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Abstract

Many spatio-temporal applications involve managing and
querying moving objects. In such an environment, predic-
tive spatio-temporal queries become an important query
class to be processed to capture the nature of moving ob-
jects. In this paper, we investigated the problem of se-
lectivity estimation for predictive spatio-temporal queries.
We propose a novel histogram technique based on a clus-
tering paradigm. To avoid expensive computation costs,
we developed linear time heuristics to construct such a
histogram. Our performance study indicated that the new
techniques improve the accuracy of the existing tech-
niques by one order of magnitude.
Keywords: Predicative Queries, Spatio-temporal
Databases, Histograms.

1 Introduction

Modern database applications such as Global Position-
ing Systems, Environmental Information Systems and mo-
bile computing deal with moving objects, which are man-
aged by a spatial-temporal database management system
(STDBM). Recently, research in STDBM has attracted
a great deal of attention (Erwig, Gting, Schneider &
Vazirgiannis 1999, Forlizzi, Gting, Nardelli & Schneider
2000, Pankaj K. Agarwal 2000, Kollios, Gunopulos &
Tsotras 1999, Saltenis, Jensen, Leutenegger & Lopez
2000). In STDBM, there are two kinds of queries based on
different temporal natures. One is to query historical be-
havior of moving objects, and the other is to predict the fu-
ture behavior of moving objects. A typical example of the
predictive window query is to retrieve the number of taxi-
cabs that will be within 1 mile distance from downtown
during the next couple of hours. In general, a predicative
spatio-temporal window query (PST query) is to find the
objects intersecting a query window during a time inter-
val. An accurate selectivity estimation not only provides a
good approximation to the corresponding query aggrega-
tion, but also is required by a query processing optimizer.

Very recently, histogram techniques (Acharya, Poos-
ala & Ramaswamy 1999, Poosala 1997, Muralikrishna
& DeWitt 1988, Ioannidis 1993, Ioannidis & Poosala
1999) have been applied to selectivity estimation for
PST query. More specifically, the Minskew technique
(Acharya et al. 1999) is adopted in the recent research
work (Choi & Chung 2002, Hadjieleftheriou, Kollios &
Tsotras 2003, Tao, Sun & Papadias 2003) to approach the
problem of selectivity estimation for PST query. Choi and
Chung (Choi & Chung 2002) presented the first work by
using the Minskew technique (Acharya et al. 1999) to con-
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struct a spatio-temporal histogram. It mainly focused on
managing one dimensional moving objects (points or line
segments), and then it is extended to a multi-dimensional
space by multiplying the estimation results in each dimen-
sion. Hadjieleftheriou et al. (Hadjieleftheriou et al. 2003)
proposed new techniques of dual velocity-intercept space
and primal space-time space to handle multi-dimensional
moving points, where the Minskew technique is also ap-
plied. Tao et al. (Tao et al. 2003) presented the first com-
prehensive study of the PST query in Spatio-Temporal
database. Again, the Minskew technique is used in con-
structing histograms for dealing with multi-dimensional
moving “rectangles”.

In this paper, we propose a novel histogram construc-
tion method that is completely different from the Minskew
technique. This new technique is based on a clustering
paradigm with the aim to remove some deficiencies of the
Minskew technique, which may be aggregated by moving
objects. To the best of our knowledge, this is the first pa-
per investigating an application of clustering techniques to
construct histograms. This is the first contribution of the
paper. The second contribution of the paper is that we de-
veloped a linear time heuristic algorithm to construct his-
tograms, and one part of our algorithm can be also used
as a refinement to the Minskew technique. Finally, we
discuss a histogram maintenance technique regarding up-
dates. Our extensive experiments on both synthetic and
real data sets demonstrated that the new clustering based
histogram construction technique may improve the accu-
racy of the existing techniques by 1.5 order of magnitude.

The rest of the paper is organized as follows. Section
2 briefly introduces the related work and presents the mo-
tivation of the research. Section 3 presents our clustering
based histogram techniques. Section 4 reports our experi-
ment results. This is followed by conclusion.

2 Preliminary

In this section, we first present background knowledge and
then briefly review related works. Finally, we present the
motivation for this research work.

2.1 Background Knowledge

In spatio-temporal datasets, each data object r of data
set D is considered to be a moving rectangle in a n-
dimensional space. We can use the following vector Tr(0)
to represent an object r’s position at current time (time
zero) and its velocities.

Tr(0) ={r1−(0), r1+(0), vr1−, vr1+, ...,

rn−(0), rn+(0), vrn−, vrn+}

where, [ri−(0), ri+(0)] is the extent of r on the i-th di-
mension (1 ≤ i ≤ n); vri− (vri+) is the velocity of
the lower (upper) boundary of r on the ith dimension
(1 ≤ i ≤ n). For each dimension i (1 ≤ i ≤ n), we use



2+

r

r

vr

vr

vr

vr

Y

Xr1−

1−

1+

1+

2+

r2−
2−

Figure 1: A Moving 2-D Rectangle

[Ui,min, Ui,max] to denote an application domain (extent),
and use [Vi,min, Vi,max] to denote possible velocity val-
ues. Figure 1 illustrates an example in the 2-dimensional
space. The extent of r on the i-th dimension at time t can
be calculated by:

{

ri−(t) = ri−(0) + vri− ∗ t
ri+(t) = ri+(0) + vri+ ∗ t

The vector Tr(0) can be updated to Tr(t) at time t accord-
ingly. PST query q can also be defined as a moving rect-
angle in the n-dimensional space, with the current space
extents [qi−(0), qi+(0)], velocities vqi− and vqi+ (1 ≤
i ≤ n), and the time interval [qt−, qt+] (0 ≤ qt− ≤ qt+).

Spatio-temporal histogram is generally used to do se-
lectivity estimation for the PST query. We usually con-
struct a spatio-temporal histogram on a data set D through
the following two phases.

Phase 1. Partition D into k disjointing parts, called buck-
ets.

Phase 2. Each bucket records four kinds of information as
follows:

1. MBB (minimum bounding box) of objects in the
bucket is represented as extent on each dimension,
i.e., (b1−, b1+, ..., bn−, bn+).

2. Minimum velocity vbi− of lower boundaries and
Maximum velocity vbi+ of upper boundaries
among the objects in the bucket (MVBB). i.e.,
(vb1−, vb1+, ..., vbn−, vbn+).

3. Average length bi of the extents, and average differ-
ence vbi between the velocity at the lower boundary
and the upper boundary per object on each dimension
i.

4. The number of objects Nb in the bucket.

Figure 2 shows the information stored in a sample bucket
b.

b1 .... bn NbVbnb1− b1+ ....... b n− b n+ vb1− vb1+
....... vb n− vbn+ vb1

....

Figure 2: Information stored in a Bucket

For example, as depicted in Figure 3a, a bucket at
time zero contains three 2-D rectangles. Numbers on
the left-lower and right-higher corners of rectangle r rep-
resents (r1−, r2−, vr1−, vr2−) and (r1+, r2+, vr1+, vr2+)
respectively. Figure 3b illustrates the contents stored in the
bucket.

2.2 Related Work

There are three papers addressing selectivity estimation of
the PST query. We will give a brief introduction on all of
them.

The problem was first investigated in (Choi & Chung
2002). The main focus was on managing moving data
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points and static queries. Starting from a thorough discus-
sion on estimating a 1-D line segment intersecting with
a query window, (Choi & Chung 2002) presented formu-
lae to calculate the approximate results of selectivity es-
timation under this 1-D environment. A spatio-temporal
histogram is constructed by partitioning the spatial do-
main into several disjoint line segments as buckets through
the Minskew technique. Then for each bucket, MBB,
MV BB and additional information are stored. To ex-
tend it into 2-D environment, the algorithm in (Choi &
Chung 2002) first projected those data objects and queries
into one dimension and multiplied the estimation results
for another dimension. Two main drawbacks of this his-
togram technique are:

1. Frequent updates are needed in maintaining a good
performance of this histogram

2. The method on estimating 2-D moving points some-
times overestimates the query results. Figure 4 shows
that a data point r moving from r(0) to r(t) may in-
tersect with the query window on X and Y dimen-
sions during the time interval [0, t], but it disjoints
with the query.

In (Hadjieleftheriou et al. 2003), a different ap-
proach is proposed to handle the moving data points and
the static queries. Those data points and queries are
firstly transformed from the primal space-time space to
the dual velocity-intercept space (Choi & Chung 2002,
Khaled Elbassioni 2003, Jagadish 1990, Kollios et al.
1999). Then a histogram is constructed for selectivity
estimation in the dual velocity-intercept space. Again
Minskew technique was used in constructing the his-
togram. Figure 5 presents an example of this kind of trans-
formation. Two moving points r0, r1 and a window query
q are plotted both in the primal and the dual space. The
gray trapezoid area in Figure 5b corresponds to the query
window in Figure 5a. As depicted in 5, a point (r0 or
r1) intersects with q if it is inside the gray trapezoid area.
Note that the techniques in (Hadjieleftheriou et al. 2003),
like that of (Choi & Chung 2002), are applicable to points
only. Further, transforming a rectangular window into a
trapezoid window may potentially increase the problem
complexity.

(Tao et al. 2003) proposed another novel histogram
technique, as well as a comprehensive query model to
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Figure 5: Primal Space VS. Dual Space

give a general solution to the PST query. Using the
Minskew technique, it enforces the uniformity regarding
both spatial and velocity during the histogram construct-
ing phase; it can also generally process boxes. These over-
come the limitation of the other existing techniques. (Tao
et al. 2003) also presented a query model for a general PST
query. This query model will be used in our work and its
details are introduced in the following subsection.

2.3 Selectivity Estimation using Histogram

Using histograms to do selectivity estimation in spatio-
temporal databases is more complicated than that in rela-
tional databases. Under the query model proposed by (Tao
et al. 2003), the approximate result of a PST aggregation
query is the summation of the estimated number of ob-
jects in each bucket retrieved by the query. Note that in
each bucket, data objects are assumed to follow the uni-
form distribution. Thus, for a bucket b and a query q, the
estimation result, Estb, is:

Estb = Nb ∗
n

∏

i=1

(
1

Vi,max − vbi − Vi,min

)

∗
∫ V1,max−vb1

V1,min

· · ·
∫ Vn,max−vbn

Vn,min

P (u1, u2, ..., un)du1du2...dun

(1)

Where P (u1, u2, ..., un) is the probability that a data
object r, whose velocity vri− on i-th dimension takes
value ui, will intersect with the query window during
time interval [qt−, qt+]. The calculation of the proba-
bility P (u1, u2, ..., un) follows a series of transforma-
tion proposed by (Tao et al. 2003). With the computed
P (u1, u2, ..., un), we can calculate Estb in Equation 1
through numeric integration method (Press, Teukolsky,
Vetterling & Flannery 2002). The final selectivity esti-

mation result, over k buckets, is
k
∑

b=1

Estb.

2.4 Motivation

The accuracy of existing histogram techniques in spatial-
temporal databases is mainly based on that of the Minskew
technique (Acharya et al. 1999) where the marginal skew-
ness is used to partition the original data space to avoid
expensive computation costs. The application of marginal
skewness, however, may limit the choices of space parti-
tion. Figure 6 shows such an example. Suppose we con-
sider 1-D data points in a 4X4 grid. The value in each
grid represents the number of data points falling in that
grid. If we want to build a histogram with two buckets on
the original data space, Figure 6a gives a possible parti-
tion under Minskew technique. However, the obvious best
partition is depicted in Figure 6b which can never be ob-
tained by the Minskew technique. The total skewness of
buckets (Acharya et al. 1999) in Figure 6b is much smaller
than that in Figure 6a. Thus the partition in Figure 6b is
expected to have a better performance in the selectivity

(b) Better Partition

0 400300200100

40

20

10

30

V

X

10K 10K

10K

10K

10K 10K

10K

10K+1

0 400300200100

40

20

10

30

V

X

10K 10K

10K

10K

10K 10K

10K

10K+1

(a) Minskew Partition

Figure 6: Two different partitions

estimation. Moreover, the right bucket of Figure 6a has
objects whose velocities distributing in the whole velocity
domain. This makes the bucket’s skewness even worse in
the future time. Motivated by the above observations, we
propose a novel spatio-temporal histogram (CSTH) con-
struction technique based on the clustering technique.

3 Clustering Moving Objects

The section is organized as follows. Section 3.1 discusses
the construction of CSTH. Section 3.2 presents a linear
time heuristic which aims to improve the performance of
the histogram. Section 3.3 explains how to dynamically
maintain CSTH.

3.1 CSTH Construction

The basic idea of constructing CSTH is to cluster data
objects with similar properties (e.g. initial positions, ve-
locities and sizes). Before presenting how to construct a
CSTH with k buckets for a spatio-temporal dataset that
contains n-dimensional moving objects, we firstly intro-
duce the distance of moving objects. The distance of two
objects represents the similarity between them. A small
distance means they are quite similar to each other (i.e.
they have similar in initial positions, velocities and sizes).
As mentioned earlier, a 4n-dimensional vector can be used
to represent a n-dimensional moving object. The distances
of those objects can then be defined as the distances of the
corresponding vectors. Note that the Euclidean distance
is not quite suitable in this application. Since in a spatio-
temporal dataset, the object’s initial position and velocity
are both important to decide whether this object validates
a PST query. We modify the Euclidean distance by doing
a normalization on the spatial and velocity part respec-
tively. This normalization ensures spatial variation and
velocity variation equally important in measuring the sim-
ilarity between two moving objects. The formal definition
of our distance function is:

Let s = max
1≤i≤n

(Ui,max − Ui,min) and t =

max
1≤i≤n

(Vi,max − Vi,min). δ(Tx, Ty) is the distance func-

tion of vector Tx and Ty. Note that in the rest of the paper,
Tr(0) is abbreviated to Tr for a data object r unless it cre-
ates ambiguity.

δ(Tx, Ty) =

√

∑n

i=1(xi− − yi−)2 + (xi+ − yi+)2

s ∗ √n

+

√

∑n

i=1(vxi− − vyi−)2 + (vxi+ − vyi+)2

t ∗ √n
(2)

It is easy to verify that δ(Tx, Ty) satisfies:

Reflexive: δ(Tx, Tx) = 0



Symmetric: δ(Tx, Ty) = δ(Ty, Tx) = 0

Triangle Inequality: δ(Tx, Ty) + δ(Ty, Tz) ≥ δ(Tx, Tz)

Thus δ(Tx, Ty) is a metric and the 4n-dimensional vector
space is a metric space.

Based on the distance function δ(Tx, Ty), we define
the sum of spatial-temporal deviation (SSTD) of a given
bucket b containing Nb objects as:

SSTDb =

Nb
∑

r=1

δ(Tr, Tb),

where Tb is the vector representing the centroid of bucket
b:

Tb = {

Nb
∑

r=1
r1−

Nb

, ...,

Nb
∑

r=1
rn+

Nb

,

Nb
∑

r=1
vr1−

Nb

, ...,

Nb
∑

r=1
vrn+

Nb

}

The goal of constructing CSTH with k buckets is to
find a partition such that the summation of each bucket’s
SSTD (HSSTD) is minimized. This is actually the well-
known k-Median clustering problem in metric space,
which is NP-hard. A simple linear time heuristic algo-
rithm, k-Means, is always used in practice to give approx-
imate answer to the k-Median problem. The deficiency
of the k-Means algorithm is that it has no error guaran-
tee. Approximate algorithms with error guarantee are pro-
posed in (Lin & Vitter 1992, Charikar, Guha, Tardos &
Shmoys 1999, Jain & Vazirani 1999, Arya, Garg, Khan-
dekar, Meyerson, Munagala & Pandit 2001). However,
those techniques are not practical for large datasets be-
cause of high time complexities.

To obtain a practical approximate technique with a pre-
cision guarantee, we can first modify our optimization
goal from minimizing HSSTD to minimizing “MSTD”
(the maximum spatio-temporal deviation over all buckets).
The formal definition of MSTD for a histogram with k
buckets is:

MSTD = max
1≤b≤k

( max
1≤r≤Nb

(δ(Tr, Tb))

It can be immediately verified that HSSTD ≤ MSTD ∗
∑

1≤b≤k

Nb. Therefore, HSSTD will be reduced by min-

imizing MSTD. Note that minimizing MSTD is an-
other well-known clustering problem, k-Center problem
(Gonzalez 1985). Unfortunately, it is also NP-hard. How-
ever, it has a good approximate algorithm which achieves
an approximation ratio 2 with a linear time complex-
ity. That algorithm was first proposed by Gonzalez at
(Gonzalez 1985). It starts from a randomly picked data ob-
ject as the first center, then the algorithm scans the whole
data set to find a data which has the maximum distance
to it’s closest center. That data will be picked as the sec-
ond center. This process is repeated until all k centers
are found. Then the data space can be partitioned into
k clusters according to those k centers. Figure 7 shows
an example of using Gonzalez algorithm to partition the
data set into four clusters. Based on this clustering al-
gorithm, our new histogram is constructed by Algorithm
1. Experiments demonstrated that CSTH greatly reduces
the average relative error compared to the spatio-temporal
histogram technique in (Tao et al. 2003).

3.2 Refining Histograms

In this subsection we propose a refinement algorithm,
which refines an existing histogram by reducing its
HSSTD. This refinement can be applied to any already
built histogram; thus it can be used as a post-processor.
The refinement starts from a randomly picked bucket. For
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each data object in this bucket, it calculates the changes
of HSSTD by iteratively re-assigning this object to the
other k − 1 buckets one by one. The re-assignment with
the biggest reduction of HSSTD will be actually exe-
cuted. If no reduction is possible for any of those reas-
signments, the algorithm moves to the next bucket. The
algorithm terminates after it examines all the buckets. To
avoid expensive computation cost, this refining procedure
is forward only. That is, if a data object has been moved
once, it will not be considered as a re-assignment candi-
date again. Figure 8 gives an example of a histogram be-
fore and after the refinement. Details of the algorithm are
presented in Algorithm 2.

Note that the computation of the best re-assignment of
an object among the k buckets can run in time O(k) if
each refinement can be done in a constant time. However,
due to the complexity form of HSSTD it is impossible
to do this. Below we use an upper-bound of HSSTD as
the refinement goal function to make this happen. This
makes our refining algorithm have a linear time complex-
ity O(nk) (n is the number of objects in the database).

Supporting a Linear Time Refinement
Let D be a n-dimensional spatial-temporal data set

which contains N data objects. Let b represent a bucket of
the histogram with k buckets (1 ≤ b ≤ k). Let r represent
a data object in D. We use ri, ri+1(1 ≤ i ≤ 2n) to rep-
resent ri−, ri+(1 ≤ i ≤ n), and vri, vri+1(1 ≤ i ≤ 2n)
to represent vri−, vri+(1 ≤ i ≤ n) in the vector Tr. Let



Algorithm 1 Constructing CSTH
Input:

Spatial-Temporal Data Set D, bucket number k
Output:

Histogram B with k buckets
Description:

1: The Set of Clustering Centers C := φ;
2: Randomly choose an object r1 as the first center;
3: C := C ∪ {r1}
4: k := k − 1;
5: while k > 0 do
6: for each r in D do
7: dr := min

i∈C
δ(Tr, Ti);

8: end for
9: r′ := max

r∈D
dr;

10: C := C ∪ {r′};
11: k := k − 1;
12: end while
13: for each r in D do
14: assign r to closest center in C to form k buckets;
15: end for
16: for each bucket do
17: storing MBB, MVBB and other information of data

objects in the bucket;
18: end for
19: output the histogram B with those k buckets;

s represent the maximum value of spatial domain, and t
represent the maximum value of velocity domain.

{

s = max(Ui,max − Ui,min), 1 ≤ i ≤ 2n
t = max(Vi,max − Vi,min), 1 ≤ i ≤ 2n

From the inequity

(

n
∑

i=1

xi)
2 ≤ n

n
∑

i=1

x2
i ,

we get:

HSSTD =
√

HSSTD2 ≤
√

N ∗
k
∑

b=1

Nb
∑

r=1
δ2(Tr, Tb)

≤

√

√

√

√

√

2N ∗
k
∑

b=1

Nb
∑

r=1

2n
∑

i=1

(ri−

Nb
∑

r=1

ri

Nb
)2

s2∗n
+

2n
∑

i=1

(vri−

Nb
∑

r=1

vri

Nb
)2

t2∗n

(3)

To simplify Equation 3, let rib =

Nb
∑

r=1

ri

Nb
, and vrib =

Nb
∑

r=1

vri

Nb
. After elementary mathematical deduction, Equa-

tion 3 can be reduced to:

HSSTD ≤
√

√

√

√ 2N
n
∗

k
∑

b=1

2n
∑

i=1

(
Nb
∑

r=1

r2

i
−Nbrib

2)

s2 +

2n
∑

i=1

(
Nb
∑

r=1

vr2

i
−Nbvrib

2)

t2

(4)
Since HSSTD is tightly bounded in Equation 4, we

will use the right-hand part (HVAR) of this equation as
the goal function to choose the best re-assignment.

Lemma 1 Suppose that we use the goal function HVAR in
Algorithm 2. The computation of the best re-assignment,
of an object, among k buckets (line 7) can run in time
O(k) by keeping the average value of ri−, ri+, vri− and
vri+ for each bucket on each dimension i.

Algorithm 2 Forward-Only Refining
Input:

Histogram Bin

Output:
Histogram Bout

Description:
1: k := number of buckets in Bin;
2: while k > 0 do
3: IMPROVABLE = false;
4: choose next bucket b in Bin;
5: for each data object r in b do
6: if r is not moved from other buckets then
7: pick the best reassigning plan of r;
8: reassign r following the best plan;
9: IMPROVABLE = true;

10: end if
11: end for
12: if IMPROVABLE = FALSE then
13: stop the algorithm
14: end if
15: k := k-1;
16: end while

Proof:
It can be immediately verified that if we keep rib and

vrib of each dimension i in bucket b, we can compute the
change of HV AR, regarding adding or removing one ob-
ject, in constant time. Thus picking the best reassignment
in algorithm 2 can be finished with O(k) time complexity.
�

Our experiments demonstrated that the effectiveness of
the Tuning algorithm. We will give detail discussions in
the experiment part.

3.3 Update Maintenance

In the PST query scenario, an update includes three situa-
tions:

• inserting a new data object

• updating a data object’s velocity

• removing a data object from the database

Since the second situation can be viewed as the combina-
tion of first and third situations. We will mainly discuss
how to maintain CSTH when some data object’s velocity
has been changed. Without lose of generality, we con-
sider a 1-D object r, whose velocity changes from vr(0)
to vr(t) at time t. r’s locations at time zero and t are r(0)
and r(t) respectively. It is obvious that we can not insert
the updated speed vr(t) and location r(t) in our histogram
since the histogram is constructed at time zero. However,
using r(t) and vr(t), we can derive dummy data object r′

at time zero, which will move to position r(t) at time t
with velocity vr(t). Thus r′ can be computed as:

{

r′(0) = r(t)− t ∗ vr(t)
vr′(0) = vr(t)

This r′ will be inserted into the histogram. Since the buck-
ets of CSTH may overlap with each other, the scan of
more than one bucket is needed for inserting the object r′.
If r′ is contained by several buckets, we choose the bucket
whose centroid is closest to r′ to increase the number of
the objects by 1. The final step of update is to remove r
from the original bucket. This can be done by decreasing
the number of the objects in this original bucket by 1.

Sometimes if new added objects fall out of the bucket’s
range, the borders of corresponding bucket need to be re-
calculated. If too many updates happens, the histogram
may need to be re-constructed. This operation can be trig-
gered by setting up a threshold.
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Figure 9: Accuracy Comparison for Uniform Data Set
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Figure 10: Accuracy Comparison for Carec Data Set
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Figure 11: Accuracy Comparison for Capoint Data Set



4 Experiments

In this section, we present extensive experiment results to
evaluate our two new techniques. We will use the algo-
rithm in (Tao et al. 2003) as a bench mark algorithm in
our experiments since it is the best existing technique; we
use their source code in the experiment. All experiments
were performed on a Pentium III 700Mhz CPU, 256 MB
memory computer with Linux 2.4.20.

Data Sets

Each spatio-temporal data set contains 2-D moving data
points or rectangles. Three data sets are used in our exper-
iments:

Uniform This data set contains one million synthetic data
points whose initial positions follow a uniform dis-
tribution in the 2-D spatial space [0, 10000]2. Ev-
ery point’s velocity also takes a uniform distribution
from [−50, 50] on each dimension.

CArec The spatial parts of this data set is taken from
a real spatial data set CA 1, which contains 2.2
million rectangles to represent streets in California.
We normalize the data set into a 2-D spatial space
[0, 10000]2. Due to lack of real moving objects, we
need to generate velocities for those spatial data. For
a fair comparison, we adopt the velocity generating
method used in (Tao et al. 2003). A moving rectan-
gle r’s velocity on each dimension i follows:

• The absolute value of vri− follows a Zipf Dis-
tribution (Zipf 1949) from [0, 50 − (vri+ −
vri−)], with Zipf coefficient 0.8.

• vri− has the same probability to take a positive
or a negative value.

• The value of vri+−vri− follows a uniform dis-
tribution from [0, 5].

CApoint This data set contains 2.2 million moving data
points generated from the CArec data set.

• The point’s initial position is the centroid of the
moving rectangles of CArec data set.

• On each dimension, the point’s velocity is the
average of the corresponding lower and upper
boundary velocities of the moving rectangles in
CArec data set.

Query Workloads

A predicative spatio-temporal query q is also a moving
rectangle. It is a square in the 2D space with side length
qlen, where qlen = qi+(0) − qi−(0). It’s velocity extent
(i.e., the difference of the velocities of the lower and upper
boundaries) on each dimension equals a constant vqlen,
where vqlen = vqi+ − vqi−. The query interval time of q
is qtlen, where qtlen = qt+−qt−. Queries are divided into
several groups. Each group contains 200 randomly gener-
ated queries with the same value qlen, vqlen and qtlen. The
left boundary of the query q’s spatial extent, the velocity
extent and the time interval follow the uniform distribu-
tion respectively. That is, qi− is taken uniformly from
[0, 10000 − qlen], vqi− from [−50, 50 − qvlen] and qt−

from [0, 100− qtlen].

Error Metrics

Let Ai denotes the actual result of a query qi and A′
i de-

notes the approximate result. The relative error is define
1http://dke.cti.gr/People/ytheod/research/ datasets/spatial.html

as:

erel
i =

{

|Ai−A′

i|
Ai

ifAi 6= 0
A′

i otherwise

The average relative error of N queries is defined as:

erel
N =

N
∑

i=1

erel
i

N

Note that here we use different error metrics to that used
in (Tao et al. 2003) since we believe it is more sensi-
tive. Our error metrics is also commonly used in eval-
uating selectivity estimation of range queries and spatio-
temporal queries; for example, (Poosala, Haas, Ioannidis
& Shekita 1996, Matias, Vitter & Wang 1998, Choi &
Chung 2002, Hadjieleftheriou et al. 2003).

Accuracy Comparison

Firstly, we construct CSTH (Initial CSTH) and the his-
togram proposed by (Tao et al. 2003) (Initial TSP). Then
we apply the refining algorithm (Algorithm 2) on those
two histograms respectively. Each histogram has been re-
fined 5 times (i.e., Algorithm 2 is consecutively executed
5 times). We recorded error rates of the initial histograms
and their fifth refined histograms. Different experiment re-
sults for the three mentioned data sets are shown in Figure
9, 10 and 11. In the experiments of each data set, queries
are divided into three groups, a, b and c. Group a (Figure
9a, 10a and 11a) plots the average error rates on various
qlen, with fixed vqlen = 10 and qtlen = 50. Group b
(Figure 9b, 10b and 11b) shows the error rates on differ-
ent vqlen with fixed qlen = 600 and qtlen = 50. Group
c (Figure 9c, 10c and 11c) evaluates the error rates on di-
verse qtlen with fixed qlen = 600 and vqlen = 10.

From the results of our experiments, we can see that
the Initial CSTH outperforms Initial TSP. Especially in
the real data set where objects has skew velocity distri-
bution (Figure 10 and 11), Initial TSP has an average er-
ror rate around 1000%, while Initial CSTH has an error
rate below 20%. Our refining algorithm also has the ex-
pected refinement affects when applied to Initial TSP. It
can improve the accuracy by one magnitude of order (Fig-
ure 10 and 11). However, when the refining algorithm is
applied to the Initial CSTH, the benefits of the refinement
is not quite obvious. Sometimes, refined histogram even
performs worse than the original one (Figure 10, 11a and
11b). This shows that CSTH is already a good approach
to do selective estimation on PST queries.

5 Conclusion and Future work

In this paper, we presented a new histogram construction
method to approach the selectivity estimation for predic-
tive spatio-temporal queries. It is based on a clustering
paradigm. To avoid expensive computation costs, we de-
veloped a linear time heuristic to construct CSTH - a new
clustering based spatio-temporal histogram. Our experi-
ments demonstrated that this new histogram technique sig-
nificantly outperforms existing histogram techniques, es-
pecially for skew real data. We also presented a linear time
refining algorithm to refine already built histograms as a
post-processor. Experiment results demonstrated the ef-
fectiveness of this refinement. In fact, our new techniques
may improve the accuracy of the existing histogram tech-
niques by one order of magnitude.

Although CSTH can be constructed in a linear time
and greatly improve the accuracy of the existing tech-
niques, it is not as efficient as the existing techniques (Tao
et al. 2003) in our experiments. Speed up the computation
is a possible future work. We will also investigate other
clustering models to approach various estimation prob-
lems in spatio-temporal datasets.
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