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Abstract 

Emulation technology promises to provide a means of 

addressing obsolescence issues in legacy computer 

processors in the military avionics domains. It has also 

been suggested that such technology might apply to safety 

critical and safety related systems in these domains. 

Numerous companies either have developed or are 

developing software components that are capable of 

emulating different legacy computing platforms. The 

emulators permit the execution of legacy code on newer 

computing platforms, without change to existing binary 

executables or data. Subsequent modifications to the 

legacy code in question may be made using either the 

legacy development environment and/or with some 

emulation technologies using a newer development 

environment.
 
 

The Defence Science and Technology Organisation 

(DSTO) is presently working with Northrop Grumman 

Space Technology (NGST) to develop a concept 

demonstrator utilising NGST's Reconfigurable Processor 

for Legacy Applications Code Execution (RePLACE) 

Emulation Technology for the Royal Australian Navy 

(RAN) Seahawk Display Generator Unit (DGU). To 

assess how the Australian Defence Force’s (ADF's) 

Technical Airworthiness Authority (TAA) - the 

Directorate General Technical Airworthiness (DGTA) 

might accept emulation technology, DGTA has evaluated 

emulation architectures and specifically RePLACE in the 

context of the Seahawk DGU. The evaluation has 

considered the emulation architecture, including 

identification of risks largely unique to the technology; as 

well as application of ADF preferred avionics software 

assurance and software safety standards to this 

technology. 

Evaluation of emulation technology, through exploration 

of emulation architectures and RePLACE as a case study, 

has allowed DGTA to define certification and regulatory 

guidance for the development of emulation technology 

within the ADF context. 
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1 Introduction 

The concept of emulation and emulators has been around 

for many years. Emulators permit the execution of legacy 

code on newer computing platforms, without changes to 

existing binary executables or data.  

In recent years the power of modern microprocessors has 

evolved to such an extent that it is now possible to 

provide real-time software emulation of many legacy 

microprocessors that were widely used in the late 1970s, 

1980s and early 1990s. These advances provide a 

tremendous opportunity to reuse much of the software 

developed for these earlier microprocessors without the 

penalty of having to rehost or translate the software to 

modern programming languages and microprocessor 

environments. Furthermore, emulation promises to solve 

the problem of hardware obsolescence among those 

legacy systems that are still in use today. 

Emulation has been applied to many areas of computing 

already, including the emulation of older computer game 

consoles (Atari, Sega, Nintendo Entertainment System, 

Arcard Platforms, etc), emulation of earlier derivatives of 

PC, Macintosh, Unix and VaxVMS environments to 

permit execution of those old applications in a modern 

environment, and emulation of embedded systems to 

permit analysis, testing and simulation on development 

platforms to name but a few. Given the wide application 

to date of emulation, it is not surprising that emulation 

technology is now being suggested in the avionics 

domain, particularly the military avionics domain. 

Emulation technology promises to provide a means of 

addressing many obsolescence issues in legacy computer 

processors in the military avionics domains, a domain 

where systems can be subject to comparably longer 

service lives than equipment in other domains. For 

example, it is not unusual for military aerospace systems 

to be in service for 30+ years, although some avionics 

systems would reasonably be expected to be upgraded 

over that time period. There have already been a number 

of programs that have used emulation in this sense. 

Numerous companies either have developed, or are 

developing, software components that are capable of 

emulating different legacy computing platforms for 

military avionics. One such company is Northrop 

Grumman Space Technology (NGST) who offer a 

product called RePLACE. RePLACE has already been 



applied to numerous avionics systems and microprocessor 

instruction sets. 

Furthermore, it has also been suggested that such 

technology might be further applied to safety critical and 

safety related systems in these domains. To date, there is a 

lack of regulatory guidance and certification criteria 

relating to how emulation might be applied to safety 

critical and safety-related systems.  

The ADF's Technical Airworthiness Regulator (TAR) – 

also DGTA, is responsible for defining regulatory and 

certification criteria for modifications to Australian 

Military (‘State’) aircraft. This provides the ADF’s TAA 

with the guidance from which to conduct design 

acceptance of such technologies. Note that DGTA has a 

dual responsibility, being both the TAR and TAA. Design 

acceptance is largely synonymous with type certification 

within the Federal Aviation Administration (FAA) 

airworthiness framework. 

The Defence Science and Technology Organisation 

(DSTO) are presently working with NGST to develop a 

concept demonstrator utilising NGST's RePLACE 

Emulation Technology for the RAN Seahawk DGU. The 

DGU hosts several functions that are safety-related, and 

therefore warrants special consideration within the 

context of emulation. This development provides DGTA 

with an opportunity to develop certification criteria for 

emulation technology and to assess the effectiveness 

(technical, cost, schedule) of such certification criteria. 

The remainder of this paper examines emulation 

technology, through exploration of emulation 

architectures and NGST’s RePLACE as a case study, to 

allow DGTA to define certification and regulatory 

guidance for the development of emulation technology 

within the ADF context. 

2 Examination of Emulation Architectures 

In order to define certification criteria for emulation 

technology, it is firstly necessary to develop an 

understanding of those software architectures most 

relevant to emulators. This section introduces the simplest 

form of emulator architectures. 

2.1 A Simple Emulation Architecture (Type 1) 

A simple legacy emulation architecture (designated 

Type 1 for convenience of reference throughout this 

paper) is detailed in Figure 1 and Figure 2.  
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Figure 1: Simple Emulator Architecture (Logical 

Layers) 
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Figure 2: Simple Emulator Architecture (Sub-

Elements) 

The following paragraphs provide an overview of the 

emulator components detailed in Figure 2. 

The main component of the emulator architecture is the 

Legacy Virtual Machine. The Legacy Virtual Machine 

consists of the Legacy Instruction Set Engine, Memory 

Sub-system, I/O Mapping, Legacy Operational Flight 

Program (OFP) (ie. the binary) and other underlying 

functionality necessary to emulate the legacy computer 

environment (eg. Interrupt/exception mechanisms). 

Encapsulating the Legacy Virtual Machine is the Legacy 

CPU Emulator which provides the interface for the 

Legacy Virtual Machine to execute in the native 

processor environment. It is included as a separate 

element in this architecture for consistency with some 

more complex architectures considered later in this paper. 

The Memory Sub-System component’s role is to model 

the memory of the legacy computer environment. This 

may include logical to physical address translation, 

memory protection mechanisms and memory regions 

(non-volatile regions, read-only regions, shared memory 

regions, etc.). 

The I/O Mapping component’s role is to match the data 

and control structures, as well as the interfaces of the new 

replacement I/O devices, to those that are representative 

of the legacy computer environment. 

The Legacy Instruction Set Engine is a set of native 

machine code that fetches, decodes and executes the 

legacy instructions on the fly. Figure 3 describes the 

relevant data and information flows that might occur in 

one such implementation of the Legacy Instruction Set 

Engine. This example has been based on the MIPs 

processor, which is generally well understood across the 

computing domain, although the logical interpretation is 

easily extended to any type or class of microprocessor. 

Note that the MIPs processor is not used in the Seahawk 

DGU, which uses the AAMP processor. 



 

Figure 3: Legacy Instruction Set Engine Data/Information Flow Diagram 

2.1.1 Incorporating an RTOS (Type 1A) 

Rather than implementing the full suite of system related 

functions as part of the emulator, it is common for 

embedded applications of this type to incorporate some 

form of Real Time Operation System (RTOS). Figure 4 

and Figure 5 show the logical layers and sub-elements 

that such an architecture might consist of. Aside from the 

incorporation of the RTOS between the emulator and 

lower level board/processor support firmware/software 

and the microprocessor and I/O interface, there is no 

significant change to the components, functional structure 

or relevant data and information flows within the 

emulator itself. 
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Figure 4: Emulator Architecture (Logical Layers) - 

Incorporating an RTOS 

 

Of the emulators examined by DGTA, this architecture is 

the most widely adopted, and will form the starting point 

for analysis aimed at determining certification criteria for 

emulation technology. 
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Figure 5: Emulator Architecture (Sub-Elements) - 

Incorporating an RTOS 

3 Analysis of Type 1 Emulation Architecture 

To provide an understanding of the software failure 

modes that might be relevant to the emulation 

architecture, and importantly what architectural 

considerations and software assurance activities are 

required to provide evidence of the absence or handling 

of these identified failure conditions, it is necessary to 

conduct some form of software safety analysis. There are 

numerous software safety analysis techniques that could 

be applied to such a system including Software 

Functional Failure Analysis (FFA), Software Fault Tree 

Analysis (FTA), Software FMEA (FMECA), Software 

HAZOP (DefStan 00-58 Computer HAZOP), Software 

Hazard Analysis and Resolution in Design (SHARD) - 

refinement of Software HAZOP, Markov Analysis and 

Data Flow Diagrams, Petri Net Analysis and Software 

Sneak Analysis (ADF 2006, and McKinlay 2001). 



Guide Word Deviation Cause Effect Detection / Protection 

Omission Decode and execute instruction 

process fails to update memory or 

output 

Programming error within decode 

and execute instruction process 

Memory not updated with new 

contents 

Output not updated with new 

output 

Memory and output post update verification 

Commission Decode and execute instruction 

process invalidly updates memory or 

output 

Programming error within decode 

and execute instruction process 

Memory is corrupted in specific 

location 

Output is corrupted 

Entry point to decode and execute instruction process 

limited to following fetch instruction and increments 

counter process 

Early Decode and execute instruction 

process updates memory or output 

before valid processor cycle 

 

Programming error causes 

instruction implementation to 

incorrectly replicate cycle 

synchronisation 

Cycle synchronisation incorrect 

Memory updated out of 

sequence with other operations 

Output transitions early 

Memory and output update to explicitly check cycle 

synchronisation 

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Late Decode and execute instruction 

process updates memory or output 

after valid processor cycle 

As for early Memory updated out of 

sequence with other operations 

Output transitions late 

As for early 

Value Decode and execute instruction 

process updates memory or output 

with invalid value or updates wrong 

memory or output location 

Programming error within decode 

and execute instruction process 

Incorrect instruction passed to 

decode and execute process 

As for Omission, Commission, 

Early, Late 

As for Omission, Commission, Early and Late. 

Table 1: Extract from SHARD on Type 1 Emulator (Updated Memory and Output) 

Guide Word Deviation Cause Effect Detection / Protection 

Omission Decode and execute instruction 

process fails to update program 

counter as result of jump instruction 

Programming error within decode 

and execute instruction process 

Program counter is not updated 

with correct value. Emulated 

program enters incorrect branch 

of instructions - possible 

program crash 

Program counter is to be verified after operation.  

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Commission Decode and execute instruction 

process invalidly updates program 

counter 

Programming error within decode 

and execute instruction process 

Program counter is updated 

with corrupted value. Emulated 

program enters incorrect branch 

or instructions - probable 

program crash. 

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Early Decode and execute instruction 

process updates program counter 

before valid processor cycle 

Programming error causes 

instruction implementation to 

incorrectly replicate cycle 

synchronisation 

Cycle synchronisation incorrect 

Program counter updated out of 

sequence with other operations. 

Emulated program enters 

incorrect branch or instructions 

- probable program crash. 

Program counter update to explicitly check cycle 

synchronisation 

Mappings to be established between legacy 

instruction and emulation implementation and 

mappings to be verified for functional and temporal 

equivalence. 

Late Decode and execute instruction 

process updates program counter 

after valid processor cycle 

As for early As for early As for early 

Value Decode and execute instruction 

process updates program counter 

with invalid value 

Programming error within decode 

and execute instruction process 

Incorrect instruction passed to 

decode and execute process 

As for Omission, Commission, 

Early, Late 

As for Omission, Commission, Early and Late. 

Table 2: Extract from SHARD on Type 1 Emulator (Updated Program Counter) 

While it is possible to apply aspects of each of these 

techniques to analyse emulation architectures, and indeed 

the measured application of a number of these techniques 

would probably be necessary for the developer of such 

technologies to provide sufficient evidence as part of a 

safety case, it is not necessary for defining certification 

criteria. For the sake of defining certification criteria it is 

only necessary to develop an understanding of how 

emulation technology might fail and what might be done 

to either ensure it can’t or doesn’t fail; or if it can, then 

verify that it is sufficiently unlikely to fail. Such 

understanding should then provide insight into what 

evidence is required to provide sufficient confidence in 

these aforementioned properties. The SHARD technique 

is particularly relevant to developing this understanding 

as it considers failure modes, their causes, effects, and 

potential detection or protection means. 

SHARD employs a series of guidewords to classify how 

the information flows and associated communication 

events (and associated services) might deviate from their 

intended forms. These are as follows: 

• Omission - Service not delivered. 

• Commission - Service delivered when not required. 

• Early - Service delivered, but early. 

• Late - Service delivered, but late. 

• Value - Service delivered, but with incorrect value. 

SHARD requires that the system be analysed 

“backwards” from the outputs (ie. identify the system 

level effects first) back towards the inputs. The internal 

and input deviations are expressed in terms of how they 

cause or contribute to deviations in downstream items 

already investigated. Further information on the SHARD 

technique can be found in Pumfrey (1999). 

SHARD analysis was conducted using the Legacy 

Instruction Set Engine Data/Information Flow Diagram 



(Figure 3) as a reference for information flows that might 

exist in the emulator, and services that are required from 

a functional perspective. An extract from the SHARD is 

presented in Table 1 and Table 2 for the updated memory 

and output, and updated program counter information 

flows respectively. 

Both Table 1 and Table 2 refer to the term ‘temporal 

equivalence’. ‘Temporal equivalence’ is used in a general 

sense here for convenience as each emulator 

implementation will need to define, within high and low 

level requirements, this property in the context of the 

relevant instruction set; legacy CPU architecture, 

including consideration for pipelining and parallel 

execution paths; and the configured application set. It is 

used to capture timing considerations at two levels of 

abstraction. The first is at the instruction level, which 

deals with the timing constraints placed on individual 

instructions, or sequences of instructions for some 

parallel architectures. The second is at the application 

level, which deals with ensuring that assigned tasks 

complete within their scheduled execution time, and that 

implementation quirks, such as processor cycle based 

synchronisation schemes (as opposed to interrupt timer 

based schemes) and the use of No Operations (NOPs) for 

timing synchronisations do not result in undesired effects 

(e.g. speed up) when emulated. This second level of 

abstraction is mostly applicable to those architectures 

considered in Section 4, however it cannot be ruled out in 

this context due to potential for synchronisation 

dependencies (e.g. those resident in timing sensitive 

executives and I/O). This implies that inspection and 

analysis of the legacy binary will be required to 

determine if these schemes are part of the 

implementation. 

Having developed an understanding of the types of failure 

modes, their causes, effects, and detection/protection 

means, it is then possible to define architectural or 

verification requirements relative to those failure modes. 

The ADF preferred standard for software assurance of 

airborne software is RTCA/DO-178B (ADF 2005). For 

the purposes of consistency and clarity, verification 

requirements shall be defined based on those activities 

documented in RTCA/DO-178B (RTCA 1992). Readers 

should refer to DO-178B and related information (DO-

248B (RTCA 2001), Order 8110.49 (FAA 2003), CAST 

5 (CAST 2000)) for further definitions of software 

assurance activities described in this paper.  

However, to understand the logic behind the approach 

used to define those architectural and verification 

requirements and associated DO-178B objectives, it is 

firstly necessary understand some key aspects of the DO-

178B software assurance model. According to DO-178B, 

verification of airborne software has two complementary 

objectives. One objective is to demonstrate that software 

satisfies its requirements. The second objective is to 

demonstrate with a high degree of confidence that errors 

which could lead to unacceptable failure conditions have 

been removed. Noting that the prescription of activities 

against these two objectives is scaled based on software 

level within the standard, it is worth considering the 

approach in general terms. 

The first objective is largely supported through definition 

of and verification against high-level requirements. 

Where insufficient disclosure or ambiguities exist within 

the high level requirements, then refinement and further 

definition of and verification against is required in 

translation to low-level requirements. Therefore, it 

follows that provided the developer can adequately 

disclose the requirements at the prescribed level of detail, 

then this objective is relatively straight forward to satisfy.  

The second objective, however, is not quite as intuitive. It 

deals with eliciting properties about the software which 

don’t necessarily follow from the set of already defined 

high and low level requirements, with focus on those 

properties that could potentially lead to unacceptable 

failure conditions. Eliciting these properties permits one 

of two outcomes: either the behaviour is appropriate, in 

which case it should be captured in the high and/or low 

level requirements; or the behaviour is inappropriate, in 

which case the software design and implementation 

should be changed to remove the behaviour. DO-178B 

approaches this through prescribing requirements 

coverage analysis and software structural coverage 

analysis. Furthermore, establishing requirements 

traceability from low-level requirements to source code, 

and to object code, supports providing an understanding 

of software properties commensurate with this second 

objective. While there are arguably other ways to elicit 

such properties, this paper, for the reasons previously 

documented, will restrict discussion to those called out by 

DO-178B. 

For an emulator, the high and low level requirements 

would generally need to capture the extent of the 

instruction set, as well as all other supporting functional 

and non-functional properties of the machine being 

emulated. For most legacy CPUs, much of this 

information would need to be extracted from whatever 

technical documentation is still available. For CPU 

manufacturers that have been out of business or have 

since been subsumed into other businesses, it may no 

longer be possible to elicit much documentation beyond 

what is already held by the in-service support 

organisation and associated technical library. Unlike the 

commercial world where the internet often becomes a 

repository for obsolete information, rarely does propriety 

information relating to obsolete military specific 

equipment find its way into the public domain. As it is 

not possible to guarantee that the documentation 

adequately captures all functional and non-functional 

properties of the legacy CPU, then it follows that the 

initial set of high and low level requirements assembled 

for the emulator might well be incomplete. Therefore the 

activities, and resultant outcomes of the second 

aforementioned DO-178B verification objective become 

especially important as one means of eliciting a complete 

set of high and low level requirements, not only in the 

context of the emulator itself, but also in the context of 

the extant legacy application – in particular, where the 

legacy application relies on undocumented legacy 

processor properties. An inspection of DO-178B reveals 

that activities supporting this objective only start to 

become applicable at Level C or better, with Level B 

providing the bulk of necessary activities. 



Further to ensuring a complete set of high and low level 

requirements, the activities and resultant outcomes of the 

second aforementioned DO-178B verification objective 

are also necessary to explore properties associated with 

any underlying components of the emulator that might 

not directly relate to the execution of instructions, or 

management of I/O and memory. For example, any 

monitoring or mapping functions, or failure thereof, 

should not result in any unacceptable failure conditions. 

An extract from the architectural and verification 

requirement assignment against identified failure modes 

is presented in Table 3. Full details have not been 

included on each specific assignment. However, it 

follows that they are appropriate based on the argument 

presented earlier in this section. 

Detection/Protection Architectural or Verification 

Requirement 

Mappings to be established between 

legacy instruction and emulation 

implementation, and mappings to be 

verified for functional and temporal 

equivalence. 

 

Software high level requirements comply with 

system requirements 

High-level requirements are accurate and 

consistent 

High-level requirements are compatible with 

target computer 

Low-level requirements comply with high-level 

requirements 

Low-level requirements are accurate and 

consistent 

Low-level requirements are compatible with 

target computer 

Source Code complies with low-level 

requirements 

Executable Object-Code complies with low-

level requirements 

Test coverage of software structure (decision 

coverage) is achieved 

Memory and output post update 

verification. Memory and output update 

to explicitly check cycle synchronisation 

Entry point to decode and execute 

instruction process limited to following 

fetch instruction and increments counter 

process 

Program counter is to be verified after 

operation. Program counter update to 

explicitly check cycle synchronisation 

Registers are to be verified after 

operation. Registers update to explicitly 

check cycle synchronisation 

Monitoring of pass instruction to decode 

and execute instruction process to ensure 

graceful recovery from failure mode 

Program counter is to be verified after 

each increment operation. Program 

counter increment to be explicitly 

synchronised to fetch instruction. 

Fetch instruction and increment program 

counter process to be synchronised with 

decode and execute instruction process to 

ensure one decode and execute for each 

instruction fetched. 

Software high level requirements comply with 

system requirements 

High-level requirements are accurate and 

consistent 

High-level requirements are compatible with 

target computer 

Low-level requirements comply with high-level 

requirements 

Low-level requirements are accurate and 

consistent 

Low-level requirements are compatible with 

target computer 

Source Code complies with low-level 

requirements 

Table 3: Determination of Architectural or 

Verification Requirements for Type 1 Emulator 

An inspection of the software assurance activities called 

out in Table 3, considered in the context of the previous 

discussion on the DO-178B software assurance model, 

reveals that these objectives come largely from the set of 

objectives core to DO-178B Level B. Therefore, it 

follows that for most safety related systems, the most 

appropriate software assurance level will be DO-178B 

Level B. This is further addressed, later in this paper. 

4 Further Examination of Emulation 

Architectures 

This section introduces an extension of the emulator 

architecture that permits changes to be made to the 

functionality of the legacy binary using a new 

development environment with code hosted directly into 

the native environment. 

4.1 Incorporating New Functions Developed in 

Native Code (Type 2) 

A legacy emulation architecture that permits the 

incorporation of new functions developed in native code 

(designated Type 2 for convenience of reference 

throughout this paper) is detailed in Figure 6 and Figure 

7.  
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Figure 6: Emulator Architecture (Logical Layers) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 7: Emulator Architecture (Sub-Elements) - 

Incorporating New Functions Developed in Native 

Code 



  

Figure 8: Legacy Instruction Set Engine and Virtual Component Environment Data/Information Flow Diagram 

The following paragraphs provide an overview of the 

emulator components detailed in Figure 7. 

Many components within the Legacy Virtual Machine 

that are common with the Type 1 architecture. As before, 

encapsulating the Legacy Virtual Machine is the Legacy 

CPU Emulator which provides the interface for the 

Legacy Virtual Machine to execute in the native 

processor environment. 

However, in this architecture the Legacy CPU Emulator 

also includes a component labelled the Virtual 

Component Environment. The Virtual Component 

Environment provides the mechanisms to switch between 

legacy and new native code environments and share data 

between them. 

Figure 8 describes the relevant data and information 

flows that might occur in one such implementation of this 

extended emulation architecture. This example has again 

been based on the MIPs processor although the logical 

interpretation is easily extended to any type or class of 

microprocessor. Figure 8 uses the term ‘thunk’, which is 

defined as a reference mapping of code addresses from 

one system specific form (i.e. legacy address space) to 

another (i.e. native environment). 

5 Safety Analysis of the Legacy Emulation 

Architecture Incorporating New Functions 

Developed in Native Code 

To provide an understanding of the software failure 

modes that might be relevant to the Type 2 emulation 

architecture, and importantly what architectural 

considerations and software assurance activities are 

required to provide evidence of the absence and handling 

of these identified failure conditions, it is again necessary 

to conduct some form of software safety analysis. 

In line with the approach adopted for the Type 1 

emulation architecture, a SHARD was conducted using 

the Legacy Instruction Set Engine and Virtual 

Component Environment Data/Information Flow 

Diagram (Figure 8) as a reference for information flows 

that might exist in the emulator, and services that are 

required from a functional perspective. An extract from 

the SHARD is presented in Table 4. 



Guide Word Deviation Cause Effect Detection / Protection 

Omission Failure to pause 

emulation 

Programming error causes a failure to 

recognise thunk address or to recognise 

need to pause emulation and transfer 

control to native function 

Wrong data in thunk table 

Emulated program continues to execute 

beyond thunk address – synch 

problems with native functions, 

possible program crash 

Establishment of thunk addresses and storage of thunk 

addresses within thunk table require level of integrity 

to process 

Verification of thunk address integrity, and relevant 

context to application code segment 

Commission Emulation paused when 

not required 

Programming error causes transfer to 

native application when not required 

Wrong data in thunk table 

Emulated program will pause, with 

transfer of control to wrong native 

function, or program halt 

Emulated function to be an atomic operation to ensure 

interruption from thunking only between instructions. 

Virtual Component Environment shall be able to 

detect a native applications anticipated violation of 

the emulated applications real time constraints and 

deadlines, and be able to return operation to the 

emulated function gracefully. 

As for Omission 

Early Emulation paused earlier 

than required 

Programmer error causes transfer to native 

application earlier than required 

Emulated program will pause, with 

transfer of control to native function 

early resulting in state synch problems 

with emulated program 

Emulated function to be an atomic operation to ensure 

interruption from thunking only between instructions. 

As for Commission 

Late Emulation paused later 

than required 

Programmer error causes transfer to native 

application later than required 

Emulated program may pause, with 

late transfer of control to native 

function resulting in state 

synchronisation problems with 

emulated program 

As for Early 

Value Emulation pauses with 

wrong state 

Programmer error causes program 

counter, register and memory/output state 

of emulator to be incorrectly captured 

Native function accessing emulated 

state may perform operations on 

incorrect data. Return of execution of 

emulator likely to result in program 

crash, or operations on invalid data  

Emulated function to be an atomic operation to ensure 

interruption from thunking only between instructions. 

Transfer control is not permitted access to emulator 

state unless otherwise justified. 

Table 4: Extract from SHARD on Type 2 Emulator (Pause Emulation) 

Detection/Protection Architectural or Verification 

Requirement 

Verification of thunk address integrity, and 

relevant context to application code segment 

Emulated function to be an atomic operation 

to ensure interruption from thunking only 

between instructions. 

Emulated function to be an atomic operation 

to ensure interruption from thunking only 

between instructions. 

Transfer control is not permitted access to 

emulator state unless otherwise justified. 

Virtual Component Environment must be 

able to detect a native application’s 

anticipated violation of the emulated 

application’s real time constraints and 

deadlines (to achieve temporal equivalence 

as previously defined), and be able to return 

operation to the emulated function 

gracefully. 

Software high level requirements comply 

with system requirements 

High-level requirements are accurate and 

consistent 

High-level requirements are compatible with 

target computer 

Low-level requirements comply with high-

level requirements 

Low-level requirements are accurate and 

consistent 

Low-level requirements are compatible with 

target computer 

Source Code complies with low-level 

requirements 

Test coverage of software structure (decision 

coverage) is achieved 

Establishment of thunk addresses and 

storage of thunk addresses within thunk 

table require level of integrity to process 

 

The development of native functions, their 

effect on the emulated systems state, and the 

integrity of the overall system are closely 

linked. Therefore, it may be necessary to 

apply more rigorous software assurance 

activities than associated with the severity of 

failure of the native function alone. Similar 

software assurance activities may be required 

as for emulator itself. This is dependant on 

the nature of the native function. Those that 

have significant effect on the state of the 

emulated system are likely to require 

additional assurance activities (i.e. equivalent 

to those defined for the emulator). Those 

functions that don’t may be conducted at a 

software assurance level commensurate with 

the severity of failure of that function. 

Transfer control is not permitted access to 

emulator state unless otherwise justified. 

Protected Domain – Partitioned RTOS 

Table 5: Determination of Architectural or 

Verification Requirements for Type 2 Emulator 

Having developed an understanding of the types of failure 

modes, their causes, effects, and detection/protection 

means, it is then possible to define architectural or 

verification requirements relative to those failure modes. 

Section 3 has already discussed the relationship of the 

DO-178B software assurance model and the associated 

critical properties elicited from relevant activities. The 

same logic is applied in this case. An extract from the 

architectural and verification requirement assignment 

against identified failure modes is presented in Table 5. 

Full details have not been included on each specific 

assignment. However, it follows that they are appropriate 

based on the argument presented earlier in this section. 

An inspection of the software assurance activities called 

out in Table 5 reveals that these objectives again come 

largely from the set of objectives core to DO-178B Level 

B. Therefore in a general sense, it follows that for most 

safety related systems, the most appropriate software 

assurance level will be DO-178B Level B. This is 

addressed in greater detail later in this paper. It should 

also be noted now that a requirement is identified relating 

to the interaction between the emulator and native 

environment. A robust means of addressing this 

requirement is through a protected domain (partitioned) 

RTOS. A broader inspection of the SHARD analysis, 

beyond the extent of that presented in this paper, also 

dictates a requirement for complete isolation of the 

emulator from the new COTS hardware (including I/O) 

by means such as the protected domain (partitioned) 

RTOS. 

5.1 Incorporating a Protected Domain RTOS 

(Type 3) 

A legacy emulation architecture that extends the Type 1 

architecture to incorporate a protected domain RTOS 

(designated Type 3 for convenience of reference 

throughout this paper) is detailed in Figure 9 and Figure 

10.  
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Figure 9: Emulator Architecture (Logical Layers) - 

Incorporating a Protected Domain RTOS 
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Figure 10: Emulator Architecture (Sub-Elements) - 

Incorporating a Protected Domain RTOS 

The significant change compared with the Type 1 

architecture is the complete isolation of the emulator from 

the new COTS hardware (including I/O) by the protected 

domain (partitioned) RTOS. 

This approach is ideally suited to those emulator 

applications where there is no immediate requirement to 

introduce new functionality into the legacy OFP using the 

native environment (as described in the Type 2 emulator), 

but for which future capability introduction may be 

required. The introduction of the protected domain 

(partitioned) RTOS provides a future expansion 

capability that ensures it is possible to later introduce new 

functionality in the native environment, without 

significant rework of the emulator. For example, changes 

to the emulator would likely be restricted to the addition 

of a virtual component environment. 

5.2 Emulation Architecture Incorporating New 

Functions Developed in Native Code 

(Type 4) 

A legacy emulation architecture that extends the Type 2 

architecture to incorporate a protected domain RTOS 

(Type 3 features) that facilitates the incorporation of new 

functions developed in native code (designated Type 4 for 

convenience of reference throughout this paper) is 

detailed in Figure 11, Figure 12, and Figure 13.  
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Figure 11: Emulator Architecture (Logical Layers) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 12: Emulator Architecture (Logical Layers) - 

Incorporating New Functions Developed in Native 

Code 
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Figure 13: Emulator Architecture (Sub-Elements) - 

Incorporating New Functions Developed in Native 

Code 

The following paragraphs provide an overview of the 

emulator components detailed in Figure 13. 

The significant change compared with the Type 2 

architecture is the complete isolation of the emulator and 



native virtual machine from the new COTS hardware 

(including I/O) by the protected domain (partitioned) 

RTOS. Furthermore complete temporal and spatial 

partitioning is now provided by the protected domain 

(partitioned) RTOS of the legacy CPU emulator and the 

native virtual machine to ensure adequate separation of 

legacy and new native functions (represented by the gray 

dashed line) 

While the temporal and spatial partitioning provided by 

the protected domain RTOS now ensures that the legacy 

application will not crash as a result of a problem with 

functions implemented in the native environment, there 

are some additional architectural issues that need to be 

addressed. For example, the virtual component 

environment must now exhibit safety properties to allow 

the legacy application to continue operating in event the 

native code fails to return control to the legacy 

application in a functionally appropriate or timely 

manner.  

6 Recommendations Relating to Emulator 

Architectures 

The analysis conducted in earlier sections of this paper 

has provided an appreciation of the failure modes that 

might be associated with the emulation architectures 

considered. This permits recommendations to be formed 

on the relevance of particular emulation architectures to 

the severity of various safety and mission failure 

conditions. Although this paper is primarily aimed at 

safety critical and safety related systems, recent guidance 

in AAP7001.054 Sect 2 Chap 7 (ADF 2005) has provided 

a framework through which those software assurance 

activities relevant to safety critical and safety related 

systems can be applied commensurately to mission 

systems. Table 6 details the emulation architecture types 

considered in this paper, and the safety or mission failure 

conditions for which they are recommended. 

Failure Condition Type1 Type2 Type3 Type4 

Catastrophic NR NR HR R
1
 

Hazardous NR NR HR R
1
 

Major R
1
 R

1
 HR HR 

Minor R R HR HR 

S
a
fe
ty
 

No Effect HR HR R
2
 R

2
 

Critical R R HR HR 

Serious R R HR HR 

M
is
si
o
n
 

Important HR HR R
2
 R

2
 

NR=Not Recommended, R=Recommended, HR=Highly Recommended 

Note 1: Recommended only if the sub-elements have been subjected to 
rigorous software safety analysis that shows the absence or handling of 

all potential failure modes. 

Note 2: Recommended rather than Highly Recommended based on the 
cost associated with the purchase of a protected domain and partitioned 

RTOS. 

Table 6: Emulation Architecture Recommendations 

7 Issues with the Native Code Approach 

Subsequent modifications to legacy code hosted on the 

emulator may be made using either the legacy 

development environment or a newer development 

environment.  

There may be substantial risks associated with making 

any more than a small number of changes to the system 

using the newer development environment and native 

code. This is because of the difficulty of being able to 

demonstrate precise knowledge of the pre-conditions to 

modifications from exit points of the legacy code 

increases with each subsequent change. Similar 

difficulties might also exist for the post-conditions of 

modifications and entry points back into the legacy code. 

These problems are particularly pronounced for legacy 

software that has limited available documentation (often 

the case of legacy systems), or where developer’s 

knowledge of the legacy software is no longer sufficient. 

The problems may be further exacerbated by poor control 

over the determination of entry and exit points to and 

from the legacy code, and the amount of coupling 

permitted between various native code elements. A robust 

Application Programming Interface (API) is therefore 

required to provide tight control of the entry and exit 

points. 

Specific architectural considerations, including 

partitioning (spatial and temporal as provided by a 

partitioned RTOS), and related analysis would be 

required to demonstrate finite, well defined dependencies 

between subsequent new developments and legacy code. 

Such analysis would require a thorough understanding of 

the emulator, the legacy software and the legacy 

processor. Risks associated with adding new code can be 

mitigated largely by detailed analysis, as suggested 

throughout this paper, and planning of new features as 

part of a appropriately controlled and managed change 

process. Tool support would also be desirable to assist 

with providing an understanding of the legacy and native 

implementations. 

Some emulators provide embedded real-time, non-

intrusive monitoring and legacy code debugging services 

as part of the virtual component environment or lower-

level CPU emulator. Such services may provide 

developers with tools necessary to mitigate aspects of the 

aforementioned problems by providing visibility into the 

entry and exit points across the boundaries between the 

legacy and native code elements. 

One strategy that might also address aspects of this 

problem is to eventually translate the executive out of the 

legacy application into the native environment, with the 

legacy binary being used as a library of functions. NGST 

has successfully implemented this approach with some 

other avionics systems, although proprietary and US State 

Department restrictions prevent disclosure in the public 

domain. Specific software safety analysis would be 

required to provide an understanding of any risks with 

this approach. 

 



The risks identified above must be weighed against the 

potential cost and schedule benefits offered by emulation, 

and the risks of alternative software approaches for 

upgrading systems. 

8 Software Assurance Evidence Requirements 

for Emulation 

The ADF preferred standard for software assurance of 

airborne software is RTCA/DO-178B (ADF 2005). 

Although it is acceptable to develop emulation within the 

framework of other relevant software assurance and 

software safety standards, this paper will restrict the 

provision of certification criteria to DO-178B. 

Comparisons to other standards may be developed 

through consideration of the critical software assurance 

activities identified in this paper. 

Table 7 defines the DO-178B software levels relevant to 

emulation based on those critical software assurance 

activities identified in previous sections of this paper. The 

levels are determined by a comparison of those critical 

software assurance activities with those activities 

normally prescribed by DO-178B at the respective 

software levels defined in that standard. 

Failure Condition DO-178B 

Software 

Level 

Software 

Level for 

Emulation 

Catastrophic Level A Level A 

Hazardous Level B Level B 

Major Level C Level B 

Minor Level D Level C 

S
a
fe
ty
 

No Effect Nil Level D 

Failure Condition AAP7001.054 

Guidance 

Software 

Level for 

Emulation 

Critical Level C Level B 

Serious Level D Level C+ 

M
is
si
o
n
 

Important Nil Level D 

Table 7: Software Levels for Emulation 

Table 8 details other additional activities required for 

Level C+, over those activities required for Level C. 

These activities largely mirror those specific Level B 

activities identified in the earlier analysis that are critical 

to meeting and verifying detection/protection 

requirements, and meeting the desired level of integrity 

for the system. Where independence, as defined by 

DO-178B, is believed to provide further assurance to the 

satisfaction of the relevant DO-178B objective, then a 

requirement for it has also been documented. Similarly, 

where independence is not viewed as a key contributor to 

the outcome of the activity, then it is documented as not 

required. 

 

 

DO-178 Reference Objective 

A-3-1 (6.3.1a) Software high level requirements 

comply with system requirements 

(satisfied with independence) 

A-3-2 (6.3.1b) High-level requirements are 

accurate and consistent 

 

A-3-3 (6.3.1c) High-level requirements are 

compatible with target computer 

(satisfied with independence) 

A-4-1 (6.3.2a) Low-level requirements comply 

with high-level requirements 

(satisfied with independence) 

A-4-2 (6.3.2b) Low-level requirements are 

accurate and consistent 

(satisfied with independence) 

A-4-3 (6.3.2c) Low-level requirements are 

compatible with target computer 

A-5-1 (6.3.4a) Source Code complies with low-

level requirements 

(satisfied with independence) 

A-6-3 (6.4.2.1, 

6.4.3) 

Executable Object-Code complies 

with low-level requirements 

(satisfied with independence) 

A-7-6 (6.4.4.2a, 

6.4.4.2b) 

Test coverage of software structure 

(decision coverage) is achieved 

(independence not required) 

Table 8: Level C+ Additional Activities Over Level C 

Although such prescription detailed in Table 7 departs 

from the traditional hazard severity / software level 

alignment of Aerospace Recommended Practice (ARP) 

4754 and DO-178B, emulation technology presents 

specific architectural risks that require specific assurance 

activities to mitigate. Developers might argue that the 

increase in software assurance level for emulation will 

significantly increase the costs associated with the 

introduction of emulation technology. While there is an 

element of truth to this argument, there are a number of 

key points that provide an appropriate tradeoff against the 

cost increase. These are as follows:  

• The size of the emulator (in terms of lines of code) 

will generally be only a small proportion of ‘real 

world’ legacy binary (lines of code) for military 

avionics equipment (e.g. emulator’s lines of code is 

less than 25% ‘real world’ legacy binary). A typical 

‘real world’ legacy binary in currently operating 

Australian military aircraft is of the order of 150,000 

lines of code, although future aircraft and systems will 

continue to see this figure increase. These figures are 

based on the RePLACE and DGU example, and are 

considered typical of such implementations. 



Therefore, the number of lines of code to which the 

more stringent software level should apply is not 

substantial, and certainly less than the legacy binary. 

It is important to note that the guidance does pertain 

to the emulator only, and not to the legacy OFP 

(binary). This table does not imply that the legacy 

binary should be redeveloped to the prescribed 

software level. 

• The service history of the legacy software will be 

yielding a perceived software failure rate or rate of 

problem occurrences. This will be interpreted by 

operators both in terms of the reliability or 

availability, and thus the capability integrity, of the 

associated system; and also the inherent level of 

safety currently provided by the system. Service 

history is one important attribute as it is unlikely that 

most legacy systems will have been developed with 

the requirements of most current software assurance 

or safety standards in mind. Reflecting on the 

software failure rate, it is generally argued by the 

software community that such a rate is not actually a 

reliability (ie. reliability normally being a measure of 

a systems susceptibility to random failure conditions, 

whereas this is more synonymous as a measure of the 

software’s exposure to conditions that might uncover 

systematic errors). However, it does provide a 

baseline to operators as to the ‘apparent reliability’, 

and ‘level of safety’ of their avionics equipment. 

Importantly, it also provides technical support staff 

with an understanding of the software’s contribution 

to any identified failure modes. Therefore, it should 

be the goal of any program addressing the equipment 

obsolescence to provide properties commensurate or 

better than those experienced on the original legacy 

systems. This places some specific integrity 

requirements on the emulator. For example, the 

emulator should not introduce any further failure 

modes that might reduce the ‘apparent reliability’ or 

‘level of safety’ of the system. Furthermore, benign 

failures should remain benign, or be handled by the 

emulator. One means of achieving this is to apply a 

greater level of rigour, appropriately targeted, to the 

emulator than for that required of the original legacy 

binary, thus providing a greater level of integrity in 

the emulator software. An appropriate, targeted 

increase in the software level for the emulator 

therefore justifies the applicable cost increase. 

• The software assurance level, and associated 

prescription/definition of activities for Minor, No 

Safety Effect, and Mission Important categories is not 

significantly greater that the level normally defined 

under normal circumstances for these systems. 

Therefore, these systems provide a suitable entry 

point for the technology into the military avionics 

domain. 

9 RePLACE Dual Instruction Set Computer 

(DISC) 

DSTO are presently working with NGST to develop a 

concept demonstrator utilising NGST's RePLACE 

Emulation Technology for the RAN Seahawk DGU. The 

Dual Instruction Set Computer (DISC) variant of 

RePLACE, as distinct from other RePLACE variants (eg. 

X-Port and hybrid), has been identified by NGST as most 

applicable to emulating the DGU’s AAMP processors. 

This identification is based on consideration of the 

AAMP processor’s performance against a proposed 

native processor (ie. PowerPC), with due consideration 

for the RePLACE variant’s computational overhead. It is 

therefore necessary to examine RePLACE DISC in the 

context of the guidance already formulated in this paper. 

9.1 Overview of RePLACE Architecture 

Figure 14 details the architecture of the RePLACE DISC. 

By inspection it is possible to determine that it closely 

represents the Type 2 architecture already covered in this 

paper. 

 

Figure 14: RePLACE Dual Instruction Set Computer 

(NGST 2005) 

 

Figure 15: RePLACE DISC (Logical Layers) 

(NGST 2005) 

9.2 Assessment of RePLACE 

DGTA funded a US based company, Certification 

Services Inc (CSI), under a DGTA standing offer to 

conduct a DO-178B audit of the RePLACE program. The 

audit considered both DO-178B Level B and C, with a 

specific goal to identify the practicality of applying such 

objectives to the RePLACE development, and to assess 



any issues (technical, cost, schedule) that might exist in 

transitioning an existing program within a framework that 

would meet the objectives identified throughout this 

paper. CSI are highly skilled in evaluating the application 

of DO-178B to avionics developments, and specifically 

Mike DeWalt, whom conducted this audit, is considered 

an authority on DO-178B. 

The audit (CSI 2005) found that the RePLACE 

development does not yet satisfy all relevant DO-178B 

objectives, and although the RePLACE program in its 

current state is mostly close to satisfying both Level B 

and Level C, many of those objectives that it does not yet 

address are considered essential in this context. Those 

objectives not presently addressed predominantly relate to 

requirements traceability, verification and some software 

configuration management activities. It is important to 

note that RePLACE Seahawk DGU program is presently 

being conducted as a concept technology demonstrator, 

and therefore satisfaction of many of these objectives is 

beyond the scope of funding available in such 

programmes. 

CSI’s assessment is that there is little technical risk of the 

RePLACE program not being able to meet DGTA’s 

expectations with respect to avionics software assurance. 

However, cost and schedule risk were identified relating 

to the generation of software assurance artefacts and the 

rework necessary to ensure that RePLACE fully meets 

the relevant DO-178B requirements. However, it was 

assessed that through some targeted certification risk 

reduction activities, it is possible to constrain cost and 

schedule risks to suitable levels. 

Following the audit, DGTA published a series of papers 

on how the Commonwealth might accept RePLACE as 

part of the design acceptance process used for 

modifications to Australian State aircraft (DGTA 2005). 

These papers formed the starting point of further 

negotiation and development with NGST and DSTO. The 

guidance in these papers was principally based on the 

analysis which forms the background of the material 

presented in this paper. 

Post-audit work conduct between DGTA, DSTO and 

NGST, which is still on-going, has recently resulted in 

NGST delivering a white paper that demonstrates a 

qualified understanding of cost and schedule risks. 

Furthermore, DGTA assesses that the identified cost and 

schedule reflect that emulation is a cost effective option 

for addressing legacy obsolescence in some safety related 

and mission systems. Further details relating to cost and 

schedule are commercially sensitive and cannot be 

discussed further in this paper. 

RePLACE for the Seahawk DGU program is presently 

hosted on the Wind River VxWorks OS, a non-DO-178B 

compliant RTOS. VxWorks was selected for the DGU 

emulator demonstrations due to the high cost of other 

DO-178B compliant RTOS’s, and the limited funds 

available for the Seahawk DGU emulation demonstrator. 

There is some work NGST would be required to 

undertake to modify any system calls and software 

structure within this implementation of the RePLACE 

application to accommodate a different RTOS. Other 

RePLACE products have already been hosted on 

protected domain RTOS’s, indicating that there is 

unlikely to be any technical barriers to moving to a 

protected domain RTOS (eg. Green Hills Integrity OS) 

for the Seahawk DGU RePLACE application . 

10 Summary 

Evaluation of emulation technology, through exploration 

of several emulation architectures and of RePLACE as a 

case study, has allowed DGTA to define certification and 

regulatory guidance for the development of emulation 

technology within the ADF context. The trial application 

of this certification guidance with the Seahawk DGU 

RePLACE concept technology demonstrator has 

permitted an evaluation of the effectiveness of the 

prescribed DGTA certification criteria. At this time 

DGTA is satisfied that this guidance will promote an 

acceptable level of safety for emulation on legacy 

military avionics while still ensuring emulation is a cost 

effective option for addressing legacy obsolescence. 

11 Acknowledgments 

I would like to thank Systems Certification and Integrity 

(SCI) – DGTA staff including Mark Wade, Squadron 

Leader Ben Musial and Flight Lieutenant Wendell Fox 

for their input to and review of all my work relating to 

emulation. 

I would also like to thank Paul Vicen, Tamy Staub, 

Curt Pflasterer and other RePLACE staff at Northrop 

Grumman Space Technology (NGST) for their input to 

this paper relating to RePLACE and enthusiasm to 

explore certification criteria with DGTA. 

Finally I would like to thank Dr Rob O’Dowd, Mark 

Davies and David Culpin of Air Operations Division – 

Defence Science and Technology Organisation for their 

coordination of RePLACE development activities with 

NGST, and their on-going liaison with DGTA. 

12 References 

The following documents, papers and publications are 

referenced throughout this paper. A number of these 

documents are not available in the public domain for 

propriety or confidentiality reasons. Readers wishing to 

seek further information should direct their queries to the 

author of this paper, or the relevant standards body. 

Aerospace Recommended Practice ARP4754 (1996) 

Certification Considerations for Highly Integrated or 

Complex Avionics Systems, Society of Automotive 

Engineers. 

Australian Defence Force (2005) Australian Air 

Publication (AAP) 7001.054 Airworthiness Design 

Requirements Manual AM1. 

Australian Defence Force (2006) Aircraft System Safety 

Engineering Course – Software Safety Course Notes 

developed jointly by Systems Certification and 

Integrity – DGTA and Ball Solutions Group. 

 



Certification Authorities Software Team (2000) Position 

Paper Cast 5 – Guidelines for Proposing Alternate 

Means of Compliance to DO-178B, Federal Aviation 

Authority. 

Certification Services Inc (2005) Evaluation of the NGST 

RePLACE Product, CSI Document 05-276-1246 

Rev03. 

Directorate General Technical Airworthiness (2005) 

Paper on How the Commonwealth Might Accept 

RePLACE – Issue 3, Australian Defence Force. 

Federal Aviation Authority (FAA) Order 8110.49 (2003) 

Software Approval Guidelines, USA. 

McKinlay, A. (2001) Software Safety Course Notes, 

Aviation Safety, School of Engineering, University of 

Southern California, USA. 

Northrop Grumman Space Technology (2005) RePLACE 

Technology – Bringing 20
th
 Century Systems into the 

21
st
 Century - Marketing Brief, Dayton Ohio, USA.  

Pumfrey, D. (1999) The Principled Design of Computer 

System Safety Analyses, PhD Thesis, Department of 

Computer Science, University of York, UK. 

RTCA Inc (1992) RTCA/DO-178B Software 

Considerations In Airborne Systems and Equipment 

Certification, Washington, D. C. USA. 

RTCA Inc (2001) RTCA/DO-248B Final Report for 

Clarification of DO-178B Software Considerations in 

Airborne Systems and Equipment Certification, 

Washington, D. C. USA. 

  


