
Automatic Derivation of Loop Termination Conditions to Support
Verification

Daniel Powell

School of Information Technology
Griffith University, Gold Coast,

Queensland, Australia,
Email: d.powell@sqi.gu.edu.au

Abstract

This paper introduces a repeatable and constructive approach
to the analysis of loop progress and termination conditions in

imperative programs. It is applicable to all loops for which
a variant function can be defined using only loop guard vari-

ables. The approach involves the algorithmic derivation of loop
progress and termination conditions directly from the code it-
self. The derivation of these conditions has been automated

in a prototype tool. The conditions yielded by the automated

algorithms are useful for reasoning about correctness in verifi-
cation based code inspections as well as for the documentation

and assessment of program preconditions. Unlike existing for-

mal approaches to termination investigation, which are reliant
on the presence of formal specifications, this approach is appli-

cable to undocumented programs as well as formally specified

programs. We present the algorithms and formal methods im-
plemented in a prototype tool for deriving loop progress and

termination conditions and use the output generated by the
tool to illustrate its use in supporting verification and termi-

nation defect correction.

Keywords: loop termination, automated formal meth-
ods, verification

1 Introduction

The verification of imperative programs involves
proving a program satisfies its specification if it ter-
minates, and proving that it terminates (Floyd 1967,
Hoare 1969). A previous paper (Powell 2002a) dealt
with the derivation of information to support human
and mechanical reasoning about partial correctness.
This paper deals with derivation of semantic infor-
mation to support reasoning about loop progress and
termination.

Techniques for proof of termination of impera-
tive programs (Floyd 1967, Manna 1974, Alagic &
Arbib 1978, Backhouse 1986, Dijkstra & Scholten
1989) are well understood. Two conditions must be
met for a loop to terminate: (i) The loop must make
progress toward establishing the termination condi-
tion described by the loop guard under any initial con-
ditions allowed by the precondition, and (ii) the loop
guard must be strong enough to force termination af-
ter a finite number of iterations. This paper describes
a mechanised approach to yielding loop progress and
termination conditions. These conditions are useful
to support reasoning about termination.

Existing techniques for investigating termination
are generally based on investigating conditions on a
suitable variant function(Alagic & Arbib 1978) or

Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Seventh Australasian Computer Sci-
ence Conference (ACSC2004), Dunedin, New Zealand. Confer-
ences in Research and Practice in Information Technology, Vol.
26. V. Estivill-Castro, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

on the application of the weakest precondition predi-
cate transformer(Dijkstra & Scholten 1989). Weakest
precondition techniques are primarily used for pro-
gram derivation. For this reason the majority of
comparative discussion in this paper concerns only
variant function techniques. We propose a construc-
tive technique that yields loop progress and termina-
tion conditions directly from code, without reliance
on the generation or provision of a variant function.
This is achieved by applying the strongest postcondi-
tion predicate transformer (sp)(Back 1988, Dijkstra &
Scholten 1989, Gannod & Cheng 1996, Powell 2002b)
to the code under a precondition (true if none is spec-
ified) to yield a specification to which heuristics are
applied to investigate properties that must hold if
progress is to be achieved and termination guaran-
teed. The calculation of the strongest postcondition
has been sufficiently automated(Powell 2002a, Powell
2002b) to allow these heuristics to be mechanically
applied.

As an example, a prototype1 implementing the
techniques presented in this paper, yields the progress
and termination conditions in Figure 1 for the follow-
ing loop intended to sum every second array element
in an array from element 0 to n.

{true}
procedure sum2 (a : seq Int, n : Int, s : Int ) {

i := 0 ;
s := 0 ;
do i 6= n →

i := (i + 2) ;
s := (s + a [i])

od

}

The conditions presented in Figure 1 are useful for
reasoning about termination. In this case the gener-
ated report states that the loop will only progress
toward termination when i < n and terminate when
n? (the actual parameter value for the formal param-
eter n) is divisible by 2. The program precondition
true does not ensure that n is a positive number di-
visible by 2. The procedure is, therefore, reasoned to
be defective. This approach to reasoning about ter-
mination is constructive. That is, we are now armed
with information that allows us to either strengthen
the precondition or modify the loop guard to correct
the defect.

This paper presents theorems and heuristics for
generating these termination and progress conditions
and discusses their use in supporting verification and
correcting resulting defects. The approach presented
in this paper is applicable wherever variant function

1The prototype architecture is discussed in detail in (Powell
2002b). The prototype produces a report in LATEX format. Any tool
output, referred to in this paper has been cut and paste directly
from this generated output.



For the loop
i := 0;
do i 6= n →

i := (i + 2) ;
s := (s + a [i])

od

We calculate the iterative-form invariant

Rk+1 ≡
„

ak+1 = ak ∧ nk+1 = nk ∧ ik 6= nk+1 ∧ k ∈ N ∧ ik+1 = (2 + ik)∧
sk+1 = (sk + a [ik+1])

«

Loop Progress Conditions
The loop will progress in an iteration, when the following holds at commencement of that iteration:`

(i < n)
´

Loop Termination Conditions
The loop will terminate, iff the following is satisfiable:

∃k ∈ N (2× k = n?)

Figure 1: Loop progress and termination conditions yielded by the tool for sum2

techniques can be applied. The remainder of this pa-
per is organised as follows. Section 2 provides for-
mal methods and specific notational background and
discusses related variant function techniques for in-
vestigating loop termination. Section 3 presents a
technique for deriving loop progress conditions and
presents small examples with reports generated by
the prototype tool. In section 4 we present rules
and a theorem for investigating termination satisfi-
ability. Section 5 discusses conclusions and future
directions of this research. The generation of loop
progress and termination conditions has been imple-
mented in a prototype tool. Relevant sections of the
reports generated by the tool are presented through-
out this paper for the worked examples.

2 Preliminaries

Examples are presented in this paper using a syntax
resembling Dijkstra’s Guarded Commands Language
(Dijkstra 1975).

Substitution
Given any formula F , F [y/x] denotes the formula

obtained from F by replacing all free occurrences of
x in F by y, where x and y are expressions.
For example, (x = y + b ∧ y = a) [a/y] ≡
(x = a + b ∧ a = a) ≡ (x = a + b).

We extend the substitution function to operate on
an expression e, such that e[y/x] denotes the expres-
sion e with all free occurrences x replaced by y.

The Free Variable Function
The free-variable function, V, takes as its argu-

ment, F , a formula, term or program, and returns
the set of free variables contained in F , such that:

V(F ) = {x|x occurs in F and x is a free variable}
For example, V(x > 3 ∧ y ≤ x) = {x, y}.

Notation: Parameter Notation
For any formal procedure parameter, p, we use p?

to denote the actual parameter value of p at invoca-
tion of the procedure.

Notation: Iteration Dependence
For any variable, v, vk represents the value of v on

the kth iteration of a loop. v0 represents the value
of v on initialisation of a loop. For any formula, F ,

Fk represents the value of F on the kth iteration of
a loop. F0 represents the formula F on initialisation
of a loop. Fi,k represents F on the kth iteration of
a loop executing through path i of the loop body,
where there is more than one path through the loop.
For any function, f , fk represents the value of f on
the kth iteration of a loop. f0 represents the value of
f on initialisation of a loop. fi,k represents the value
of f on the kth iteration of a loop executing through
path i of the loop body, where there is more than one
path through the loop.

That is, given any formula or function, P , Pk ≡
P [vk/v], for all variables v ∈ V(P ).

Difference Equations
An equation which expresses a value of a term in a

sequence as a function of other terms in the sequence
is called a difference equation or recurrence relation in
iterative form. An equation which expresses the value
of a term vk+1 of the sequence 〈vn〉 in terms of the
value of the term vk is called a first-order difference
equation. If for a given difference equation, we can
determine an explicit formula for vk, where k ≥ 0, in
terms of v0, then we can solve the difference equation.
If such a formula exists, then we will call it the solu-
tion to the difference equation and denote it v(k). For
example, assuming v0 = 0 and having vk+1 = vk + 1.
then v(k) = v0 + k = k. So, vk+1 = v(k + 1) = k + 1.

It is assumed that readers are familiar with first-
order logic. If they are not, we direct them to
(Dromey 1989) for a good discussion on logic for pro-
gram design.

2.1 The strongest postcondition predicate
transformer

In order to automate the derivation of loop progress
and termination conditions from code, a mechani-
cal technique for deriving semantics from individ-
ual statements is needed. To provide the required
mapping from syntax to semantics, the predicate cal-
culus strongest postcondition predicate transformer
(Back 1988, Dijkstra & Scholten 1989, Gannod &
Cheng 1996, Powell 2002b) is used. The following
definitions for sp have been implemented in the pro-
totype tool:



• sp for assignment (Powell 2002b)

sp(Q, x := E) ≡ (Q[v/x] ∧ x = E[v/x])

where Q ⇒ x = v. If x is not initialised prior to
assignment, then we let v = x0.

• sp for selection (Dijkstra & Scholten 1989)

sp (Q, if C1 → S1 [] . . . []Cn → Sn fi)
≡ sp (Q ∧ C1, S1) ∨ . . . ∨ sp(Q ∧ Cn, Sn)

• sp for iteration (Dijkstra & Scholten 1989, Pan
1994)

sp(Q, do G → S od) ≡ ¬G∧(Q ∨ P1 ∨ . . . ∨ Pm)

where m is a positive integer representing the
number of iterations, and P1 = sp(Q ∧ G, S)
and Pi+1 = sp (Pi ∧G, S) for 0 < i ≤ m.

• sp for sequential composition (Dijkstra &
Scholten 1989)

sp (Q, S1;S2) ≡ sp (sp (Q, S1) , S2)

The application of the definition given above for
calculating sp for iterative constructs is difficult, if not
impossible, in practice, because, although the calcu-
lation depth, m, is bound, it is not fixed. We avoid
this problem by deriving an iterative-form invariant
describing the state changes of all accessible variables
on any arbitrary iteration of a loop.

2.2 The iterative-form invariant

The iterative-form loop invariant describes the state
changes resulting from a single, arbitrary k + 1st it-
eration of a loop (k ≥ 0). It specifies values after a
k +1st iteration for all variables in the variable set of
the loop initialisation, loop body and loop guard.

To model state change on an arbitrary iteration
a description of initial state must be provided. The
description of initial states can be derived directly
from the code. For any loop, do G → S od, execut-
ing under the precondition Q, we denote the weakest
conditions required for a k + 1st iteration by Qk+1
and calculate as

Qk+1 = (k ∈ N ∧Gk ∧ vk+1 = vk ∧ C) (1)

for all free-variables v ∈ V(Q) ∪ V(S) ∪ V(G), and
where C denotes the conjunction of all predicates in
Q involving only constants or variables not changed
by G or S. By definition, a predicate involving only
constants or variables not changed by G or S is invari-
ant and must, therefore, hold at the beginning of any
arbitrary iteration. The condition Qk+1 states that
the values of the loop guard variables immediately
prior to the k + 1st iteration (the values immediately
after the kth iteration - initialisation if k = 0) satisfy
the guard. Qk+1 also states that the values of all pro-
gram variables remain unchanged between the end of
the kth iteration (initialisation if k = 0) and the com-
mencement of the k + 1st iteration. This definition
only applies for loops where the loop guard has no side
effects in terms of updating program variables. Loop
guards involving procedures with side effects are dealt
with in (Powell 2002b). The ability to deal with such
guards has not yet been implemented in the prototype
tool, and is not addressed in this paper.

An iterative-form loop invariant can be calculated
by application of the strongest postcondition pred-
icate transformer. For any loop {Q} do G → S

od, we calculate the iterative-form invariant, denoted
Rk+1, on an arbitrary k + 1st iteration by

Rk+1 = sp (Qk+1, S) (2)

It can be considered that all statements in S when ex-
ecuted on an arbitrary k + 1st iteration involve only
k + 1st iteration variable instances. According to the
notation presented above, a reference to a variable v
in the loop body S on a k + 1st iteration is denoted
vk+1. In order to automate the calculation of (2) us-
ing the existing definitions for sp, we need to actually
implement the rule

Rk+1 = sp (Qk+1, S [vk+1/v]) (3)

for all variables v ∈ V(S).
Consider the following simple array initialisation

program:

{a ∈ seq N ∧N > 0}
i := 0;
do i < N →

a[i] := i;
i := i+1;

od

The loop precondition is calculated as

Q ≡ (a ∈ seq N ∧N > 0 ∧ i = 0)

The initial conditions on an arbitrary k + 1st itera-
tion, calculated by (1), are

Qk+1 ≡ (k ∈ N ∧ ik < N ∧ ik+1 = ik ∧ ak+1 = ak ∧N > 0)

Now, Rk+1, the iterative form invariant after the
k + 1st iteration, by (3), is

Rk+1

≡ sp (Qk+1, a[i]:=i;i:=i+1)

≡ sp
“
Qk+1, a [ik+1]k+1 := ik+1; ik+1:= ik+1+1

”
≡

„
k ∈ N ∧N > 0 ∧ ik < N∧
a [ik]k+1 = ik ∧ ik+1 = ik + 1

«
The iterative-form invariant forms the basis of the

loop progress and termination investigation tech-
niques presented in this paper as well as the basis
for verification and invariant generation techniques
presented in (Powell 2002a) and (Powell 2002b).

2.3 Related Work

The work most closely related to this approach in-
volves the use of variant functions for investigating
conditions for loop termination (Floyd 1967, Manna
1974, Alagic & Arbib 1978).

Variant Function techniques are based on well-
founded sets (Manna 1974). A well-founded set is
a partially ordered set with no infinite decreasing se-
quences. In a proof of termination, the verifier is re-
quired to identify a variant function, t, which maps
program variables onto the well-founded set. The set
of natural numbers with the ordering, <, is often cho-
sen as this well-founded set. The variant function t,
is suitable when t evaluated at the start of any iter-
ation maps to a natural number that is greater than
t evaluated at the end of the iteration, for every it-
eration in which progress is made toward termina-
tion. Loops fail to terminate when the statements in
the loop body fail to decrease the variant function, or
when the loop initialisation, loop guard and loop body
imply that the variant is not bound to a well-founded
set. In summary, loop progress and termination can
be investigated by exploiting the formal properties



of a variant function. This technique is reliant on the
provision or calculation of a suitable variant function.

Denoting the variant function by t, where t :
P V (G) → N, tk represents the function t evaluated
at the end of a kth iteration.

Expanding on the termination rules of (Floyd
1967, Manna 1974, Alagic & Arbib 1978), we can de-
fine rules for progress based on an identifiable variant
function, t as follows:

tk, tk+1 ∈ W ∧ tk+1 < tk (4)

where W is the well-founded set (N, <), and k ∈ N.
The variant conditions for loop progress can be

stated more simply as

0 ≤ tk+1 < tk, where k ∈ N. (5)

This states that the variant function, t, evaluates to a
natural number greater than zero at the start of every
iteration of a loop and decreases with every iteration,
but never below 0.

Given a suitable variant function, loop progress
and termination can be investigated by evaluating the
variant conditions (5) under Rk+1. This approach to
deriving loop progress and termination conditions is
described in detail in (Powell 2002b). It has the disad-
vantage that a suitable variant function is required to
be either generated or provided. In practice, a suit-
able variant function is often not provided and the
generation of variant functions is non-trivial, requir-
ing the derivation of a loop invariant to determine
suitability (Manna 1974, Powell 2002b). This is due
to the fact that for a variant function to be suitable,
it must be implied by the invariant. If this can’t be
proved, then a verifier can not be sure that the vari-
ant function being used for termination analysis is
suitable. The remainder of this paper discusses an
approach to investigating loop progress and termina-
tion in the absence of a variant function.

3 Investigating Loop Progress Without a
Variant

In this section, we present a mechanisable technique
for deriving loop progress conditions that is not re-
liant on the provision or calculation of a variant func-
tion.

The theory is introduced with simple examples
where the loop guards are literals2. We extend this
approach to deal with more complex guards at the
end of this section.

For any loop, {Q} do G → S od, where G is a
literal, ¬G can be written as an equality v = w, where
v and w are expressions possibly involving the ad-
dition of an introduced constant. For example, the
negation of the loop guard i < j (i ≥ j) can be writ-
ten as i = j + D, where D ≥ 0, which is in the form
v = w. We introduce a constant, C, such that on ter-
mination C = v = w and state that loop can progress
toward this state with every iteration only when the
difference between v and C or w and C decreases with
each iteration of the loop.

For a loop with termination condition C = v = w,
where C is a constant and v and w are expressions in-
volving only loop guard variables and introduced con-
stants, we present the possibilities for loop progress
on a number line in Fig. 2.

The sub-figures in Fig. 2 are annotated with pred-
icates that describe changes to v and w that must be
possible on successive, arbitrary, iterations of a loop,

2We only consider literals constructed with the predicate sym-
bols <,≤, =, >,≥ and their negations. Guards constructed with
6= can only be handled by the techniques presented in section 4.

if the corresponding loops are to make progress. For
example, Fig. 2(c) states that both v and w must po-
tentially change with every iteration. If the changes
to v and w occur in two different paths through the
loop body, then both paths must be reachable on
an arbitrary iteration. At least one of these possi-
ble changes must actually occur on every iteration if
progress is to be made toward termination on every
iteration.

Pan and Dromey(Dromey & Pan 1996) present a
normal form for loops known as a Multi-Branching
Statement (MBS) form, in which all branches are ac-
cessible on every iteration (Dromey & Pan 1996). We
assume that loops have been normalised to this form
so that if progress toward termination is to occur,
then at least one path through the body of the loop
should ensure progress is made on any iteration.

Analysing further the diagrammatic representa-
tion of loop progress in Fig. 2 we identify the fol-
lowing conditions that must be met if progress is to
be possible on every iteration of a loop(Powell 2002b).
Cancelling out the references to the constant C, the
loop body must ensure that one of the conditions in
Figure 3 holds on any iteration in order for progress
to be achieved:

PC1 = (vk < wk ∧ vk < vk+1 ∧ wk+1 < wk)
PC2 = (wk < vk ∧ wk < wk+1 ∧ vk+1 < vk)
PC3 = (vk < wk ∧ vk < vk+1 ∧ wk+1 = wk)
PC4 = (wk < vk ∧ wk < wk+1 ∧ vk+1 = vk)
PC5 = (vk < wk ∧ vk = vk+1 ∧ wk+1 < wk)
PC6 = (wk < vk ∧ wk = wk+1 ∧ vk+1 < vk)

PC7 =
(

vk < wk ∧ vk+1 ≤ vk ∧ wk+1 < wk∧
vk − vk+1 < wk − wk+1

)
PC8 =

(
wk < vk ∧ wk+1 ≤ wk ∧ vk+1 < vk∧
wk − wk+1 < vk − vk+1

)
PC9 =

(
vk < wk ∧ vk < vk+1 ∧ wk ≤ wk+1∧
wk+1 − wk < vk+1 − vk

)
PC10 =

(
wk < vk ∧ wk < wk+1 ∧ vk ≤ vk+1∧
vk+1 − vk < wk+1 − wk

)

Figure 3: Required Loop Progress Conditions

The conditions defined in Fig. 3 rely on the com-
parison of variables on successive loop body itera-
tions. We use the iterative-form invariant, Rk+1,
to evaluate the progress conditions for a loop. The
iterative-form invariant describes the relationship be-
tween k + 1st and kth iteration instances of all vari-
ables yielded from each path through the loop body.
In order to establish the initial conditions required
for loop progress, denoted PC, we can simplify the
following for loop with N > 0 paths and an iterative-
form invariant Rk+1:

PC = Rk+1 ∧
10∨

i=1

(PCi) (6)

This produces a disjunctive predicate with refer-
ences to both k + 1st and kth iteration variable in-
stances. As we wish to discover only the conditions
required for progress at the beginning of any itera-
tion, we attempt to substitute out all references to
the k + 1st iteration variable instances. This is sim-
ple due to the nature of the iterative-form invariant,
Rk+1. For every variable, x, in the loop guard, loop



wvC

(a) C < vk < wk ∧ vk+1 <
vk ∧ wk+1 < wk (decreasing
toward some constant)

v w C

(b) vk < wk < C ∧ vk+1 >
vk ∧ wk+1 > wk (increasing
toward some constant)

wv C

(c) vk < wk ∧ vk < C < wk ∧
vk < vk+1 ∧ wk+1 < wk

wv
C

(d) vk+1 = vk = C ∧ vk <
wk ∧ wk+1 < wk

wv
C

(e) wk+1 = wk = C ∧ vk <
wk ∧ vk < vk+1

Figure 2: Possible state changes for loop progress such that on termination v = w = C.

body and loop precondition, there will be a corre-
sponding equality in each disjunct of Rk+1 of the form
xk+1 = E, where E is an expression. These equalities
are, therefore, maintained in each of the disjuncts of
PC calculated by (6). We can remove all references to
k + 1st iteration variable instances from the progress
conditions, PC, by the substitution

PCi [E/xk+1] , for all x ∈ V(Q) ∪V(G) ∪V(S).
(7)

where PCi =⇒ xk+1 = E, for each disjunct, PCi,
of PC.

The iteration count k has been selected arbitrarily,
and so PC after (7) defines the progress conditions at
commencement of any k +1st iteration (by the law of
universal generalisation). As there are no references
to any variable instances other than kth iteration in-
stances and constants, we can make PC more read-
able by dropping the variable instance subscripts and
state that PC must hold at commencement of any it-
eration for progress to occur. That is, for progress to
occur the satisfiability of PC at the commencement
of any iteration is invariant.

To summarise, we have the following theorem.

Theorem 1. [Progress Conditions Method] For any
loop, {Q} do G → S od, apply the following steps:

1. Calculate the iterative form invariant by (2).

2. Identify expressions v and w such that on termi-
nation v = w.

3. Calculate the progress conditions, PC, by (6).

4. Simplify the progress conditions, by applying (7)
to substitute equal expressions for all k + 1st it-
eration variable instances. Drop all k subscripts
from the simplified progress conditions.

5. Calculate the failure to progress conditions, FP
by negating PC.

Then, PC describes the conditions required for loop
progress on any iteration, FP describes the condi-
tions under which the loop will fail to progress to-
ward termination. If the conjunction Q ∧ FP is sat-
isfiable then there are initial conditions allowable un-
der the given precondition that will result in S failing
to progress toward termination. The states satisfying
Q∧FP describe these initial conditions. Conversely,
the progress conditions PC, conjoined to the precon-
dition Q, describes the required initial conditions in

order for S to progress toward achieving termination
with every iteration. Q ∧ PC is, therefore, the weak-
est precondition, and PC is the weakest invariant re-
quired for loop progress on every iteration. Condi-
tions for progress or termination, TC, are defined by
TC = PC ∨ ¬G.

Corollary 1. Any failure to terminate defects can
be corrected in one of the following ways: (1) By
strengthening the precondition from Q to Q ∧ (¬G ∨
PC), if acceptable, (2) By modifying S so that
progress is possible under the precondition Q, or (3)
By strengthening the guard to G ∧ PC.

As implied by corollary 1, not only are the de-
rived conditions useful for reasoning about correct-
ness, they are also constructive in that they can be
used to support the correction of loop progress related
defects.

Defect Correction by Strengthening the Pre-
condition. Theorem 1 states that Q ∧ PC is the
weakest precondition, and PC is the weakest invari-
ant required for loop progress on every iteration.
Based on this, we can correct any failure to progress
defects by strengthening the precondition to Q∧PC.
To ensure that the precondition implies that either
progress will be achieved or termination achieved we
can strengthen the precondition to Q ∧ (¬G ∨ PC).
For languages that allow assertions, we can always en-
sure progress by asserting PC as an invariant in the
body of the loop. These program contract techniques
for defect correction are not always desirable as they
may result in a precondition that is too strong to be
useful.

Defect Correction by Modifying the Loop. In
some cases the given precondition may be correct al-
though the derived failure to progress conditions are
allowed by it. In these cases, the loop itself must
be defective. That is, the loop guard or loop body
statements are responsible for failure to progress and
terminate. There are basically two ways in which we
can modify the loop itself to progress under the given
precondition.

(1) We can strengthen the loop guard. For any
loop, {Q} do G → S od, strengthening the guard
to G ∧ PC, will ensure that progress is always made
by S under the precondition Q. This is logically the
same as asserting PC as an invariant at the beginning



of each iteration. (2) In many cases, while strengthen-
ing the guard will ensure termination, it may not en-
sure the correct invariant is maintained, and therefore
it may cause the loop to terminate with an incorrect
postcondition. In such cases, we need to modify the
body of the loop itself and possibly also the guard, so
that progress may be achieved while maintaining the
correct invariant. The derived loop progress condi-
tions may be of benefit in guiding the re-engineering
of such loops.

As an example of applying the Progress Condi-
tions Method, consider the Greatest Common Divisor
example in Program 1.

Program 1 GCD Example
procedure gcd(x,y: INOUT Z) {

do x 6= y →
if x > y →

x := x-y;
[] y > x →

y := y-x;
fi;

od

}

By the Progress Conditions Method we derive the
loop progress conditions.

Step 1: Calculate the iterative form invariant
We assume the weakest possible precondition

true, ensuring that the loop precondition is
(x, y ∈ Z ∧ x = x? ∧ y = y?). Applying (1) then (2)
to the loop body code yields the iterative form invari-
ant

Rk+1 ≡
k ∈ N∧„

xk+1 = xk − yk ∧ yk+1 = yk ∧ xk > yk∨
xk+1 = xk ∧ yk+1 = yk − xk ∧ yk > xk

«

Step 2: Identify expressions v and w such that
on termination v = w

The negation of the loop guard states that on ter-
mination the equality x = y holds, so we identify and
substitute x for v and y for w.

Step 3 and 4: Calculate the progress condi-
tions, PC, and simplify by (7)

PC ≡ Rk+1 ∧
10_

i=1

(PCi)

≡

k ∈ N∧0BB@
„ W10

i=1 (PCi)∧
xk+1 = xk − yk ∧ yk+1 = yk ∧ xk > yk

«
∨„ W10

i=1 (PCi)∧
xk+1 = xk ∧ yk+1 = yk − xk ∧ yk > xk

«
1CCA

≡ k ∈ N ∧ (0 < yk < xk ∨ 0 < xk < yk)

≡ k ∈ N ∧ (xk 6= yk ∧ 0 < xk ∧ 0 < yk)

Dropping the k subscripts gives the following, more
natural, representation of the progress conditions:

PC ≡ x 6= y ∧ 0 < x ∧ 0 < y

So, whenever the guard is not negated (x 6= y) and
x and y are both greater than zero at the start of any
iteration, the loop will make progress toward termi-
nation on that iteration.

This approach has been automated in the pro-
totype. The progress conditions report generated
for this example is shown in Fig. 4. As can be

seen, the prototype, even with its basic simplifica-
tion rules, manages to reduce the twenty disjuncts of
Rk+1 ∧

∨10
i=1 (PCi) to a form in which the simplifica-

tion required is trivially applied manually.

Step 5: Calculate the failure to progress con-
ditions, FP .

The failure to progress conditions are the negation
of the progress conditions. So,

FP ≡ ¬PC

≡ x = y ∨ x ≤ 0 ∨ y ≤ 0

Whenever either the guard is negated (x = y), or
either of x or y are less than or equal to zero at the
start of any iteration then the loop will fail to make
progress toward termination on that iteration. The
negation of the guard is not of concern as the loop
is expected to not progress on termination, however,
the other two states must be considered.

In order for progress to be made on an iteration,
the progress conditions state that x 6= y∧x > 0∧y > 0
must hold. So, x 6= y ∧ x > 0 ∧ y > 0 is an invariant
required for loop progress. It can be reasoned that
if x > 0 ∧ y > 0 is maintained initially then it will
continue to be maintained under any iteration of the
loop body and on termination.

The loop initialisation under the weakest precon-
dition true yields the loop precondition (x = x?∧y =
y? ∧ x, y ∈ Z). Reasoning about correctness, we note
that this precondition does not exclude the states de-
scribed by FP . Therefore, the loop may be entered
with initial values for x and y that will cause failure
to progress.

Corollary 1 says that we can use the derived
progress conditions to correct the defect causing non-
termination by strengthening the precondition. In
this situation the defect is not in the program but
in the program’s specification. By strengthening the
precondition to

(x = x? ∧ y = y? ∧ x, y ∈ Z ∧ (x = y ∨ x > 0 ∧ y > 0))

we reason that the loop will always progress toward
termination.

3.1 Loops with Complex Guards

So far we have only discussed the analysis of loops
with simple, literal guards. In order to apply these
methods to any real examples, it must be applicable
to loops with complex guards. Here we define a com-
plex guard as being a conjunction or disjunction of
quantifier free formulae.

Theorem 2 (Complex Guards). For any loop with
a complex guard, G, for each literal, pi, in ¬G, ap-
ply the method described in this section to derive the
progress conditions for that part of the guard. If the
progress conditions for pi are denoted by PCi, then
the progress conditions for the entire loop will be given
by

PC ≡ ¬G [PCi/pi] , for all pi in G (8)

Proof. If the negated guard is conjunctive, progress
must be made toward achieving each conjunct. That
is, given a negated guard of the form p1 ∧ . . .∧ pn, let
PC1 . . . PCn be the conditions required for progress
toward achieving p1 . . . pn respectively. Then, in or-
der for the loop to progress toward termination the
loop must progress toward achieving all of the con-
juncts in the conjunctive termination condition. If
any pi is not satisfiable, then progress may not suc-
ceed. So, the conditions required for progression to-
ward a conjunctive termination condition are the con-
junction of the individual conjunct’s progress condi-
tions, PC1 ∧ . . . ∧ PCn.



Loop Progress Conditions The loop will progress in an iteration, when the following holds at commencement
of that iteration: „

(x < y ∧ 0 < x)∨
(y < x ∧ 0 < y)

«

Loop Termination Conditions The loop will terminate, iff the following is satisfiable1:

∃k ∈ N (xk = yk)

1Assuming that the loop progress conditions are satisfied and the loop precondition (x = x? ∧ x ∈ Int ∧ y = y? ∧ y ∈ Int) holds, does

Rk+1 imply that the termination conditions are satisfiable?

Figure 4: Loop progress and termination conditions yielded by the tool for gcd

If the negated guard is disjunctive, progress must
be made toward achieving at least one of the dis-
juncts of the negated guard. That is, given a negated
guard of the form p1 ∨ . . . ∨ pn, let PC1 . . . PCn be
the conditions required for progress toward achieving
p1 . . . pn respectively. Then, in order for the loop to
progress toward termination the loop must progress
toward achieving at least one of the disjuncts in the
disjunctive termination condition. If no pi is achieved
then termination will not succeed. So, the conditions
required for progression toward a disjunctive termi-
nation condition are the disjunction of the individual
disjunct’s progress conditions, PC1 ∨ . . . ∨ PCn.

This is recursive for each sub-formula of the
negated guard.

For example, consider the following:

{i = I ∧ j = J}
do i6=100 ∧ j6=0 →

i:=i+1; j := j-1;

od;

The termination condition is i = 100 ∨ j = 0 The
conditions for progress toward achieving i = 100 are
derived as i < 100. The conditions for progress to-
ward achieving j = 0 are derived as j > 0. Therefore
in order for the loop to progress toward termination,
either i < 100 must hold, or j > 0 must hold, on ev-
ery iteration. If this is not the case progress is made
toward neither disjunct of the termination condition.

By (8), the progress conditions are

i < 100 ∨ j > 0.

The failure to progress conditions are, therefore,

i ≥ 100 ∧ j ≤ 0.

The given loop precondition does not exclude these
states, so it is possible to begin this loop with initial
values that will cause progress failure.

4 Investigating Termination Conditions

In order to completely analyse loop termination, we
not only need to reason about loop progress, but also
that the guard will at some stage force termination.
That is, termination must be investigated based on
the principle that in order for a loop to terminate, at
some stage the loop guard must be negated.

Consider any loop, {Q} do G → S od. In order
for termination to be achieved, after some arbitrary
kth iteration, where k ∈ N, ¬Gk must hold. This can
be described formally by (9).

∃k ∈ N (¬Gk) (9)

In order to evaluate this condition, it is necessary to
determine if the loop guard variables can ever be in

a state on any single iteration, k, which ensures G is
negated.

On some single iteration every program variable in
the loop guard must be instantiated with a value that
will make the loop guard false, forcing termination.
If this can not occur, then termination will not be
achieved. If, based on iterative-form difference equa-
tions in Rk+1, a difference equation solution, v(k),
exists for all variables, v, in the variable set of the
loop guard, G, then the conditions required for ter-
mination can be defined by simplifying (10).

∃k ∈ N (¬G [v(k)/v]) , for all v ∈ V (G) (10)

That is, there must be an iteration k, such that the
value of every loop guard variable on that iteration
forces the guard to be negated.

The method just described is summarised in the
following theorem.

Theorem 3. [Guard Substitution Method]
For any loop, {Q} do G → S od, apply the fol-

lowing steps:

1. Calculate the iterative form invariant by (2).

2. Calculate difference equation solutions3 for all
variables in the variable set of the loop guard
from the equalities in the iterative form differ-
ence equation.

3. Using these difference equation solutions, solve
(10) for k ∈ N.

If (10) can’t be solved for k ∈ N, then the loop will not
terminate and dke is the iteration on which progress
toward termination ceases. If (10) can be solved for
k ∈ N, then the loop will eventually terminate. The k
that satisfies (10) is the number of iterations to ter-
mination.

Proof. From the discussion presented above, if (10)
can not be solved for any natural number iteration
count k, then there is no single iteration in which the
variables involved in the loop guard will be instanti-
ated with values that will force termination. Because
k was chosen arbitrarily, we can generalise and say
that termination will never be forced in these situa-
tions. Conversely if (10) can be solved for at least
one natural number k, then there must be at least
one iteration k in which the loop guard variables are
instantiated with values which negate the loop guard
forcing termination.

Corollary 2. For any loop, if (10) can be solved for
k ensuring k ∈ N, then k is a direct measure of the
order complexity of the loop.

3The prototype tool can solve a number of forms of difference
equations which commonly occur in loops. These difference equa-
tion solutions are defined in (Powell 2002b).



Loop Termination Conditions
The loop will terminate, iff the following is satisfiable:

∃k ∈ N

0@0@0 +
kX

j=0

(j)

1A = 100

1A
Figure 5: Loop termination conditions yielded by the tool for Program 2

Program 2 Sum Example
{true}
i:=0; s:=0;
do s 6= 100 →

i:=i+1;
s:=s+i;

od

Consider the example loop in Program 2. We ap-
ply theorem 3 to Program 2 to investigate termina-
tion.

Step 1: Calculate the iterative-form invariant,
Rk+1

The given precondition asserts (true). This makes
the loop precondition (i = 0 ∧ s = 0). The negation
of the guard is s = 100. We calculate the iterative
form invariant, Rk+1 as

Rk+1 ≡
„

k ∈ N ∧ ik+1 = ik + 1∧
sk+1 = sk + ik+1 ∧ sk 6= 100

«

Step 2: Calculate difference equation solutions
for all loop guard variables

The only loop guard variable is s. The assignment
to s, yields the difference equation sk+1 = sk + ik+1.
The assignment to i, yields the difference equation
ik+1 = ik+1. The solution to this difference equation,
is i(k) = k. So, the solution to sk+1 = sk + ik+1 is

s(k) =

 k∑
j=1

i(j)


=

 k∑
j=1

j


Step 3: Solve (10) for k ∈ N

Solving (10) for k to determine the conditions for
termination gives:

∃k ∈ N ((s = 100) [s(k)/s])

≡ ∃k ∈ N

 k∑
j=1

j = 100


≡ ∃k ∈ N

(
k(k + 1)

2
= 100

)
≡ ∃k ∈ N

(
k2 + k

2
= 100

)
≡ ∃k ∈ N

(
k2 + k = 200

)
≡ false

Step 4: Analyse the result

Because (10) can’t be satisfied, we can reason that
s will never equal 100 in any whole number of itera-
tions. Therefore, under this initialisation, the guard
will never be negated and the loop will never termi-
nate. Solving the quadratic equation on the second
last line of the above gives k = 13.65 (k can’t be nega-
tive so we are only concerned with positive roots). We
can reason from this, that up to the 13th iteration,
the loop is making progress toward the termination
state. That is s < 100 and s is increasing toward 100.
However, the guard is not negated, and after iteration
14, the next whole number iteration, s > 100, and the
loop will fail to progress.

The prototype tool automates steps 1 and 2 and
the formulation of (10). As this tool is not a theorem
prover, it is left to the human verifier to determine
if (10) is satisfiable. A human verifier may decide,
however, to discharge such a proof with the aid of a
theorem prover. The output from the prototype tool
for Program 2 is shown in Fig. 5.

When the difference equations for all loop guard
variables are not solvable, it is possible to present the
termination conditions as

∃k ∈ N (¬Gk) (11)

where Gk ≡ G [vk/v] for all variables v ∈ V(G).
When read in conjunction with the loop progress con-
ditions, PC, the iterative-form invariant, Rk+1, and
the loop precondition, termination conditions pre-
sented in this form are useful for guiding reasoning
about termination. For example, the difference equa-
tion solutions for x and y in the greatest common di-
visor example were not able to be solved by the proto-
type. In this case (11) was applied by the prototype,
yielding the termination conditions and guidance for
reasoning about them shown in Fig. 4.

5 Conclusions and Future Work

In this paper we have presented repeatable and au-
tomatable techniques for deriving loop progress and
termination conditions. We have demonstrated the
application of the techniques and discussed the use of
their results in assisting verification, re-engineering
and documentation of loops.

The techniques presented are applicable in all
of the cases that the well-founded-sets methods of
(Floyd 1967, Manna 1974) can be applied. The bene-
fit of the approach presented in this paper is that loop
progress and termination conditions can be expressed
without needing to calculate an invariant. The meth-
ods presented here are not dependent on the provision
of any formal documentation for the loop being anal-
ysed. As such, they are useful for the verification,
documentation and re-engineering of loops in legacy
programs for which existing formal methods are not
applicable.

The approach presented forms a basis for inves-
tigating termination in both theorem proving based
verification and human reasoning based code inspec-
tion processes. The progress conditions method and
termination conditions methods have both been im-
plemented in a prototype tool which has been dis-
cussed.



Most ongoing work in regard to investigating ter-
mination conditions involves the definition of further
difference equation solution, and the extension of the
logical and algebraic simplification capabilities of the
prototype tool as well as an extension of the tool to
handle real languages like Java. Work is planned that
will focus on the integration of this tool with a the-
orem prover or equation solver to automate some of
the reasoning steps, presently assigned to the human
verifier.

A preliminary study with a small number of un-
dergraduate students has found that they are capa-
ble of using the reports generated by the prototype to
reason about loop progress and termination. A larger
study, planned for completion in early 2004, will com-
pare inspection yields and inspection rates from stu-
dent inspection teams using the reports generated by
the prototype to those of students inspecting with a
traditional code inspection checklist. The study is be-
ing conducted using a module of search and partition
algorithms with a variety of known, seeded defects.

We believe that the approaches presented in this
paper and the corresponding tool provide support,
not only for improving the repeatability of verification
activities, but for encouraging a formal approach to
investigating program correctness.

References

Alagic, S. & Arbib, M. (1978), The Design of
Well Strutcured and Correct Programs, Springer-
Verlag.

Back, R. (1988), ‘A calculus of refinements for pro-
gram derivation’, Acta Informatica 25, 593–625.

Backhouse, R. (1986), Program Construction and
Verification, Prentice Hall.

Dijkstra, E. (1975), ‘Guarded commands, nonde-
terminacy and formal derivation of programs’,
Comm. ACM 18, 453–457.

Dijkstra, E. & Scholten, C. (1989), Predicate Calculus
and Program Semantics, Springer-Verlag.

Dromey, R. (1989), Program Derivation, Addison-
Wesley.

Dromey, R. & Pan, S. (1996), ‘Re-engineering loops’,
The Computer Journal 39(3).

Floyd, R. (1967), Assigning meanings to programs,
in J. T. Schwartz, ed., ‘Mathematical Aspects
of Computer Science’, American Mathematical
Society, pp. 19–32.

Gannod, G. & Cheng, B. (1996), ‘Strongest postcon-
dition semantics as the formal basis for reverse
enigineering’, Automated Software Engineering
3, 139–164.

Hoare, C. (1969), ‘An axiomatic basis for computer
programming’, Communications of the ACM
12(10), 576–583.

Manna, Z. (1974), Mathematical Theory of Computa-
tion, McGraw-Hill.

Pan, S. (1994), Software Quality Improvement, Speci-
fication, Derivation and Measurement using For-
mal Methods, PhD thesis, School of Computing
and Information Technology, Griffith University.

Powell, D. (2002a), Deriving verification conditions
and program assertions to support software in-
spection, in ‘Proc. 9th Asia Pacific Software En-
gineering Conference’.

Powell, D. (2002b), Formal Methods For Verification
Based Software Inspection, PhD thesis, Griffith
University.


