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Abstract 
Huge amount of gene expression data have been generated 
as a result of the human genomic project. Clustering has 
been used extensively in mining these gene expression 
data to find important genetic and biological information. 
Obtaining high quality clustering results is very 
challenging because of the inconsistency of the results of 
different clustering algorithms and noise in the gene 
expression data. Many clustering algorithms are available 
and different clustering algorithms may generate different 
clustering results due to their bias and assumptions. It is a 
challenging and daunting task for the genomic researchers 
to choose the best clustering algorithm and generate the 
best clustering results for their data sets.  In this paper, we 
present a cluster ensemble framework for gene expression 
analysis to generate high quality and robust clustering 
results. In our framework, the clustering results of 
individual clustering algorithm are converted into a 
distance matrix, these distance matrices are combined and 
a weighted graph is constructed according to the combined 
matrix. Then a graph partitioning approach is used to 
cluster the graph to generate the final clusters. The 
experiment results indicate that cluster ensemble approach 
yields better clustering results than the single best 
clustering algorithm on both synthetic data set and yeast 
gene expression data set.. 

Keywords: cluster ensemble, gene expression analysis, 
graph partition 

1 Introduction 
Clustering is to group analogous elements in a data set in 
accordance with its similarity. Therefore “good” 
clustering means elements in each cluster are similar while 
elements from different clusters are dissimilar. Unlike 
classification, clustering does not require the class label 
information about data set because it is inherently a 
data-driven approach; that is why clustering plays a very 
important role as the initial step in data exploratory 
analysis. In gene expression analysis, normally not much 
prior knowledge is accumulated, so genomic researcher 
tend to apply clustering algorithms on the gene expression 
data sets to gain better understanding and insightful 
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genetic and biological information.  Clustering is one of 
most widely and frequently used data mining technologies 
in gene expression analysis (Azuaje 2002, Bellaachia, 
Portnoy, Chen and Elkahloun 2002, Ben-Dor and Yakhini 
1999, Berrar, Dubitzky and Granzow 2002, Bloch and 
Arce 2002, Xing and Karp 2001, Zeng, Tang, Garcia-Frias 
and Gao 2002, Zhao and Karypis 2003). 

Through the use of clustering algorithms on gene 
expression data can answer some challenging biological 
and genetic questions, such as identifying the functionality 
of genes, finding out what genes are co-regulated, 
distinguishing the important genes between abnormal 
tissue and normal tissues etc (Zhao and Karypis 2003). 
There are multiple clustering techniques that can be used 
to analyse gene expression data. Advantages and 
limitations may depend on factors such as data distribution, 
pre-processing procedures, number of genes etc. Choosing 
“the best” algorithm for a particular problem may 
represent a challenging task. Moreover, it is not 
uncommon to observe inconsistent results when different 
clustering methods are tested on a particular data set. 
K-Means, Self-Organizing Map (SOM), Hierarchical 
approaches, Fuzzy C-Means, etc, are very different in 
some cases (Jain, Murty and Flynn 1999). This is because 
clustering methods have their own bias and function 
criterion. For example, the popular K-means algorithm 
performs miserably in several situations where the data 
cannot be accurately characterized by a mixture of K 
Gaussian with identical covariance matrices. It is well 
known that no single clustering algorithm that performs 
best across various data sets and it is very challenging to 
choose the best clustering algorithm for gene expression 
analysis. 

Design, performance evaluation, and application of 
clustering algorithm on gene expression data must take 
into account the data characteristics and randomness 
arising from both biological and experimental variability. 
Instead of focusing on developing single clustering 
algorithm only work for a narrow-range of data sets, in this 
paper, we take a different approach. We present a unified 
cluster ensemble framework to combine the clustering 
results from various clustering algorithms. In our approach, 
the clusters ensemble problem is converted to a graph 
partitioning problem. A distance matrix is first constructed 
based on the cluster results from each individual clustering 
algorithm; these distance matrices are combined to form a 
master distance matrix. Then a weighted graph is 
constructed from the master distance matrix and a 
graph-based partitioning algorithm is applied to the graph 
for the final clustering results. The cluster ensemble builds 
a robust clustering portfolio that can perform reasonable 
well over a wide range of data sets with little hand-tuning. 



Our experiment results on both synthetic data sets as well 
as gene expression data sets indicate that the clustering 
quality of the ensemble approach significantly 
outperforms the best individual clustering algorithm.  

The rest of the paper is organized as follows. In Section 2, 
we give a brief overview of the various clustering 
approaches and summarize the related work. We present 
our cluster ensemble algorithm in details and experimental 
tests in Section 3. We conclude with our future plan and 
discussion in Section 4. 

2 Related Work 
Classification ensemble approaches such as bagging and 
boosting have been proved very popular and effective in 
supervised learning to improve the learning accuracy 
(Dietterich 2001, Hu 2001). Following the same 
philosophy, the goal of cluster ensemble is to combine the 
clustering results of multiple clustering algorithms to 
obtain better quality and robust clustering results. 
Generating high quality clustering result is very 
challenging in gene expression analysis because of the 
noise in the experimental data and the inconsistency 
among the different clustering algorithms. Even though 
many clustering algorithms have been developed (Han and 
Kamber 2001, Hartigan 1975, Jain, Murty and Flynn 
1999), not much  work is done in cluster ensemble in data 
mining and machine learning literature compared with 
classification ensemble method. Zeng et al. (Zeng, Tang, 
Garcia-Frias and Gao 2002) proposed an adaptive 
meta-clustering approach for combining different 
clustering results. In their research, they converted the 
individual cluster results into a distance matrix and then 
combine the distance matrix and apply a hierarchical 
clustering to recluster the combined distance matrix.  
Strethl et al. (Strehl and Ghosh 2002) proposed a 
hypergraph-partitioned approach to combine different 
clustering results.  Each cluster in an individual clustering 
algorithm is treated as a hyperedge. This crisp hypergraph 
lost much useful information, and it is not suitable for 
ambiguous and noisy environment.  

It is very hard to find the optimal way of combining 
clusters. It is considered that this is a natural phenomenon 
because each object has various characteristics and a group 
of various objects can be partitioned in several ways based 
on the many peculiarities. For example, consider people in 
a university. We can group them into so many groups 
based on gender, nationality, position (faculty, staff, 
student – we can also group faculty and student in fine 
grade; for faculty group there are full professor, associate 
professor, assistant professor, etc and for students there are 
graduate student and undergraduate student), etc. It is hard 
to say which clustering result is the best.   

We observe even though various clustering algorithms 
present different types of knowledge concerning the 
clustering criterion, most clustering criteria in various 
algorithms are compensative rather than competitive in 
gene expression analysis. We believe that an effective 
combination of several clustering algorithms is an 
important way to improve the clustering quality, but 
cluster ensemble is different from the classification 

ensemble. Some of the major issues of cluster ensembles 
addressed in the proposed research are how to combine 
different clustering results and how to ensure symmetrical 
and unbiased consensus with regard to all the component 
partitions. The main difficulties are: (1) the quality of a 
clustering combination algorithm cannot be evaluated as 
precisely as a combining classifier, and (2) various 
clustering algorithms always produce results with large 
differences due to different clustering criteria. Directly 
combining the clustering results with integration rules 
such as product, sum and majority vote cannot generate a 
good meaningful result. A new mechanism to combine the 
different cluster results is needed to obtain better 
clustering results.  

We propose a graph-based meta-clustering approach to 
extract the information from results of different clustering 
techniques, so a better interpretation of the data 
distribution can be obtained. A distance matrix is 
constructed to represent the statistical information of each 
cluster produced by various clustering techniques.  Our 
method incorporates multiple cluster-based distance 
matrices into a weighted graph. A graph based clustering 
algorithm is used to cluster the graph for the final 
clustering results.   

3 Cluster Ensemble Based on 
Similarity-Graph 

The motivations for developing cluster ensembles are to 
improve the quality and robustness of results. There are 
two reasons for this: (1) the results of clustering are easily 
corrupted by the addition of noise, which is very common 
in gene expression analysis as the experimental 
measurement may not be very accurate or error may be 
introduced by the data transformation, (2) the clustering 
results of different clustering methods can vary 
significantly in the same data set, that indicates that there 
could be a great potential for improvement when using an 
ensemble for the purpose of improving clustering quality.   

The purpose of cluster ensemble is to build a robust 
clustering portfolio that can perform as good as if not 
better than the single best clustering algorithm across a 
wide-range of data sets. Different clustering algorithm 
may take a different approach. For example, K-means is to 
group the data set so that the total Mean Square Error to 
the center of each cluster is minimum while graph-based 
partitioning clustering is to partition the graph into K parts 
based on the minimum edge weight cuts. Thus a cluster 
ensemble can be used to generate many cluster results 
using various clustering algorithms and then integrate 
them using a consensus function to yield stable results.  

In this section we discuss our novel cluster ensemble 
approach to combine the clustering results from various 
clustering algorithms. We present a two-phase clustering 
combination strategy. At the first step, various clustering 
algorithms are run against the same data sets to generate 
clustering results. At the second step, these clustering 
results are combined by an auto-associative additive 
system based on the distance matrix of graph clustering. 
The diagram below summarizes our approach. 



In our approach, a distance matrix is first constructed 
based on the cluster results from each individual clustering 
algorithm; these distance matrices are combined to form a 
master distance matrix. Then a weighted graph is 
constructed from the master distance matrix and a 
graph-based partitioning algorithm is applied to the graph 
for the final clustering results. Graph-based clustering uses 
various kinds of geometric structure or graphs for 
analyzing data. Different graphs reflect various local 
structure or inherent visual characteristic in the data set. 
Clustering divides the graph into connected components 
by identifying and deleting inconsistent edges, and each 
subgraph consisting of connected components refers to a 
cluster. 

In the subsections below, we explain our cluster ensemble 
step by step. We first discuss the cluster validation indices, 
which help answer the tough question of how many 
clusters in the data sets, brief describe the clustering 
methods integrated in our framework, and then we explain 
the cluster ensemble mechanism and clustering result 
evaluation. 

3.1 Clustering Methods 
Many clustering algorithms have been developed from 
computer science and other disciplines such as data mining, 
machine learning, pattern recognition and statistics, to 
name a few.  Clustering algorithms can be roughly 
classified into hierarchical methods and non-hierarchical 
methods. Non-hierarchical method can also be divided 
into four categories; partitioning methods, density-based 
methods, grid-based methods, and model-based methods 
(Han and Kamber 2001, Jain, Murty and Flynn 1999). 

Hierarchical methods proceed successively by either 
merging the smaller clusters into large clusters or splitting 
the larger clusters. The methods yield a dendrogram or a 
tree of clusters representing how the clusters are related. 
Partitioning methods generate initial k clusters and 
improve the clusters by iteratively reassigning elements 
among k clusters. The number of “k” and iteration is user 
input. K-means and K-medoids (Partitioning Around 
Medoids (PAM) and Clustering LARge Applications 
(CLARA)) (Jain, Murty and Flynn 1999) belong to this 
category. Self-Organizing Map (SOM) as a model-based 
method was developed for better speech recognition by 
Teuvo Kohonen in the early 1980s (Kohonen 2000). Fuzzy 
C-means as one of fuzzy clustering methods has been 

developed by Bezdek (Bezdek 1981, Bezdek and Pal 
1992) by generalizing Dunn’s idea (Dunn 1974). 

In our experiment we integrated three clustering 
algorithms; K-means, Self-Organizing Map (SOM), and 
Fuzzy C-means as our initial implementation and more 
complementary clustering algorithms can be added 
without any changes to the architecture of the ensemble 
framework. 

3.2 Clustering Ensemble Algorithm 
Based on multi-objective programming: a simple strategy 
of designing clustering ensemble algorithm is based on 
multi-objective programming that seeks a solution to 
satisfy multiple clustering criteria. Multi-objective 
programming can be transformed to single objective 
programming by a weighting method, which is employed 
in our algorithm. 
Our algorithm to ensemble clusters is. 

Algorithm 1: Cluster Ensemble Based on 
Similarity-Graph (CESG) 

Input: (1) the data set X={x1,x2,x3,…,xn), (2) the upper 
bound  of the cluster number k, (3) edge threshold value δ 
(4) a set of  clustering algorithms C(q) 

Output: the final clustering result C(opt) 

Method: 

Step 1: Run the individual clustering algorithm C(q) 

multiple times on the same data set under different 
cluster numbers (clusters varies from 2 to k).  

Step 2: Pick up the optimal number of clusters for each 
data set using three cluster validation indices (Silhouette 
index, Dunn index, and C index). If the number is not 
consistent, use voting strategy to choose the number 
with the majority as the number of the clusters. 

Step 3: Construct a distance matrix (DM) for the 
clustering results for each clustering algorithm. (DMij 
represents the similarity of two data xi and xj points) 

Step 4: Combine the distance matrixes by adding them 
into one master distance matrix (MDM) 

Step 5: Construct a weighted graph based on the 
distance matrix. (There is an edge between data point xi 
and xj if the  value MDMij of xi and xj is greater than 

Figure 1 Cluster Ensemble Architecture 



some threshold value δ,  MDMij is also the weight of the 
edge link xi and xj) 

Step 6: Cluster the graph into the optimal number of 
clusters based on the cluster number chosen at Step 2 

End 

In Step 3, there are so many ways to construct the distance 
matrix based on cluster results from individual clustering 
algorithm. We propose a solution based on statistical 
theory.  Here we assume that our data set is in Gaussian 
distribution as in (Zhao and Karypis 2003). 

Cluster-based distance matrix DM(q) for the clustering 
result C(q).  DM(q) is a pair-wise distance matrix defined 
between two data points according to the clustering result. 
This distance is able to efficiently extract the statistical 
information from the obtained cluster structure. The 
matrix size is nxn. Since its size is independent of the 
clustering approach, it provides a way to align the different 
clusterings onto the same space even for some situations 
where the numbers of clusters are different for different 
clustering algorithms.  

Assume that input data set are X={x1, x2, x3, … xn}, and 
the cluster algorithm generates m clusters for the data set X. 
Clustering result is S={s1, s2, s3, …, sm}, where sj is the jth 
clusters consisting of some data points in X. For example, 
X={x1, x2, x3, … x9} and S={s1, s2, s3}, s1 = {x1, x5}, 
s2={x2, x3, x7}, s3={x4, x6, x8, x9}. 

We assume that probability density function of sj is given 
by p(xi|sj), the posterior probability of cluster sj given xi 
can be expressed as: 
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m is the number of clusters. ∑ j is a matrix of co-variances 
among attributes in cluster j, µj is the mean vector of the 
data points in the cluster sj. 

For example, to calculate P(s2|x2), given the following 
elements in a cluster s2 = ={x2, x3, x7}, (assume each xi has 
three conditions),  

 Att_1 Att_2 Att_3 
x2 x21 x22 x23 
x3 x31 x32 x33 
x7 x71 x72 x73 

 ∑ 2 is shown as  
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where 12σ  is 
covariance between 
Att_1 and Att_2 and 

2
11σ  is variance of 

Att_1 in s2 

For each data point xi, we calculate the corresponding 
probability vector PXi = {P(s1|xi), P(s2|xi),…P(sm|xi)},  
where ∑j=1,..m P(sj|xi) =1, the probability vectors form a 
probability space of dimension of m, with each dimension 
corresponding to one cluster. The probability space 
contains information from both the input data and the 
cluster results.  So we believe the similarity of any two 
points PXl and PXm in the probability space is a good 
measurement to reflect the distance of the corresponding 
points xl and xm in the original space. 
Then for any two points, xl and xm , in the data set, their 
distance is defined as the distance between PXl and PXm, 
namely,  DM(q) (xl ,xm).  Many different distance measures 
such as Euclidean distance, Mahalanobis distance or 
correlation distance can be used to calculate DL(PXl,PXm).   
We define the similarity of two points (xi and xj) in the data 
set as  
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In step 6, a graph-based clustering algorithm is applied to 
the weighted graph for the final clustering result.  Many 
graph-based partitioning algorithms can be used for this 
purpose, such METIS, HMETIS (Kayypis and Kumar 
1998a). Clustering divides the graph into connected 
components by deleting edges based on some constraint 
such as minimum cuts, and each subgraph consisting of 
connected components refers to a cluster. In our 
experiment, we chose the graph partitioning-based 
algorithm METIS (Kayypis and Kumar 1998a, Kayypis 
and Kumar 1998b) because of its good performance and 
scalability. 

3.3 Clustering Result Evaluation 
To evaluate the quality of cluster is a non-trivial and often 
ill-posed task.  Generally speaking, there are internal 
criteria and external criteria.  Internal criteria formulate 
quality as a function of the given data and/or similarities. 
For example, the mean squared evaluation criterion (for 
k-means) and other measures of compactness are popular 
evaluation criteria. Measure can also be based on isolation 
such as the min-cut criterion, which uses the sum of edges 
weights across clusters (for graph portioning). When using 
internal criteria, clustering becomes an optimization 
problem, and a clusterer can evaluate its own performance 
and tune its results accordingly. 
External criteria on the other hand impose quality by 
additional, external information not given to the clusteres, 
such as category labels. This is sometimes more 
appropriate since groupings are ultimately evaluated 
externally by humans. For example, when objects have 
already been categorized by an external source, i.e., when 
class labels are available, we can use information 
theoretical measure to quantify the match between the 
categorization and the clustering.  In our cluster ensemble, 
external criteria fit very well with our architecture. We use 
the Minkowski Score (Ben-Hur and Guyon 2003) as our 



cluster quality indicator. Below is our formula for the 
clustering quality evaluation. 
A clustering solution for a set of n elements can be 
represented by an nxn matrix C where Cij=1 iff xi and xj are 
in the same cluster according to the solution and Cij=0 
otherwise.   

A measure of Minkowski Score (MS) between the 
clustering results C(h) from a particular clustering 
algorithm  CAh with a reference clustering T (or 
alternatively, the true clusters if the cluster information in 
the data set is known in advance) is defined as  

     MS (T, C(h))  = ||T-C(h)||/||T||,  where ||T|| = sqrt(∑i∑jTij) 
The Minkowski score is the normalized distance between 
the two matrices. Hence a perfect solution will obtain a 
score zero, and the smaller the score, the better solution.  
We abbreviate the set of cluster groupings from r different 
clustering algorithms as Ψ = { C(q)| q ∈ {1,…,r}}. The 
average MS score of combined clustering result C with the 
Ψ is defined as 

∑
=

=Ψ
r

q

qANMI CCMS
r

CMS
1

)()( ),(1),(  

3.4 Experimental Results 
We conduct some experiment study on both data sets from 
the UCI machine learning repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html) and 
yeast gene data set (http://rana.lbl.gov/EisenData.htm). 

3.4.1 UCI Data Sets 
Iris data set, Pen digit data set, and Vowel data set were 
used for our experiment. The following table shows 
clustering result of the three clustering algorithms and 
cluster ensemble. 

IRIS data set(3 clusters) 

K-means SOM Fuzzy 
C-mean 

Cluster 
Ensemble 

0.599 0.770 0.599 0.388 
The following table represents the element (or point) 
compositions of iris data set in the true clusters and the 
best clusters using cluster ensemble. 

Element composition 
IRIS data set True 

clusters 
Best clusters using 
cluster ensemble 

Group1 50 50 
Group2 0 0 Cluster1 
Group3 0 0 
Group1 0 0 
Group2 50 48 Cluster2 
Group3 0 2 
Group1 0 0 
Group2 0 2 Cluster3 
Group3 50 48 

The following tables show clustering results of the three 
clustering algorithms and cluster ensemble technology for 
pen digits data set and vowel data set. 

Pen Digits data set(10 clusters) 

K-means SOM Fuzzy 
C-mean 

Cluster 
Ensemble 

0.962 1.164 0.998 0.918 
 

Vowel data set (11 clusters) 

K-means SOM Fuzzy 
C-mean 

Cluster 
Ensemble 

1.215 1.332 1.503 1.208 

3.4.2 Yeast gene data set 
There are 6221 genes in the data sets but not every gene is 
classified into a certain function family. In our experiment 
we considered the genes in a function family as one cluster 
and created 6 data sets (cluster 2, 3, 4, 5, 6, 7). Table 1 
shows 6 function families of yeast gene and how we 
construct the six data sets (C2, C3, C4, C5, C6, and C7) for 
our cluster ensemble comparison. For example, “C3” 
means the cluster set has 3 clusters (ATP synthesis, mitosis, 
and vacuolar protein targeting here) 

Function Families # of 
genes Cluster Sets 

ATP synthesis 19 
mitosis 19 
vacuolar protein targeting 19 

C3  

silencing 20 
fatty acid metabolism 20 
meiosis 21 
phospholipid metabolism 21 
TCA cycle 22 

C5  

protein processing 27  
DNA repair 29 
protein folding 30 
nuclear protein targeting 31 
signaling 31 

C4 

major facilitator superfamily 32 
mRNA splicing 34  

C6 C7 

chromatin structure 42 
DNA replication 42 C2  

Table 1 Some of Yeast gene function family 

Table 2 shows the clustering results including cluster 
ensemble in Minkowski scores (MS) for each cluster set. 
As clearly indicated by the MS values of the clusters, the 
cluster ensemble method made significant improvement of 
quality of the clustering results over the individual 
clustering algorithm on all the six gene data sets. For 
example, the best individual clustering algorithm for C3 is 
K-means (MS=0.890), while the cluster ensemble has 
MS= 0.728. For C5, the best individual clustering 
algorithm is SOM (MS =1.241) and the cluster ensemble 
reduced them to MS = 1.059.  

Cluster 
set # 

K-mean
s SOM Fuzzy 

C-means 
Cluster 

Ensemble 
C2 0.902 0.995 0.993 0.986 
C3 0.890 0.931 0.941 0.728 
C4 1.180 1.194 1.170 1.071 
C5 1.207 1.241 1.229 1.059 



C6 1.288 1.355 1.280 1.192 
C7 1.326 1.301 1.284 1.196 

Table 2 Clustering Results of Yeast gene data sets 

4 Conclusion 
In this paper we present a novel cluster ensemble approach 
for combining clustering results from multiple cluster 
algorithms. The experiment results on UCI machine 
learning data and gene expression data indicate that the 
cluster ensemble approach can generate better quality and 
robustness clusters compared with single best clustering 
algorithm.  

Clustering ensemble is a new and very promising research 
area. There are a lot of open problems for future research. 
We plan to expand our ensemble approach to integrate 
feature selection for clustering very high dimensional data 
set and add some inference mechanism to automatically 
infer valid information from the clustering results and 
hope to report our findings in the future. 
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