
Automated Usability Testing Framework

Fiora T. W. Au, Simon Baker, Ian Warren, Gillian Dobbie
Department of Electrical and Computer Engineering

University of Auckland, Auckland, New Zealand
Private Bag 92019, Auckland, New Zealand
{ian-w,gill}@cs.auckland.ac.nz

Abstract
Handheld device applications with poor usability can
reduce the productivity of users and incur costs for
businesses, thus usability testing should play a vital role
in application development. Conventional usability
testing methodologies, such as formal user testing, can be
expensive, time consuming and labour intensive; less
resource-demanding alternatives can yield unreliable
results. Automating aspects of usability testing would
improve its efficiency and make it more practical to
perform throughout development.

An automated usability testing tool should capture as
input the properties of an application’s graphical user
interface, the sequence of user actions as they use the
application to achieve particular tasks, their behaviour
and comments, as well as a description of these tasks.
The tool should evaluate both the static and dynamic
properties of the interface, examine navigational burden
and suggest modifications or templates that would
improve usability. Results should be quick and easy to
interpret, and be understandable by personnel other than
specialised testers.

Several existing tools that are typical of the tools
available today meet some but not all of these
requirements. In this paper we describe the design of the
HUIA testing framework, in which we have to meet as
many of these requirements as possible.

Keywords: usability testing, tool support, handheld
device.

1 Introduction
Handheld devices continue to feature in most companies’
mobile business solutions, as a means of improving their
workers and thus the companies’ productivity. Handheld
device applications (HDAs) with poor usability can
undermine the value of such solutions, but despite this
usability testing is often neglected due to its relatively
high demand in time and resources. These issues apply
also to functional testing, for which many automated
testing tools and frameworks, such as JUnit, were
developed and are now widely used making the process
far more efficient. Usability testing would also benefit
greatly from automation.

Copyright (C) 2008, Australian Computer Society, Inc. This paper
appeared at the 9th Australasian User Interface Conference
(AUIC2008), Wollongong, NSW, Australia, January 2008. Conferences
in Research and Practice in Information Technology, Vol. 76. B.
Plimmer, G. Weber, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

This paper examines the need for automating aspects of
usability testing. This is followed by discussion on the
functionalities that an automated usability testing tool
should have, as well as the associated challenges. The
design of the HUIA testing framework, a prototype
automated usability testing framework for HDA, is then
described, and the paper concludes with a brief
examination of how this framework as well as other
existing testing tools meet the requirements previously
discussed.

1.1 Usability

Usability can be defined by IEEE (1990) as ‘the ease with
which a user can operate, prepare inputs for, and
interpret outputs of a system or component’, and
comprises of five main attributes as outlined in Le Peuple
and Scane (2003) and Nielsen, J. (1993): Learnability,
Efficiency, Memorability, Errors, and Satisfaction.

The very nature of handheld devices make their programs
particularly susceptible to poor usability; the smaller size,
lower resolution screens, limited memory, lack of
keyboard and mouse, and frequency of use among other
hardware constraints and usage factors make program and
user interface design particularly challenging as reported
in Weiss (2005), Lee and Grice (2004) and Moe,
Dwolatzky, and Olst(2004).

1.2 Usability testing

Many usability testing methodologies exist, with varied
opinions on their effectiveness and practicality. Heuristic
evaluations are relatively cheap, quick and easy to carry
out, but it has been claimed by Le Peuple and Scane
(2003), Scholtz (2006), and Spolsky (2001) that such
evaluations are likely to identify only approximately fifty
percent of actual problems, with a significant number of
false problems raised and actual problems missed.

When carried out correctly, user testing is likely to
identify most of the major usability issues, as it involves
real users attempting real tasks, and is very useful for
collecting feedback on subjective aspects of usability
(such as satisfaction and aesthetic appeal). Studies by
Scholtz (2006), and Spolsky (2001) have shown that six
to eight test users (per type of intended users for that
particular software) are usually sufficient to identify most
of the major usability issues. The type of analyses
performed on the gathered data depends on the goal of the
user test. Typical areas that are examined include
mistake and failure rates, types of mistakes, time taken,
amount of interactions (such as number of clicks or

amount of scrolling), user behavior and user feedback as
reported in Le Peuple and Scane (2003), Nielsen, J.
(1993) and Spolsky (2001). Scholtz (2006) reports that
because user tests are expensive and time consuming to
conduct, they are usually performed infrequently and
towards the end of the development process.

A whole range of quantitative statistics can be extracted
or recorded for a given interface; some refer to the
properties of the interface, and others refer to user
interactions with the interface. Listed below are
examples of the two types of statistics:

Interface Properties:
• Number of fonts used, font sizes
• Average size of buttons
• Deepest level of menus
• Average loading time of graphics

Interaction Statistics (for performing specified tasks):
• Number of clicks
• Average drag distance
• Amount of scrolling
• Error rate
• Failure rate

Such statistics however are rarely used on their own as a
way of evaluating usability, since numbers have little
meaning unless they are placed in context; for example,
five clicks may be considered acceptable for
accomplishing one task, but too many for another.
Metrics therefore are most useful as a rough indication of
usability only, and as supporting data for other usability
evaluations.

2 Motivation
Handheld devices are playing an increasingly important
role in facilitating efficient information exchange, making
them a significant driving force in mobilizing businesses
and improving productivity as outlined by Lee and Grice
(2004) and Moe et al. (2004). However, the value of any
application would be undermined if the user is not able to
fully utilize its functionality, thus the role of usability
testing should be equally important in HDA development
as functional correctness.

2.1 Case Studies

We present three case studies that highlight some of the
usability issues commonly found in HDAs.

2.1.1 Case study 1: Registration form

Purpose:

Figure 1 shows a simple form on a health and fitness
website that users fill in for registration. We would not
necessarily expect the users to have high computer skills.

Usability issues:
1. The form requires high precision placement of the

stylus, with multiple checkboxes as well as the
Submit and Cancel buttons placed close together,

making it easy to press the wrong button or to
check the wrong checkbox.

2. Required fields are not marked (Username,
Password and Confirm password).

3. The Password and Confirm password fields are
positioned below the Submit button, which
misleadingly implies that they are not required for
the registration process.

Figure 1: Registration form

2.1.2 Case study 2: Products order placement
Purpose:

The form in Figure 2 allows users to search for products
using various filters (search by a combination of product
category, brand name or SKU), view information on the
products returned, and then to specify the quantity that
they would like to order for particular products using the
number bar positioned towards the bottom of the form.

Figure 2: Products order placement

Usability issues:
1. Precise placement of the stylus is necessary to

specify an amount to order for a product.
2. Columns are difficult to expand to increase the

viewable area.
3. The filter droplists are not labelled.
4. There is no clear indication of how to finalize/save

an order.
5. The payment method is not marked as a required

field.
6. The data displayed in each column, particularly the

category and description, are rarely viewable in
full. Expanding the columns to increase viewing
area is difficult and tedious.

7. Some columns (showing the price, brand) are
initially completely collapsed and hidden from
view.

8. Items whose width exceeds the width of the droplist
are simply truncated, with no indication that they
are not viewable in full.

9. Ordered products (ie. for which a quantity to order
has been specified) are distinguished from non-
ordered products only by the presence of number in
the QTY column, which can be easily missed.

10. A quantity of zero is also displayed (if changed to
zero from some other original quantity), which at a
glance suggests that the product has been ordered,
when in fact a quantity of zero means that it has
not.

2.1.3 Case study 3: Retailer home page

Purpose:

The display in Figure 3 is the home or start page for a
contemporary furniture retailer’s online shopping site,
providing information for a person who is wanting to find
out more about the company and the products they sell.
This case study highlights the conflict between form and
function apparent in many HDAs.

Figure 3: Retailer home page

Usability issues:
1. High resolution images are not supported by all

handheld devices.
2. The blocks of text vary in shape and size, and are

distributed all over the page. This reduces the
overall coherence of the text and makes it difficult
for users to scan the text for information.

3. The text is not very readable due to the small font
size and poor contrast between the foreground and
background colours.

4. The Next >> link requires high level of precision to
click, and does not stand out well.

The three case studies present only a subset of the many
usability issues associated with HDAs. Clearly, usability
testing should feature during product development.

2.2 Automating usability testing

There are many challenges and issues associated with
traditional usability testing methodologies, many of
which are to do with inefficiency, management
complexities and high resource demands; all these
contribute to the industry’s general reluctance to integrate
usability testing as an essential activity on par with
functional testing, despite its importance. Instead, it is
often considered as a ‘nice-to-have’ reserved for larger
projects with generous budgets.

Conducting usability testing towards the end of the
development process runs the risk of leaving insufficient
time and resources to respond to the usability issues
raised. On the other hand, early tests are often performed
on simulators or low fidelity prototypes, which
undermine the validity of the tests, and there is a chance
of introducing usability defects in later iterations unless
regression testing is performed frequently. Agile
development promotes this type of iterative testing, for
which usability testing would greatly benefit, but this is
impractical for most conventional usability testing
methodologies according to Kane (2003). For example,
user testing is arguably the most effective testing
methodology, but it is very inefficient to carry out. The
process is labour intensive and costly, having to design
the test, recruit suitable test users, set up test sessions, run
the test, collect the data and then analyze the results.
Other testing methods such as heuristic evaluations and
cognitive walkthroughs involving just one or several
usability experts are less costly, but not to the point where
it can be performed on a frequent, iterative basis.

Currently there is a distinct separation of responsibilities
between developers and usability testing specialists.
This introduces additional management issues in order to
effectively coordinate the activities of the two parties.
These specialists may or may not have a good
understanding of the application domain, which could
affect the validity of their opinions and findings.
Furthermore, developers who do not play an active role in
the usability evaluations end up learning of their
product’s usability ‘second-hand’, having to base design
decisions on their own (sometimes incorrect)
interpretations of usability evaluation results. This also
means that the developer does not gain as much

knowledge as he/she otherwise can, and is less inclined to
consider usability to be an integrated part of the
development process.

A logical solution would be to automate as many aspects
of usability testing as possible, in much the same way that
aspects of functional testing has been automated as
described in Patton (2006). There has been some
excellent work that investigates the state of the art in
automated usability evaluation, such as Ivory and Hearst
(2001). The challenge is thus to create an automated
usability testing tool that is aimed for use by developers,
rather than just usability testing specialists, for regression
testing through development. The next two sections
discuss in further detail the objectives and functional
requirements of such a tool.

3 Objectives

The main objectives of an automated usability testing tool
are similar in many ways to any automated software tool
as outlined in Patton (2006), and may be summarized as
follows:
1. Effective usability testing: The tool should detect

as many if not more real usability issues as
conventional usability testing methodologies.

2. Increased speed: The tool should perform analyses
(checks, calculations, comparisons etc.) and other
processes quicker than if they were performed
manually.

3. Increased efficiency: By taking over parts of the
testing process, developers/testers are free to
perform other tasks, and need to dedicate less time
to testing.

4. Improved accuracy and precision: Results
produced will always be functionally correct; errors
are limited to those produced by inappropriate input
or direction by the developer/tester.

5. Reduced resource demand: Automation should
reduce time, human resources, equipment and cost
requirements.

6. Increased flexibility: The tool should perform
testing on a range of usability aspects, and allow
customisation of test settings. It should also
facilitate usability testing for all stages of
development (as well as iterative/regression
testing).

7. Consistency: The tool should provide a means of
maintaining set testing standards throughout
development, so that testing can be performed by
different people but the same standard of usability
is enforced.

8. Promote usability: By simplifying the usability
testing process, the tool should encourage all
personnel related to product development
(including developers, managers, testers, sales
personnel and clients) to be involved in the process.
Also, the tool itself should promote good usability
practices by encouraging the use of proven design
paradigms.

4 Functional requirements

The following sections describe the main functionalities
that an automated usability tool should offer in order to
meet some of the objectives outlined above.

An important architectural decision in implementing the
tool would be to adopt a modular design structure; plug-
and-play modules for different functionalities would give
developers maximum flexibility in customizing usability
evaluations for different HDAs. Also, the effectiveness
or relevance of each type of evaluation method would
differ for different stages of development so the suite of
usability tests should be easy to adjust accordingly.

4.1 GUI evaluation

Here, the GUI (Graphical User Interface) of an HDA
refers only to the properties and layout of the controls,
text and images on a form; the underlying model of the
application is not considered. The GUI may be
considered as the major determinant of an HDA's
readability, so readily affects the HDA's efficiency and
subjective appeal.

Some examples of these GUI properties include:
 Fonts: Font size, number of fonts
 Menus: Number of menu items per menu, menu

depth
 Buttons: Button size, Number of buttons per form
 Layout: Amount of white/empty space on the

form, distance of the controls from the edge of the
form

These properties should be examined to ensure that they
abide to given heuristics, standards or style guides. For
example, examining the font size of the case study in
Section 2.1.3 would have revealed that it is too small and
thus not very readable. Programmatically examining the
column widths of the table in the case study in Section
2.1.2 would have drawn attention to the hidden column; a
flaw likely to be missed by human inspection.

4.2 Navigational burden

According to Ahmad et al. (2006) a very important aspect
of usability to consider is how much effort the user must
make to locate and utilize information and functionality,
or the navigational burden. Many factors contribute to
navigational burden; whilst the GUI also plays a critical
part, the underlying model of the HDA, the context of its
use and the tasks to be achieved must now also be
considered.

4.2.1 Form layout

It was difficult for users to efficiently scan for
information in the case study in Section 2.1.3 due to the
positioning of the text blocks. And similarly, illogical
placement of the input controls in the case study in
Section 2.1.1 made it difficult for users to fill in the
registration form. The tool should be able to provide
some means of identifying the user’s glance or interaction
sequence (discussed in further detail in Section 4.4.2 User

interaction sequences), then together with information of
the positions of the corresponding controls on the form,
determine if the placement of the controls is appropriate.
Kurosu and Kashimura (1995) claim the ideal sequence
that is most commonly accepted is top left to bottom
right.

The tool should also encourage sensible grouping of
controls related to the same task. For example,
checkboxes for selecting groceries for purchase should be
grouped by food type. This would require input of
information about the problem domain and the task to be
achieved, which is also further discussed in Section 4.4.4
Task definitions.

In the case study in Section 2.1.1, it is easy to press the
Cancel button by mistake as it is placed too close to the
Submit button. Kurosu and Kashimura (1995) claim that
flagging this and similar error-prone areas would also be
useful.

4.2.2 User interaction sequences

Another perspective on navigational burden would be to
consider the make-up of the sequence of user interactions
necessary to complete a task. Excessive amounts of
clicks, scrolling, user input (textual or selection) and
forms accessed all indicate poor efficiency; these and
other metrics should be examined against predefined
tolerance thresholds and be brought to attention if they
exceed the threshold.

One of the most important statistics obtained from a
conventional user test is the number of errors made, or
the ratio between successful interactions and errors. It is
arguably the best indicator of usability since it is a
reflection of how successful the user was in using the
AUT (Application Under Test) to complete his/her task.
In a conventional user test this is obtained by an observer
manually noting down and categorizing the mistakes that
the user makes; many of the issues in the case study in
Section 2.1.2 would be made apparent by noting the
mistakes that the user makes in attempting to search for
and order products. The process however is time-
consuming, error-prone and subjective (there are varying
definitions of a ‘mistake’), making it inefficient and
impractical for iterative testing. Thus this area is one that
should definitely be addressed by an automated testing
tool.

Firstly, the tool should better facilitate the recording of
user interactions with the AUT; this is discussed in
further detail in Section 4.4.2 Recording user action
sequences. Secondly, the tool should provide a way for
developers to specify without ambiguity what a
‘recoverable mistake’ and a ‘task failure’ is. This would
require generating a ‘correct’ or ‘expected’ interaction
sequence against which the test user’s interaction
sequence can be compared. Related to this is the
challenge of designing appropriate test oracles,
particularly the grain of comparison. A crude comparator
that reports any difference would be least expensive, but
likely to produce too many false positives; more
sophisticated oracles that intelligently ignore negligible or
anticipated differences would be more appropriate, but

would be algorithmically complex and difficult to make
generic. For example, in the case study in Section 2.1.1 it
is not important which optional mail list subscription
checkboxes a user checks, but neglecting to check the
Create a forum account checkbox should be considered
either a ‘recoverable mistake’ or a ‘task failure’
(depending on whether or not the task is eventually
completed) if the task was to register and create a forum
account.

4.3 Patterns and templates

The cost and risks of making modifications to the code
increase the closer it is to completion. This is also true for
resolving usability issues, especially when attempting to
make non trivial changes to user interaction sequences
that involve new controls or even forms, thus
considerations for usability should begin as early as the
definition of the problem domain and the tasks that the
HDA's users are meant to achieve using it. A way in
which the tool could promote good usability would be for
it to provide GUI patterns or templates suitable for a
given problem domain or task definition as described in
Kane (2003). For example, the case studies in Sections
2.1.1 and 2.1.2 are both representative tasks for which
HDAs are commonly developed to support. Tried and
true GUI and model design solutions for these tasks
already exist, analogous to design patterns used to
structure program logic and system architecture, and
which are widely adopted across the industry. Similar
paradigms should be developed for GUI designs and
other usability aspects, for example form layouts, font
styles, color schemes, page flow guides, link/button maps
and menu structures. The tool should present templates
or guidelines that describe such solutions, to provide
developers with a sound starting point for development
and to reduce the amount of code they must write. Using
recurring solutions would also promote consistency and
thus familiarity for users.

The tool should also provide some way of verifying that
the pattern is implemented correctly, and that its form is
not broken as the HDA evolves during development.
Blewitt et al. (2005) discuss various existing automated
verification approaches, including behavioral definition,
metaprogramming definition and declarative constraints.

4.4 Tool input and data collection

In order to evaluate the usability of an application or to
promote good usability given a particular problem or
scenario, the tool needs to collect then interpret
information about various aspects of the application.
This information ranges from specific to general; from
details of the HDA's implementation at control level, to
user interaction sequences with the forms, to high level
descriptions of the problem domain.

4.4.1 GUI description

Table 1 shows examples of the type of information about
the GUI that the tool should obtain.

In a similar way to the way HTML describes the layout of

web pages, XML or other scripting languages can be used
to fully describe an HDA's interface. The tool should
include a parser to interpret such scripts and extract
relevant information for analysis.

Control / component Properties

Button Width, height, text font type
and size, position,
enabled/disabled, visible/not
visible

Table Width, height, position,
number of columns, width of
each column, data type for
each column, test font type
and size, enabled/disabled,
visible/not visible

Menu Number of items, greatest
depth (number of levels)

Dropdown list Width, height, position,
number of items

Table 1: GUI information examples

Such a script may be written manually (albeit tediously),
or alternatively the tool should be able to generate it
automatically using reflection on compiled code, in which
case the necessary information can be extracted without
the need for an intermediary script or a parser. However,
a human-readable representation of the GUI, such as in
the form of an XML document, could well be useful for
quick manual review or knowledge transfer.
Additionally, a script description allows for evaluation of
GUI designs that are yet to be implemented in code.

4.4.2 Recording user interaction sequences

The conventional method of capturing how a user
interacts with an HDA is to observe and video/audio-
record them using the HDA or an equivalent working
prototype. The time and resources required for recording
and subsequent analysis of the collected data makes this
one of the most costly processes in a usability evaluation.
Also, most tape mediums are adequate for displaying
images of people, but lack resolution capability to do so
for images of computer displays. Furthermore, test users
are also often distracted or intimidated by the presence of
observers, cameras and other recording equipment, and
do not perform as they normally would. An alternative
recording procedure is clearly necessary.

Lafleur (2001) describes an effective recording
alternative in the form of Direct-Digital Recording
(DDR) software, which operates within the computer
running the AUT. An equivalent should be practicable
for use on a handheld device, though additional care
should be taken to ensure that the DDR software does not
affect the performance of the AUT, particularly given the
smaller processing power of handhelds’. Because such
DDR software is likely to interact directly with the AUT
at code level, it should give developers greater flexibility
in customizing the recording process. For example, as
with conventional, serial tape systems the footage has to

be divided manually into clips corresponding to separate
tasks, a DDR system should allow developers to
programmatically specify which actions (or sequence of
actions) identify the beginning or end of a task, or to
ignore or highlight particular actions that the user
performed (such as ignore scrolling, and highlight when
the Help button is clicked).

Similarly to using scripts to describe a GUI, documenting
action sequences using a scripting language such as XML
would provide a readable and editable representation of
the data, allowing developers again to design action
sequences for evaluation without the need for working
prototypes. The schema should be comprehensive to
allow most if not all action types to be described, as well
as their properties and the details of how the actions relate
to each other, such as:

• Ordered and unordered collection of actions
• Any actions to be ignored
• Multiplicity / frequency of actions

A well structured schema would allow portability so that
the data can be used with different applications on
different platforms.

4.4.3 User behaviour and comments
The conventional recording practices by video provide
useful footage of user behaviour. Body language gives a
good indication of the user’s thoughts and feelings as
they attempt the tasks; frowning, pauses, uncertain
actions and other expressions of confusion or frustration
strongly suggest poor usability. Comments and thoughts
of the users themselves are also of course a good insight
into how usable the users found the AUT. Although
these tasks would undoubtedly be a huge challenge to
fully automate, they should still be included in the
usability evaluation of HDAs according to Lee and Grice
(2004) and thus the tool should aim to better support
them.

4.4.4 Task definitions

Providing some way for developers to input task
definitions would be a big challenge, since these range
broadly in scope and can be generic or very specific to a
particular HDA. For the purposes of templates or style
guides however, it should be sufficient to classify them in
a more generic sense. For example, the case study in
Section 2.1.1 may be classified a ‘data input form’, the
case study in Section 2.1.2 a ‘data view and selection
form’, and the case study in Section 2.1.3 a ‘text and
image display’ form.

4.5 Results presentation

To encourage the awareness of usability throughout the
development team, beyond just usability testing
specialists, the output of the tool should be meaningful
and useful to people in different roles and with varying
technical knowledge. For example, developers and
testing specialists would want to view both aggregate and
detailed statistics for analysis results, though code-level
references would be more relevant for the former than the

latter. Managers and sales personnel would find high
level aggregation statistics rather than detailed figures
more useful, and would likely be more interested in
qualitative aspects such as users’ feedback on aesthetics
and overall satisfaction. The tool should thus present
results from multiple perspectives and in ranging levels of
detail.

Most importantly though, is that the output is quick and
easy to interpret. This is essential to speed up the
evaluation process and therefore make it practical to
perform on an iterative basis. Graphical visualizations
such as graphs and other diagrams should be used where
possible, and critical issues emphasized to draw attention.
There should also be a clear indication of the next step
forward, in the way of modification suggestions to reduce
the number of warnings or test failures.

Finally, analysis output should be available in a range of
formats, so that it can be processed by other applications
such as for printing, archiving or further analysis.

5 HUIA testing framework

This section describes the Handheld device User Interface
Analysis (HUIA) testing framework, an automated
usability testing tool prototype that we have developed.
HUIA is described in more detail in Baker et al. (2006).
The tool was designed to meet some of the functional
requirements discussed above.

The following sections describe the main functionalities
of the HUIA testing framework.

5.1 Actions recorder and editor

The Recorder is deployed on the handheld device running
the AUT. Its implementation is centered on its
registration as a listener on the components of the form,
allowing it to keep track of events and the associated
components as they happen (such as clicks, scrolls and
drags). This information is recorded in an XML
document, an Actual Action Script (AAS), as shown in
Figure 4.

<input control="textBox_lastName" value=
"das" time="24" type= "TextBox"/>

<click control="radioButton_male" value=
"True" time="25" type= "RadioButton"/>

<click control="button_update" time="30"
type= "Button"/>

Figure 4: AAS example

The recorder concept is similar to that in the EDEM
system, which collects usage data to aid the development
process as described in Hilbert et al. (1998). The
Recorder is lightweight and operates behind the scene, so
that the performance of the AUT is unaffected, and the
test user is likely to interact with the AUT as they would
normally. Currently, the Recorder captures only a subset
of user interactions; in particular, scrolling is not able to

be recorded because it is not currently supported by .NET
Compact Framework 2.0.

An Expected Action Script (EAS) is an extension to the
AAS, documenting the interactions with a given form as
performed by the developer, and thus describes the
intended usage of the interface.

Figure 5 shows an example portion of an EAS:

<input control="textBox_firstName"
value= "John" type= "TextBox"
mult="1"/>

<click control="radioButton_male"
value= "True" type= "RadioButton"

Figure 5: EAS example

The EAS also documents other information for use in a
comparison analysis (see Section 5.2 Comparison
analysis), such as actions to ignore, optional actions and
ordering of actions, since in reality there may be different
ways of achieving the same task.

There are currently two ways of creating and editing an
EAS. Firstly, developers can use the tool’s built-in EAS
editor, where the form is loaded and displayed, and the
EAS created as the developer interacts with the form.
The GUI of the editor also allows developers to specify
the various EAS properties. Alternatively, developers
can create and edit EASs as XML files directly, using any
text editor.

5.2 Comparison analysis

This analysis aims to evaluate some aspects of
navigational burden by comparing, for a given task, how
the developer expects a form to be used with how a test
user actually uses it, and highlights the differences
between the two. Specifically, an algorithm attempts to
match an AAS to a specific EAS. More than one AAS
can be compared with a single EAS, such as in the case of
having multiple test users attempting the same task.

Figure 6 presents a screenshot of a set of comparison
results.

5.3 Assertions analysis

Assertions are essentially checks that evaluate to either
true or false, and the tool’s assertion analysis involves
value assertions on a collection of usability metrics, based
on upper and lower threshold values. Developers may
use the tool’s set of default threshold values, or specify
their own to better suit the particular application. Each
type of assertion can also be disabled independently of
the others, and assertion settings are preserved across
tests or iterations. Assertion results are presented in
tables with rows color coded depending on the result, in a
similar fashion to those of existing unit testing
frameworks, such as JUnit. Three types of assertions
exist, as described in the following sections.

Figure 6: Comparison analysis results

5.3.1 Form assertions

These assertions are performed on the compiled .NET
forms of the loaded assembly, and are concerned with
the static properties of a form, discussed in Section 4.1
GUI Evaluation. For example, an HDA can be
asserted to ensure that the maximum number of font
types is not exceeded, or that a form has the minimum
percentage of white space.

5.3.2 Action script assertions

Action script assertions are performed on EAS and
AAS descriptions, and assess the usage of a form by
asserting that the amount of each type of user
interaction falls within an acceptable range. Examples
of threshold values that an action script can be asserted
against include:
 Maximum number of invocations per component

(for example, clicks, text inputs).
 Maximum time taken/passed.

5.3.3 Comparison result assertions

Comparison result assertions are performed on the
summary statistics for comparisons, which include:
 Percentage deviation: The percentage of actions

that were deviations, or mistakes.
 Largest percentage deviation magnitude: The

size (as percentage of total number of actions) of
the largest deviation.

 Percentage of incomplete comparisons: The
percentage of users that failed to complete the
task.

Both the action script and comparison results
assertions evaluate the HDA’s navigational burden.

5.4 Hotspots analysis

This analysis shows the frequency of use for each
component on a form for a given task; the form is
displayed with the components color coded according
to the amount of activity they received for a particular
interaction type, for example, the number of clicks a
component received.

Figure 7 shows part of a screenshot for the Hotspot
analysis. The more intense the red, the greater the
amount of activity a component received for the given
interaction type. Uncolored or white components are
those that received no activity. This analysis also
examines the HDA’s navigational burden.

Figure 7: Hotspots analysis results

6 Related work

In this section, the effectiveness of some existing
software designed to automate or improve the
efficiency of usability testing is examined. The
various tools discussed are typical of the types of tools
currently available commercially.

6.1 Tool descriptions

6.1.1 Morae

Morae is a commercial usability testing software
package produced by TechSmith, and consists of four
modules. The Recorder is installed on the test user’s
machine and records screen and system activity; the
Remote Viewer allows testers to remotely control the
Recorder and to view, hear and annotate the recordings
in real time; the Manager Analysis module allows
testers to isolate segments of the recording, and

provides a search editor to quickly locate user actions.
Metrics such as time on task, number of clicks or pages
viewed and delay times are also automatically
calculated, based on time-stamped and indexed events
on the video; the Manager Presentation module is
used to edit, annotate (textual or audio) and title video
clips, for use in Morae or in other programs (such as
Microsoft PowerPoint), and optionally with videos not
recorded with Morae.

In many respects, Morae successfully automates and
significantly reduces the cost of conducting and
analyzing a user test by facilitating more efficient
collection and usage of recorded data. Although some
calculation of usability metrics is provided, the core of
the package is still very much concerned with the
making and manipulation of recordings, with the tester
left responsible for the bulk of the analysis and
interpretation of data. For example, the tester must
still sift through the recordings and decide which parts
to highlight and further analyze, or must determine the
significance of twenty mouse clicks compared to
fifteen.

Furthermore, Morae is generally intended for use
towards the end of the development process with a
working prototype or even the completed product;
making appropriate modifications following the test at
this stage is often more time-consuming and labour
intensive than if they were performed during
development.

6.1.2 Web based user testing tool

Bailey and Bailey (2003) describe a usability testing
tool that facilitates user testing of websites over the
internet. Special software is installed on the test user’s
computer, to facilitate the setup of tests, post-test
software removal, data collection (such as
questionnaire answers, typed input, links navigated,
user comments, and times for clicking, thinking, page
loading) and transmission of results to a central server
for analysis. The tool also generates reports that
comply with the Common Industry Format for
Usability Test Report (v2.0, May 2001).

This tool is also successful in automating some
processes in user testing, and has the advantage of
being online, allowing test users to download the
required software. However, it does not capture user
behaviour, which is an important output of user testing,
and like Morae still requires the tester to perform the
bulk of the evaluation.

6.1.3 Watchfire Bobby (WebXACT)

Watchfire Bobby is a very commonly used web
accessibility testing tool, of which a restricted version
is available for free use online as WebXACT. Bobby
traverses a website (both local pages as well as web
pages behind a firewall) and checks if each page meets
various accessibility requirements, such as ‘readability
by screen readers, the provision of text equivalents for
all images, animated elements, audio and video

displays’. The checks are based on an assessment of
the website’s HTML against a set of accessibility
guidelines, including Section 508 of the US
Rehabilitation Act and the W3C's Web Content
Accessibility Guidelines (WCAG).

Following a scan, results are presented in tabular form,
indicating passes, warnings, failures, and errors for the
different requirements. General properties and a
metadata summary for the pages are also presented.

Bobby is much more lightweight and quick to use than
tools such as Morae, and could easily be incorporated
into earlier stages of the development process.
However, it focuses on quantitative and other static
data, with virtually no attention paid to how the
website’s interface is actually used.

6.2 Tool effectiveness

Table 2 describes how well each tool meets the
functional requirements discussed in Section 4
Functional requirements. The legend used for the table
follows:

M = Morae = Achieved

WB = Web based tool o = Achieved to some extent

WX = WebXACT = Not achieved

H = HUIA framework

Criteria M WB WX H

GUI description input o

User actions input
(recorder)

User behaviour and
comments input

Task definitions input

GUI evaluation

Navigational burden
analysis: form layout O

Navigational burden
analysis: user actions O

User behaviour and
comments analysis O O

Patterns and templates

Results presentation o

Table 2: Effectiveness of existing tools

It can be seen that both Morae and the web based
testing tool focus primarily on automating some
processes of an actual user test, but neither attempt to
perform any evaluations. This means that testers must
still perform this work themselves. WebXACT
assesses the GUI, but does not take into account other

aspects. The HUIA testing framework on the other
hand attempts to evaluate most aspects of usability.

It should be noted however that none of these tools
capture the description of tasks that the HDA was
intended to support, nor provide patterns of proven
paradigms that promote good usability.

7 Conclusions

Usability is very important for handheld device
applications, because those with poor usability can
lower the productivity of its users and incur costs for
businesses, thus undermining the value of a mobile
business solution. Automating aspects of usability
testing can improve testing efficiency and better
facilitate its integration with the development process.
Ideally, an automated usability testing tool should
capture a range of inputs, perform analyses on
different aspects of usability, present results clearly, be
simple and flexible to use, and able to be used
throughout development.

None of the existing tools discussed meet all the
requirements described. Notably however, none of the
tools are able to suggest good usability solutions, they
can only perform evaluations. Of the tools discussed,
the HUIA testing framework addresses most
requirements, though still requires future development,
which may include GUI consistency checking such as
that outlined in Mahajan et al. (1997), and the
inclusion of standard interface description languages
such as those described in Souchon et al. (2003).

8 References
Ahmad, R.; Zhang Li; Azam, F. (2006): Measuring

Navigational Burden. Fourth International
Conference on Software Engineering Research,
Management and Applications, pp.307 – 314.

Bailey, R; Bailey, K (2003): Expediting the Usability
Testing Process. 13th Annual Conference of the
Usability Professionals’ Association.

Baker, S; Au, F; Warren, I; Dobbie, G. (2007): HUIA:
A Tool for Automated Usability Testing, UoA-
SE-2007-1, University of Auckland.

Blewitt, A.; Bundy, A.; Stark, I. (2005): Automatic
Verification of Design Patterns in Java. 20th
IEEE/ACM International Conference on
Automated Software Engineering, pp. 224 – 231.

Hilbert, D., Robbins, J., Redmiles, D. (1998): EDEM:
Intelligent Agents for Collecting Usage Data and
Increasing User Involvement in Development,
International Conference on Intelligent User
Interfaces, ACM Press, pp. 73-76.

Institute of Electrical and Electronics Engineers
(1990). IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer
Glossaries. New York, NY.

Ivory, M. and Hearst, M. (2001): The State of the Art
in Automated Usability Evaluation of User

Interfaces, ACM Computing Surveys, 33 (4), pp.
173-197.

Kane, D. (2003): Finding a place for discount usability
engineering in agile development: throwing down
the gauntlet. IEEE Proceedings of the Agile
Development Conference, pp. 40 – 46.

Kurosu, M.; Kashimura, K. (1995): Determinants of
the apparent usability. IEEE International
Conference on Systems, Man and Cybernetics,
Vol. 2, pp. 1509 – 1514.

Lafleur, A. (2001): Camera-less Video: Usability Test
Recording and Presentation in Direct Digital
Form. Tenth Annual Conference of Usability
Professionals’ Association.

Le Peuple, J, Scane, R. (2003): User Interface Design.
Crucial, a division of Learning Matters Ltd.

Lee, K; Grice, R. (2004): Developing a New Usability
Testing Method for Mobile Devices. Professional
Communication Conference, pp. 115 – 127.

Mahajan, R. and Shneiderman, B. (1997): Visual and
Textual Consistency Checking Tools for
Graphical User Interfaces. IEEE Trans. Softw.
Eng. 23(11), pp. 722-735.

Moe, K; Dwolatzky, B; Olst, R. (2004): Designing a
Usable Mobile Application for Field Data
Collection. IEEE AFRICON. Pp. 1187 – 1192.

Morae: Usability Testing for Software and Websites.
http://www.techsmith.com/morae.asp, visited 8th
March, 2006.

Nielsen, J. (1993): Usability Engineering. Academic
Press, Inc.

Patton, R. (2006): Software Testing. 2nd edition. Sams
Publishing.

Scholtz, J. (2006); Usability Evaluation.
http://www.itl.nist.gov/iad/IApapers/2004/Usabili
ty%20Evaluation_rev1.pdf, visited 9th March.

Nathalie Souchon, Jean Vanderdonckt (2003): A
Review of XML-compliant User Interface
Description Languages. 10th International
Workshop on Interactive Systems. Design,
Specification, and Verification, pages 377-391.

Spolsky, J. (2001): User Interface Design for
Programmers. Apress. New York, NY.

Watchfire: Accessibility Testing.
http://www.watchfire.com/products/webxm/bobb
y.aspx, visited 8th March, 2006.

Weiss, S. (2005): Handheld Usability: Design,
Prototyping, & Usability Testing for Mobile
Phones. Proceedings of the 7th Conference on
Human-Computer Interaction with Mobile
Devices and Services.

	1 Introduction
	1.1 Usability
	1.2 Usability testing
	2 Motivation
	2.1 Case Studies
	2.1.1 Case study 1: Registration form
	2.1.2 Case study 2: Products order placement
	2.1.3 Case study 3: Retailer home page

	2.2 Automating usability testing

	3 Objectives
	
	4 Functional requirements
	4.1 GUI evaluation
	4.2 Navigational burden
	4.2.1 Form layout
	4.2.2 User interaction sequences

	4.3 Patterns and templates
	4.4 Tool input and data collection
	4.4.1 GUI description
	4.4.2 Recording user interaction sequences
	4.4.3 User behaviour and comments
	4.4.4 Task definitions

	4.5 Results presentation

	5 HUIA testing framework
	5.1 Actions recorder and editor
	5.2 Comparison analysis
	5.3 Assertions analysis
	5.3.1 Form assertions
	5.3.2 Action script assertions
	5.3.3 Comparison result assertions

	5.4 Hotspots analysis

	6 Related work
	6.1 Tool descriptions
	6.1.1 Morae
	6.1.2 Web based user testing tool
	6.1.3 Watchfire Bobby (WebXACT)

	6.2 Tool effectiveness

	7 Conclusions
	8 References

