
Compact Layout of Layered Trees

Kim Marriott Peter Sbarski

Clayton School of IT, Monash University, Australia.
{marriott,sbarski}@mail.csse.monash.edu.au

Abstract

The standard layered drawing convention for trees in
which the vertical placement of a node is given by
its level in the tree and each node is centered be-
tween its children can lead to drawings which are
quite wide. We present two new drawing conventions
which reduce the layout width to be less than some
maximum width while still maintaining the essential
layered drawing convention. These conventions relax
the requirement that a parent must be exactly placed
midway between its children, and instead make this a
preference which can be violated if this is required for
the layout to fit into the required width. Both draw-
ing conventions give rise to a simple kind of quadratic
programming problem. We give an iterative gradient
projection algorithm for solving this kind of problem,
and also a linear time heuristic algorithm. Our al-
gorithms are practical: a tree with three thousand
nodes can be laid out in less than a hundred millisec-
onds with either algorithm.

1 Introduction

Trees, i.e. connected acyclic graphs, occur in a
wide variety of applications, including computer data
structures, parse trees, hierarchical database mod-
els, phylogenetic trees, hierarchically organised file
systems (for example, directories and files), decision
trees, organization charts, family trees and biologi-
cal classifications. Given the practical importance of
trees it is not surprising that there has been consider-
able research into tree layout. The standard layered
drawing convention of trees stipulates (Brüggermann-
Klein & Wood 1989, Kennedy 1996) that:

1. the y-coordinate of each node corresponds to its
level,

2. nodes on the same level are separated by a min-
imum gap,

3. edges do not cross each other,

4. each node is centered directly over its children,

5. the drawing is symmetrical with respect to re-
flection,

6. the trees are drawn compactly.

Wetherell and Shannon (Wetherell & Shannon
1979) proposed a linear time algorithm for layered
drawing of binary trees, and this was improved by

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Thirtieth Australasian Computer Science Con-
ference (ACSC2007), Ballarat, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 62. Gillian
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

Reingold and Tilford (Reingold & Tilford 1981).
Walker (Walker 1990) extended the Reingold-Tilford
algorithm to handle n-ary trees, while Buchheim,
Jünger and Leipert (Buchheim, Jünger & Leipert
2002) gave an improved version of Walker’s algorithm
with linear time. The Reingold-Tilford algorithm and
the subsequent extensions are the standard methods
for drawing rooted ordered trees.

However, a disadvantage of these algorithms is
that the resulting drawings can be be quite uncom-
pact as the real-world example in Figure 1 shows. In
part for this reason, a number of other drawing con-
ventions for trees have been suggested (di Battista,
Eades, Tamassia & Tollis 1999). These include radial
drawings in which the layers are mapped to concen-
tric circles and hv-drawings in which the edges are
either drawn horizontally to the right, or vertically to
the bottom. The disadvantage of these other draw-
ing conventions is that the structure and hierarchical
nature of the tree is less clear, and the layout looks
“unnatural”.

We present two new drawing conventions which re-
duce the layout width to fit in some maximum draw-
ing width while still maintaining the essential layered
drawing convention. Both conventions relax the re-
quirement that a parent must be exactly placed at
the midway between its children, and instead make
this a preference which can be relaxed if this is re-
quired for the layout to fit into some maximum width.
The drawing conventions give rise to a simple kind of
quadratic programming problem in which a quadratic
objective must be minimized subject to minimum sep-
aration between nodes on each level, and the layout
fitting in the maximum width. We give a gradient
projection algorithm for solving this kind of problem,
and also a linear time heuristic algorithm.

Our techniques have application to most real-
world visualisation of trees since a significant disad-
vantage of the standard layered drawing convention
is that even for moderate sized trees the drawing be-
comes quite large and cannot easily be viewed on a
computer monitor or printed on a reasonable number
of pages. Thus there is a need to find layouts which
are more compact and which better untilise the space
in a page or on a screen. Figures 2, 3 and 4 show
examples of the layout produced by our algorithms
for the example from Figure 1.

In the next section we review the standard algo-
rithms for layout of layered trees. In Section 3 we
present the new drawing conventions, Section 4 con-
tains the algorithms for finding a layout satisfying the
conventions, and Section 5 gives an empirical evalua-
tion of their performance, while Section 6 concludes.

2 Background

The Reingold-Tilford algorithm (Reingold & Tilford
1981) uses a divide-and-conquer strategy to find a lay-

Figure 1: Example tree detailing the relationship between Indo-European languages drawn with the Walker
Algorithm.

out. A single node is placed at 0, and a non-leaf node
i is placed by a recursively laying out its sub-trees
and then squashing the sub-trees as close as possible
together and then placing i midway between the left-
most and rightmost child. Clever use of data struc-
tures allows this to be done in linear time.

Reingold-Tilford’s algorithm can be modified to
handle n-ary trees by traversing the children of a node
left to right, placing and shifting the corresponding
subtrees one after another. However, this approach
may violate the aesthetic goal that the tree must
be symmetric with respect to reflection since some
branches can end up being clustered closely together
as they are placed as close as possible to the left rather
than being evenly spaced apart. Walker (Walker
1990) gave a modification of Reingold-Tilford’s algo-
rithm for n-ary tree layout which overcomes this prob-
lem. The contours of a node’s sub-trees are traversed,
and if there is an overlap, the right subtree is shifted
by the minimum amount to the right. Any smaller
subtrees situated between the overlapping left and
right subtree are uniformly spaced between the two
outer sub-trees. This guarantees that the symmetry
is preserved. Unfortunately, the algorithm given by
Walker has quadratic worst case complexity. Buch-
heim, Jünger and Leipert (Buchheim et al. 2002) im-
proved Walker’s algorithm to have linear time.

One nice property of Reingold-Tilford’s and
Walker’s approach is that the drawing of a sub-tree
does not depend on its context, and so isomorphic
subtrees will have the same layout, and that drawings
are symmetric with respect to reflection. However,
because of this it will not always produce a layout of
minimum width, as minimising the over all width may
require that some sub-trees are drawn non-compactly.
The problem is that minimizing the total width may
mean that isomorphic subtrees need to be laid out
differently in different parts of the tree as their global
context is important.

If we do wish to minimize the total width while
still placing a parent midway between its children
then this can be modelled as a linear programming
problem and solved in polynomial time (Supowit &
Reingold 1983). However, in practice, the require-
ment that the parent is exactly midway between its
children means that the minimal width layout is only
very rarely narrower than that found using Reingold-
Tilford’s and Walker’s approach. Therefore, in the
next section we investigate drawing conventions in
which the requirement to place each parent exactly
midway between its children is relaxed. As we shall
see this allows narrower layout.

3 Drawing Conventions that Relax Centering
of Parents

Requiring that parents are midway between their chil-
dren means that the drawing cannot be as narrow as
possible. In this section we give two new drawing
conventions for layered trees in which we must find
the best layout for the tree that is no wider than
some fixed width W . W might be set by the user
interactively to try and better fit the layout within
a display or print region. Of course, we require that
W is greater than the cumulative width of the nodes
on each level, since otherwise there is no drawing in
which the nodes do not overlap.

We assume there are n nodes, 1, ..., n where node 1
is the root of the tree, and 1, ...,m levels with the root
on level 1. We let wi give the width of node i, and
rt(i) be the index of the node to the immediate right
of i on the same level and let gapi give the minimum
gap between i and the node to its immediate right.
For each level j, lm(j) and rm(j) respectively give the
index of the leftmost and rightmost node on that level.
We assume that nodes are numbered consecutively on
each level.

We let xi be the horizontal position of node i. We
let par(i) be the index of the parent of i, and lc(i) and
rc(i) the index of the leftmost and rightmost child of
i (they are the same if i has one child). We use the
convention that if the node referred to by indexing
function does not exist then the indexing function re-
turns 0: For instance, par(1) returns 0 as the root of
the tree has no parent.

The first drawing convention is based on making
trees compact by minimizing edge lengths. This
has the affect of placing nodes at the average of
their parent and children’s positions subject to the
non-overlap and minimum width constraints.

Drawing Convention: Minimizing distance between
parents and their children (Min-Dist)
Minimize

n∑
i=2

(xpar(i) − xi)2

subject to: for all i ∈ 2, ..., n
• xi + wi

2 + gapi ≤ xrt(i) −
wrt(i)

2 , if rt(i) 6= 0
and for all j ∈ 1, ...,m,
• 0 ≤ xlm(j) −

wlm(j)

2

• xrm(j) + wrm(j)

2 ≤W .

This is similar to the objective used in Gansner
et al. (Gansner, Koutsofios, North & Vo 1993) to de-
termine the placement of nodes on each layer in a Di-
rected Acyclic Graphs (DAGs) drawn using the Lay-
ered drawing convention. Given a horizontal ordering

(a) Min-Dist: W = Wmax

(b) Min-Dist: W = Wmid

(c) Min-Dist: W = Wmin

Figure 2: Example tree from Figure 1 drawn with the Min-Dist drawing convention for different maximum
widths W using the gradient projection algorithm.

of the nodes on each layer, their algorithm determines
the x-coordinates by minimizing edge lengths between
nodes. The main difference is that they model this as
a linear problem and so minimize

n∑
i=2

|xpar(i) − xi|

rather than
n∑

i=2

(xpar(i) − xi)2.

As pointed out in (Marriott, Moulder, Hope &
Twardy 2005), using a linear objective may lead to
unnecessary asymmetry as parents are not necessarily
centred with respect to their children since the objec-
tive function uses absolute value. Thus, if the root of
the tree has two children, it can be placed at any point
between these without changing the penalty. There-
fore, we prefer to use a quadratic objective function
since in the above example this will prefer to place
the root midway between its children.

However, in general the Min-Dist drawing con-
vention will not place nodes midway between their
children but rather at the average of their children

and parent’s horizontal position, since this mini-
mizes the total horizontal extent of the edges. If
placing a parent exactly between its leftmost and
rightmost child is regarded as important we can
extend the Min-Dist drawing convention by adding
another term to the objective function to achieve this:

Drawing Convention: Placing parents midway be-
tween their children (Par-Midway)
Minimize

n∑
i=2

(xpar(i)−xi)2+α×
∑

1≤i≤n s.t.
rc(i)6=0

(
xi −

xlc(i) + xrc(i)

2

)2

subject to: for all i ∈ 2, ..., n
• xi + wi

2 + gapi ≤ xrt(i) −
wrt(i)

2 , if rt(i) 6= 0
and for all j ∈ 1, ...,m,
• 0 ≤ xlm(j) −

wlm(j)

2

• xrm(j) + wrm(j)

2 ≤W .

The scaling coefficient α specifies the relative im-
portance of the two components of the objective. If
α is equal to 0, then Par-Midway is identical to the
Min-Dist drawing convention, but as α increases in

(a) Par-Midway: W = Wmax, α = 1.0

(b) Par-Midway: W = Wmid, α = 1.0

(c) Par-Midway: W = Wmin, α = 1.0

Figure 3: Example tree from Figure 1 drawn with the Par-Midway drawing convention for different maximum
widths W and a small value of α using the gradient projection algorithm.

value the resulting layout will tend to place parents
midway between their children. It is also worth point-
ing out that if W is wider than the width of the layout
obtained with Walker, then the layout obtained with
Par-Midway for large α will be very similar to that
obtained by the Walker algorithm. Of course, the
main feature of interest is that W can be decreased
down to the minimum width for the tree, and the two
drawing conventions will “squish” the layout into that
width.

Figures 2, 3 and 4 show examples of the layout
produced by our algorithms for the example from Fig-
ure 1 and illustrate the effect of α and W on the
layout. We give the layout for three widths: Wmax,
the width of the layout using the Walker algorithm;
Wmid, the width of the layout of the narrowest possi-
ble layout; and Wmid, the average of Wmax and Wmin.
We can see that the Min-Dist drawing convention al-
ways gives quite compact, narrow layout.

4 Layout Algorithms

In this section we investigate how to find layouts
which satisfy the Par-Midway and Min-Dist drawing
conventions. Both require minimising a quadratic ob-

jective function of form

min
x

xT Ax

subject to some separation constraints between nodes
on the same level where a separation constraint c is
of form u + a ≤ v where u, v are variables and a is
the minimum gap between them or an upper or lower
bound on a variable v of form c ≤ v or v ≤ c.

For the Min-Dist drawing convention we have that
A is AMD where for each node i,

• AMD
i,i = deg(i) (where the degree, deg(i), of i is

the number of children of i plus the number of
parents) and

• AMD
i,par(i) = AMD

par(i),i = −1

and all other entries in AMD are zero.
For the Par-Midway drawing convention we have

that A is

APM = AMD + α×
n∑

i=1

Ci

where for each node i,

(d) Par-Midway: W = Wmax, α = 1.0E7

(e) Par-Midway: W = Wmid, α = 1.0E7

(f) Par-Midway: W = Wmin, α = 1.0E7

Figure 4: Example tree from Figure 1 drawn with the Par-Midway drawing convention for different maximum
widths W for a very large α using the gradient projection algorithm.

• if i has no children, Ci = 0,

• if i has one child c, non-zero entries are

Ci
i,i = Ci

c,c = 1,
Ci

i,c = Ci
i,c = −1

• if i has leftmost and rightmost children l and r,
the non-zero entries are

Ci
i,i = 1,

Ci
l,l = Ci

r,r = 1/4,
Ci

i,l = Ci
l,i = Ci

i,r = Ci
r,i = −1/2,

Ci
l,r = Ci

r,l = 1/4.

For both drawing conventions the matrix A is sym-
metric and positive semi-definite. Since separation
constraints are linear this means that both conven-
tions require solving a convex quadratic program.

4.1 Iterative Gradient Projection Methods

We now give an iterative gradient-projection algo-
rithm (see Bertsekas (Bertsekas 1999)) for finding a
layout for the above kind of problem. It is based on

the gradient projection algorithm given in (Dwyer,
Koren & Marriott 2006) but specialized to the partic-
ular case of trees. The algorithm, gp layout, is shown
in Fig. 5. This works by taking an initial layout,
such as that obtained with the Walker algorithm, and
then iteratively improving the placement of nodes. At
each iteration, the direction of steepest descent, −g,
is computed where g is the gradient ∇xT Ax = 2Ax
(actually 1

2g is computed, but multiplying the descent
direction by a constant has no affect). Then the step
size s along −g from x that minimizes the objective
function is determined and x is set to this new posi-
tion. Since the new value of x may violate the sepa-
ration constraints this is corrected by calling project,
which returns the closest point x̄ to x which satisfies
the separation constraints, i.e. it projects x on to the
feasible region. Finally, a vector d from the initial
position x̂ to x̄ is computed and a decrease in the ob-
jective when moving in this direction is ensured by
computing a second stepsize α which minimizes the
objective in this interval.

While the algorithm given in Figure 5 describes a
fairly standard gradient-projection approach, the pro-
cedure project is specific to our particular quadratic
program. The main difficulty in implementing
gradient-projection methods is the need to efficiently

procedure gp layout(A,W)
x← initial soln()
repeat

g ← Ax

s← gT g
gT Ag

x̂← x
x← x̂− sg
x̄←project(x,W)
d← x̄− x̂

α← min(− gT d
dT Ad

, 1)
x← x̂ + αd

until ‖x̂− x‖ sufficiently small
return x

procedure project(x,W)
for j ← 1 to m do

g ← [gapi | i ∈ lm(j), ..., rm(j)− 1]
d← [xi | i ∈ lm(j), ..., rm(j)]
xlm(j), ..., xrm(j) ← level project(d, g,W)

end for
return x

Figure 5: Gradient projection algorithm to layout a
tree with n nodes on m levels s.t. the layout is no
wider than W , nodes have a minimum separation and
the position x for the nodes minimizes xT Ax where
A is a symmetric positive-semidefinite matrix.

project on to the feasible region. That is, we must
solve the quadratic problem

min
y

n∑
i=1

(yi − di)2

subject to the same constraints on the variables y as
the original problem.

Fortunately, the procedure optimal layout given
in (Marriott et al. 2005) can be used to project on
to the feasible region. It solves the quadratic prob-
lem

min
y

m∑
i=1

wi × (yi − di)2

subject to a separation constraint of form yi + gi ≤
yi+1 for each i = 1, . . . ,m − 1 where gi is the mini-
mum separation between yi and yi+1, di is the desired
position for yi and wi the importance of placing yi at
di.

The algorithm works by merging variables into
larger and larger blocks of variables where a block
is a sequence of variables with the minimum gap be-
tween each pair. The variables are processed left to
right. When variable yi is processed it is placed in a
new block b at its desired location di. If the preceding
block overlaps b it is merged with b and the desired
position of the block is set to the weighted mean of
the desired locations of variables in the block. This is
repeated until b does not overlap the preceding block.
The algorithm has linear complexity.

We can use optimal layout to compute the projec-
tion for the nodes in a single layer: the only trick
is that we add a dummy node at the beginning of
the layer and one at the end whose desired values
are 0 and W respectively, and whose weight is much
higher than that of the other nodes. The two dummy
nodes force the other nodes to fit in the desired width
for the layout. The procedure level project does this.
By combining the projection for each layer, we have
the overall projection. Since optimal layout has lin-
ear time complexity, the overall projection has linear
time complexity.

procedure bottom up narrow(W)
x← walker()
for j ← m to 1 do

g ← [gapi | i ∈ lm(j), ..., rm(j)− 1]
d← [des(i) | i ∈ lm(j), ..., rm(j)]
xlm(j), ..., xrm(j) ← level project(d, g,W)

end for
return x

Figure 7: Linear time bottom-up algorithm to layout
a tree with n nodes on m levels s.t. the layout is no
wider than W and nodes have a minimum separation.

It follows from standard results on gradient pro-
jection and the fact that this is a convex optimisation
problem that

Theorem 1 gp layout converges to a solution that
minimizes xT Ax subject to the node separation and
maximum width constraints.

As we shall investigate in the next section, the
algorithm is reasonably fast. The matrix A has only
O(n) non-zero entries. This means that as long as
a sparse representation is used for A, each iteration
takes only linear time since the projection step takes
only linear time.

4.2 Bottom-up Algorithm

We have also investigated a one pass bottom-up ap-
proach to find a layout satisfying the width restric-
tion. The algorithm is given in Fig. 7. The idea
is quite simple. We first determine a layout using
Walker’s algorithm. Now we process the layers from
the bottom up. For each layer j, we compute the
desired position di of each node i in the layer using
the function des(i) where if i has children, des(i) is
their midpoint (xlc(i) + xrc(i))/2, otherwise des(i) is
the node’s current position xi. The new position, xi,
for each node i is computed by using level project to
project the desired values on to the closest solution
satisfying the minimum width and node separation
constraints for that level, effectively squishing them
into the width W .

Figure 6 shows the layout for various values of
W for the examples from Figure 1. It is instruc-
tive to compare them with the layouts shown in Fig-
ures 2, 3 and 4 obtained using the gradient projection
algorithm to find a layout satisfying the Par-Midway
drawing convention for α = ∞, since the procedure
bottom up narrow can be viewed as a heuristic for
finding a layout satisfying this convention. As these
examples show, it is not guaranteed to find the opti-
mal solution, but, it will always find a solution satisfy-
ing the width and separation constraints, and it does
this in linear time assuming the linear time version of
Walker’s algorithm is used.

5 Evaluation

To evaluate the efficiency of our algorithms we laid
out 10 random trees, with 100 to 3000 nodes. Times
can be seen in Table 5.

All experiments were run on a 1.83 GHz Intel Cen-
trino with 1GB of RAM. The algorithms were imple-
mented using Microsoft Visual C# Compiler version
8.00.50727.42 for Microsoft .NET Framework version
2.0.50727 under the Windows XP Service Pack 2 oper-
ating system. We used the original Walker algorithm

(a) W = Wmax

(b) W = Wmid

(c) W = Wmin

Figure 6: Example tree from Figure 1 drawn for different maximum widths W using the Bottom-up Layout
Algorithm.

rather than the linear version: as the results show per-
formance of the original algorithm is effectively linear
and extremely fast.

We used our implementation of the Walker algo-
rithm to compute the initial solution for both the
bottom-up and the gradient projection algorithms.
We did not include the time taken to compute this
initial solution: this is simply the time for running
Walker’s algorithm. The tolerance for terminating
the gradient projection algorithm was set to 0.002 of
the width.

The speed of both the gradient projection algo-
rithm and the bottom-up algorithm is very satisfying:
even very large trees can be laid out in less than 200
milliseconds and the speed is comparable with that of
Walker’s algorithm, the standard layered tree layout
algorithm. The main reason for the fast performance
of the gradient projection algorithm is that the num-
ber of iterations is quite small since the algorithm
quickly converges to the optimal layout.

6 Conclusion

The standard layered drawing convention for trees
can lead to wide layouts because each parent must
be placed exactly midway between its children. We

have introduced two new drawing conventions for lay-
ered trees: Min-Dist in which the horizontal distance
between parent’s and children is minimised, and Par-
Midway in which we minimize the horizontal distance
between parent’s and their children but also try and
minimise the distance between a parent and the mid-
point of its children. Thus both drawing conventions
relax the requirement that a parent must be exactly
placed at the center of its children, and instead effec-
tively make this a preference which can be relaxed if
this allows the tree to fit in a drawing of the desired
width.

We have given an iterative gradient projection
based algorithm for computing tree layouts using
these two new drawing conventions. Experimental
evaluation shows that the algorithm is fast enough
for practical applications: a tree with three thousand
nodes can be laid out in a few hundred milliseconds,
which is only a few times slower than Walker’s al-
gorithm. We have also given a linear-time bottom-
up algorithm for narrowing a layout produced by the
Walker algorithm. This is somewhat faster, with sim-
ilar speed to Walker’s algorithm, and takes less than
100 milliseconds to layout a tree with over three thou-
sand nodes. The layout quality is also quite good and
similar to that of the gradient projection algorithm.

Nodes Levels Walker Min-Dist Par-Midway (α = 1.0) Bottom-up
Wmax Wmin Wmax Wmin Wmax Wmin

32 9 18 16 (4) 17 (5) 15 (3) 15 (3) 4 4
49 9 18 18 (4) 20 (3) 14 (3) 16 (3) 4 4
52 7 20 18 (2) 25 (19) 16 (3) 17 (3) 4 4
84 16 21 19 (2) 21 (22) 17 (3) 21 (24) 5 4

220 16 21 43 (19) 69 (28) 39 (16) 70 (29) 6 5
365 28 22 17 (2) 25 (5) 17 (2) 29 (6) 7 7
673 22 24 29 (3) 35 (4) 20 (3) 27 (4) 11 11

1102 201 30 145 (38) 160 (40) 147 (38) 157 (39) 14 14
2101 31 33 66 (3) 79 (3) 63 (3) 65 (4) 26 21
3278 101 36 80 (3) 92 (3) 83 (3) 86 (3) 34 31

Table 1: Performance figures for 10 random trees. All timings are given in milliseconds. Figures in brackets
specify the number of iterations. The gradient projection algorithm was used to compute the layout for the
Min-Dist and Par-Midway drawing conventions.

References

Bertsekas, D. P. (1999), Nonlinear Programming, 2nd
edn, Athena Scientific.

Brüggermann-Klein, A. & Wood, D. (1989), ‘Draw-
ing trees nicely with TeX’, Electronic Publishing
2(2), 101–115.

Buchheim, C., Jünger, M. & Leipert, S. (2002),
Improving Walker’s algorithm to run in linear
time., in ‘Graph Drawing’, pp. 344–353.

di Battista, G., Eades, P., Tamassia, R. & Tollis, I.
(1999), Graph drawing: algorithms for the visu-
alisation of graphs, Prentice Hall.

Dwyer, T., Koren, Y. & Marriott, K. (2006), IPSep-
CoLa: An incremental procedure for sepa-
ration constraint layout of graphs, in ‘Proc.
IEEE Symp. on Information Visualisation (In-
fovis’06)’.

Gansner, E. R., Koutsofios, E., North, S. C. & Vo,
K.-P. (1993), ‘A technique for drawing directed
graphs’, IEEE Transactions on Software Engi-
neering 19(3), 214–230.

Kennedy, A. J. (1996), ‘Drawing trees’, Functional
Programming 6(3), 527–534.

Marriott, K., Moulder, P., Hope, L. & Twardy, C.
(2005), Layout of Bayesian networks, in ‘Aus-
tralasian Computer Science Conference’, Vol. 38.

Reingold, E. M. & Tilford, J. S. (1981), ‘Tidier draw-
ings of trees’, IEEE Transactions on Software
Engineering 7(2), 223–228.

Supowit, K. & Reingold, E. (1983), ‘The complexity
of drawing trees nicely’, Acta Informatica 18.

Walker, J. Q. (1990), ‘A node-positioning algorithm
for general trees’, Software Practice and Experi-
ence 20(7), 685–705.

Wetherell, C. & Shannon, A. (1979), ‘Tidy drawings
of trees’, IEEE Transactions on Software Engi-
neering 5(5), 514–520.

	Introduction
	Background
	Drawing Conventions that Relax Centering of Parents
	Layout Algorithms
	Iterative Gradient Projection Methods
	Bottom-up Algorithm

	Evaluation
	Conclusion

