyll absorbs a greater proportion of radiation in the red 

and blue wavelengths for use in the photosynthesis process than green 

wavelengths (Campbell 1996).  The higher reflectance of green wavelengths gives 

healthy vegetation their green appearance and is responsible for the peak in the 

spectral reflectance curve around the 500-578 nm wavelength range.  

 

 

Figure 2.1  Major Influences On The Spectral Properties Of Healthy 
Green Vegetation 

(Source: Campbell, J.B. 1996, Introduction to Remote Sensing, 2nd edn, 
The Guilford Press, New York. p. 458) 

 

The infrared portion of the spectrum is not influenced by chlorophyll but by the 

tissue structure within the leaf.  The internal structure of healthy leaves provides 

near ideal diffuse reflection of infrared wavelengths (CCRS 2003).  In the range 

from 700 to 1300 nm a plant leaf typically reflects 40 to 50 percent of incident 

radiation (Lillesand & Kiefer 1994), which accounts for the second peak in the 

spectral curve in Figure 2.1. 
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Because plant structure is highly variable between plant species, the infrared 

portion of the spectrum allows discrimination between different plant species even 

though the visible spectrum for plants may be very similar (Lillesand & Kiefer 

1994).   

 

2.7 Spectral Response of Stressed Vegetation  

 
As plants mature or are subjected to stress by disease, insect attack or water 

deficiency, the spectral characteristics of the plant leaf may change (Campbell 

1996).  Both the visible and infrared regions are generally affected concurrently 

by these changes but changes in the infrared reflectance are often more noticeable 

(Campbell 1996).   

 

The infrared reflectance is reduced as a result of a deterioration of cell walls, 

whilst visible reflection is affected by reduced chlorophyll presence in the plants 

leaves.  A reduction of chlorophyll presence in plant leaves results in less 

absorption and proportionately more reflection of the red wavelengths (CCRS 

2003), this results in plant leaves turning yellow (combination of red and green 

wavelengths) and reduces the valley in the spectral reflection curve, typically seen 

for healthy vegetation. 

 

Changes in vegetative vigour, maturity and plant stress can all be detected by 

changes in both visible and infrared reflection (Lillesand & Kiefer 1994; 
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Campbell 1996).  Infrared reflection however has greater differentiation capability 

due to the greater amount of energy reflected than the visible region. In the 

infrared range 40-50 % of incident energy is reflected, whereas in the visible 

range only 5-15 % is reflected with the majority being absorbed as part of the 

photosynthesis process (Lillesand & Kiefer 1994). 

 

The above discussion appears to provide a confident assessment for the ability to 

separate weed induced stressed plants from healthy plants spectrally.  With the 

basic findings suggesting that stressed plants will broadly have lower reflectance 

across the entire spectrum.  This is however challenged by Guyot’s research into 

the effect of leaf water content.  Guyot (1990) suggests that the leaf water content 

has a direct effect on the optical properties of leaves in the middle infrared region 

and an indirect effect on the visible and near-infrared reflectance.  Guyot (1990) 

stated, based on laboratory conditions, that a reduction of the leaf water content 

induces an increasing reflectance over the whole spectrum, and in particularly the 

middle infrared portion.  Guyot did however state that it would be necessary to 

have severe water stress to effect leaf optical properties for infield crops. 

 

Whilst Guyot’s research does not contradict the previous findings, it does cloud 

what we might expect to see from spectral response of weed induced stress 

depending on the stress type the crop is experiencing, e.g. nutrient, water or light 

stress. 
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2.8 Previous Studies using Remote Sensing for Detecting 

Weed Stress 

 
An exhaustive search into previous studies that may have used remote sensing 

techniques to detect weed-induced stress in crops has failed to unearth any such 

research.  A number of interrelated titles were searched based on plant stress 

however these either provided no further information than that discussed in 

previous sections or were unavailable.  This has led me to conclude that there is a 

dearth of research into this particular area and that research is warranted into the 

ability of remote sensing to be employed to detect weed induced stress in crops.    

 

2.9 Summary 

 
Weeds compete with crops on many levels causing a reduction of yield quality 

and quantity.  In an attempt to manage weeds within crops more efficiently than 

traditional methods, a number of techniques have been successfully applied to 

detecting and mapping the in-crop variability of weeds. 

 

Remote sensing is one such technique that has been able to be employed because 

of its ability to discriminate between different plant types based on distinctive 

spectral responses.  Research has also indicated that the spectral response for 

healthy vegetation and stressed vegetation differs allowing the possibility of 

discriminating between the two.  Research into the applicability of remote sensing 

to detecting weed induced stress in crops has either not been conducted or is 
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inaccessible at the time of this research.  This provides the incentive and 

opportunity for this project to investigate the possibility of using remote sensing 

techniques to discriminate between healthy vegetation and vegetation that has 

been stressed due to the presence of weeds based on differing spectral responses. 
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CHAPTER 3  

RESEARCH METHODS 
 
 
 
 

3.1 Introduction 

This chapter outlines the design of the research employed in this study.  The 

methodologies employed in the analysis and processes of this project are 

expanded upon.  The chapter begins with a brief introduction to the study area and 

outlines the experimental plan that this project is based on.  The data capture 

procedures are then described.  This is followed by an explanation of the pre-

processing required prior to analysis.  The methods used to analyse that data are 

then described.  The final part of this chapter presents a discussion of the accuracy 

assessment of the data used.  
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3.2 Study Area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Location of the Study Area 

 
The study area is located at 151o 46” 41’ E and 27 o 30” 51’ S, and lies 20 km 

northwest of the city of Toowoomba (Figure 3.1).  The area is part of the broad-

acre farming region of the Darling Downs, which is part of the northern grain-

growing region of Australia.  The research project focuses on area that is being 

used for a weed trial by the Queensland Department of Primary Industries and 

Fisheries (Figure 3.2). This weed trial area is referred to as “Kingsthorpe”.   

 

 

Figure 3.2 Kingsthorpe Weed Trial Site 
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The Kingsthorpe study area contained two weed trials, the first was a variety and 

density trial, and the second was a row spacing trial.  This project is concerned 

solely with the variety and density trial.   

 

The DPI&F’s objective for the variety and density trial was to determine if 

sorghum agronomy (crop density and cultivar characteristics) could be 

manipulated to improve crop competition on weeds.  The treatments in this trial 

were: 

 

 

� 6 Sorghum Cultivars  

- Pioneer 85G83 (83)  

- Pioneer 86G87  (87) 

- Pioneer Bonus MR (BO) 

- Pacific MR Buster (BU) 

- Pacific MR Goldrush (GO) 

- Pacific MR43 (43) 

 

� 3 Seeding Rates 

- 45,000 established plants/ha (45K) 

- 60,000 established plants/ha (60K) 

- 75,000 established plants/ha (75K) 

 

 

� 2 Weed Free Controls 

- Pacific MR Buster (BU) planted at 3 seeding rates 

- Pacific MR Goldrush (GO) planted at 3 seeding rates 

 

 

� 3 Replications 
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All plots were sown with 1 meter row spacing as solid plantings.  The size of each 

plot was 4 x 15 m (4 rows of 15 meters).  Japanese millet (E. crus-galli) was used 

as a model weed to mimic barnyard grass. Planting began on the 5 November 

2003 with the millet planted first, followed by sorghum.  Irrigation was applied to 

germinate the crop and ‘weeds’.  Treatments were randomised in the replications 

as can be seen in Figure 3.3. 

 

 

 
 

Figure 3.3 Sorghum Cultivar Density Trial Layout 

 

 

This project concentrated solely on Replication 1.  Within Replication 1, the plots 

containing weed free controls and the corresponding plots with weeds were 

identified as “Comparable Pairs”.  These comparable pairs were used for 

determining if a spectral distinction could be made between the health of the crop 

based on whether the crop did or did not contain weeds.    These plots contained 

the varieties Pacific MR Buster and Pacific MR Goldrush, at the three seeding 
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rates mentioned above.  These comparable pairs have been identified in Figure 

3.3 and highlighted red.  Table 3.1 lists the six comparable pairs identified, along 

with the plot identification number. 

 

Table 3.1 Comparable Pairs 
Comparable Pair 

(Variety / Sowing rate) 
Plot Without Weeds 

(Plot ID) 
Plot With Weeds 

(Plot ID) 
Buster – 45K 19 13 
Buster – 60K 20 14 
Buster – 75K 21 15 

Goldrush – 45K 22 16 
Goldrush – 60K 23 17 
Goldrush – 75K 24 18 

 

 

 

3.3 Methodology Flow Chart 

 
The data capture, post processing and analysis steps taken for this project are 

outlined in Figure 3.4.  The following sections provide a description of each step.
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Spectroradiometer  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Balloon-borne Camera System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correlation Analysis 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 

Figure 3.4 Methodology Flow Chart 
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3.4 Data Capture and Acquisition  

 
3.4.1 Introduction 

Spectral data capture took place on the 28 January 2004.  The sky was 

predominately cloud free and the conditions were regarded as good.  The crop 

growth stage at the time of acquisition was not uniform.  The most mature plants 

had reached anthesis whilst in the less mature pants the heads had only recently 

extended through the flag-leaf sheath.  

 

3.4.2 Balloon-borne Digital Images 

Low cost aerial images were acquired for the study 

area using a balloon-based digital camera system.  

The images were acquired between the hours of 

10.00 am and 11.30am.  The balloon-borne camera 

system uses two one mega-pixel cameras; this 

system can be seen in Figure 3.4.  The first camera 

captures the visible spectrum over the blue, green 

and red regions.  The second camera has an 

infrared filter placed over the lens, allowing it to 

capture the near infrared spectrum over the range 

of 700 nm to 900 nm.  The infrared wavelengths 

are collected on three bands.  These bands 

correspond to the three visible bands found in all 
Figure 3.4 Balloon-Borne 

Camera System 

(a)

(b)



Chapter 3 – Research Methods  26 

conventional photographic cameras.  This results in differing proportions of the 

infrared spectrum being collected on each band.  This is because of the different 

relative sensitivity of each band.  Figure 3.5 provides an example of the typical 

relative sensitivity of the three bands found in most conventional cameras. 

 

 

 

 

 
 
 

 

Figure 3.5 Relative Sensitivity of Photographic Camera Bands 

 
 
The camera system is suspended underneath a helium filled balloon and 

positioned over the target by the use of two fishing lines tethered to the frame of 

the camera system.  An example of the imagery taken from the balloon-borne 

camera system is presented in Figure 3.6. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.6  Balloon-Borne Imagery of the Kingsthorpe Weed Trial Site 

Near Infrared Image – Band 1, Band 2 & Band 3Colour Image, Blue, Green & Red 
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3.4.3 Spectroradiometer 

Spectroradiometer readings of the variety and density trial were taken 

immediately after the balloon-borne imagery capture.  Readings were only taken 

from Replication 1. 

 

The spectral readings were taken with a 

FieldSpec® UV/VNIR HandHeld 

Spectroradiometer (Figure 3.7).  This instrument 

captures reflected light energy over the range of 

325 – 1075 nm, in wavelength intervals of 1.6nm 

(Analytical Spectral Devices, 2002).  This data is 

automatically resampled to provide 750 bands at a 

1nm bandwidth (Analytical Spectral Devices, 

2002).  The captured range incorporates ultraviolet 

light, the visible spectrum, and the very near 

infrared portion of the electromagnetic spectrum. 

Figure 3.7 Spectroradiometer  

The foreoptic device used to collect the reflected light energy was the “Bare 

Head”.  The Bare Head has a conical view subtending an angle of 25 degrees 

(Analytical Spectral Devices, 2002).  The field of view can be determined by the 

following equation: 

Figure 3.7 Spectroradiometer 
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FOV = 2 (height × tan α) 

Where   FOV = Field of View 

  Height = mean height above the target 

   α = ½ the subtending angle of the foroptic 
 

Readings were taken approximately 50cm above the heads of the crop, therefore 

the field of view would have been approximately 22 cm. 

 

The spectrometer readings were taken at approximately 1.5 m in from the start of 

each row, this distance varied for each sampling as heads were chosen visually for 

similar maturity stages, although this was not possible on all occasions.  Every 

second row was sampled in Replication 1, providing two samples per plot.  Figure 

3.8 shows the spectrometer sampling pattern. 

 

 

 

Figure 3.8 Location of Spectrometer Sampling in Replication 1 
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3.4.4 Global Positioning System 

The position of ground control points was acquired on the 9 March 2004 using a 

Trimble GeoExporer 3.  Ground control points were acquired over both trial sites 

to allow for georeferencing of the captured images. 

 

3.5 Software and Hardware Used 

 
The System hardware and software configuration used during pre-processing and 

analysis are outlined below: 

Hardware: 

IBM ThinkPad  

  Processing 1300MHz CPU; Intel Pentium M. 

  Memory 256MB RAM. 

 

 Dell  

Processing 1.60 GHz CPU; Intel Pentium 4. 

  Memory 128MB RAM.  

 

Hewlett-Packard Pavilion 

Processing 2.66 GHz CPU; Intel Pentium 4.  

  Memory 192MB RAM 
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Software:  

ESRI – ArcGIS Version 8.3 for Windows 

ERDAS – Imagine Version 8.6 

Microsoft – Excel2000 

Analytical Spectral Devices - ViewSpec Pro 

SPSS Inc. - SPSS Student Version 12.0 for Windows 

 
 

3.6 Data Pre-processing  

 
3.6.1 GPS 

The GPS data collected was post-processed by Mr Peter Gibbings (USQ) using 

Trimble’s GPS Pathfinder Office software.  The rover file containing ground 

control points was differentially corrected with the base files from USQ’s base 

station.  The differential correction resulted in the accuracy of the ground control 

points being improved from approximatley 5.9 meters horizontally accuracy to 

0.8m to 1.0m horizontal accuracy.  Vertical accuracy was not considered.  Figure 

3.9 is a screen capture of the post processing process. 

 

The post-processed data was exported as a shape file with a UTM projection of 

WGS84.  This was later converted to Map Grid of Australia 1994  (MGA 94) 

using the Geocentric Datum of Australia 1994 (GDA 94) in ArcGIS. 
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Figure 3.9 Post Processing of Ground Control Points Collected with a 
GeoExplorer 3 GPS Unit. 

 

     

3.6.2 Spectroradiometer 

The data collected by the spectroradiometer was opened using ViewSpec Pro®, a 

proprietary software of Analytical Spectral Devices, the manufactures of the 

spectroradiometer.  ViewSpec Pro® was used to export the spectral data in ASCII 

format.   

 

This data was imported into Excel and then organised into “comparable groups”. 

The groups were created by grouping samples according to their membership to 

the comparable pairs that were identified previously.  This resulted in samples 

being grouped based on each sample being of the same cultivar and planted at the 

same density.  The only variable to change between comparable groups was the 
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presence of weeds.  Table 3.2 shows the six comparable groups that were 

assembled together for comparison.  The name of each group is taken from the 

comparable pair they belong too.  

 

Table 3.2 Spectroradiometer Comparable Groups 
Comparable Group 

(Variety / Sowing rate 
- established plants 

per hectare) 

Number of 
Samples in plots 

with weeds 

Number of 
Samples in plots 

with no weeds 

Total Number 
of samples in 

the group 

BU 45K 2 2 4 
BU 60K 2 2 4 
BU 75K 2 2 4 
GO 45K 2 2 4 
GO 60K 2 2 4 
GO 75K 2 2 4 

 

 
3.6.3 Balloon-borne Digital Images 

 

3.6.3.1 Image Registration 

The images captured by the balloon-borne digital cameras were visually inspected 

for there suitability for further analysis.  A single colour image and the 

corresponding infrared image were chosen to use for analysis.  This selection was 

based on the coverage the images provided of Replication 1 and for the vertical 

orientation of the cameras at the time of capture. 

 

The colour image was registered to the ground control points collected by GPS 

using ERDAS® Imagine 8.6.  The process involved geometrically correcting the 

image using a polynomial geometric model of order one, the resampling method 

used was nearest neighbour.  The root means squared (RMS) error for this process 
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was 5.4765 and the pixel size produced by the registration was 0.065224 meters.  

Figure 3.10 is a screen capture of this process. 

 

Registration of the images was required to allow the images to be overlayed so 

both the colour image and the infrared image corresponded exactly with one 

another.  This allows pixels to be extracted from both images from precisely the 

same position.  Additionally by registering the images to real world coordinates it 

allowed measurements to be made from the images. 

  

 

Figure 3.10 Geometric Correction of the chosen colour image 

 

The corresponding infrared image, was then registered to the geometrically 

corrected colour image, using the same process.  The RMS error for this process 
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was 0.8467 and the pixel resolution once again was 0.065224 meters.  Figure 3.11 

is a screen capture of this process.  These registered images were then subset in 

Imagine 8.6 using an area of interest so that only Replication 1 is present in the 

images. 

 

 

Figure 3.11 Geometric Correction of the selected infrared image. 

 

 
After assessing the control point error, the accuracy of the GPS ground control 

points and the pixel resolution of the georeferenced image, it was decided that the 

GPS control points had an insufficient accuracy to proceed with the use of these 

registered images.   
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An artificial plot layout was developed based on the GPS ground control points 

and the original images were registered to this grid.  The construction of this 

artificial plot layout and accuracy issues are discussed in a later section entitled 

Validation Accuracy Assessment. 

 

The registration of the colour image to the artificial plot layout achieved an RMS 

error of 1.6859 and a pixel size of 0.066749 m (Figure 3.12).  The infrared image 

was then registered to the geometrically corrected colour image.  An RMS error of 

0.3392 resulted and the pixel size was identical to the colour image (Figure 3.13).  

These registered images were then subset in Imagine 8.6 using an area of interest 

so that only Replication 1 was present in the images (Figure 3.14). 

 

 

Figure 3.12 Georeferencing of the Colour Image to the Artificial Plot Layout 
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Figure 3.13 Georeferencing of the Infrared Image to the Developed Grid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.14 Subset Images of Replication 1 
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3.6.3.2 Pixel Extraction 

Pixel extraction occurred for two purposes.  The first was to establish if the pixel 

values within the balloon-borne images could be used to discriminate between the 

health of the crop in relation to the competition of weeds.  This required a number 

of samples to be taken from within each plot that corresponded to the comparable 

pairs identified earlier.  The second purpose was so that the pixel values could be 

compared to the spectroradiometer data to determine if a correlation existed.  This 

required pixel values to be extracted from exactly the same location that the 

spectroradiometer samples were taken. 

 

To enable pixels to be extracted for the comparable pairs it was first necessary to 

identify the plots that corresponded to the comparable pairs.  This was achieved 

by using ArcGIS to create polygons around the relevant plots.  Figure 3.15 shows 

the polygons overlayed on the registered colour image. 

 

A sampling grid was then developed in ArcGIS (Figure 3.16).  This sampling grid 

was created by generating a set of lines to represent the centre of each row.  This 

was accomplished by manually identifying the first row and then offsetting this 

row consecutively at a distance of 1 meter to correspond to the planting width.  

Lines were then generated perpendicular to the row centre lines.  The initial lines 

were placed 1.5 meters from the end of each plot.  This distance approximately 

corresponded to the position that the spectroradiometer samples were taken.  The 

approximate position spectroradiometer were taken from can be seen Figure 3.16.  

Lines were then placed consecutively at 3 meters spacings between the two lines.  
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Figure 3.15 Comparable Groups for Replication 1 

 
 

 
Figure 3.16 Sampling Grid for Comparable Pairs 
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The grid resulted in 20 intersections occurring within each plot.  The intersections 

that occurred within the plots for comparable pairs were used to create areas of 

interest in Imagine 8.6.  These areas of interest were used to extract the digital 

values of pixels in the image. 

 

The grid was also used to extract pixels for the correlation analysis between the 

balloon-borne images and the spectroradiometer.  Areas of interest were created 

by using the sampling grid to approximate the position that the spectroradiometer 

measurements were taken. 

 

Areas of interest were created using 3x3 kernels.  This size was chosen to 

approximate the field of view of the spectroradiometer.  As mentioned earlier the 

sampling height of 50 cm above the crop gave the spectroradiometer a field of 

view of approximately 22 cm, this equates to a circular coverage of 380 cm2.  A 

3x3 kernel on the registered images has the square dimensions of 20 × 20cm and 

coverage of 400 cm2.   

 

As mentioned above, the identification of areas of interest was based on the 

intersections created by the sampling grid.  However creating areas of interest at 

the intersection could not be strictly adhered to.  Problems resulted from missing 

plants in rows, plants growing at angles, and rows not being planted at exactly 1 

meter spacings.  To combat this, areas of interest were chosen so that they were as 

close as practical to the intersection point but still centred on a plant.  Figure 3.17 

shows the typical placement of areas of interest for the colour image. 
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Figure 3.17 Areas of Interest Based on the Sampling Grid 

 

The areas of interest created were used to export the digital numbers for the pixels 

contained in those areas of interest.  Imagine 8.6 provides the ability to export 

digital numbers for each band of the image in an ASCII format.  This procedure 

was carried out for both the coloured image and the infrared image. 

 

The exported digital values were imported into Excel.  The median value for each 

3x3 kernel was calculated to provide a single value, which could be used for 
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statistical analysis.  The median value was chosen to remove the effect any 

outliers may have on the measure of centre. 

 

The median values for the three bands of the infrared image were added to the 

three bands of the colour image.  These median values were then arranged into 

comparable groups.  Table 3.3 provides a summary of the comparable groups 

formed and the number of samples in each group. 

 

 

Table 3.3 Balloon-borne Camera Comparable Groups 
Comparable Group 

(Variety / Sowing rate 
- established plants 

per hectare) 

Number of 
Samples in plots 

with weeds 

Number of 
Samples in plots 

with no weeds 

Total Number 
of samples in 

the group 

BU 45K 20 20 40 
BU 60K 20 20 40 
BU 75K 20 20 40 
GO 45K 20 20 40 
GO 60K 20 20 40 
GO 75K 20 20 40 

 

 

 

3.7 Initial Statistical Analysis 

 
For convenience sake, from this point forward samples taken from plots with 

weeds will be referred to as “stressed samples” and samples taken from plots with 

no weeds will be referred to as “healthy samples”. 

 
Prior to performing the discriminant function analysis an attempt was made to 

determine the spectral regions of highest separation for the two different 
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treatments (weeds vs. no weeds) as well as the direction of the separation i.e. do 

samples from plots with weeds have higher reflectance than plots with no weeds.  

The varying sample sizes for the two different sensors necessitated two different 

approaches to be taken for this analysis. 

 

As indicated in the previous section there were only a small number of 

spectroradiometer samples taken, this precluded conventional statistical analysis 

such as using boxplots to compare the distribution of grouped samples.  Instead, 

samples were analysed based on comparable groups ability to be separated 

visually and arithmetically. 

  

The balloon-borne data contained many more samples than the spectroradiometer, 

this allowed conventional statistical methods to be applied to this data.  Boxplots 

were created for each comparable group to allow a comparison to be made of the 

separability and direction of separation for the two treatments based on spectral 

responses.    

 

Consideration was given to repeating the process used to determine the spectral 

separability of the spectroradiometer data.  This would have been impractical 

because of the large number of calculations involved and the difficulty in 

interpreting the equally large number of results. 
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3.7.1 Separability of Spectroradiometer Spectral Responses 

After forming the comparable groups, each group was graphed together in 

ViewSpec Pro.  These graphs were examined visually for the degree of 

separability of the samples based on the presence or absence of weeds.  

 

Analysis was then conducted using Excel to determine the spectral regions of 

greatest separation.  This analysis was based on finding the absolute difference 

between the reflectance of each sample.  This was conducted on a comparable 

group basis and was performed for each wavelength measured.  These values were 

averaged to provide a single figure for the separation of reflectance values for 

each wavelength.  These average values were then converted to a percentage of 

the total reflectance of the band.   

 

The average values provide the ability to make comparisons between the different 

wavelengths based on the absolute separability of the two treatments for each 

spectral wavelength.  The percentage values provide the ability to make 

comparisons between the different wavelengths based on the proportion of the 

separation that occurs for each wavelength. 

 

Within each spectral region, the section of wavelengths that provided the highest 

separation was then determined.  This range was determined by locating the band 

having the single highest average separation as a percentage and then including 

other bands that had a separation within 10 percent of this band.   
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A table was constructed based on these values.  The table contains each 

comparable group, the spectral regions of the spectroradiometer, a separation rank 

based on the absolute separation, the section of highest separation for each 

spectral region and the average difference in separation as a percentage.   

 

3.7.2 Direction of Separation of Spectral Responses 

It was considered important to know the direction that the separation occurred for 

each wavelength and whether this separation was maintained for the entire 

spectral region.  This was achieved in Excel by subtracting the reflected value of 

the healthy samples from the stressed samples.  This resulted in four 

measurements, two for the comparison of the healthy samples with the first 

stressed sample, and two for the comparison of the healthy samples with the 

second stressed sample.  For this comparison the magnitude of the separation was 

not important but the direction of the separation was, i.e. positive or negative.  

The values of the subtraction were converted into either a value of 1, 0 or –1, 

where 1 represented a positive value, 0 no difference and –1 a negative value.   

 

These values were then averaged for each spectral region that the 

spectroradiometer captures.  The resulting values were than classified into the 

following classes (Table 3.4). 
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Table 3.4 Classes For Direction of Spectral Separation For Spectrometer Samples 
Value Classification Description 

1 Higher Indicates every portion of the spectral curve taken 
from the plot with weeds had a higher reflection than 
the plot without. 

0.99 – 0.01 
Partially 

Higher 

Indicates the majority of the spectral curve taken from 
the plot with weeds had a higher reflection than the 
plot without. 

0 No Difference Indicates no difference in spectral curves. 

-0.01 – -0.99 
Partially 

Lower 

Indicates the majority of the spectral curve taken from 
the plot with weeds had a lower reflection than the 
plot without. 

-1 Lower Indicates every portion of the spectral curve taken 
from the plot with weeds had a lower reflection than 
the plot without. 

 

 

3.7.3 Separability of Balloon-borne Spectral Responses 

Side-by-side boxplots provide a concise way of comparing the distribution of a 

quantitative variable for two or more groups, “weeds” or “no weeds” in this case.  

Side-by-side boxplots provide the benefit of allowing a direct comparison to be 

made on the basic shape, centre and spread of the distribution of two or more 

groups (De Veaux & Velleman 2004). 

 

Boxplots for the balloon-borne data were created in SPSS.  The six comparable 

groups were included for each of the six camera bands.  The samples for each 

comparable group were “grouped” on the basis of the presence or absence of 

weeds. 
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3.8 Discriminant Function Analysis 

 
Discriminant function analysis was the statistical tool employed to test the ability 

of the spectral response measured by both the spectrometer and balloon-borne 

images to discriminate between the crop experiencing weed-induced stress and 

healthy crop (no weeds).  Discriminant function analysis was chosen as the 

appropriate statistical procedure to use on the basis of the advice of the supervisor. 

 

Discriminant function analysis is used to model the value of a dependent 

categorical variable based on its relationship to one or more predictors (SPSS 

2003).  In this case the dependent variables are the presence or absence of weeds 

while the predictors are the spectral responses of the crop measured by either the 

spectroradiometer or the balloon-borne images.  Discriminant function analysis 

models the ability to separate groups (crop with or without weeds) based on the 

independent variables (spectral response) by finding linear combinations of those 

variables that best separate the groups of classes (SPSS 2003).  These 

combinations are called discriminant functions and have the form displayed in the 

following equation (SPSS 2003): 

 

 dik = b0k + b1k xi1 + …+ bpk xip 

 

Where dik    is the value of the kth discriminant function for the ith case 

 p      is the number of predictors 

 bjk    is the value of the jth coefficent of the kth function 

 xij     is the value of the ith case of the jth predictor 
The number of functions equals min(#groups –1, #predictors) 
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The procedure is conducted by choosing the first function that will separate the 

groups as much as possible.  The procedure then adds further functions based on 

their ability to further separate the groups as much as possible until reaching the 

maximum number of functions as determined by the number of predictors and 

categories in the dependent variable (SPSS 2003). 

 

3.8.1 Spectroradiometer 

 
The spectrometer data was the first to be analysed in SPSS using discriminant 

function analysis.  After importing the data from Excel, some minor formatting 

was required such as transposing the data and setting the dependent groups values 

to “Weeds” or “No Weeds”.  The transform function was then used to seed a 

random number that allowed the random selection of cases to be replicated in the 

analysis.  The transform function was then used to create the selection variable for 

validation.  A Bernoulli distribution was used with a probability parameter of 0.7.  

This results in the validation variable randomly taking on the value of 1, 

approximately 70% of the time , and a value of zero on all other occasions.  These 

validation values were used to define the cases that were used to create the model.  

This means that approximately 70% of cases were selected at random to be used 

to develop the discriminate function.  The remaining cases were used to validate 

the model results.   

 

SPSS provides the opportunity to select statistics and tables that can be generated 

with discriminant function analysis results.  These statistics can provide useful 
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information about the performance of the discriminant analysis.  The statistics 

selected to be included in this research were means and the Fishers function 

coefficients (Figure 3.18).  From the classification menu the summary table was 

the only option selected (Figure 3.19). 

 

 

Figure 3.18  Statistical Selection for Discriminant Function Analysis 

 

 

 

Figure 3.19 Classification Selection for Discriminant Function Analysis 
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The spectrometer data was analysed based on the following categorisation of the 

samples shown in Table 3.5.  These categories differ from the comparable pairs 

grouping discussed earlier because of the small sample size of each group.  The 

small sample size was insufficient to enable sound statistical analysis.  Thus 

comparable groups were created to provide greater sample sizes. 

 

 

Table 3.5 Spectrometer Comparable Groups used for Discriminant Function  
     Analysis  

Comparable 
Group Description No. of Samples 

All BU Samples taken from Buster plots at all planting 
rates. 12 

All GO Samples taken from Goldrush plots at all planting 
rates. 12 

All Variables Samples taken of both Buster and Goldrush plots at 
all planting rates. 24 

 

 

 

3.8.2  Balloon-Borne Data 

Upon completing the discriminant analysis of the spectrometer data, the balloon-

borne data was analysed using the same procedure.  The balloon-borne data 

analysis was based on the comparable groups formed earlier.  The categories used 

for the spectrometer data were also included to allow a cross comparison between 

the two sensors.  The groupings used for the analysis of the balloon-borne 

imagery are shown in Table 3.6.   

 



Chapter 3 – Research Methods  50 

 

Table 3.6 Categorisation of Balloon-Borne Data for Discriminant Function  

     Analysis  
Comparable 

Group Description No. of Samples 

BU 45k Samples taken from Buster plots with a planting 
rate of 45,000 plants/ha 40 

BU 60k Samples taken from Buster plots with a planting 
rate of 60,000 plants/ha 40 

BU 75k Samples taken from Buster plots with a planting 
rate of 75,000 plants/ha 40 

GO 45k Samples taken from Goldrush plots with a 
planting rate of 45,000 plants/ha 40 

GO 60k Samples taken from Goldrush plots with a 
planting rate of 60,000 plants/ha 40 

GO 75k Samples taken from Goldrush plots with a 
planting rate of 75,000 plants/ha 40 

All BU Samples taken from Buster plots at all planting 
rates 120 

All GO Samples taken from Goldrush plots at all 
planting rates 120 

All Variables Samples taken of both Buster and Goldrush 
plots at all planting rates 240 

  

 

3.9 Simple Linear Regression 

To determine if a correlation existed between the spectral responses measured by 

the spectroradiometer and the corresponding data for the balloon-borne cameras, 

scatterplots were created using SPSS.  A matrix of scatterplots was produced and 

then from this matrix individual scatterplots were identified for closer inspection.  

A regression line was then calculated for each scatterplot. 

 

The data used included all spectrometer data collected from Replication 1.  The 

matching balloon data was paired to this spectrometer data.  The matching of 

spectrometer data and the balloon data resulted in 50-paired samples being used.   
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These pairs were then analysed based on the balloon camera bands, such that the 

blue band was compared to the bands corresponding to the blue range of the 

visible spectrum for the spectrometer i.e. 446 nm to 500 nm and so on for the 

other bands.  Table 3.7 shows the range of the spectrometer bands compared to 

each band from the balloon-borne cameras.   

 

Table 3.7 Ranges of values from the spectrometer used to compare with balloon- 

     borne camera bands.  

Spectrometer Wavelength Range (nm) Balloon-borne Camera Band 
446 - 500 Blue 
500 - 578 Green 
620 - 700 Red 
700 - 900 Infrared Band 1 
700 - 900 Infrared Band 2 
700 - 900 Infrared Band 2 

 

 

 

3.10 Validation Accuracy Assessment 

 
 

3.10.1 GPS and Image Registration 

After assessing the RMS error, the accuracy of the GPS ground control points and 

the pixel size of the georeferenced image it was decided that the GPS control 

points had an insufficient accuracy to allow satisfactory registration of the images.  

The 1 meter accuracy of the GPS reflects very poorly when compared to the pixel 

resolution obtained for the images of 0.065m.  This restricts the accuracy level 

that can be obtained in the image registration to an error of no better than one 
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meter.  This represents an accuracy error of 15 times the magnitude of the pixel 

resolution.  This was deemed unacceptable. 

 

A further problem associated with the GPS ground control points was a large 

amount of wander in the direction of the inaccuracy.  The wandering is 

highlighted in Figure 3.20 by the misalignment of the points.  At the map scale in 

Figure 3.20 the points on the eastern and western boundaries should appear 

straight, this is however far from the case.  The spacings between plots vary 

dramatically also.   

 

 

Figure 3.20 Locations of Ground Control points collected by GPS. 

 

To improve the registration of the images an artificial plot layout was created in 

ArcGIS (Figure 3.21).  The artificial plot layout was based on the GPS ground 

control points and the dimensions of the plots in the experiment.  The layout was 
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developed by using a single GPS control point, the most south-eastern point to 

provide the location of the grid.  A second point, the most north-easterly point, 

was used to give the orientation.  The dimensions of the trial plots were then used 

to fill in the grid. This artificial layout overcame much of the inaccuracies 

associated with the GPS ground control points as well as providing for additional 

control points to use during the registration process.  The colour image was 

registered to the artificial plot and like the initial attempt the infrared image was 

then georeferenced to the registered colour image.  The artificial plot layout was 

able to increase the accuracy of the registration process from a control point error 

of 5.4765 to 1.69859 for the colour image and from 0.8467 to 0.3392 for the 

infrared image. 

 

 

 

Figure 3.21 Artificial plot layout created from GPS control points and the 
dimensions of the trial plots 
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3.10.2 Balloon Images 

Apart from the registration issues discussed previously, the other issues involving 

the balloon images was the angle of the cameras relative to the ground at the time 

of capture and the orientation of the cameras to the target.  Of the fifteen 

photographs taken a majority of the photos were oblique, thus ruling out the 

possibility of registration with the available software.  Of the remaining photos 

only two covered the study area and both provided only partial coverage.  

Replication 1 was the only replication to achieve full coverage for the 

density/cultivar trial.   

 

3.10.3 Spectroradiometer  

Spectrometer samples were only acquired for Replication 1 of the density/cultivar 

trial and the number of samples is small, only two per plot.  Whilst this has 

consequences for the analysis that can be conducted a further problem exists.  The 

general shape of the spectral curve below approximately 750 nm takes on the 

expected shape for vegetation, above this value however the shape of the curve 

has large spikes and is generally erratic, as can be seen in Figure 3.22.  The cause 

of this spiking or noise is unknown.  An approach has been made to Analytical 

Spectral Devices as to the likely cause of the spiking but the cause remains 

unresolved at the time of writing this report.   
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Figure 3.22 Typical Spectral Curve For The Samples Taken At Kingsthorpe 
Density/Cultivar Trial 

 
 
 

3.10.4 Positional Accuracy of Pixel Extraction 

The correlation analysis requires a spectral sample from the spectroradiometer and 

the balloon-borne camera to be acquired from the exact same location.  This has 

not been able to be achieved.  During data capture the spectroradiometer position 

relative to the end of each row varied considerably.  The aim was to sample 1.5 

meters from the end of each row.  This was not possible on all occasions largely 

because of gaps in the rows.  No record was taken of when samples varied from 

the 1.5 meter distance, making it impossible to extract pixels from the aerial 

images at the exact location the spectroradiometer sample was taken. 
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CHAPTER 4 

 
RESULTS      

 

 

 

 

4.1 Introduction 

 

This Chapter presents the results of the analysis.  The order of the presentation of 

the results follows that of the methodology.  The initial statistical results are 

provided first.  These results encompass the separability analysis of the 

spectroradiometer samples and the boxplots of the balloon-borne camera data.  

This is followed by the results of the discriminant function analysis results.  The 

spectroradiometer results are presented first and this is followed by the results of 

the balloon-borne camera system.  The final section presents the results of the 

correlation analysis. 

 

4.2 Spectroradiometer 

 
4.2.1 Graphs of Spectroradiometer Spectral Curves 

The graphed spectral curves for the spectroradiometer data are presented in 

Figures 4.1 to 4.6.  These graphs show no general trend for the reflectance of 
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samples taken from plots with weeds to have either higher or lower reflectance 

over any spectral region than those samples that were taken of plots with no 

weeds. 

 

The general pattern of all graphs is that the spectral curves have very little 

separation in the ultraviolet part of the spectrum.  The samples become mildly 

separated in the blue section of the spectrum and appear to further separate in the 

green and red portions of the spectrum.  The greatest separation occurs in the 

infrared segment of the spectral curves. 

 

The graphs of the samples taken from plots containing BU 45K, BU 75K and GO 

75K show that plots containing weeds, generally have higher reflectance in the 

near infrared region.  There appears to be no other pattern in the visible spectrum.   

 

In the graphs of the other plots (BU 60K, GO 45K and GO 60K) the reverse 

situation occurs.  In these graphs, plots containing no weeds generally have higher 

reflectance in the near infrared region.  Again in the visible part of the spectrum 

no pattern is apparent. 
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Figure 4.1 Spectral Curves Of Comparable Group BU 45K 

 

 

Figure 4.2 Spectral Curves Of Comparable Group BU 60K 
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Figure 4.3 Spectral Curves Of Comparable Group BU 75K 

 

 

Figure 4.4 Spectral Curves Of Comparable Group GO 45K 
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Figure 4.5 Spectral Curves Of Comparable Group GO 60K 

 

 

 

Figure 4.6 Spectral Curves Of Comparable Group GO 75K 
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4.2.2 Separability of Spectral Curves 

4.2.2.1 Absolute Difference of Spectral Responses 

The degrees to which the spectroradiometer samples can be separated based on 

the absolute difference in the value of wavelengths are presented in Table 4.1.  

The results in this table show that the highest degree of absolute separation occurs 

in infrared wavelengths.  The separation is classified as either high or medium-

high for these wavelengths for all six comparable groups.  The highest separation 

for the near infrared portion of the spectrum commonly fell at the extreme range 

of its spectrum at 690 to 700nm.  Only one of the comparable groups, GO 45K, 

did not coincide with this region.  The highest range for GO 45K was 726 to 

817nm, for the other comparable groups this area was commonly the area of the 

second highest separation. 

 

The spectral regions green, yellow, orange and red provided medium to medium-

low absolute separation.  For the green section of the spectrum, the region of 560 

to 578nm generally provided the highest separation.  For yellow, virtually its 

entire range (578 to 592nm) provided uniform separation.  A similar pattern 

occurred for the orange portion of the spectrum, but the range 610nm to 620nm, 

provided the greatest separation.  The red component of the spectrum had its 

highest separation at the range from 660 to 690nm on five out of six occasions.   
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Table 4.1 Separability of Spectroradiometer Samples for the Ultraviolet, Colour  

    and Infrared Spectral Regions 
 

 
 
* The spectral region used for each colour is Ultraviolet (325 - 400nm), Violet (400-446nm), Blue 
(446 - 500nm), Green (500 - 578 nm), Yellow (578 - 592nm), Orange (592 - 620nm), Red (620 - 
700 nm), and Near Infrared (690 - 1075nm) (CCRS, 2004). 
 
† Separation was ranked according to the following: Low (0 – 0.009), Low-Medium (0.01 – 
0.029), Medium (0.03 – 0.049), Medium-High (0.05 – 0.069) and High (0.07 and above) 
 (units: absolute reflectance) 
 
 

Comparable 
Group 

Spectral 
Region * 

Separation 
Rank† 

Section of 
Highest 

Separation 
(nm) 

Proportion 
of 

Separation 
(%) 

Comparable 
Group 

Spectral 
Region 

Separation 
Rank 

Region of 
Highest 

Separation 
(nm) 

Proportion 
of 

Separation 
(%) 

Ultra Violet Low 387-399 23.7 Ultra Violet Low 361-394 24.6 

Violet Low 400-425 23.6 Violet Low 400-406 20.4 

Blue Low-Medium 460-500 23.0 Blue Low 446-448 15.8 

Green Medium 567-578 25.9 Green Low-Medium 501-558 13.4 

Yellow Medium 579-592 27.9 Yellow Low-Medium 579-587 8.4 

Orange Low-Medium 608-619 32.3 Orange Low 593-606 7.3 

Red Low-Medium 647-690 35.5 Red Low 637-641 8.7 

BU 45K 

Near Infrared Medium-High 691-699 37.7 

GO 45K 

Near Infrared Medium-High 726-817 11.4 

Ultra Violet Low 333-334 21.2 Ultra Violet Low 326-327 19.2 

Violet Low 400-445 20.4 Violet Low 421-445 15.8 

Blue Low-Medium 487-500 24.7 Blue Low 446-500 16.7 

Green Medium 570-578 31.4 Green Low-Medium 501-574 16.7 

Yellow Medium 579-592 34.6 Yellow Low-Medium 574-592 15.6 

Orange Medium 613-619 41.1 Orange Low-Medium 613-619 19.2 

Red Medium 620-632 44.8 Red Low-Medium 649-690 21.5 

BU 60K 

Near Infrared Medium-High 691-700 42.7 

GO 60K 

Near Infrared High 691-696 20.4 

Ultra Violet Low 327-328 20.2 Ultra Violet Low 327-328 28.6 

Violet Low 421-430 7.2 Violet Low 400-405 25.2 

Blue Low 446-461 6.1 Blue Low 446-500 17.7 

Green Low-Medium 570-578 12.2 Green Low-Medium 571-580 20.2 

Yellow Low-Medium 582-592 14.2 Yellow Low-Medium 579-592 23.1 

Orange Low-Medium 614-619 19.6 Orange Low-Medium 617-619 29.9 

Red Low-Medium 662-690 30.4 Red Low-Medium 650-690 32.8 

BU 75K 

Near Infrared High 691-696 27.1 

GO 75K 

Near Infrare High 691-699 32.3 
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The blue portion of the spectrum had low to medium-low separation.  On all 

occasions, the highest separation consistently occurred over the range of  460 to 

500nm.  

 

For violet and ultraviolet light the separation was low on all occasions.  The range 

of the highest separation for the ultraviolet commonly occurs over the range of 

327 to 330nm.  Twice this area did not correspond to the highest region of 

separation, on those occasions the range was from 380 to 399nm.  The violet 

section of the spectrum had a common range within the range of 400 to 425nm for 

almost all comparable groups. 

 

These results have been summarised into Table 4.3, which can be found below.  

The table has been constructed by summarising the separation rank and the 

common region of the highest spectral separation for the ultraviolet, colour, and 

infrared spectral regions that the spectroradiometer captures. 

 

Table 4.2 Summary Of The Spectral Separability Of Spectrometer Samples 

Spectral Region Separation Rank Common Region of Highest 
Separation (nm) 

Ultra Violet Low 327-330 
Violet Low 400-425 
Blue Low 460-500 

Green Low-Medium 560-578 
Yellow Low-Medium 578-592 
Orange Low-Medium 610-620 

Red Low-Medium 660-690 
Near Infrared  High/Medium-High 690-700 
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If a comparison is made of the size of the highest separation that occurred 

between the stressed and healthy samples as a proportion of the total reflectance 

of the band, a different result is found then the rank given in the separation rank. 

Infrared maintains the highest separation with a range of values from 11 to 40 

percent, with the separation on average in the 30 percent range.  Red typically has 

the next highest proportional separation, with a fluctuating range from 9 to 45 

percent.  The remaining spectral regions have similar proportional separations, 

which are approximately in the 20 percent  range.  These values fluctuate for all 

but the ultraviolet region, which consistently has a proportional separation of just 

above 20 percent.   

 

4.2.2.2 Direction of Spectral Response Separations 

The table created for the direction of separation is provided below (Table 4.3).  

The near infrared range has been divided into two sections because of its size in 

comparison to the other spectral regions.  This table shows in the ultraviolet, near 

infrared 900-1075nm and near infrared 690-900 regions the spectral curves 

consistently separate in one direction.  For ultraviolet, eighteen of the twenty-four 

comparisons resulted with samples from plots with weeds having lower 

reflectance than the samples taken from plots without weeds.  For near infrared 

900-1075nm and near infrared 690-900 regions of the spectrum, 17 and 18 of the 

comparisons respectively resulted in samples from plots with weeds having a 

higher reflectance than the samples taken from plots without weeds.   
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Table 4.3 Direction of Separation of Spectral Responses 

 

 
 
 
 
 
 
 
 
 
 

Comparabl
e Group 

(Weeds 
Sample # 

- No 
Weeds 

Sample #) 

Ultra Violet 
325-400nm 

Violet     
400-446nm

Blue      
446-500nm

Green     
500-578nm

Yellow    
578-592 

mn 
Orange    

592-600nm 
Red       

620-690nm 
Near 

Infrared  
690-900nm

Near 
Infrared 

900-
1075nm 

BU 45K 1 vs 1 Higher Higher Higher Higher Higher Higher Higher Higher Higher 

 1 vs 2 Higher Higher Higher Higher Higher Higher Higher Higher Higher 

 2 vs 1 P/Higher Higher Higher Higher Higher Higher Higher P/Lower Higher 

 2 vs 2 P/Lower Lower Lower Lower Lower Lower Lower P/Lower P/Higher 

BU 60K 1 vs 1 P/Higher Higher Higher Higher Higher Higher Higher P/Lower Higher 

 1 vs 2 P/Lower Higher Higher Higher Higher Higher Higher P/Lower Lower 

 2 vs 1 Lower Lower Lower Lower Lower Lower P/Lower Lower Lower 

 2 vs 2 Lower Lower P/Lower Higher Higher Higher Higher P/Lower Lower 

BU 75K 1 vs 1 Lower P/Higher Higher P/Higher Lower Lower Lower P/Higher P/Higher 

 1 vs 2 Higher Higher Higher Higher Higher Higher P/Higher Higher Higher 

 2 vs 1 Lower Lower Lower Lower Lower Lower Lower P/Lower Higher 

 2 vs 2 P/Higher P/Higher P/Lower Lower P/Lower Higher Higher Higher Higher 

GO 45K 1 vs 1 Lower Lower Lower P/Lower Higher P/Higher P/Higher P/Lower P/Higher 

 1 vs 2 Lower Lower Lower Lower Lower Lower P/Lower Lower Lower 

 2 vs 1 P/Lower P/Higher Higher Higher Higher Higher Higher Higher Higher 

 2 vs 2 Lower Lower Lower Lower Lower Lower P/Lower Lower Lower 

GO 60K 1 vs 1 Lower Lower Lower Lower P/Higher Higher Higher P/Lower Lower 

 1 vs 2 Lower Lower Lower Lower Lower Lower Lower Lower Lower 

 2 vs 1 P/Lower Higher Higher Higher Higher Higher Higher P/Lower Lower 

 2 vs 2 Lower P/Higher Higher Higher Higher Higher Higher Higher P/Higher 

GO 75K 1 vs 1 Lower Lower Lower Lower Lower Lower Lower P/Higher Higher 

 1 vs 2 Lower Lower Lower Lower Lower Lower Lower P/Higher Higher 

 2 vs 1 Lower Lower Lower P/Higher Higher Higher Higher Higher Higher 

 2 vs 2 P/Lower Lower Lower P/Higher Higher Higher Higher Higher Higher 

 Total* 6 of 24 11 of 24 10 of 24 13 of 24 14 of 24 15 of 24 16 of 24 17 of 24 18 of 24 

The following classes are used for the classification of the direction of separation: 
Higher  - Indicates every portion of the spectral curve taken from the plot with weeds had a higher reflection than the plot  

without. 

P/Higher  - (Partially Higher) Indicates the majority of the spectral curve taken from the plot with weeds had a higher  

reflection than the plot without. 

No Difference  - Indicates any difference in spectral curves. 

P/ Lower  - (Partially Lower)Indicates the majority of the spectral curve taken from the plot with weeds had a lower  

reflection than the plot without. 

Lower  - Indicates every portion of the spectral curve taken from the plot with weeds had a lower reflection than the plot  

without. 

* Total- refers to the number of times samples taken from plots with weeds have a higher reflectance than samples taken from plots with no 

weeds. 
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The only other significant result occurred for the red part of the spectrum. Sixteen 

of the comparisons resulted in the samples from the plots with weeds having a 

higher reflectance than the samples taken from the plots without weeds.  The other 

results provide almost equal chance of the reflectance being higher or lower. 

 

 

4.3 Balloon-borne Data 

 
4.3.1  Boxplots  

The boxplots for the visible bands (Figure 4.7 to 4.12) show very similar 

characteristics.  The median for the plots with weeds is usually higher than the 

medians of plots without weeds for all six comparable groups.  Only BU 75K and 

GO 75K consistently have lower median values and the degree, to which the 

median values of these two comparable groups differ, is very small.  Whereas for 

the other four comparable groups the median values differ noticeably.   

 

The Interquartile Ranges (IQR) of the two groups (weeds and no weeds) follows a 

similar pattern and the IQRs generally have similar spreads and often overlap.  

The distribution of the digital numbers for a number of the comparable groups is 

skewed either to the right or left.  The distribution of GO 60K with weeds tends to 

be skewed to the left and the distribution of GO 75K with weeds is skewed to the 

right.  No other pattern for skewness repeats for the other comparable groups.  

High outliers are indicated in all three boxplots for the visible bands. 
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The pattern for the three boxplots of the near infrared bands is reversed to the 

pattern for the boxplots of the visible bands.  The median of the digital numbers 

for the plots with weeds is almost always lower.  Again BU 75K goes against this 

trend but the median values are very similar.  For the remainder of the comparable 

groups there is an obvious difference between median values for the plots with 

weeds and plots without.  Generally low outliers are present in these boxplots.   

 

 

 
Figure 4.7 Boxplots of Balloon-Borne Data – Blue Band 
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Figure 4.8 Boxplots of Balloon-Borne Data – Green Band 

 

 
 

Figure 4.9 Boxplots of Balloon-Borne Data – Red Band 
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Figure 4.10 Boxplots of Balloon-Borne Data – Infrared Band 1 

 

 
Figure 4.11 Boxplots of Balloon-Borne Data – Infrared Band 2 
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Figure 4.12 Boxplots of Balloon-Borne Data – Infrared Band 3 

 
 
 

4.4 Results of Discriminant Function Analysis 

The following sub-paragraphs detail the statistical results for the discriminant 

function analysis performed for both sensors.  Not all statistics relevant to 

discriminant function analysis were interpreted in this study.  A selection of the 

most useful is presented below.  The entire output of the relevant discriminant 

function analysis statistics and tables for the spectroradiometer and balloon-borne 

images are included in Appendix B and C respectively. 
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4.4.1 Spectroradiometer  

 

4.4.1.1 Canonical Correlation 

The canonical correlation is the most useful measure of the tables when there are 

two groups (SPSS 2003).  The canonical correlation is equivalent to Pearson’s 

correlation between the discriminant scores and the groups.  Pearson’s correlation 

measures the degree to which the relationship between two variables can be 

described by a straight line (SPSS 2003).  A value of 1 indicates a strong linear 

association and a value of 0 indicates no relationship (De Veaux & Velleman 

2004).   

 

The canonical correlations for the spectrometer samples can be seen in the 

summarised table below (Table 4.4).  This table show the canonical correlation is 

above 95% in all cases.   

 

Table 4.4 Spectrometer Samples Canonical Correlations   

 
Comparable Group Canonical 

Correlation 
BU All .957 
GO All .994 

All Variables .992 
 
 
 

4.4.1.2 Wilks’ Lambda  

Wilks' lambda is a measure of how well each function separates cases into groups.  

It is equal to the proportion of the total variance in the discriminant scores not 

explained by differences among the groups.  The value of Wilks’ lambda ranges 
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between 0 and 1, smaller values of Wilks' lambda indicate greater discriminatory 

ability of the function.    

 

Table 4.5 contains the Wilks’ lambda values for the spectroradiometer samples.  

The values for Wilks’ lambda vary a little but they indicate that the functions have 

a high discriminating ability.   

 

Table 4.5  Spectroradiometer Wilks’ Lambda Values 

Comparable Group Wilks’ Lambda 
BU All .129 
GO All .017 

All Variables .084 
 
 
 
 

4.4.1.3 Standardized Canonical Discriminant Function 

Coefficients 

The standardized coefficients allow you to compare variables measured on 

different scales. Coefficients with large absolute values correspond to variables 

with greater discriminating ability (SPSS 2004).  The standardized canonical 

discriminant function coefficients results for the spectroradiometer are 

summarised in Table 4.7 below.  These coefficients indicate the discriminant 

model relies heavily on ultraviolet wavelengths to classify the cases.  The model 

created to classify All Variables required many more wavelengths to be able to 

classify the data. 
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Table 4.6 Spectrometer Standardized Canonical Discriminant Function  

     Coefficients 

BU All GO All All Variable 

K_325 .178 K_325 -1.340 K_325 17.991 
K_326 6.345 K_326 5.724 K_326 -5.539 
K_327 .039 K_327 9.084 K_327 9.533 
K_328 5.715 K_328 -30.506 K_328 -13.077 
K_330 -8.821 K_330 13.790 K_330 -8.515 
K_331 10.584 K_334 .382 K_331 .758 
K_340 -13.891 K_346 3.852 K_333 -7.835 

    K_335 -4.347 
    K_336 .114 
    K_338 -3.407 
    K_342 8.616 
    K_351 17.288 
    K_363 -13.942 
    K_729 3.463 

* K refers to the wavelength 
   
 
 
 

4.4.1.4Classification Function Coefficients 

The classification functions are used to assign cases to groups.  A separate 

function is produced for each group.  This function is then used to calculate a 

classification score for each case.  The discriminant model then assigns the case to 

the group whose classification function obtained the highest score. 

 

The classification function coefficients are included below in Tables 4.8 to 4.10.  

The results of these tables are very similar to standardized canonical discriminant 

function coefficients results. 
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Table 4.7 Spectrometer Classification Function Coefficients for BU All 

Group 
  Weeds No Weeds 
K_325 -6676.108 -6777.836
K_326 66617.769 62868.117
K_327 66936.758 66908.510
K_328 48638.618 44867.157
K_330 146197.60 151059.560
K_331 -149833.2 -155747.11
K_340 -151210.0 -142896.99
(Constant) -253.919 -241.526

   Fisher's linear discriminant functions 
 
 
 
 
 
 
 
 

Table 4.8 Spectrometer Classification Function Coefficients for GO All  
 

Group 
  Weeds No Weeds 
K_325 259664.47

8 267283.638

K_326 -
86989.471

-
114730.507

K_327 -
169857.30

0

-
211986.876

K_328 25995.646 189942.717
K_330 34127.862 -34436.475
K_334 45656.165 43702.440
K_346 -

64238.675 -84647.286

(Constant) -459.517 -603.115
   Fisher's linear discriminant functions 
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Table 4.9 Spectrometer Classification Function Coefficients for All  

       Variables 

  Group 
  Weeds No Weeds 
K_325 174020.004 137337.147
K_326 -67974.711 -56800.355
K_327 102996.185 85563.291
K_328 -141374.166 -117174.213
K_330 -16950.960 -1799.726
K_331 -50672.178 -52084.917
K_333 -41157.115 -24770.404
K_335 -5323.765 3212.497
K_336 -81177.945 -81402.527
K_338 3578.116 10957.084
K_342 99059.611 81972.905
K_351 177862.259 142577.425
K_363 -164419.977 -135905.183
K_729 3854.231 3079.051
(Constant) -420.762 -285.789

            Fisher's linear discriminant functions 
 

 

4.4.1.5 Classification Results 

The classification table shows the practical results of the discriminant model 

(SPSS 2003).  The a value at the bottom of the table provides the proportion of 

cases correctly classified that were used to create the model. These classification 

results generally provide overly optimistic assessments of how well the model 

performed.  A better measure of the models performance is the b result of the 

classification (SPSS 2004).  The b value gives the percentage of cases correctly 

classified that were not used in the modeling process and provides a realistic 

measure of the overall success of the model.  The classification results for the 

spectrometer samples are listed in the following tables (Tables 4.11 to 4.13).      
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Table 4.10 Spectroradiometer Classification Results for All BU 

 
 

 

 

Table 4.11 Spectroradiometer Classification Results for All GO 
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Table 4.12 Spectroradiometer Classification Results for All Variables 

 
 

The a values in the above tables indicate that the models were able to correctly 

classify those cases used to create the model at a success rate of 100% on each 

occasion.  They also show that the b value for each table is much lower with only 

two thirds of cases not used in the model correctly classified.  

 
 
 
 

4.4.2 Balloon-borne Camera 

4.4.2.1 Canonical Correlation Balloon-borne Images 

The canonical correlations for the balloon-borne imagery can be seen in the 

following compilation of Eigenvalues (Table 4.13).  For the comparable groups 

with only one variable changing, i.e. Buster 45K, Buster 60K, etc, the canonical 

correlation ranges from 0.704 to 0.947 with an average value of approximately 

0.90.  For the grouping where the second variable, planting density, is introduced 

(i.e. Buster All and Goldrush All) the canonical correlation is reduced to 0.747 
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and 0.530 respectively.  The canonical correlation further falls to 0.557 when all 

variables are measured together, i.e. All Variables. 

 
 

Table 4.13 Eigenvalues for Balloon-borne Images 
Comparable 

Group 
Function Eigenvalue % of 

Variance 
Culmative % Canonical 

Correlation 
Buster 45K 1 4.175a 100.0 100.0 .898 
Buster 60K 1 11.700a 100.0 100.0 .960 
Buster 75K 1 .985a 100.0 100.0 .704 
Goldrush 45K 1 8.769 100.0 100.0 .947 
Goldrush 60K 1 4.169a 100.0 100.0 .898 
Goldrush 75k 1 2.096a 100.0 100.0 .823 
Buster All 1 1.262a 100.0 100.0 .747 
Goldrush All 1 .390a 100.0 100.0 .530 
All Variables 1 .451a 100.0 100.0 .557 
a. First 1 canonical discriminant functions were used in the analysis. 

4.4.2.2 Wilks Lambda  

The Wilks’ lambda values have been summarised in Table 4.15.  These values 

vary and range from .079 to .719, this indicates that the functions developed from 

the ballon-borne data have moderate to low discriminating ability. 

 

Table 4.14 Balloon-borne Cameras Wilks' Lambda  

 
Comparable Group Wilks’ Lambda 

BU 45K .193 
BU 60K .079 
BU75K .504 
GO 45K .102 
GO 60K .193 
GO 75k .323 
BU All .442 
GO All .719 

All Variables .689 
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4.4.2.3 Standardized Canonical Discriminant Function  

Coefficients   
 
Table 4.16 below has been created to summarise the results for standardized 

canonical discriminant function coefficients for each comparable group.  The 

absolute value has been replaced with the variables rank, so as to improve and aid 

the comprehension of the table. 

 

Table 4.16 shows that the red band has the highest discriminating ability followed 

by the green band.  The results of the remaining bands are rather inconsistent.  

However, from the remaining bands blue and infrared band 1 provide the next 

level of discrimination, followed by infrared bands 2 and 3 with the least 

discriminating ability.  

 
 

Table 4.15 Balloon-Borne Data – Ranked Standardized Canonical Discriminant      

                   Function Coefficients   

Comparable Group Red Green Blue Infrared 
Band 1 

Infrared 
Band 2 

Infrared 
Band 3 

BU 45K 1st 5th 2nd 3rd 6th 4th 

BU 60K 2nd 3rd 1st 4th 5th 6th 

BU75K 1st 2nd 5th 6th 3rd 4th 

GO 45K 1st 3rd 5th 2nd 6th 4th 

GO 60K 1st 4th 6th 5th 3rd 2nd 

GO 75k 2nd 1st 5th 3rd 4th 6th 

BU All 1st 2nd 4th 6th 3rd 5th 

GO All 5th 1st 4th 2nd 6th 3rd 

All Variables 1st 5th 2nd 3rd 4th 6th 

4.4.2.4 Classification Function Coefficients 

The classification functions scores are summarised below in Table 4.16.  The 

results indicate that the classification score for the red band on seven of nine 



Chapter 4 - Results  81 

occasions was higher for the weeds group.  The classification score for the green 

band favoured the no weeds group six out of nine times and the blue band 

favoured the no weeds group eight out of nine times.  The infrared classification 

scores only slightly favoured the no weeds group. 

 
Table 4.16 Classification Function Coefficients 

Comparable 
Group Group Red Green Blue Infrared - 

Red 
Infrared - 

Green 
Infrared - 

Blue (Constant)

Weeds -1.23 0.668 2.443 6.676 -9.158 1.195 -516.217 
BU 45K No 

Weeds -2.021 0.874 3.219 7.071 -9.271 0.581 -520.152 

Weeds -2.277 3.183 1.331 8.922 -8.308 -0.297 -808.962 
BU 60K No 

Weeds -3.419 2.944 2.633 9.101 -8.235 -0.274 -775.835 

Weeds -0.275 -0.801 2.321 4.282 -4.998 -0.201 -306.778 
BU 75K No 

Weeds -0.857 -0.22 2.413 4.247 -4.586 -0.566 -304.054 

Weeds 3.474 -1.88 2.196 11.026 -7.178 -5.007 -978.802   
GO 45K No 

Weeds 2.098 -0.621 2.107 9.755 -7.216 -3.417 -808.303 

Weeds -3.611 4.386 -0.646 8.07 -6.187 -3.416 -550.418   
GO 60K No 

Weeds -4.211 4.702 -0.442 8.487 -5.497 -4.424 -578.581 

Weeds -6.943 1.741 12.763 17.947 -12.45 -11.921 -1142.45   
GO 75K No 

Weeds -6.114 0.652 12.894 18.091 -12.62 -11.809 -1152.42 

Weeds -0.973 0.599 1.021 3.906 -6.249 1.386 -287.193 
BU ALL No 

Weeds -1.303 0.789 1.212 3.885 -6.019 1.182 -277.113 

Weeds  -3.031  3.197  1.842 5.881  -6.509  -0.709  -465.288
GO ALL No 

Weeds -2.986 3.011  1.951 5.789 -6.447 -0.579  -450.696 

Weeds -1.679 1.487 1.581 4.552 -5.96 0.469 -358.97 
All Variables No 

Weeds -1.794 1.523 1.67 4.508 -5.899 0.489 -351.344 

Fisher's linear discriminant functions 

 

 

4.4.2.5 Classification Results 

The results of the discriminate models classification of cases has been summarised 

into a single table below (Table 4.17) This is followed by the individual tables for 
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each comparable group (Table 4.19 to 4.27).  The results indicate that the 

discriminate analysis performed better for the comparable groups that contained 

only a single variable that changed.  As more variables were introduced the 

number of successful classifications reduced.  Overall the models performed well 

with a high proportion of unselected cases successfully classified. 

 

 

Table 4.17 Summary of Classification Results of Balloon-Borne Imagery 

Comparable Group 
Percentage of selected 
original grouped cases 

correctly classified. 

Percentage of unselected 
original grouped cases 

correctly classified. 
Buster 45K 100.0 93.3 
Buster 60K 100.0 100.0 
Buster 75K 85.2 76.9 

Goldrush 45K 100.0 100.0 
Goldrush 60K 96.3 76.9 
Goldrush 75k 96.33 92.3 

Buster All 86.4 89.7 
Goldrush All 70.4 59.0 
All Variables 72.5 70.0 
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Table 4.18 Spectroradiometer Classification Results for BU 45K 

Predicted Group 
Membership 

     Group Weeds No Weeds Total 
Weeds 13 0 13Count 
No Weeds 0 12 12
Weeds 100.0 .0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 6 1 7Count 
No Weeds 0 8 8
Weeds 85.7 14.3 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  93.3% of unselected original grouped cases correctly classified. 
 

 

 

 

Table 4.19 Spectroradiometer Classification Results for BU 60K 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 13 0 13Count 
No Weeds 0 14 14
Weeds 100.0 .0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 7 0 7Count 
No Weeds 0 6 6
Weeds 100.0 .0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  100.0% of unselected original grouped cases correctly classified. 
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Table 4.20 Spectroradiometer Classification Results for BU 75K 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 12 1 13Count 
No Weeds 3 11 14
Weeds 92.3 7.7 100.0

Cases 
Selected 

Original 

% 
No Weeds 21.4 78.6 100.0
Weeds 5 2 7Count 
No Weeds 1 5 6
Weeds 71.4 28.6 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 16.7 83.3 100.0

a  85.2% of selected original grouped cases correctly classified. 
b  76.9% of unselected original grouped cases correctly classified. 
 
 

 

 

 

 

Table 4.21 Spectroradiometer Classification Results for GO 45K 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 13 0 13Count 
No Weeds 0 14 14
Weeds 100.0 .0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 7 0 7Count 
No Weeds 0 6 6
Weeds 100.0 .0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  100.0% of unselected original grouped cases correctly classified. 
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Table 4.22 Spectroradiometer Classification Results for GO 60K 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 12 1 13Count 
No Weeds 0 14 14
Weeds 92.3 7.7 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 5 2 7Count 
No Weeds 1 5 6
Weeds 71.4 28.6 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 16.7 83.3 100.0

a  96.3% of selected original grouped cases correctly classified. 
b  76.9% of unselected original grouped cases correctly classified. 
 

 

 

 

Table 4.23 Spectroradiometer Classification Results for GO 75K 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 12 1 13Count 
No Weeds 3 11 14
Weeds 92.3 7.7 100.0

Cases 
Selected 

Original 

% 
No Weeds 21.4 78.6 100.0
Weeds 5 2 7Count 
No Weeds 1 5 6
Weeds 71.4 28.6 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 16.7 83.3 100.0

a  85.2% of selected original grouped cases correctly classified. 
b  76.9% of unselected original grouped cases correctly classified. 
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Table 4.24 Spectroradiometer Classification Results for BU All 
Predicted Group 

Membership 

      Group Weeds No Weeds Total 
Weeds 31 8 39Count 
No Weeds 3 39 42
Weeds 79.5 20.5 100.0

Cases 
Selected 

Original 

% 
No Weeds 7.1 92.9 100.0
Weeds 17 4 21Count 
No Weeds 0 18 18
Weeds 81.0 19.0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  86.4% of selected original grouped cases correctly classified. 
b  89.7% of unselected original grouped cases correctly classified. 
 
 

 

 

 

Table 4.25 Spectroradiometer Classification Results for GO All 
Predicted Group 

Membership 

      Group Weeds No Weeds Total 
Weeds 27 12 39Count 
No Weeds 12 30 42
Weeds 69.2 30.8 100.0

Cases 
Selected 

Original 

% 
No Weeds 28.6 71.4 100.0
Weeds 13 8 21Count 
No Weeds 8 10 18
Weeds 61.9 38.1 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 44.4 55.6 100.0

a  70.4% of selected original grouped cases correctly classified. 
b  59.0% of unselected original grouped cases correctly classified. 
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Table 4.26 Spectroradiometer Classification Results for All Variables 

Predicted Group 
Membership 

      Group weeds No Weeds Total 
weeds 58 23 81Count 
No Weeds 21 58 79
weeds 71.6 28.4 100.0

Cases 
Selected 

Original 

% 
No Weeds 26.6 73.4 100.0
weeds 27 12 39Count 
No Weeds 12 29 41
weeds 69.2 30.8 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 29.3 70.7 100.0

a  72.5% of selected original grouped cases correctly classified. 
b  70.0% of unselected original grouped cases correctly classified. 
 
 

  

4.5 Results of Regression  

The matrices created for the four bandwidths of the balloon-borne cameras and 

the associated bandwidths for the spectrometer, yielded a very large table that is 

difficult to interpret and will not be displayed.  The scatter plots and regression 

lines are presented below for the spectrometer camera bands that yielded the 

highest correlation (Figure 4.13 to 4.18).  The scatter plots on all occasions 

exhibited no correlation between the spectroradiometer data and the balloon-borne 

camera data.   
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Figure 4.13 Scatterplot And Regression Line For Blue Correlation 

 
 

 
Figure 4.14 Scatterplot And Regression Line For Green Correlation 
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Figure 4.15 Scatterplot And Regression Line For Red Correlation 

 
 
 

 
Figure 4.16 Scatterplot And Regression Line For Infrared Band 1 Correlation 
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Figure 4.17 Scatterplot And Regression Line For Infrared Band 2 Correlation 

 

 

 
Figure 4.18 Scatterplot And Regression Line For Infrared Band 3 Correlation 
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4.6 Summary  

 
The results of the discriminate function analysis for the balloon-borne camera and 

the spectroradiometer have revealed that the spectral data collected by these 

instruments is able to successfully discriminate between healthy and stressed crop.  

The initial analysis has provided some clues as to why certain spectral regions 

provide a greater opportunity to discriminate between the two crop types.  This 

will be further explored in the following section. 

 

The regression analysis failed to provide any evidence of a correlation between 

the data collected by the two sensors.  This will also be discussed in the following 

section. 



Chapter 5 - Discussion  92 

CHAPTER 5 

DISCUSSION 
 

  

5.1 Introduction 

 
This chapter presents the discussions raised as a result of this project.  A 

discussion of the discriminant function analysis results is presented first.  The 

discussion commences by analysing the results of the spectroradiometer data, this 

is then followed by an in-depth discussion of the discriminant analysis results of 

balloon-borne camera system.  The results of the classification results are 

discussed first, this is then followed by a discussion of the most relevant other 

statistics included in SPSSs discriminant function analysis output.  The initial 

statistical analysis performed on the two data sets is also included in this 

discussion.  The following section compares the results of the discriminant 

function analysis for the two sensors.  This discussion will solely focus on a 

comparison of the comparable groups that allow direct comparison.  Finally the 

correlation analysis will be discussed. 
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5.2 Discriminant Function Analysis 

 
 

5.2.1 Spectroradiometer 

It must be stated at the outset of this discussion of the results for the 

spectroradiometer, that the sample size is to small to draw conclusions with any 

conviction.  Only having two samples per plot and 24 samples in total, limits the 

statistical analysis that can be performed.  The statistical analysis that has been 

performed cannot be used to draw inferences about the wider population or be 

taken to be a true representation of the situation at the Kingsthorpe trial.   For this 

reason the analysis will only be brief.  Having said this the statistical analysis of 

the data can be used to directly compare the data for the samples taken.  For that 

reason alone, the following discussion is presented. 

 

5.2.1.1 Classification results  

The classification results indicate that the model performs well when classifying 

the cases used to create the model.  This is to be expected, as these cases were 

used to develop the model and therefore the model is based on the properties of 

these cases.  Because of this these classification results are often over optimistic.  

A better measure of the models performance is the results of the classification of 

the cases not used in the model.   

 

The results show that for the three comparable groups a success rate of 

approximately 66% was achieved when the model was applied to those cases not 
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used to create the model.  This suggests that overall the model is correct two out 

of three times.  This represents a satisfactory result, as the model was required to 

deal with a number of variables, these were planting density and plant variety.   

 

The canonical correlation confirms the strength of the models.  The canonical 

correlation for all three comparable groups was greater than 90% indicating a 

strong correlation between the discriminant scores and the groups.   

 

5.2.1.2 Other Statistics 

The standardised canonical discriminant function coefficients used to create the 

model are almost exclusively for the ultraviolet range.  To understand why 

ultraviolet wavelengths plays such a significant role in the model we can look at 

the initial statistical analysis conducted on this data.  Table 4.1 in Chapter 4 

indicates that the ultraviolet had the lowest separation based on the absolute 

difference between spectral curves of different groups.  The column containing 

the difference in separation as a percentage indicates that the ultraviolet portion of 

the spectrum does in fact exhibit a large separation when considered as a 

proportion of the measured spectral values.  The region of highest separation also 

corresponds approximately to those bands used in the discriminant model.  

 

Another factor that may influence the ability of the ultraviolet wavelengths to be 

able to discriminate between weeds and no weeds is that the proportion of the 

separation remains relatively constant at approximately twenty percent for all 
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comparable groups.  This is in contrast with the other wavelengths whose 

separation fluctuates.   

 

A further clue as to why ultraviolet wavelengths feature prominently in the model 

can be seen in the table showing the direction of the separation.  Ultraviolet 

wavelengths have the equal highest consistency in the direction of separation.  

Eighteen out of twenty-four comparisons resulted in plots with weeds having a 

lower reflectance.  For the Goldrush samples all twelve comparisons resulted in 

plots with weeds having a lower reflectance.  This points to why the ultraviolet 

region of the spectrum is relied so heavily on by the discriminant model. 

 

The other wavelengths to feature prominently in the direction of separation table 

are    both the divisions of the near infrared spectrum, and the red wavelengths to 

a lesser degree.  For the near infrared and the red regions of the spectrum the 

degree of separation as a percentage is quite high with the separation of 

approximately 30% common.  However this separation does fluctuate and is as 

low as 10% for both regions on one occasion.  These may indicate why these 

spectral regions are not prominent in the discriminate model.  It is likely however 

that these two spectral regions would likely provide the next level of 

discriminating ability after ultraviolet.   
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5.3 Balloon-borne Camera Data 

 

Unlike the situation with the spectroradiometer, the balloon data does allow the 

ability to draw inferences from the sample data.  The greater sampling size 

provides the ability to closely examine the results.  For this reason this section 

will provide a more in depth discussion of the statistical results. 

 

This section will only examine the classification results of the comparable groups 

derived from the original comparable pairs identified in the early part of Chapter 

3.  The results of the comparable groups that contained more than one variable 

(variety and multiple planting densities) will be discussed in a later section when a 

comparison is made between the two sensors. 

 

 

5.3.1  Classification results 

The classification results indicate the models were able to achieve a high 

proportion of success for individual treatments.  The models were successfully 

applied to the unselected cases and achieved near similar results for the 

classification of the cases used to create the model.  This verifies that the models 

were significantly robust to enable the models to be successfully applied to 

unfamiliar data.  
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For the cases used to create the classification model, the model incorrectly 

classified three of these cases from the one group on two occasions.  On both 

these occasions the cases belonged to no weeds group but were classified as 

belonging to the weeds group.  Both these misclassifications occurred for the 

higher planting density of 75,000 plants per hectare.   

 

A possible explanation for the misclassification of cases from higher planting 

densities is that as planting density increases plant competition also increases.  

This can lead to plants becoming stressed if there is an inadequate supply of 

resources to meet the plants requirements (Starr & Taggart 1989). If this were the 

case then plants from both groups would have exhibited some signs of stress.   

 

When the model was applied to those cases not used to create the model to verify 

the models performance, the models predictive abilities showed a bias towards the 

no weeds category.  Seven cases were incorrectly classified as no weeds when in 

fact the cases belonged to the weeds group.  This compares to only three no weeds 

cases being incorrectly classified.  This suggests the model over emphasizes the 

characteristics used to classify the no weeds group.    

 

Eight of the ten incorrectly classified cases occurred at the higher planting 

densities, suggesting the higher competition for resources resulted in plants 

having similar spectral characteristics.  If the higher planting densities caused the 

crop without weeds to compete with other plants in the crop than it would have 
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become stressed and therefore had similar spectral properties as the plants that 

were competing with the weeds and the other crop. 

 

The misclassification could be caused by the reverse argument.  If the crops 

planted at higher planting densities were able to out compete, and limit the 

establishment and growth of the weeds, then the effect of the weeds on the crop 

would have been limited.  This would have resulted in the plants from both groups 

having similar growing conditions and therefore similar spectral characteristics.  

However this may not be the case as a recent study into crop and weed completion 

indicates that crop seeding rates had minimal impact on weed numbers (Osten 

2003). 

 

An investigation into the recommended planting densities revealed that both 

varieties have a recommended planting density of 40,000 to 70,000 plants per 

hectare (Pacific Seeds 2004).  This implies that the higher planting densities used 

in the experiment approaches or exceeds the recommended planting densities.  

This may suggest the original proposition is more likely, that as planting density 

increases so does the inter-crop completion, thus causing the crop to become 

stressed whether weeds are present or not. 
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5.3.2 Canonical Correlation and Wilks Lambda  

The results of Wilks’ lambda indicate that as the planting density increase the 

Wilks’ lambda values also increase.  As already stated smaller values of Wilks’ 

lambda indicate greater discriminatory ability of the function.  Therefore as the 

planting density increases the ability to discriminate between the two groups 

diminishes.  This provides further evidence to the suggestion above that at higher 

planting densities the crop becomes stressed whether there are weeds present or 

not. 

 

The common trend for the canonical correlation is for the values to decrease when 

the planting density increases.  This signifies that as planting density increases the 

correlation between the discriminant scores decreases.  This adds even further 

evidence to the proposition that as planting density increases the health of the crop 

with or without weeds becomes increasingly similar and so to do the spectral 

properties.  

 

 

5.3.3 Other Statistics 

The results of the standardized canonical discriminant function coefficients 

indicate that the visible bands have the highest discriminating ability.  In 

particular the results provide clear evidence that the red band has the highest 

discriminating ability followed by the green band.  The results of the remaining 

bands are rather inconsistent but generally the near infrared bands have the least 

discriminating ability.   
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By examining the classification function coefficients of these bands we can gain 

some understanding of why the bands performed well or poorly when 

discriminating between the crops with or without weeds. 

 

5.3.3.1 Red Band 

The results indicate that the coefficients for red are higher in the majority of cases 

for the plots with weeds.  This signifies that the red wavelengths have a greater 

ability to classify the plots with weeds.  This may indicate that as the health of the 

plant deteriorates the amount of light reflected in these wavelengths increases.  

This point is well supported by past research that indicates that plant stress will 

cause a reduction in plant chlorophyll, which reduces the amount of red and blue 

light absorbed and thus increases the amount of light reflected in those 

wavelengths from the surface of the plant (CCRS 2003).   

 

The boxplots created for the red band support this view.  The boxplots clearly 

shows that in almost all cases there is higher reflectance in the red band for the 

plots with weeds.  

 

5.3.3.2  Green Band 

This same phenomena can be used to explain the higher coefficients in the green 

band for plots with no weeds.  In healthy vegetation chlorophyll absorbs a greater 

proportion of radiation in the red and blue wavelengths as part of the 
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photosynthetic process.  This leads to a higher proportion of green wavelengths 

being reflected and is what gives healthy plants their green appearance (Campbell 

1996).  

 

These results however are not supported by the boxplots for the green band.  The 

boxplots indicate that the plots with weeds generally have a higher reflectance in 

the green band.  This disagreement in results is somewhat confounding.  It may be 

possible that the extracted pixels may contain both the crop and the weed, which 

increases the reflection of green wavelengths. Although this suggestion is 

plausible it has not been tested and I am unsure how this fits within the model.   

 

5.3.3.3 Blue Band 

The coefficients for the blue band also pose interesting questions.  It was thought 

that the coefficients for the blue band would follow the same pattern as the red 

band, because chlorophyll has a similar influence on both bands.  The boxplots of 

the blue band indicate that the median value for plots with weeds is generally 

higher, thus giving rise to the expectations that the green band would have a 

greater discriminating ability for plots with weeds.  The results were the reverse of 

the expectations however.  The coefficients demonstrated that the blue 

wavelengths have a marginally higher discriminating ability for the plots without 

weeds.  

 

If the classification function coefficients are examined on a singular basis and 

compared with the respective boxplots no evidence is forthcoming to support the 



Chapter 5 - Discussion  102 

fact that the classification functions favours the discrimination of plots without 

weeds.  The comparison shows that in several cases (BU 45K, BU 60K and GO 

60K) the classification functions favours the discrimination of plots without 

weeds when the reflectance for plots with weeds is higher.  For other cases (BU 

75K, GO 75K, BU 60K) the classification functions again favours the 

discrimination of plots without weeds but the reflectance in these plots is lower. 

 

 

 

 

5.3.3.4 Infrared Bands 

Campbell (1996) suggests that in stressed vegetation the infrared reflectance is 

reduced as a result of a deterioration of cell walls.  We would therefore expect the 

infrared to have higher reflectance in the plots without weeds.  The boxplots for 

all three infrared bands supports this, with thirteen of eighteen clusters having 

higher reflectance for the plots with no weeds.  The coefficients from the table 

however are evenly spread, with half the coefficients indicating the infrared bands 

have a higher discriminating ability for plots with weeds and the other half 

indicating the infrared bands have a higher discriminating ability for plots without 

weeds.  

 

As already mentioned higher planting densities can lead to plant stress.  This 

stress is often in the form of water stress (Starr & Taggart 1989).  Guyot (1990) 

stated that a reduction of the leaf water content induces an increasing reflectance 
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over the whole spectrum.  It was therefore decided to investigate if higher planting 

densities for plots with weeds resulted in higher reflectance of near infrared and 

therefore causing come of the coefficients to favour the discrimination of plots 

with weeds.  The coefficients where compared to the near infrared reflectance on 

a planting density basis to see if a pattern might emerge.  The coefficients and 

reflectance values for different planting densities however yielded no such pattern.  

Again the coefficients were evenly split between the two groups. 

  

 

5.4 Discriminant Function Analysis Comparison  

 
During this comparison only the result of the comparable groups, BU All, GO All 

and All Variables, are compared.  These groups where chosen because the 

spectroradiometer data was limited to these three groups and the balloon-borne 

camera was selected to match these groups to enable a direct cross comparison. 

 

Analysing the classification results of the discriminant analysis show that two 

sensors achieved comparable results.  The spectroradiometer successfully 

classified two out of three unselected cases whereas the spectroradiometer on 

average classified seventy percent of unselected cases correctly.   

 

The canonical correlations for the sensors differed significantly in favour of the 

spectroradiometer.  The spectroradiometer’s canonical correlation exceeded 90% 

for all three comparable groups.  The best correlation for the balloon data only 
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achieved a value of 75% for BU All, the other two only had moderate correlations 

of approximately 55%. 

 

The spectroradiometer also out performed the balloon-borne camera for the 

Wilks’ lambda values.  The Wilks’ lambda values for the balloon data ranged 

from 0.44 to 0.69 indicating each discriminant function performed poorly when 

separating cases into groups.  This is not evident in the classification of the 

unselected cases however. The results for the spectroradiometer ranged from 0.02 

to 0.13, which indicates that each function performed well at separating cases into 

groups. 

 

The classification results suggest that the models created from both sets of data 

achieve comparable result.  The accompanying statistics however suggest that the 

balloon-borne camera data did not have the discriminating ability of the 

spectroradiometer.  This may be attributed to the spectrometers ability to capture 

the ultraviolet portion of the spectrum.  The models created from the 

spectroradiometer data relied heavily on this data to create its discriminant 

functions.  The spectroradiometer also captured many more bands over much 

narrower bandwidths, providing the opportunity to measure spectral variation 

more accurately.  This greater flexibility in the discriminating ability of narrow 

bands is evident in the standardized canonical discriminant function coefficients, 

which are almost exclusively in the same region of the spectrum. 
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The models performed better when confined to two changing variables and were 

not as successful when a third additional variable was introduced.  This situation 

is not unexpected as each additional variable that is introduced to the comparable 

group needs to be modelled by the discriminant model.  This can lead to a 

restriction in the discriminating ability of the model because of reduced window 

of opportunity to discriminate.   

 
 

5.5 Regression 

 
The regression analysis failed to provide any evidence of an association between 

the reflectance values captured by both sensors.  This however does not mean 

there is no correlation.  There are a number of reasons why this is the case. 

 

The first and most convincing reason relates to the lack of positional accuracy 

when acquiring samples for the two sensors.  Whilst some effort was made to 

sample from the same location, this could not be guaranteed.  The reasons for this 

have been explained previously.  The result of this situation is that some if not all 

of the samples were taken from different locations.  This inevitably makes it 

exceedingly difficult to establish a correlation when the comparison is being made 

on different plants.   

 

The second factor is a common problem that occurs in statistical analysis.  

Outliers can affect the results of any analysis but particularly regression analysis.  

The results of the boxplots indicate that there are a number of outliers contained in 
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the balloon data and there certainly would be outliers for the spectrometer data.  

An attempt was made to identify the outliers and remove them from the analysis.  

This bought about a marginal improvement in the r-square value but was not 

considered sufficient to include in the results. 

 

 

The final factor is less obvious.  A number of different treatments were involved 

in the correlation analysis for each band, i.e. planting density, variety and the 

health of the crop.  The presence of these variables may have affected the results.  

This suggestion cannot be tested however because of a lack of spectroradiometer 

data. 

 

 

5.6 Summary 

 

The models created for the discriminant function analysis successfully classified 

cases as weeds or no weeds generally four out of five times for the balloon data 

and two out of three times for the spectroradiometer.  As the planting densities 

increased the accuracy of classification was affected for the balloon data, 

indicating that as plant density increases the crop health becomes more 

homogenous, regardless of whether weeds are present or not.   

 

The balloon data had comparable results for the groups that allowed cross 

comparison between the two sensors.  However statistics such as the canonical 
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correlation and Wilks’ lambda suggest that the models created from the balloon 

data lack the discriminating ability of the spectroradiometer. 

 

The correlation analysis suggests there is no linear association between the two 

sensors.  There were a number of mitigating factors involved in measuring the 

relationship between the spectral responses captured by the two sensors.  It is 

more than likely these factors adversely affected the possibility of determining a 

correlation existed. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Introduction 

 
This chapter presents the conclusions drawn from the results of this project with 

respect to the projects objectives that were defined in Chapter 1.  It describes the 

success of the analysis of both sensors and concludes on their ability to 

discriminate between the spectral response of healthy crops and stressed crops.  

Recommendations for improvements to the study are made.  Recommendations 

for practical applications of the research along with opportunities for future 

research are also mentioned. 

 

 

6.2 Conclusions 

 

The methods and analysis presented in this dissertation provide an ability to 

distinguish between healthy and stressed crops.  Both sensors have the capacity to 

spectrally discriminate between the two crop types.   

 

No real difference was found in the success rate of classification of the two 

sensors.  The spectroradiometer with its hyperspectral ability proved to have a 
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greater discriminating ability than the multispectral balloon-borne camera system, 

however this did not translate in to better classification results.  The balloon-borne 

camera system provided very similar classification results and was able to capture 

a greater amount of information in a shorter period.  This indicates that the 

balloon-borne camera system can readily be applied to other situations that require 

fast low-cost capture of spectral data on field by field basis.  

 

No correlation was found between the two data sources but this is not to say that 

an association does not exist.  The sampling technique and a lack of 

spectroradiometer data significantly contributed to the opportunity to assess if a 

correlation existed between the two sensors. 

 

Improvements could be made to the sampling process, which would allow a better 

opportunity to analyse the ability of the spectroradiometer data to discriminate 

between healthy and stressed crops.   

 

From the results of this research there is there is reason to believe that the spectral 

data provided by both sensors could be used to quantify the effect of the weeds 

and other causes of stresses on crops.  
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6.3 Recommendations for Practical Applications 

 

Presently this technology provides the opportunity to discriminate between 

healthy and stressed crops.  The value of this technology in it current state to farm 

managers is unclear.  The results of this research do however provide the 

incentive to pursue further research into the ability of the sensors to quantify the 

effect the weeds have on plant growth and yield.  If this could be realised the 

technology would become an invaluable tool to farmers, particularly in measuring 

the environmentally factors affecting plant growth and yield.  Further research is 

required before practical applications could be realised.  A practical application 

other than sought by this study may arise from further research and wider 

application of this technology. 

 

 

6.4 Recommendations for Future Research 

 

Further work that could enhance and augment the methods presented in this 

dissertation include: 

 

1. Investigate the ability of the sensors to detect plant stress at an earlier 

growth stage when management practices are more feasible. 
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2. Investigate the ability to quantify the plant stress caused by the presence of 

weeds. 

 

3. Investigate the ability of different platforms to distinguish plant stress. 

 

4. Investigate if these techniques can be applied to other situations such as 

identify nutrient inadequacies such deficiencies in nitrogen, potassium, etc. 
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Output 
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Spectrometer – BU All 
 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 9 75.0

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 3 25.0

Excluded 

Total 3 25.0
Total 12 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 .684(a) 100.0 100.0 .637
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .594 1.825 7 .969

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
K_325 .178 
K_326 6.345 
K_327 .039 
K_328 5.715 
K_330 -8.821 
K_331 10.584 
K_340 -13.891 

 
Structure Matrix – This table has been removed because of size restrictions. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds .653 
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No Weeds -.816 
Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 
 Classification Processing Summary 
 
Processed 12

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 12
 
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 5 5.000
No Weeds .500 4 4.000
Total 1.000 9 9.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
K_325 -6676.108 -6777.836
K_326 66617.769 62868.117
K_327 66936.758 66908.510
K_328 48638.618 44867.157
K_330 146197.60

8 151059.560

K_331 -
149833.22

2 

-
155747.111

K_340 -
151210.08

7 

-
142896.998

(Constant) -253.919 -241.526
Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 3 2 5Count 
No Weeds 0 4 4
Weeds 60.0 40.0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 0 1 1Cases Not 

Selected 
Original Count 

No Weeds 0 2 2
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Weeds .0 100.0 100.0    % 
No Weeds .0 100.0 100.0

a  77.8% of selected original grouped cases correctly classified. 
b  66.7% of unselected original grouped cases correctly classified. 
 
 
Spectrometer – GO All 
 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 9 75.0

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 3 25.0

Excluded 

Total 3 25.0
Total 12 100.0

 

Summary of Canonical Discriminant Functions 
Eigenvalues

58.717a 100.0 100.0 .992
Function
1

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 1 canonical discriminant functions were used in the
analysis.

a. 

 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .017 14.314 7 .046

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
K_325 -1.340 
K_326 5.724 
K_327 9.084 
K_328 -30.506 
K_330 13.790 
K_334 .382 
K_346 3.852 
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Structure Matrix – This table has been removed because of size restrictions. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds 7.556 
No Weeds -6.044 

Unstandardized canonical discriminant functions evaluated at group means 
 
 Classification Processing Summary 
 
Processed 12

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 12
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 4 4.000
No Weeds .500 5 5.000
Total 1.000 9 9.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
K_325 259664.47

8 267283.638

K_326 -
86989.471 

-
114730.507

K_327 -
169857.30

0 

-
211986.876

K_328 25995.646 189942.717
K_330 34127.862 -34436.475
K_334 45656.165 43702.440
K_346 -

64238.675 -84647.286

(Constant) -459.517 -603.115
Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Cases Original Count Weeds 4 0 4
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  No Weeds 0 5 5
Weeds 100.0 .0 100.0

Selected   
% 

No Weeds .0 100.0 100.0
Weeds 1 1 2Count 
No Weeds 0 1 1
Weeds 50.0 50.0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  66.7% of unselected original grouped cases correctly classified. 
 

 
Spectrometer – All variables 
 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 16 66.7

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 8 33.3

Excluded 

Total 8 33.3
Total 24 100.0

 
 
 
 
 
Summary of Canonical Discriminant Functions 
 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 10.848(a) 100.0 100.0 .957
a  First 1 canonical discriminant functions were used in the analysis. 
 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .084 17.305 14 .240

 
 
 Standardized Canonical Discriminant Function Coefficients 
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Function 

  1 
K_325 17.991 
K_326 -5.539 
K_327 9.533 
K_328 -13.077 
K_330 -8.515 
K_331 .758 
K_333 -7.835 
K_335 -4.347 
K_336 .114 
K_338 -3.407 
K_342 8.616 
K_351 17.288 
K_363 -13.942 
K_729 3.463 

              
 
Structure Matrix – This table has been removed because of size restrictions. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds 3.977 
No Weeds -2.386 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 
 Classification Processing Summary 
 
Processed 24

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 24
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 6 6.000
No Weeds .500 10 10.000
Total 1.000 16 16.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
K_325 174020.00 137337.147
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4 
K_326 -

67974.711 -56800.355

K_327 102996.18
5 85563.291

K_328 -
141374.16

6 

-
117174.213

K_330 -
16950.960 -1799.726

K_331 -
50672.178 -52084.917

K_333 -
41157.115 -24770.404

K_335 -5323.765 3212.497
K_336 -

81177.945 -81402.527

K_338 3578.116 10957.084
K_342 99059.611 81972.905
K_351 177862.25

9 142577.425

K_363 -
164419.97

7 

-
135905.183

K_729 3854.231 3079.051
(Constant) -420.762 -285.789

Fisher's linear discriminant functions 
 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 6 0 6Count 
No Weeds 0 10 10
Weeds 100.0 .0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 3 3 6Count 
No Weeds 0 2 2
Weeds 50.0 50.0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  62.5% of unselected original grouped cases correctly classified. 
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Balloon-borne Camera – BU 45K 
 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 25 62.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 15 37.5

Excluded 

Total 15 37.5
Total 40 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 4.175(a) 100.0 100.0 .898
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .193 32.875 6 .000

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red 3.016 
Green -.730 
Blue -2.065 
Infrared - Band 1 -1.341 
Infrared - Band 2 .294 
Infrared - Band 3 1.337 

 
 Structure Matrix 
 

Function 
  1 
Red .489 
Green .272 
Infrared - Band 2 -.121 
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Infrared - Band 3 -.113 
Blue .079 
Infrared - Band 1 -.054 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds 1.883 
No Weeds -2.040 

Unstandardized canonical discriminant functions evaluated at group means 
 
 Classification Processing Summary 
 
Processed 40

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 40
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 13 13.000
No Weeds .500 12 12.000
Total 1.000 25 25.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
Red -1.230 -2.021
Green .668 .874
Blue 2.443 3.219
Infrared - Band 1 6.676 7.071
Infrared - Band 2 -9.158 -9.271
Infrared - Band 3 1.195 .581
(Constant) -516.217 -520.152

Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 13 0 13Count 
No Weeds 0 12 12

Cases 
Selected 

Original 

% Weeds 100.0 .0 100.0
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      No Weeds .0 100.0 100.0
Weeds 6 1 7Count 
No Weeds 0 8 8
Weeds 85.7 14.3 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  93.3% of unselected original grouped cases correctly classified. 
 

 
 
Balloon-borne Camera – BU 60K 
 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 27 67.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 13 32.5

Excluded 

Total 13 32.5
Total 40 100.0

 
 Group Statistics 
 

Valid N (listwise) 
Group   Mean Std. Deviation Unweighted Weighted 

Red 143.12821 9.83609 13 13.000 
Green 135.71795 10.23817 13 13.000 
Blue 71.27350 9.48907 13 13.000 
Infrared Band 
1 228.39316 10.38394 13 13.000 

Infrared Band 
2 71.71368 9.95595 13 13.000 

Weeds 

Infrared Band 
3 88.45513 7.96331 13 13.000 

Red 110.25397 10.78887 14 14.000 
Green 114.48413 9.12201 14 14.000 
Blue 70.96032 10.25113 14 14.000 
Infrared Band 
1 230.29107 9.11110 14 14.000 

Infrared Band 
2 80.87679 4.72254 14 14.000 

No Weeds 

Infrared Band 
3 96.86280 4.81331 14 14.000 

Red 126.08230 19.57137 27 27.000 
Green 124.70782 14.38324 27 27.000 

Total 

Blue 71.11111 9.70187 27 27.000 



Appendices    130 

Infrared Band 
1 229.37726 9.60239 27 27.000 

Infrared Band 
2 76.46492 8.86946 27 27.000 

  

Infrared Band 
3 92.81466 7.69278 27 27.000 

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 11.700(a) 100.0 100.0 .960
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .079 55.916 6 .000

 

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red -1.792 
Green -.350 
Blue 1.955 
Infrared Band 1 .264 
Infrared Band 2 .085 
Infrared Band 3 .023 

 
 Structure Matrix 
 

Function 
  1 
Red -.483 
Green -.333 
Infrared Band 3 .196 
Infrared Band 2 .181 
Infrared Band 1 .030 
Blue -.005 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds -3.416 
No Weeds 3.172 

Unstandardized canonical discriminant functions evaluated at group means 
 
 Classification Processing Summary 
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Processed 40

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 40
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 13 13.000
No Weeds .500 14 14.000
Total 1.000 27 27.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
Red -2.277 -3.419
Green 3.183 2.944
Blue 1.331 2.633
Infrared Band 1 8.922 9.101
Infrared Band 2 -8.308 -8.235
Infrared Band 3 -.297 -.274
(Constant) -808.962 -775.835

Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 13 0 13Count 
No Weeds 0 14 14
Weeds 100.0 .0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 7 0 7Count 
No Weeds 0 6 6
Weeds 100.0 .0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  100.0% of unselected original grouped cases correctly classified. 
 

 
 
Balloon-borne Camera – BU 75K 
 
 Analysis Case Processing Summary 
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Unweighted Cases N Percent 
Valid 27 67.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 13 32.5

Excluded 

Total 13 32.5
Total 40 100.0

 

Summary of Canonical Discriminant Functions 

Eigenvalues

.985a 100.0 100.0 .704
Function
1

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 1 canonical discriminant functions were used in the
analysis.

a. 

  
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .504 15.085 6 .020

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red -3.658 
Green 3.386 
Blue .423 
Infrared - Band 1 -.250 
Infrared - Band 2 1.911 
Infrared - Band 3 -1.601 

 
 Structure Matrix 
 

Function 
  1 
Green .298 
Infrared - Band 2 .180 
Blue .171 
Infrared - Band 1 .089 
Red .087 
Infrared - Band 3 .051 
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Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds -.991 
No Weeds .920 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 
 Classification Processing Summary 
 
Processed 40

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 40
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 13 13.000
No Weeds .500 14 14.000
Total 1.000 27 27.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
Red -.275 -.857
Green -.801 -.220
Blue 2.321 2.413
Infrared - Band 1 4.282 4.247
Infrared - Band 2 -4.998 -4.586
Infrared - Band 3 -.201 -.566
(Constant) -306.778 -304.054

Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 12 1 13Count 
No Weeds 3 11 14
Weeds 92.3 7.7 100.0

Cases 
Selected 

Original 

% 
No Weeds 21.4 78.6 100.0
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Weeds 5 2 7Count 
No Weeds 1 5 6
Weeds 71.4 28.6 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 16.7 83.3 100.0

a  85.2% of selected original grouped cases correctly classified. 
b  76.9% of unselected original grouped cases correctly classified. 
 

 
 
Balloon-borne Camera – GO 45K 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 27 67.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 13 32.5

Excluded 

Total 13 32.5
Total 40 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 8.769(a) 100.0 100.0 .947
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .102 50.143 6 .000

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red 3.629 
Green -2.710 
Blue .171 
Infrared - Band 1 3.156 
Infrared - Band 2 .068 
Infrared - Band 3 -2.521 
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 Structure Matrix 
 

Function 
  1 
Red .320 
Green .217 
Infrared - Band 1 .128 
Blue .050 
Infrared - Band 2 .006 
Infrared - Band 3 -.005 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds 2.957 
No Weeds -2.746 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 Classification Processing Summary 
 
Processed 40

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 40
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 13 13.000
No Weeds .500 14 14.000
Total 1.000 27 27.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
Red 3.474 2.098
Green -1.880 -.621
Blue 2.196 2.107
Infrared - Band 1 11.026 9.755
Infrared - Band 2 -7.178 -7.216
Infrared - Band 3 -5.007 -3.417
(Constant) -978.802 -808.303

Fisher's linear discriminant functions 
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 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 13 0 13Count 
No Weeds 0 14 14
Weeds 100.0 .0 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 7 0 7Count 
No Weeds 0 6 6
Weeds 100.0 .0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  100.0% of selected original grouped cases correctly classified. 
b  100.0% of unselected original grouped cases correctly classified. 
 

 
 
 
 
Balloon-borne Camera – GO 60K 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 27 67.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 13 32.5

Excluded 

Total 13 32.5
Total 40 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 4.169(a) 100.0 100.0 .898
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .193 36.139 6 .000
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 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red 2.406 
Green -1.166 
Blue -.537 
Infrared - Band 1 -1.118 
Infrared - Band 2 -1.406 
Infrared - Band 3 1.833 

 
 Structure Matrix 
 

Function 
  1 
Infrared - Band 2 -.486 
Red .385 
Infrared - Band 3 -.378 
Infrared - Band 1 -.371 
Green .244 
Blue .089 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds 2.039 
No Weeds -1.893 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 Classification Processing Summary 
 
Processed 40

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 40
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 13 13.000
No Weeds .500 14 14.000
Total 1.000 27 27.000

 
 Classification Function Coefficients 
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Group 
  Weeds No Weeds 
Red -3.611 -4.211
Green 4.386 4.702
Blue -.646 -.442
Infrared - Band 1 8.070 8.487
Infrared - Band 2 -6.187 -5.497
Infrared - Band 3 -3.416 -4.424
(Constant) -550.418 -578.581

Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 12 1 13Count 
No Weeds 0 14 14
Weeds 92.3 7.7 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 5 2 7Count 
No Weeds 1 5 6
Weeds 71.4 28.6 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 16.7 83.3 100.0

a  96.3% of selected original grouped cases correctly classified. 
b  76.9% of unselected original grouped cases correctly classified. 
 

 
 
 
Balloon-borne Camera – GO 75K 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 27 67.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 13 32.5

Excluded 

Total 13 32.5
Total 40 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
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Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 2.096(a) 100.0 100.0 .823
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .323 24.861 6 .000

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red 4.016 
Green -4.314 
Blue .382 
Infrared - Band 1 .582 
Infrared - Band 2 -.576 
Infrared - Band 3 .282 

 
 Structure Matrix 
 

Function 
  1 
Infrared - Band 1 .224 
Red .198 
Infrared - Band 3 .191 
Infrared - Band 2 .067 
Green -.014 
Blue -.002 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds -1.446 
No Weeds 1.342 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 Classification Processing Summary 
 
Processed 40

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 40
 
 Classification Function Coefficients 
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Group 

  Weeds No Weeds 
Red -6.943 -6.114
Green 1.741 .652
Blue 12.763 12.894
Infrared - Band 1 17.947 18.091
Infrared - Band 2 -12.450 -12.620
Infrared - Band 3 -11.921 -11.809
(Constant) -1142.454 -1152.423

Fisher's linear discriminant functions 
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used 
in Analysis 

    Unweighted Weighted 
Weeds .500 13 13.000
No Weeds .500 14 14.000
Total 1.000 27 27.000

 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 12 1 13Count 
No Weeds 0 14 14
Weeds 92.3 7.7 100.0

Cases 
Selected 

Original 

% 
No Weeds .0 100.0 100.0
Weeds 6 1 7Count 
No Weeds 0 6 6
Weeds 85.7 14.3 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  96.3% of selected original grouped cases correctly classified. 
b  92.3% of unselected original grouped cases correctly classified. 
 

 
 
Balloon-borne Camera – BU All 
 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 81 67.5

Missing or out-of-
range group codes 0 .0

Excluded 

At least one 
missing 
discriminating 
variable 

0 .0
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Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 39 32.5

  

Total 39 32.5
Total 120 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 1.262(a) 100.0 100.0 .747
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .442 62.035 6 .000

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red 2.585 
Green -1.317 
Blue -.937 
Infrared - Band 1 .143 
Infrared - Band 2 -1.027 
Inrared - Band 3 .860 

 
 Structure Matrix 
 

Function 
  1 
Red .525 
Green .321 
Infrared - Band 2 -.182 
Inrared - Band 3 -.127 
Infrared - Band 1 .029 
Blue .017 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds 1.151 
No Weeds -1.069 

Unstandardized canonical discriminant functions evaluated at group means 
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Classification Statistics 
 
 Classification Processing Summary 
 
Processed 120

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 120
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
Weeds .500 39 39.000
No Weeds .500 42 42.000
Total 1.000 81 81.000

 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
Red -.973 -1.303
Green .599 .789
Blue 1.021 1.212
Infrared - Band 1 3.906 3.885
Infrared - Band 2 -6.249 -6.019
Inrared - Band 3 1.386 1.182
(Constant) -287.193 -277.113

Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 31 8 39Count 
No Weeds 3 39 42
Weeds 79.5 20.5 100.0

Cases 
Selected 

Original 

% 
No Weeds 7.1 92.9 100.0
Weeds 17 4 21Count 
No Weeds 0 18 18
Weeds 81.0 19.0 100.0

Cases Not 
Selected 

Original 

% 
No Weeds .0 100.0 100.0

a  86.4% of selected original grouped cases correctly classified. 
b  89.7% of unselected original grouped cases correctly classified. 
 
 

 
Balloon-borne Camera – GO All 
 Analysis Case Processing Summary 
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Unweighted Cases N Percent 
Valid 81 67.5

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 39 32.5

Excluded 

Total 39 32.5
Total 120 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 .390(a) 100.0 100.0 .530
a  First 1 canonical discriminant functions were used in the analysis. 
 

Wilks' Lambda

.719 25.041 6 .000
Test of Function(s)
1

Wilks'
Lambda Chi-square df Sig.

 
 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red -.643 
Green 2.005 
Blue -.868 
Infrared - Band 1 1.132 
Infrared - Band 2 -.583 
Infrared - Band 3 -.992 

 
 Structure Matrix 
 

Function 
  1 
Red .700 
Green .637 
Infrared - Band 2 -.322 
Infrared - Band 3 -.319 
Blue .254 
Infrared - Band 1 -.098 
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Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
Weeds .640 
No Weeds -.595 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 Classification Processing Summary 
 
Processed 120

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 120
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used 
in Analysis 

    Unweighted Weighted 
Weeds .500 39 39.000
No Weeds .500 42 42.000
Total 1.000 81 81.000

 
 Classification Function Coefficients 
 

Group 
  Weeds No Weeds 
Red -3.031 -2.986
Green 3.197 3.011
Blue 1.842 1.951
Infrared - Band 1 5.881 5.789
Infrared - Band 2 -6.509 -6.447
Infrared - Band 3 -.709 -.579
(Constant) -465.288 -450.696

Fisher's linear discriminant functions 
 
 Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group Weeds No Weeds Total 
Weeds 27 12 39Count 
No Weeds 12 30 42
Weeds 69.2 30.8 100.0

Cases 
Selected 

Original 

% 
No Weeds 28.6 71.4 100.0

Cases Not 
S l t d

Original Count Weeds 13 8 21
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  No Weeds 8 10 18
Weeds 61.9 38.1 100.0

Selected   
% 

No Weeds 44.4 55.6 100.0
a  70.4% of selected original grouped cases correctly classified. 
b  59.0% of unselected original grouped cases correctly classified. 
 

 
Balloon-borne Camera – All Variables 
 Analysis Case Processing Summary 
 
Unweighted Cases N Percent 
Valid 160 66.7

Missing or out-of-
range group codes 0 .0

At least one 
missing 
discriminating 
variable 

0 .0

Both missing or 
out-of-range group 
codes and at least 
one missing 
discriminating 
variable 

0 .0

Unselected 80 33.3

Excluded 

Total 80 33.3
Total 240 100.0

 

Summary of Canonical Discriminant Functions 
 Eigenvalues 
 

Function Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

1 .451(a) 100.0 100.0 .557
a  First 1 canonical discriminant functions were used in the analysis. 
 
 Wilks' Lambda 
 

Test of Function(s) 
Wilks' 

Lambda Chi-square df Sig. 
1 .689 57.693 6 .000

 
 Standardized Canonical Discriminant Function Coefficients 
 

Function 
  1 
Red 1.604 
Green -.409 
Blue -.693 
Infrared - Band 1 .490 
Infrared - Band 2 -.482 
Infrared - Band 3 -.136 

 
 Structure Matrix 
 
  Function 
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  1 
Red .706 
Green .510 
Infrared - Band 2 -.223 
Infrared - Band 3 -.201 
Blue .104 
Infrared - Band 1 .028 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions  Variables ordered by absolute size of correlation within function. 
 
 Functions at Group Centroids 
 

Function 
Group 1 
weeds .659 
No Weeds -.676 

Unstandardized canonical discriminant functions evaluated at group means 
 

Classification Statistics 
 Classification Processing Summary 
 
Processed 240

Missing or out-of-
range group codes 0

Excluded 

At least one missing 
discriminating 
variable 

0

Used in Output 240
 
 Prior Probabilities for Groups 
 

Group Prior 
Cases Used in 

Analysis 

    Unweighted Weighted 
weeds .500 81 81.000
No Weeds .500 79 79.000
Total 1.000 160 160.000

 
 Classification Function Coefficients 
 

Group 
  weeds No Weeds 
Red -1.679 -1.794
Green 1.487 1.523
Blue 1.581 1.670
Infrared - Band 1 4.552 4.508
Infrared - Band 2 -5.960 -5.899
Infrared - Band 3 .469 .489
(Constant) -358.970 -351.344

Fisher's linear discriminant functions 
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Classification Results(a,b) 
 

Predicted Group 
Membership 

      Group weeds No Weeds Total 
weeds 58 23 81Count 
No Weeds 21 58 79
weeds 71.6 28.4 100.0

Cases 
Selected 

Original 

% 
No Weeds 26.6 73.4 100.0
weeds 27 12 39Count 
No Weeds 12 29 41
weeds 69.2 30.8 100.0

Cases Not 
Selected 

Original 

% 
No Weeds 29.3 70.7 100.0

a  72.5% of selected original grouped cases correctly classified. 
b  70.0% of unselected original grouped cases correctly classified. 
 

 
 

 
 

 
 
 

 
 


