
Automating the Estimation of Project Size from Software Design
Tools Using Modified Function Points.

Jason Ceddia, Martin Dick
School of Computer Science and Software Engineering

Monash University
900 Dandenong Rd. East Caulfield, Melbourne, Australia

jceddia{mdick}@infotech.monash.edu.au

Abstract
Final year students in the Bachelor of Computing
complete an industry project where they work in teams to
build an IT system for an external client. Grading projects
in these circumstances is difficult because of the huge
variability of projects and clients. A method of
ameliorating some of the variation is to perform a
function point count on the projects. Due to the large
number of projects and the changing scope of projects a
method of automatically counting function points has
been devised that uses the output from design tools that
students have used. Principally the method counts use
cases and database tables. The method has been
successful in that no statistical difference in function point
counts was found regardless of the implementation
environments of systems. However, the first function
point count produced during the design phase resulted in
values that are lower than expected. The reason for this is
that there are omissions from the design. The students will
perform another at the user testing stage. The average
function point count is 270 with a standard deviation of
130. Currently, the method also assumes that the students
are following a traditional waterfall development model.
The paper discusses two issues (a) proposing a metric for
project size and (b) automating the production of that
metric.1

1 Introduction
Students enrolled in the Bachelor of Computing at
Monash University do an industrial experience project in
their third and final year. The students’ work in groups of
five and each group has an individual project for a client
outside the University. A full description can be found in
Hagan et.al. (Hagan 1999). This project unit is different
from project units taught in some other degrees in that
each project is different (Berztiss 1997; Fincher 1998;
Daniels 1999; Chan 2001; Chamillard and Braun 2002).
Project units are usually graded with a group mark
component and an individual mark component. This
means that each student in the group may receive a grade
that is different from the other team members.

1 Copyright ©2004, Australian Computer Society, Inc. This
paper appeared at Sixth Australasian Computing Education
Conference (ACE2004) Dunedin, New Zealand, Volume 30,
 Raymond Lister and Allison Young, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

Approaches to monitoring individuals are discussed in
(Collofello 1999; Utting 1999). Allocating the group
mark usually has a component based on the actual
product produced (Hagan 1999; Chamillard and Braun
2002). Allocating a grade to these projects is difficult
because of their variety and students have expressed
concerns that they may be disadvantaged in their final
result because they have had a ‘difficult’ project.

To ameliorate these factors, modified function point
counting is being used to help gauge the size of the
projects. Software metrics come in many varieties from
post project completion, via counting source lines of code
to pre project development via function point counting
(K.H.Moller and D.J.Paulish 1993; Moller and Paulish
1993; Fenton and S.L.Pfleeger 1997). An overview of
methods for estimating project size is (Agarwal, Kumar et
al. 2001). However, as noted by Moller and Paulish .”The
important point is not the unit used, but the fact that this
measurement be well defined and applied consistently.”
(K.H.Moller and D.J.Paulish 1993) page 40.

The original function point counting method was
proposed by Allan Albrecht in 1979 (Albrecht 1979).The
current industry standard is that proposed by the
International Function Point Users Group (IFPUG)
(IFPUG 2000). Many variations of the function point
counting method have been proposed (Abiad, Haraty et
al. 2000; Hastings and Sajeev 2001; Kusumoto, Imagawa
et al. 2002). Kremer has reported on the validity of the
Entity-Relationship approach to the IFPUG approach as
well as inter-rater comparisons (Kemerer 1993)

While the types of projects the students do typically
involve a database, this is not always the case. In the
2003 intake of students, 7 out of 63 projects did not have
database functionality. Abiad et al. have proposed a
method that determines the function point count based on
the objects found in MS-Access type databases (Access is
a trademark of the Microsoft Corporation) (Abiad, Haraty
et al. 2000). Kusumoto et al have proposed a method of
automatically counting function points from Java
program source files (Kusumoto, Imagawa et al. 2002).
The system proposed in this paper is more generic in that
no database need be involved in the project and that any
programming environment may be used in the
development of the project.

In the past, the unit co-ordinators had broadly scoped
projects to a system that included 12 to 15 database tables
and 10 to 15 reports. Whilst this was an initial guide to

project size, “function creep” could cause the projects’ to
significantly increase in size. Virtually all projects
experienced a change in scope from the initial
specification to the final delivered product. Kemerer
reports that the function point counting effort is
approximately 1 hour per 100 function points (Kemerer
1993). Given the number of projects that are being dealt
with – 63 for the semester 1 intake in 2003 – it is not
feasible for the unit co-ordinators to manually count the
function points multiple times during the project life.

To help the students and unit co-ordinators keep track of
project size a method of automatically counting function
points has been devised. We call the modified function
point a ‘project point’ (PP). The method uses tools that
the students have used in their second year system design
unit and database design unit. These tools are Rational
Rose and Gershwin respectively (GERSHWIN 1998;
RationalSoftware 2002). During the analysis and design
phases of the project the students produce use case
diagrams via Rational Rose; these use cases are stored in
a file that is essentially a text file. The entity relationship
diagrams and subsequent database design is produced by
Gershwin and stored in a file that is again a text file. By
parsing these two files, a count of the number of use cases
and tables is obtained. The students are then required to
enter values for the various Value Adjustment Factors.
An adjusted project point count is then recorded.

Students can repeat this procedure as often as they wish.
The system used for project management, called WIER –
Web Industrial Experience Resource- stores two sets of
values; a first count and a final count. Features of WIER
are discussed elsewhere (Ceddia 2001). The first project
point count may be repeated twice and the final project
point count may be repeated as often as required. The unit
co-ordinators recognize that the issue of project
complexity – as opposed to size – still needs to be
addressed. Project complexity is discussed in (Fenton and
S.L.Pfleeger 1997; Hastings and Sajeev 2001). Software
size is described by Fenton in Hastings and Sajeev as a
function of length, functionality and problem complexity
(Hastings and Sajeev 2001). Where students have
undertaken projects of high complexity, the unit co-
ordinators have had to make allowances by generally
reducing the scope of the project. For example, a group
was required to develop a web interface for an industrial
robot controller. The remainder of the paper is divided
into the following sections: section 2 discusses the project
point counting method used; section 3 discusses the types
of systems encountered in the student projects; section 4
presents the results for the first count of the projects in
2003 and section 5 discusses results and future work.

2 Function Point Count
The IFPUG manual describes five types of fundamental
functional elements namely:

External input (EI) - which is a logical transaction where
data enters the application

External output (EO) - which is a logical transaction
where data exits the application

External inquiry (EQ) - which is a logical transaction
where an input requests a response from the application

Internal Logical File (ILF) – which is a logical group of
data maintained by the application

External Interface Files (EIF) – which is a logical group
of data referenced by the application but maintained by
another application (IFPUG 2000).

Hastings comments “Functionality is defined in terms of
transactions (EI, EO and EQ) operating on and accessing
data (ILF and EIF)”page 60 (Hastings 2000). To
differentiate between ILF and EIF there is the notion of a
‘system boundary’. The boundary indicates the border
between the application being measured and the external
applications or user domains. In the context of student
projects nearly all applications are ‘stand alone’ and do
not interface to any other applications. This is to be
expected, as student projects do not involve mission
critical applications. This means that there are no external
interface files and all application data is held internally.
Further all transactions are of user input or output to the
current application.

Our simplified project point count is therefore based on
two types of analysis: -

(i) Data from an Entity Relationship diagram,
representing internal logical files i.e. each actual entity is
one logical file. The complexity of a file/entity is
dependant on the number of attributes in each entity. Low
complexity =7 (0 to 19 attributes), Average complexity =
10 (20 to 49 attributes) and high complexity = 15 (50 or
more attributes). This is the data count (DC). For
example, five entities with less than 19 attributes each,
give a DC = 5 * 7 = 35. The students are required to
produce an Entity Relationship diagram as an artefact of
the analysis phase so it can be used in this estimation
process. The Entity Relationship diagram is converted
into a normalised database design in the design phase of
the project; for these systems it is not a difficult
transformation.

(ii) Transactions from a Use Case Diagram. Each use case
represents one transaction either input or output. Each
transaction is modelled as one use case. We will assume
an average complexity of 4. This means that a transaction
uses two tables (on average) and five to twenty attributes
(on average). The Transaction count (TC) is given as: TC
= 4 * no. of cases. In the automated counting process, all
use cases are counted with the exception of use cases that
are a generalisation. These use cases normally are
developed as placeholders in the diagram and rarely have
any functionality of their own.

Each project also has a VAF (value adjustment factor)
based on other system characteristics of the project. Each
characteristic is given a rating from (0 – not important) to
(5 – very important); the rating is called the degree of
influence (DI).

The following summarises the fourteen system
characteristics to be rated and lists the formula to be used
in calculating the unadjusted and adjusted project point
count. (IFPUG 2000).

1. Data communications eg web connection
2. Distributed processing eg client/server
3. Performance eg min. response time
4. Heavily used configuration eg set up likely to

change often such as dynamic web content
5. Transaction Rates
6. On line data entry
7. Design for end user efficiency
8. Online updates
9. Complex processing eg calculations or lookups
10. Usable in other applications
11. Installation ease
12. Operational Ease
13. Multiple sites
14. Facilitate change

The value for each system characteristic is summed to
dive a Total Degree of Influence (TDI); this provides a
Value Adjustment Factor of 0 to 70, which is then used in
the following formula

Value Adjustment Factor (VAF) = (TDI*0.01)+0.65

This is then used to create the final project point count

Project Point Count = (DC + TC) * VAF

The output from two system design tools is used to
automate the counting process namely the database design
tool (GERSHWIN 1998) and the use case design tool
(RationalSoftware 2002). Both these products store their
representations of the design in files that are essentially
text files. As part of the project process, the students are
required to upload these two design files to WIER. It is a
straightforward matter to parse these files and look for the
words “entities” and “object use case” to determine the
number of tables and transactions. Note that super use
cases are not included in the use case count as this is
considered counting the use case twice. The students are
then prompted to enter values for the general system
characteristics to determine the value adjustment factor.

The students are required to do at least two project point
counts at two different stages of the project. The first
project point count is done in week 9 of semester 1; this
coincides with the delivery of their functional
specification document and marks the end of the major
design phase. The second project point count is done in
week 6 of semester 2 and coincides with the delivery of
the beta version of the system. There is a major review of
the system design by the project co-ordinators in system
walkthroughs. Any errors detected are to be addressed
before the system implementation and subsequent second
project point count. The intention is to compare the two
project point counts and determine whether there has
been a change of functionality either by ‘function creep’
or decrease because of unexpected difficulties. A sample
output of the two counts is shown in Figure 1. Appendix
1 shows a sample database design and use case diagram
for a dynamic web site for a primary school. At the time
of writing only the week 9 count has been reported.

3 System Types
In semester 1, 2003, 63 groups started the Industrial
Experience project. The types of systems that are being
built have been analysed in terms of a number of aspects.
Each of these aspects will be used to determine if there is
a statistically significant difference between the
populations in the next section.

Figure 1 Summary information of project point count

3.1 Language used

Language Number Percentage

(rounded)

Access 3 4.8

C# 1 1.6

C++ 2 3.2

Delphi 1 1.6

Foxpro 1 1.6

GTK 1 1.6

Java 5 7.9

Perl 1 1.6

PHP 17 27

VB.NET/ASP.NET 13 20.6

VB/ASP 17 27

WinRunner 1 1.6

Total 63 100.0

Table 1 Languages used in IE Projects

Language can have an impact on the difficulty of a
project, here we have analysed the projects to also
determine if the language may have an impact on the size
of the project. Table 1 shows the distribution of languages
used in the IE projects.

3.2 Whether a database was used
56 of the 63 projects are using a database (88.9%). This
data was designed as we feel it is important to know
whether having to use a database impacts on the size of
the project and therefore its difficulty. It also
demonstrates that this counting method can be applied to
non database related projects.

3.3 Operating system used
In terms of the operating systems used by the projects to
develop the software:

• Unix/Linux 20 projects (31.7%)
• Windows 43 projects (68.3%)
The operating system may affect the size of the project,
so this factor was determined.

3.4 Whether the project is internal to Monash
University or not

It is difficult to source all of the IE projects from external
enterprises, so it is necessary for the School to use
projects that have other parts of the University as the
client. It is important that such internal client projects are
equivalent to external client projects and size is a first
point to use as a comparison. 48 of the 63 projects
(76.2%) have external clients, while 15 projects have
internal clients (23.8%).

3.5 Whether a web element is to be developed
Another aspect that could impact the size of a project is
whether the project has to develop web pages. A sizeable
majority of the projects have to develop web pages (50
out of 63 projects – 79.4%). In these projects the majority
of the content for the web pages comes from a database
and so is dynamically derived; even data like the ‘contact
us’ details are stored in the database.

4 Results
50 of the 63 IE projects have submitted their initial
function point counts. There are several reasons for the
groups not having submitted their initial function point
counts. An example is the two groups that are using the
Extreme Programming (XP) software development
methodology to develop the software. In these two
particular cases, the possible story cards were not
enumerated sufficiently by the client at the outset to
generate a project point count. These projects should be
able to generate a final project point count.

The two projects that submitted the largest initial project
point counts were more than three times larger than the
third largest project. Two projects reported much smaller
initial project point counts than any other project. It was
decided to remove these outliers from the statistical

analysis as they seemed to indicate a misunderstanding on
the part of the groups as to how to calculate function
points. Table 2 shows a number of statistics for the
project point count and the components that make up the
project point count. As can be seen the variation is large
for all elements.

 Data
Count

Transactions VAF Final
PP

Count

Mean 19.4 243.3 1.00 261.5

Lower* 11.8 208.3 0.96 222.7

Upper* 26.9 278.4 1.03 300.3

Std Dev 25.5 118.0 0.12 130.7

Median 7 224 1.0 230.4

Min 0 49 0.79 81.8

Max 84 490 1.24 534.2

Table 2 Descriptive Statistics for Results

* Upper and Lower Bound for 95% Confidence Interval
for Mean

An independent sample t-test was conducted and found
that there were no statistically significant differences in
the final project point count (p>0.05) for the use of
databases in the project, whether Windows or Linux was
used or whether a project was internal to the University or
external to the University.

A statistically significant difference was found between
projects that had to develop web pages and those that did
not (p=0.022). Projects that had to develop web pages
were significantly larger (mean = 284.4 project points as
compared to 179.1 project points) than those that did not
have to develop web pages.

5 Discussion
The results to date show that this method of calculating
project size from data and transaction information is
independent of operating system or development language
used. This is consistent with Albrecht’s original model
(Albrecht 1979).

The heuristic used by the co-ordinators in scoping
projects is 12 to 15 tables and 10 to 15 reports. This
would give projects a size of between 402 and 525 points.
The average point count shown in table 2 is 261.5 and is
lower than expected.

At the time of writing, the second automatic project point
count had not been completed by the students but it is
expected that all groups should be able to complete the
process. It is expected that the average project point count
will increase for two reasons. Firstly, the sample size will
increase and secondly, errors in the design should have
been corrected. The example in appendix 1 illustrates this
point. The example shows a web site for a primary

school; most of the web page contents come from the
database. The use case diagram shows many transactions
as ‘viewing’ web pages; this is acceptable, as the data has
to be retrieved from the database. However, there are only
two use cases dealing with database changes; there should
be up to 27 uses cases given that there are 9 tables and
each table could have an add, edit and delete function.
This is a significant underestimation of project size.

It was expected by the project co-ordinators that there
would be a variation in project size. However, the
standard deviation of 130 points shown in table two is
very large and confirms that the project size be used as a
moderator in grading the projects. A reason why Web
based projects tend to be bigger is the requirement that the
students provide the client with an interface to maintain
all web page content so adding to the number of tables
that are required by the system.

Another point highlighted by the statistics in table 2 is
that the VAF averages out at 1. This means that it has no
effect on the final point count and confirms a note by
Morris in Hastings that “..the VAF provides little or no
value.” (Hastings 2000) page 64. The project co-
ordinators may dispense with computing the VAF in next
year’s iteration of projects and so simplify the counting
process even further.

A number of areas are to be explored in future work.
These include: (i) dealing with data stored in XML files
instead of database tables. The corresponding DTD (Data
Type Definition) of the XML file could be parsed to
determine the number of elements and so calculate a data
count. (ii) The project point count be compared to the
source lines of code of the final system as discussed by
Jones (Jones 1995). Issues such as code produced by
‘wizards’ would need to be resolved. (iii) A man-hour per
project point could be determined. The students are
required to keep a time log in WIER for time spent on the
various phases of the project. This could validate a
heuristic used by the project co-ordinators that the project
takes 1200 to 1500 man-hours. (iv) The issue of a project
complexity measure is still to be addressed. One of the
most complex projects for 2003 student group is the web
interface for a robot controller. This recorded a project
size of 166 – well under the average.

The authors consider the proposed method for counting
project points to be simple enough to eliminate ‘human
counter bias’; hence its automation. Inaccuracies with the
project point counts will probably come from analysis and
design errors made by the students as illustrated by the
number of use cases depicted in the example in appendix
1. The project co-ordinators have data on 114 past
projects from 2001and 2002 and plan to produce data as
in tables 1 and 2 for further verification of the metric.

6 References
Abiad, S., R. A. Haraty, et al. (2000). Software metrics

for small database applications. Proceedings of
the 2000 ACM symposium on Applied
computing, Como, Italy, ACM Press New
York, NY, USA.

Agarwal, R., M. Kumar, et al. (2001). "Estimating
Software Projects." ACM SIGSOFT Software
Engineering Notes Vol 26(Issue 4): 60 - 67.

Albrecht, A. J. (1979). Measuring Application
Development Productivity. Proceeding of the
IBM Applications Development Symposium,
GUIDE/SHARE., Monterey, California.

Berztiss, A. T. (1997). "Failproof team Projects in
Software Engineering Courses". 27th Annual
Frontiers in Education Conference.

Ceddia, J., Tucker, S., Clemence,C., Cambrell,A. (2001).
"WIER-Implementing Artifact Reuse in an
Educational Environment with Real Projects."
31st Annual Frontiers in Education Conference.

Chamillard, A. T. and K. A. Braun (2002). The software
engineering capstone: structure and tradeoffs.
Proceedings of the 33rd SIGCSE technical
symposium on Computer science education,
Cincinnati, Kentucky, ACM Press New York,
NY, USA.

Chan, S. C. F., Ng, V.T.Y. and Wu, A.K.W. (2001).
Cooperative/Collaberative Learning - Web based
Management of Group Projects. International
Conference on Computers in Education, Korea.

Collofello, J. S., and Hart, M. (1999). Monitoring Team
Progress in a Software Engineering Project
Class". In 29th Annual Frontiers in Education
Conference.

Daniels, M., and Asplund, L. (1999). "Full Scale
Industrial Work in a one semester course". In
29th Annual Frontiers in Education Conference.

Fenton, N. E. and S.L.Pfleeger (1997). Software Metrics:
A Rigorous and Practical Approach. London,
PWS.

Fincher, S., and Petre, M (1998). "Project-based learning
practices in computer science education." In
Frontiers in Education Conference.

GERSHWIN (1998). GERSHWIN Database design tool.
Freeware product available to students at
Monash University that was development by
staff at Monash University.

Hagan, D. L., Tucker, S., and Ceddia, J. (1999).
"Industrial Experience Projects: A Balance of
Process and Product." Computer Science
Education 9(3): 215-229.

Hastings, T. and A. S. M. Sajeev (2001). "A Vector-
Based Approach to Software Size Measurement
and Effort Estimation." IEEE Transactions on
Software Engineering 27(4): 337-350.

Hastings, T. M. (2000). Measuring software size and
predicting development effort of contempory
software systems. School of computer science
and software engineering. Melbourne, Australia,
Monash University: 273.

IFPUG (2000). Function Point Counting Practices
Manual, Release 4.1.

Jones, C. (1995). Programming languages table.
Cambridge, Massachusetts, Software
Productivity Research Inc.

K.H.Moller and D.J.Paulish (1993). Software Metrics: A
Practitioner's Guide to Improved Product
Development., Chapman & Hall.

Kemerer, C. F. (1993). Reliability of function points
measurement: a field experiment.
Communications of the ACM Volume 36 ,
Issue 2 (February pp.85 - 97), ACM Press
New York, NY, USA.

Kusumoto, S., M. Imagawa, et al. (2002). Function point
measurement from Java programs. Proceedings
of the 24th international conference on Software
Engineering., Orlando, Florida.

Moller, K. H. and D. J. Paulish (1993). Software Metrics:
A Practitioner's Guide to Improved Product
Development., Chapman & Hall.

RationalSoftware (2002). Rational Software
http://www.rational.com/products/rose/prodinfo.
jsp.

Utting, I. (1999). Negotiated Assesment Criteria and peer
assessment in software engineering group
project work: A case study. What have they
learned? Assessment of Student learning in
Higher Education. European Society for
Engineering Education, SEFI, Brussels.

7 Appendix 1. Example:

Figure 2 ER diagram showing 9 tables.

Figure 3 Case diagram showing 16 transactions.

General System Characteristics(GSC’s) Degree of
Influence(DI)
0(least)-5
(most)

1 Data communications eg web connection 1

2 Distributed processing eg client/server 0

3 Performance eg min. response time 0
4 Heavily used configuration eg setup likely
to change often such as dynamic web
content

3

5 Transaction Rates 0

6 On line data entry 3

7 Design for end user efficiency 5

8 Online updates 4

9 Complex processing eg calns/ lookups 0

10. Usable in other applications 0

11 Installation ease 2

12 Operational Ease 4

13 Multiple sites 0

14 Facilitate change 3

 Total Degrees of Influence (TDI) 25

Value Adjust Factor (VAF) =
(TDI*0.01)+0.65

(25 *
0.01)+0.65 =

0.9

 Data Count (DC) 9 tables 9 * 7 = 63

 Transaction Count (TC) 16 transactions 16 * 7 = 112

Project Point Count = (DC + TC) * VAF (63 + 112) *
0.9 = 157.5

Table 3 Sample: project point count is 158 (rounding
157.5)

The sample count shown here is based on a project that
provides a web site to a school. There is a database to
hold some of the web content. There are two user types :-
administrator and everybody else (world). The
administrator is able to log in and change some of the
database content, which is then reflected in the web
pages. Everyone else has view only access.

This example also illustrates how projects can be
‘underrated’. Use cases 2 and 3 refer to changing the site
content that is stored in the database. For example the
school principal (the system administrator) is able to
add/edit school events, add/edit supporting businesses’
details etc. These functions are barely shown while the
view function is expanded to itemize each page in the site.
There should be up to another 27 use cases – add, edit and
delete for each of the 9 tables shown.

