
Comparative Study on Programmable Robots as Programming
Educational Tools

Shohei Yamazaki1 Kazunori Sakamoto2 Kiyoshi Honda1

Hironori Washizaki1 Yoshiaki Fukazawa1

1 Department of Computer Science and Engineering
Waseda University

3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
Email: shohei-hamamatsu@moegi.waseda.jp, khonda@ruri.waseda.jp,

washizaki@waseda.jp, fukazawa@waseda.jp

2 Department of Computer Science and Engineering
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
Email: exkazuu@nii.ac.jp

Abstract

Computational Thinking skills are basic and impor-
tant to manipulate computers. Currently, several sys-
tems exist to provide an effective way to learn pro-
gramming that use computers, smartphones, tablets,
or programmable robots. Although studies have re-
ported improved programming skills and motivation
to learn programming using an on-screen application
or a programmable robot, the benefits of these tools
have not been directly compared.

To resolve this issue, especially with regard to mo-
tivation to learn programming and impression of pro-
gramming, we conducted a large-scale comparative
experiment involving 236 middle and high school stu-
dents to evaluate the effects of a game-based educa-
tional application and programmable robots on learn-
ing programming. We then compared the effects of a
game-based educational application with and without
programmable robots on learning programming. We
found that employing programmable robots on learn-
ing programming did not always give an improvement
to all students.

Keywords: comparative study, programming ed-
ucation, programming environment, programmable
robot, motivation, impression

1 Introduction

Computers have become commonplace. Because of
this, Wing has suggested that people should learn
Computational Thinking, which she defines as basic
skills for manipulating computers (Wing 2006). Thus,
we developed educational tools that teach computa-
tional thinking.

The motivation to learn and the impression of
learning contents are very important not only when
developing computational thinking, but learning in
general. Several studies have focused on the impor-
tance of motivation to learn programming (DeClue
2003, Feldgen & Clua 2004, Kelleher et al. 2007, Jenk-
ins 2001). Feldgen and Clua argued that instructors

Copyright c⃝2015, Australian Computer Society, Inc. This
paper appeared at the 17th Australasian Computer Educa-
tion Conference (ACE 2015), Sydney, Australia, January 2015.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 160, Daryl D’Souza and Katrina Falkner,
Ed. Reproduction for academic, not-for-profit purposes per-
mitted provided this text is included.

are critical in motivating students (Feldgen & Clua
2004). Jenkins argued that motivation is the product
of expectation and value; thus, students must expect
to succeed in learning and value their achievements
(Jenkins 2001). These studies demonstrate the im-
portance of providing learners with expectations and
the value of being able to program.

Several educational tools have been developed to
provide motivation to learn programming (Kölling &
Henriksen 2005, Esper et al. 2013, Bezakova et al.
2013). For example, Scratch is a visual and block-
based programming learning environment that allows
learners to learn programming intuitively (Resnick
et al. 2009). Several studies have investigated Scratch
(Rizvi et al. 2011, Lewis 2010). Malan and Leit-
ner as well as Maloney et al. have reported the
effects of using Scratch as a programming educa-
tional environment on learning programming (Malan
& Leitner 2007, Maloney et al. 2008). In addition,
programmable robots have the potential to facilitate
and inspire motivation to learn (Nourbakhsh et al.
2000, Lalonde et al. 2006). In fact, several stud-
ies have used robots as educational tools (Kumar &
Meeden 1998, Billard et al. 2008). One such robot
is LEGO R⃝Mindstorms R⃝. Those learning program-
ming using LEGOMindstorms create a robot by com-
bining sensors and motors. Barnes reported a study
in which Java was taught using Lego Mindstorms as
a programming educational tool (Barnes 2002).

Although it is clear that introducing these learn-
ing environments and educational tools into learning
programming is effective, the following remains un-
clear. Do these educational tools improve motivation
to learn programming? Do these tools improve the
impression of programming? How much is the actual
improvement using these tools?

In this paper, we evaluate the effects of a game-
based educational application and programmable
robots on learning programming. We gathered 236
middle and high school students, most of whom were
unfamiliar with programming, to participate in our
experiment. Then we compared the effects of a game-
based educational application with and without pro-
grammable robots on the motivation to learn pro-
gramming and the impression of programming.

The contributions of this paper are:

• We conducted a large-scale comparative experi-
ment where 236 students learned programming.

• We compared the effects of a game-based appli-

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

155



cation with and without programmable robots
on the motivation to learn programming and the
impression of programming using a questionnaire
containing six items.

• We investigated the gender differences of the ef-
fects of programmable robots furthermore.

The rest of this paper is organized as follows.
Section 2 details related works. Section 3 describes
the game-based application, while two different pro-
grammable robots are described in Section 4. Section
5 details the comparative experiments. The results
are evaluated in Section 6. Finally, our conclusion
and future work are detailed in Section 7.

2 Related Work

Several studies have examined the effects of program-
ming educational tools and environments on learn-
ing motivation. For example, there are several pro-
gramming educational environments (Kelleher et al.
2007, Long 2007, Kölling & Henriksen 2005, Esper
et al. 2013, Bezakova et al. 2013). Additionally, sev-
eral studies have employed programmable robots as
programming learning tools (Nourbakhsh et al. 2000,
Lalonde et al. 2006, Fagin et al. 2001, Magnenat et al.
2012). Although they demonstrated the effects of
teaching programming concepts to students without
programming experience, the influence of game-based
applications with and without programmable robots
on learning were not compared.

McNally et al. investigated the motivation of two
student groups at university (McNally et al. 2006).
One group participated in LEGO Mindstorms ac-
tivities, while the other took a traditional introduc-
tory programming course. The difference between our
study and McNally et al. is that they discussed the
motivation of undergraduates already familiar with
programming. Our study investigates not only the
motivation but also the impression of programming
for middle and high school students, most of whom
are unfamiliar with programming.

Scratch, which is aimed at novice programmers,
was created by a group at the MIT Media Labora-
tory in collaboration with a group at UCLA (Resnick
et al. 2009). Rizvi et al. investigated the effect of us-
ing Scratch to improve the retention and performance
of at-risk computer science majors (Rizvi et al. 2011).
The difference between these studies is that they tar-
geted undergraduates majoring in computer science
and investigated differences between students enrolled
in CS0 and CS1, while we investigated the motivation
to learn programming and the impression of program-
ming of individuals unfamiliar with programming.

Lewins compared the effects, especially attitude
and learning programming concepts, using either
Logo or Scratch for sixth grade students learning
programming (Lewis 2010). Although the Logo en-
vironment seemed to support students’ confidence,
interest in programming, and understanding of loop
constructs, Scratch improved students’ understand-
ing of the construct conditions. These studies only
treated on-screen applications, whereas our compara-
tive study involves both an on-screen application and
a programmable robot.

Previous studies have not compared the effects of
game-based educational applications with and with-
out programmable robots on learning to program as
long as we investigated. Thus, we conducted such a
comparative study with an emphasis on the motiva-
tion to learn and the impressions of programming.

3 Game-based Educational Application

We developed an educational tool called Manekko-
Dance (Sakamoto et al. 2013). ManekkoDance is a
programming educational tool that runs as an appli-
cation on a smartphone or a tablet. There are two
reasons why we developed an educational application
for a smartphone or a tablet instead of a desktop or
laptop computer. First, mobile applications can moti-
vate students (Mahmoud 2008). Second, learning can
occur anytime and anywhere using a smartphone or
a tablet rather than a computer. ManekkoDance is a
game where users move two yellow and orange baby
chicks and answer problems by imitating the move-
ments of two white and ocher chickens correctly as
models by programming. For example, if the chickens
raise their right wings, users have to raise the baby
chicks’ right wings. ManekkoDance shows whether
the user program is correct (see Figure 1).

Figure 1: Screenshot of ManekkoDance (Left and
right show an incorrect and correct program, respec-
tively)

Users can play ManekkoDance, even if users con-
nected programmable robots or did not connect pro-
grammable robots. Thus, we adopted ManekkoDance
in this experiment.

To understand our experiments, here we briefly de-
scribe the features and learning contents of this ap-
plication.

3.1 User Interface

A previous study reported that a good user interface
can motivate learners (Cho et al. 2009). Manekko-
Dance has appealing interfaces such as the baby chick
and chicken characters and icons which move baby
chicks. Several students said, “The icons and charac-
ters are lovely or cute.”

3.1.1 Icon-based Non-verbal Programming
Language

Figure 2 shows that ManekkoDance interconverts be-
tween a verbal language and icon-based nonverbal
programming language, allowing users to more eas-
ily write and intuitively understand a program.

Figure 3 shows sixteen icons that correspond to the
baby chicks’ actions. To play the game, users employ
these sixteen icons and natural numbers. Users also
have the option to use verbal language.

3.1.2 Characters

To prevent boredom while learning to program, we
adopted appealing characters. For example, if the

CRPIT Volume 160 - Computing Education 2015

156



Figure 2: Same program written in a Japanese-text-
basaed language (left) and icon based language (right)

Figure 3: Sixteen icons

written program contains an error, instead of an error
screen, the baby chicks fall down. Programming an
unnatural motion gives rise to errors. For example,
entering a icon to raise the baby chicks’ right wings
when their wings are already raised causes the baby
chicks to fall down.

3.2 Learning Contents

We think that computational thinking is a common
concept to various programming languages. We are
referring to their idea about computational thinking
(Brennan & Resnick 2012).

This game consists of stages so that users can learn
gradually. The stages require users to combine the fol-
lowing four concepts in computational thinking. By
playing the game, users can learn four concepts in
computational thinking that are used in common in
many programming languages:

• Sequences

• Concurrency

• Loops

• Conditionals

To view the flow of a sequence, the executed line
is sequentially highlighted by a red letter in the ex-
ecution screen. This allows users to comprehend se-
quences.

If a user enters plural icons in the same line, the
program runs simultaneously. For example, if a user
enters two icons in the same line to raise the right
and left wings, the baby chicks simultaneously raise
both wings. Therefore, users can learn concurrency
intelligibly.

Most programs contain a loop function. Thus, in
ManekkoDance, users can employ a loop function if
they want the chicks to repeat a motion. Figure 4
shows the example program of a loop function in this
game.

For example, if a user would like to repeat a chicks’
motion, a program is inserted between a loop com-
mand, which consists of the starting symbol and a
natural number to indicate the number of times to
repeat the motion, and a green ending symbol. One

Figure 4: Example programs of loop functions (left)
and conditionals (right)

stage requires that a user writes a program so that
the baby chicks repeat the motions to raise their left
wing, their right wing, put their left wing down, and
put their right wing down. This repeated sequences
teaches the convenience of the loop function.

Conditionals are important concepts that are used
frequently in programming. Users can learn the con-
ditional concept by choosing to move only one of the
baby chicks. Figure 4 shows the example program of
conditionals in this game. The conditional command
consists of the following rules. A user must enter a
red question mark, which means “if”, and yellow or
orange circle which means yellow or orange baby chick
in the same line. A red colon means “else”. Condi-
tionals end at a red symbol. For example, condition-
als make the yellow chick raise its right wing while
the orange chick raise its left wing (see Figure 4).

4 Programmable Robots

As mentioned in Section 2, several programming ed-
ucational tools such as programmable robots have
been developed. The processing result of the program
written by a learner is not only reflected in the soft-
ware but also in the robot (e.g., LEGO Mindstorms),
which a learner can see and touch. To evaluate the
effects between game-based educational applications
(on screen) and programmable robots on the ability
to learn programming, we conducted a comparative
experiment with an emphasis on motivation to learn
programming and impression of programming.

By connecting Manekko Dance and two robots, a
user can operate the two robots from ManekkoDance.
For example, if a user writes a program to move the
baby chicks’ right wing, the two robots raise their
right hands as well (see Figure 5). Because a student
may dislike a particular robot, we used two differ-
ent programmable robots. That is, we avoided things
that could decrease motivation to learn or negatively
impact impression of programming.

Figure 5: Two Robots interlocked with Manekko-
Dance (Stuffed Teddy Bear Robot, Cardboard Robot
and screenshot of ManekkoDance on left, center and
right sides, respectively)

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

157



4.1 Stuffed Teddy Bear Robot

We used a Stuffed Teddy Bear Robot (STBR) (Takase
et al. 2013) which can move its head and hands as well
as roll its head.

STBR has two features: an appealing appearance
and a soft texture. This robot is a cuddly teddy bear
with fluffy fur. Takase et al. argued that the fluffiness
is a factor of loveliness (Takase et al. 2013). Addition-
ally, STBR is so soft that a user can strongly grasp
it. Its moving parts consist of fabrics such as cloth,
thread, and cotton. The fluffy fur is a factor that
makes STBR soft to the touch.

Figure 6 shows the connection of STBR and
ManekkoDance, which uses a Wireless Fidelity (Wi-
Fi) and a Web application. STBR, a personal com-
puter (PC), and a smartphone or tablet are connected
through Wi-Fi. The PC functions as a Web server.
The application on the smartphone or tablet sends the
signal to move STBR to the PC, which then sends the
signal to STBR.

Figure 6: STBR connected with ManekkoDance

4.2 Cardboard Robot

We also used a Cardboard Robot called
DANBOARDTM, which is a popular character
that appearing in Japanese comics. The Cardboard
Robot can move its hands differently from STBR.
The Cardboard Robot has two main features: a
pretty appearance that is not a typical robot and a
form that is familiar to users.

Figure 7 shows the connection of Cardboard Robot
and ManekkoDance. Moving the servomotor attached
to this robot’s arms via a pulse wave allows its arms
to be raised and lowered. The Cardboard Robot is
connected to a smartphone or tablet through the ear-
phone jack.

5 Experiment

We conducted a large-scale comparative experiment
involving 236 middle and high school students who
were inexperienced programmers attending an open
campus event at our university on August 2 and 3,

Figure 7: Cardboard Robot connected with Manekko-
Dance

2014. Open campus is an event in which an individ-
ual can participate freely in Japan. We asked stu-
dents about programming experience by the before
questionnaire.

Some students used one STBR connected to
ManekkoDance, others used one of the three Card-
board Robots connected to ManekkoDance and the
others used ManekkoDance alone as educational
tools. To evaluate the effects of a game-based educa-
tional application and programmable robots on learn-
ing programming, we randomly divided the students
into three groups by distributing numbered tickets.
Students were divided into three groups according to
the numbered tickets (Table 1):

Group A: Each student who learned programming
using only ManekkoDance.

Group B: Each student who learned programming
using STBR connected to ManekkoDance as a
programmable robot.

Group C: Each student who learned programming
using a Cardboard Robot connected to Manekko-
Dance as a programmable robot.

Group Boys Girls Total
A 76 35 111
B 38 23 61
C 41 23 64

B&C 79 46 125
A&B&C 155 81 236

Table 1: Numbers of people participating in this ex-
periment

Each student completed a questionnaire before and
after participating in the experiment. For each
student, we compared the responses of these two
questionnaires and analyzed the effects of a game-
based educational application with or without pro-
grammable robots on learning from two viewpoints:
the motivation to learn programming and the impres-
sion of programming.

The experimental procedure was the same for all
groups. First, students completed the before ques-
tionnaire. Then they learned programming using the
tools based on group assignment. Finally they com-
pleted a survey after the experiment. The experiment
lasted 30 minutes per student. The questionnaire con-
tained six questions. In addition, we classified the

CRPIT Volume 160 - Computing Education 2015

158



Figure 8: Bar graph of the results of Group A and Groups B&C prior to the experiment. Color scales denote
a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression), Q3 (self-
confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

Figure 9: Bar graph of the results of Group A and Groups B&C after the experiment. Color scales denote
a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression), Q3 (self-
confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

motivation to learn and the impression of program-
ming into six question items more finely as follows:

Q1: I want to learn programming. (motivation)

Q2: I feel that programming is fun. (impression)

Q3: I think that I can program. (self-confidence)

Q4: I think that liberal arts students can do pro-
gramming. (liberal arts)

Q5: I think that being good at programming are re-
lated to gender. (gender)

Q6: I think that programming skills are useful. (use-
fulness)

6 Evaluation

We evaluate the results of our experiment and answer
following RQs:

RQ1: Does using a game-based application and a
programmable robot result in a difference in
motivation and impression of learning program-
ming?

RQ2: Compared to a game-based application, does
using a programmable robot increase the rate of
positive responses to Q1 (motivation), Q2 (im-
pression), Q3 (self-confidence), Q4 (liberal arts),
Q5 (gender) and Q6 (usefulness) in the survey?

6.1 Results

We evaluated the before and after questionnaires to
compare the effects of a game-based application with
and without programmable robots on the motivation
to learn programming and the impression of program-
ming.

Before After After − Before
Q1B Q2B Q1A Q2A Q1A−Q1B Q2A−Q2B

a1 4 5 6 6 2 1
a2 3 4 6 5 3 1

Average 2.5 1

Table 2: Example of the subtraction method

Group Q1 Q2 Q3 Q4 Q5 Q6
A 0.117 0.153 0.901 0.901 0.261 0.216

B&C 0.216 0.240 1.152 0.880 0.336 0.192
Change Rate (B&C/A) 1.844 1.279 1.567 0.977 1.286 0.888

Table 3: Average of the subtraction results

For the comparison, the responses from Groups B
and C were combined and compared to the responses
from Group A for the six items described in the pre-
vious section (Q1 Q6). All of the students replied
to the questionnaires on a six-point scale where a six
indicated strongly agree and a one indicated strongly
disagree.

Figure 8 shows the ratings prior to the experiment,
while Figure 9 shows the ratings after the experiment.
The figures employ color scales where aqua, orange,

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

159



gray, yellow, blue, and green denote a rating of 1 6,
respectively.

Because directly comparing the raw data (Figures
8 and 9) did not clearly demonstrate differences be-
tween answers regarding motivation and impression
of programming, we employed a different analysis ap-
proach. For each question, we subtracted the value
before from the value after the experiment for each
person. Table 2 shows an example using Q1 (Q2)
where Q1B (Q2B) and Q1A (Q2A) denote before and
after the experiment, respectively, while an denotes
individual responses. For example, if a1 answered 4
to Q1 before the experiment and 6 after the experi-
ment, the net value is 2. Then the average difference
was determined using all the responses for Group A
and Groups B&C.

Table 3 and Figure 10 show the average values of
the subtraction method for all six questions. In Fig-
ure 10, blue and orange indicate Group A and Groups
B&C, respectively.

Figure 10: Bar graph of the average of the subtrac-
tion value. Blue and orange indicate Group A and
Groups B&C, respectively. Q1 (motivation), Q2 (im-
pression), Q3 (self-confidence), Q4 (liberal arts), Q5
(gender) and Q6 (usefulness)

6.2 Discussion

In Table 3 and Figure 10, RQs can be answered.
RQ1: Differences clearly exist between using

a game-based application with and without a pro-
grammable robot.

RQ2: Q1) Employing programmable robots in-
creases the positive responses to Q1 (motivation)
1.844 times more compared to a game-based appli-
cation alone. Programmable robots may motivate
students to learn programming compared to a game-
based application alone.

Q2) Employing programmable robots increases the
positive response to Q2 (impression) 1.279 times more
compared to a game-based application alone.

Q3) Employing programmable robots increases the
positive response to Q3 (self-confidence) 1.567 times
more compared to a game-based application alone.
Moving programmable robots connected to a game-
based application may provide students with self-
confidence compared to a game-based application
alone.

Q4) Employing programmable robots slightly de-
creases the positive response to Q4 (liberal arts)
(0.977 times) compared to a game-based application
alone. Liberal arts is almost changeless when pro-
grammable robots are compared to a game-based ap-
plication alone. We discuss the result about liberal
arts later.

Q5) Employing programmable robots increases the
positive response to Q5 (gender) 1.286 times more
compared to a game-based application alone. We dis-
cuss the result about gender later.

Q6) Employing programmable robots decreases
the positive response to Q6 (usefulness) (0.888 times)
compared to a game-based application alone. Q6
(usefulness) may be ineffective because programmable
robots can act only simple things. For example, pro-
grammable robots can move only both hands.

Liberal Arts: Andersen et al. reported that
fewer liberal art students are interested in program-
ming compared to science students (Andersen et al.
2003). Although the average value with regard to Q4
(liberal arts) decreases when using a programmable
robot, most of the students participating in the exper-
iment have not settled on a major. Thus, Q4 (liberal
arts) may be ineffective for the participants. Because
the students participating in the experiment have not
settled on a major, we cannot go into detail about the
differences between liberal arts majors.

Group Gender Q1 Q2 Q3 Q4 Q5 Q6
A Boys 0.118 0.197 0.947 0.987 0.184 0.211

B&C Boys 0.316 0.266 1.076 0.848 0.329 0.228
A Girls 0.114 0.057 0.800 0.714 0.429 0.229

B&C Girls 0.043 0.196 1.283 0.835 0.345 0.130
Change Rate Boys 2.672 1.347 1.136 0.859 1.787 1.082
(B&C)/A Girls 0.380 3.424 1.603 1.309 0.812 0.571

Table 4: Average subtraction values by gender

Gender: The less number of girl students who,
major in computer science has become a problem
(Olivieri 2005). Thus, we considered that girl stu-
dents would not be interested in programming com-
pared to boy students. However, Q5 (gender) in Table
3 and Figure 10 shows that the programmable robots
have a positive result on the average change. To in-
vestigate the gender difference, we divide the results
of the before and after questionnaires by gender. Ta-
ble 4 and Figure 13, 11 and 12 show the results.

For Q2 (impression of programming) and Q3 (self-
confidence) the average change when using a pro-
grammable robot increases for both genders. Ad-
ditionally, for Q2 (impression of programming) and
Q3 (self-confidence), it is more effective for girl stu-
dents to employ programmable robots than for boy
students. Especially, for Q2 (impression of program-
ming), while the boys’ average change is 1.347, the
girl’ is 3.424. It is more effective for girl students to
employ programmable robots compared to boy stu-
dents because the girls’ average change is 2.54 times
of boys’.

For Q1 (motivation), Q5 (gender) and Q6 (use-
fulness), the boys’ responses increase, while the girls’
decrease. For Q1, while the boys’ average change is
2.672, the girls’ is 0.380. It is more ineffective for girl
students to employ programmable robots compared
to boy students because the boys’ average change is
7.031 times of girls’. For Q5 (gender), in Table 3, em-
ploying programmable robots increases the positive
response to Q5 (gender) 1.286 times more compared
to a game-based application alone was obtained. In
detail, while the girls’ average change was 0.812, the
boys’ was 1.787. For Q6 (usefulness), while the boys’

CRPIT Volume 160 - Computing Education 2015

160



Figure 11: Bar graph of the results of Group A, Groups B&C after experiment according to gender. Color
scales denote a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression),
Q3 (self-confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

average change was 1.082, the girls’ was 0.571. It
is more ineffective for girl students to employ pro-
grammable robots than boy students.

For Q4 (liberal arts) the boys’ responses decrease,
but the girls’ responses increase. As we stated previ-
ously, we cannot go into detail about the differences
between science and liberal arts majors.

Figure 12: Bar graph of the average of subtraction
value. Blue and orange indicate boy students of
Group A and Groups B&C, respectively. Gray and
yellow indicate girl students of Group A and Groups
B&C, respectively.

6.3 Limitation

We analyzed the values of the subtractions using
Wilcoxon rank sum test. The results are shown in

Table 5.

Question W p-value
Q1 (motivation) 6247 0.1309
Q2 (impression) 6377.5 0.2354
Q3 (self-confidence) 6119 0.1031
Q4 (liberal arts) 6994.5 0.9089
Q5 (gender) 6937.5 1
Q6 (usefulness) 6885 0.9082

Table 5: The result of Wilcoxon rank sum test

The p-values of Q1, Q2, Q3, Q4, Q5 and Q6 are
0.1309, 0.2354, 0.1031, 0.9089, 1 and 0.9082, respec-
tively. All of these p-values are larger than 0.05
(p > 0.05). There are no statically significant differ-
ences in this experiment. However, we do not change
our opinions in this research. We think that because
there were few scales in this experiment, there are no
statically significant differences.

6.4 Threats to Validity

We considered four factors that may influence our
findings.

Because we employed questionnaires, the feeling
expressed by an adverb such as strongly vs. some-
what in the rating system may vary by individual.
Thus, the responses may not be reliable, and our anal-
ysis of the motivation to learn programming and the
impression of programming may be impacted.

Our experiment only involved middle and high
school students. The results may differ if individu-
als in other age groups participated. Thus, the age of
the participants may influence the results.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

161



Figure 13: Bar graph of the results of Group A, Groups B&C before experiment according to gender. Color
scales denote a rating of 1(strongly disagree)6(strongly agree), respectively. Q1 (motivation), Q2 (impression),
Q3 (self-confidence), Q4 (liberal arts), Q5 (gender) and Q6 (usefulness)

Although 236 middle and high school students par-
ticipated in the experiment, there were only four in-
structors. Thus, the number of instructors, especially
if the student to teacher ratio is one to one, may affect
the results.

We randomly divided the 236 students into three
groups. Thus, the two scenarios (game-based vs. pro-
grammable robot) were not compared using the same
student. Thus, a difference in a population may affect
the results.

7 Conclusion and Future Work

The contributions of the paper are a large-scale com-
parative experiment using students learning to pro-
gram via a game-based application with and with-
out programmable robots. Employing either a game-
based application with a programmable robot or
without a programmable robot affects the motivation
to learn and impression of programming. Addition-
ally, there are gender differences. We answer the fol-
lowing RQs:

RQ1: Does using a game-based application and a
programmable robot result in a difference in
motivation and impression of learning program-
ming?

RQ2: Compared to a game-based application, does
using a programmable robot increase the rate of
positive responses to Q1 (motivation), Q2 (im-
pression), Q3 (self-confidence), Q4 (liberal arts),
Q5 (gender) and Q6 (usefulness) in the survey?

The answer of RQ1 is that differences exist be-
tween using a game-based application with and with-
out a programmable robot. The answer of RQ2 is
explained in the following: Using a six items question-
naire, the rates of positive responses to the questions

about “motivation” to learn programming, “impres-
sion” of programming, “self-confidence” when pro-
gramming, and ability to program by “gender” in-
crease more when using a game-based application
with a programmable robot than when using a game-
based application alone. However, the increment in
positive responses for questions related to liberal art
majors and usefulness is larger for a game-based ap-
plication alone than a game-based application with
a programmable robot. We found that employing
programmable robots on learning programming did
not always give an improvement to all students. In
addition, the rate of positive responses to the ques-
tions regarding impression of programming and self-
confidence when programming increase for boys, but
decrease for girls, while the responses to questions re-
lated to programming usefulness and type of major
show the opposite trend. It is effective for both boys
and girls to employ programmable robots on learning
programming for impression and self-confidence only.

Thus, we propose that if you employ pro-
grammable robots on learning programming, you can
give a good impression and self-confidence of pro-
gramming, and as for motivation, liberal arts, gender
and usefulness, you should take account of the effects
depends on students’ elements, for example gender.

In the future, we will not only show the effects, es-
pecially the motivation to learn and the impressions of
programming, but also improve the skills of program-
ming by introducing programmable robots to learn
programming. Although we dealt with the problems
of a standard difficulty in this experiment, we would
like to change the difficulties of the problems to deal
with in next experiments. As we mentioned in Sec-
tion 6.3, we think that because there were few scales
in this experiment, there are no statically significant
differences. To find statistically significant results, we
plan to improve the fineness of the scale and conduct

CRPIT Volume 160 - Computing Education 2015

162



further experiments. In addition, we plan to expand
the topics related to learning programming via pro-
grammable robots.

Acknowledgments

We would like to thank associate professor Hasegawa
of the Tokyo Institute of Technology, Ms. Nishino,
Ms. Li, and all of students of the Hasegawa Labora-
tory for their guidance and assistance in developing
the Stuffed Teddy Bear Robot. We would also like to
thank Kazuki Otomori, Machiko Hattori, and Yuma
Matsuura, who belong to Fukazawa Laboratory and
Washizaki Laboratory in Waseda University for their
help with our research and the teaching assistants of
the open campus at Waseda University. This work
was supported by JSPS KAKENHI Grant Number
14504538. This work was also supported by Benesse
Corporation.

References

Andersen, P. B., Bennedsen, J., Brandorff, S.,
Caspersen, M. E. & Mosegaard, J. (2003), ‘Teach-
ing programming to liberal arts students: A nar-
rative media approach’, SIGCSE Bull. 35(3), 109–
113.

Barnes, D. J. (2002), Teaching introductory java
through lego mindstorms models, in ‘Proceedings
of the 33rd SIGCSE Technical Symposium on Com-
puter Science Education’, SIGCSE ’02, ACM, New
York, NY, USA, pp. 147–151.

Bezakova, I., Heliotis, J. E. & Strout, S. P. (2013),
Board game strategies in introductory computer
science, in ‘Proceeding of the 44th ACM Techni-
cal Symposium on Computer Science Education’,
SIGCSE ’13, ACM, New York, NY, USA, pp. 17–
22.

Billard, A., Calinon, S., Dillmann, R. & Schaal, S.
(2008), Robot programming by demonstration, in
B. Siciliano & O. Khatib, eds, ‘Springer Handbook
of Robotics’, Springer Berlin Heidelberg, pp. 1371–
1394.

Brennan, K. & Resnick, M. (2012), New frameworks
for studying and assessing the development of com-
putational thinking, in ‘Proceedings of the 2012
annual meeting of the American Educational Re-
search Association, Vancouver, Canada’, Citeseer.

Cho, V., Cheng, T. & Lai, W. (2009), ‘The role of
perceived user-interface design in continued usage
intention of self-paced e-learning tools’, Computers
& Education 53(2), 216–227.

DeClue, T. H. (2003), ‘Pair programming and pair
trading: Effects on learning and motivation in a
cs2 course’, J. Comput. Sci. Coll. 18(5), 49–56.

Esper, S., Foster, S. R. & Griswold, W. G. (2013),
On the nature of fires and how to spark them when
you’re not there, in ‘Proceeding of the 44th ACM
Technical Symposium on Computer Science Edu-
cation’, SIGCSE ’13, ACM, New York, NY, USA,
pp. 305–310.

Fagin, B. S., Merkle, L. D. & Eggers, T. W. (2001),
Teaching computer science with robotics using
ada/mindstorms 2.0, in ‘Proceedings of the 2001
Annual ACM SIGAda International Conference on
Ada’, SIGAda ’01, ACM, New York, NY, USA,
pp. 73–78.

Feldgen, M. & Clua, O. (2004), Games as a motiva-
tion for freshman students learn programming, in
‘Frontiers in Education, 2004. FIE 2004. 34th An-
nual’, pp. S1H/11–S1H/16 Vol. 3.

Jenkins, T. (2001), The motivation of students of pro-
gramming, in ‘Proceedings of the 6th Annual Con-
ference on Innovation and Technology in Computer
Science Education’, ITiCSE ’01, ACM, New York,
NY, USA, pp. 53–56.

Kelleher, C., Pausch, R. & Kiesler, S. (2007), Story-
telling alice motivates middle school girls to learn
computer programming, in ‘Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems’, CHI ’07, ACM, New York, NY, USA,
pp. 1455–1464.

Kölling, M. & Henriksen, P. (2005), ‘Game program-
ming in introductory courses with direct state ma-
nipulation’, SIGCSE Bull. 37(3), 59–63.

Kumar, D. & Meeden, L. (1998), ‘A robot laboratory
for teaching artificial intelligence’, SIGCSE Bull.
30(1), 341–344.

Lalonde, J.-F., Hartley, C. & Nourbakhsh, I.
(2006), Mobile robot programming in education, in
‘Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on’,
pp. 345–350.

Lewis, C. M. (2010), How programming environment
shapes perception, learning and goals: Logo vs.
scratch, in ‘Proceedings of the 41st ACM Techni-
cal Symposium on Computer Science Education’,
SIGCSE ’10, ACM, New York, NY, USA, pp. 346–
350.

Long, J. (2007), ‘Just for fun: Using programming
games in software programming training and edu-
cation’, Journal of Information Technology Educa-
tion: Research 6(1), 279–290.

Magnenat, S., Riedo, F., Bonani, M. & Mondada, F.
(2012), A programming workshop using the robot
“ thymio ii”: The effect on the understanding by
children, in ‘Advanced Robotics and its Social Im-
pacts (ARSO), 2012 IEEE Workshop on’, IEEE,
pp. 24–29.

Mahmoud, Q. H. (2008), Integrating mobile devices
into the computer science curriculum, in ‘Frontiers
in Education Conference, 2008. FIE 2008. 38th An-
nual’, pp. S3E–17–S3E–22.

Malan, D. J. & Leitner, H. H. (2007), ‘Scratch
for budding computer scientists’, SIGCSE Bull.
39(1), 223–227.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick,
M. & Rusk, N. (2008), ‘Programming by choice:
Urban youth learning programming with scratch’,
SIGCSE Bull. 40(1), 367–371.

McNally, M., Goldweber, M., Fagin, B. & Klassner, F.
(2006), Do lego mindstorms robots have a future in
cs education?, in ‘Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Edu-
cation’, SIGCSE ’06, ACM, New York, NY, USA,
pp. 61–62.

Nourbakhsh, I. R., Mobile, T., Lab, R. P. & Robots,
T. T. (2000), ‘Robots and education in the class-
room and in the museum: On the study of robots,
and robots for study’.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

163



Olivieri, L. M. (2005), ‘High school environments and
girls’ interest in computer science’, SIGCSE Bull.
37(2), 85–88.

Resnick, M., Maloney, J., Monroy-Hernández, A.,
Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B. & Kafai,
Y. (2009), ‘Scratch: Programming for all’, Com-
mun. ACM 52(11), 60–67.

Rizvi, M., Humphries, T., Major, D., Jones, M. &
Lauzun, H. (2011), ‘A cs0 course using scratch’, J.
Comput. Sci. Coll. 26(3), 19–27.

Sakamoto, K., Takano, K., Washizaki, H. &
Fukazawa, Y. (2013), Learning system for computa-
tional thinking using appealing user interface with
icon-based programming language on smartphones,
in ‘Proceedings of the 21st International Confer-
ence on Computers in Education (ICCE)’.

Takase, Y., Mitake, H., Yamashita, Y. & Hasegawa,
S. (2013), Motion generation for the stuffed-toy
robot, in ‘SICE Annual Conference (SICE), 2013
Proceedings of’, pp. 213–217.

Wing, J. M. (2006), ‘Computational thinking’, Com-
mun. ACM 49(3), 33–35.

CRPIT Volume 160 - Computing Education 2015

164


