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Abstract 

The Ordered Binary Decision Diagram (OBDD) has been 

efficiently used to compute the communication network 

(CN) reliability (REL). The boundary set method (BS) is 

used to improve the efficiency of the OBDD approach, 

while the augmented OBDD diagrams (OBDD-A) that 

stores CN information in its nodes has been proposed to 

solve other CN performance metrics in addition to REL. 

The hybrid OBDD (OBDD-H) combines the BS and 

OBDD-A features to further improve the performance of 

the OBDD method. However, both BS and OBDD-H 

address only CN with communication link (edge) failure. 

In this paper, we generalize OBDD-H for networks with 

edge and/or device (vertex) failures. We also present a 

hybrid ordered multi-variate decision diagram (OMDD-

H) to compute the performance metrics of CN with vertex 

and link failures. This paper examines the time and space 

complexities of OBDD-H, and shows that OMDD-H can 

compute the REL in CN with fallible vertices and edges 

in the same order of complexities as BS or OBDD-H 

computing the same network with only vertex failure
 .
 

Keywords:  boundary set, decision diagram, network 

reliability, time and space complexity.  

Acronyms 

ALL-REL – All terminal reliability – As reliability (q.v.) 

but with the requirement that all devices in the network 

be connected. 

BS – Boundary Set – A way to store information on the 

state of a network; in this work BS refers to the method of 

using a boundary set and an OBDD q.v. to compute 

network reliability. 

CN – Communication Network – A wired or wireless 

network where communication occurs between source 

and target devices. 

DD – Decision Diagram – A structure used to compute 

network reliability. 

K-REL - K terminal reliability – As reliability (q.v.) but 

with the requirement that a set K of devices in the 

network be mutually connected. 
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OBDD – Ordered Binary Decision Diagram - A DD 

whose binary variables are decided in a fixed order. 

OBDD-A – Augmented OBDD – An OBDD with 

information on network paths stored in each node. 

OBDD-H – Hybrid OBDD – An OBDD with information 

on boundary set connectivity stored in each node; a 

hybrid of the OBDD-A and BS methods. 

OMDD – Ordered Multi-variate DD - As OBDD but 

without the requirement that all variables be binary. 

There are also multi-variate versions of the OBDD-A and 

OBDD-H. 

REL – Reliability – The probability that the source and 

target vertices are connected by active devices and 

communication links. 

WSN – Wireless Sensor Network – A communication 

network in which the devices are sensor devices which 

communicate with each other in a wireless manner and 

co-operate to route transmissions to target devices. 

1 Introduction 

As the use of both wired and wireless communication 

networks (CNs) increases, their reliability is of 

importance for both their design and analysis. When 

components of a network fail, parts of the network may 

become unavailable and/or performance can degrade. The 

reliability (REL) of networks has been studied 

extensively (Hardy et al., 2005, Hardy et al., 2007, 

Herrmann and Soh, 2009, Herrmann et al., 2009, 

Herrmann, 2010, Herrmann et al., 2007, Yeh et al., 2002, 

Carlier and Lucet, 1996) and methods utilizing ordered 

binary decision diagrams (OBDD) have been shown to be 

superior to other methods in general (Hardy et al., 2007). 

The boundary set OBDD method (BS) introduced by 

Hardy, et al. (2005) uses edge contraction to construct an 

OBDD which can be used to compute all terminal 

reliability (ALL-REL) (Hardy et al., 2005) and K-

terminal reliability (K-REL) (Hardy et al., 2007) for the 

network. BS was shown (Hardy et al., 2005) (Hardy et 

al., 2007) to be more efficient than other methods 

available at the time, such as the EED_BFS method 

proposed by Yeh, et al. (2002).  

A disadvantage of BS is that it first generates the 

entire OBDD and then uses this to generate REL, which 

means that all OBDD nodes must be stored in memory. 

For large networks this can require that millions of nodes 

must be stored (Hardy et al., 2007). In addition, the 

partition numbers used in BS can quickly become larger 

than native data types in programming languages (e.g., C) 

can store, requiring the use of computationally expensive 

libraries that permit the use of numbers of arbitrary size. 



Further, BS can be used only for computing the REL of 

undirected networks whose communication links can fail 

but whose devices (vertices) are not susceptible to failure.  

A network model with fallible communication links 

but perfect devices is not always appropriate. Wireless 

networks may suffer both from device failure and the 

interruption of communication signals (Akyildiz et al., 

2002); indeed this holds true for wired networks as well. 

For example, a mobile telephone communication can fail 

if the phone battery runs out (device failure) or the phone 

is taken into a tunnel (link failure). 

The augmented ordered decision diagram (OBDD-A) 

was proposed by Herrmann, et al. (2007) to solve K-REL 

and a number of other metrics (e.g., the expected hop 

count – EHC). The OBDD-A stores additional 

information (e.g., the state probability) in diagram nodes, 

allowing nodes to be discarded after use and the metrics 

to be computed without traversing the diagram a second 

time. Information was stored by recording which devices 

were connected to the source device(s) and tracking any 

existing paths that had not yet been utilized. 

Both the BS and OBDD-A methods decrease greatly 

in performance when computing REL for networks with 

both link and device failure as compared to device (or 

link) failure only. The augmented ordered multi-variate 

decision diagram (OMDD-A) was introduced (Herrmann 

et al., 2009) as an extension to OBDD-A. It was shown 

that computing REL and EHC using OMDD-A is 

comparable in runtime performance to the same 

computation for a network with only device failure using 

OBDD-A on networks with only vertex failures.  

While the augmented diagram methods are able to 

solve more general networks (e.g., directed networks or 

those with edge and/or vertex failure) its execution time 

was far inferior to that of the BS method.  

The OBDD-A and BS methods were combined 

(Herrmann and Soh, 2009) into the hybrid ordered binary 

decision diagram (OBDD-H) which stored the partition 

numbers of BS partitioning in diagram nodes. This 

method was shown empirically to have comparable 

execution time performance to BS while requiring far less 

memory (Herrmann and Soh, 2009). However the 

OBDD-H is also restricted to undirected networks and 

does not account for vertex failure. In addition, early 

versions of OBDD-H stored partition numbers, requiring 

the same libraries as BS for large numbers. This was later 

modified (Herrmann, 2010) to store partition information 

directly instead of using partition numbers. This 

modification decreases running times while maintaining 

the low space usage of the earlier version.  

Our contributions in this paper are twofold.  First, we 

generalize the OBDD-H method to solve networks with 

vertex and/or edge failures. Then, we propose a multi-

variate hybrid decision diagram (OMDD-H) to improve 

the performances of both OBDD-H and OMDD-A. Our 

OMDD-A can be used in networks with vertex and link 

failures.  

The rest of this paper is organized as follows. Section 

2 presents the necessary network models and 

terminology, and reviews the BS and OBDD-H methods.  

The OBDD-H is modified for vertex and edge failure in 

Section 3 and its performance analysed. We introduce the 

OMDD-H in Section 4 and summarize the work in 

Section 5. 

2 Background 

2.1 Network Model 

An undirected network η is modelled using an undirected 

graph G = (V,E) whose vertices, V, represent the 

communication devices of η and whose edges, E, 

represent the communication links of η. If devices are 

fallible, each vertex viV has probability P(vi) of being 

available. Similarly if communication links are fallible, 

each edge eiE has probability P(ei) of being active. If 

these probabilities are not known they can be estimated as 

described in (Colbourn, 1987). Each edge between 

vertices vx and vy is written as (vx, vy) or simply (x, y) 

where x<y
1
. 

A network whose devices do not fail is modelled by a 

graph with perfect vertices (i.e., Pr(v)=1.0     ). 

Similarly a network whose communication links do not 

fail is modelled by a graph with perfect edges (i.e., 

Pr(e)=1.0     ). For this work, when a device can fail 

we assume it does so with a probability of 0.1 (i.e. it has a 

probability of 0.9 of being active).
2
 

Depending on the connectivity model in use, each 

network has one or more source vertices as well as one or 

more target vertices. For the case where we require a set 

K of vertices to be connected we choose one of these 

vertices as the source and the others as targets. 

For ordered decision diagrams, networks must be 

ordered. We use a breadth-first ordering for the graph 

representing each network which orders vertices in 

increasing distance from the source(s) (except that at least 

one of the vertices in K must be the last vertex in the 

ordering) and edges in increasing order of lower and then 

higher endpoints. As an example, consider the network 

given in Figure 1, with the source vertex v0 and target v3. 

The vertices have been labelled using the ordering given 

above. Note that switching the labelling of vertices v1 and 

v2 would have been equally correct since both are the 

same distance from the source vertex. Given the vertex 

                                                           
1
 Strictly speaking this should be x≤y to allow for self 

loops. However such loops do not affect the reliability of 

the network and can hence be ignored. 
2
 The algorithm functions with other component 

probabilities; however this is the standard assumption in 

the literature. 
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Figure 1: Sample Network 



ordering there is only one correct ordering of edges, 

which is shown in their labelling. 

A network state =(V,Eof network G=(V,E) is a 

partition of G such that all vertices in VV and edges in 

EE are available and all other vertices in V and edges 

in E are unavailable. The probability of state is 

computed as: 

                        

          

 

                     

          

 

For K-terminal reliability (K-REL), is a successful state 

if KV and each vertex in K is connected to all vertices 

in K by a path of vertices in V and edges in E REL can 

be calculated by summing the probabilities of the success 

states of the network. 

Since each edge and vertex can be in one of two states 

(available or unavailable), there are 2
|E|+|V|

 states for 

network G, and therefore K-REL cannot be solved for 

large networks through state enumeration. 

2.2 Boundary Set Algorithm 

Boundary sets were introduced for network reliability by 

Carlier and Lucet (1996). This method was combined 

with an OBDD into the BS method by Hardy et al. to 

efficiently solve ALL-REL (2005) and K-REL (2007). 

BS first builds an OBDD and then traverses this 

diagram to compute REL. Each level of the OBDD 

represents the evaluation of edge ek of the network. Each 

node Ni has two children; a positive child representing ek 

being available and a negative child representing ek being 

unavailable. We refer to the variable (in this case ek) 

being decided on level k of the diagram as the decision 

variable of that level. 

BS utilizes the boundary set (Fk) of each level k of the 

diagram; that is the set of vertices that are of importance 

to the algorithm at each stage. Fk (deciding edge ek) is 

defined as: 

                                                   

            

Each node of the OBDD represents a state of the 

network, and is encoded by a partitioning of the boundary 

set. Each partition represents a subset of Fk that is 

connected; in other words each vertex in the partition is 

connected to each other vertex by some path. 

When computing K-REL, we want all vertices in K to 

end up in one partition, showing that they are connected. 

A node that has such a partition is a success node and a 

node in which such a partition can no longer exist is a 

failure node. The connection to K is tracked by marking 

the partition that is connected to the source vertex with an 

asterisk. If a vertex in K is disconnected from the marked 

partition the node is failed. 

The BS algorithm is shown in Figure 2. The algorithm 

presented here is the one presented by Herrmann and Soh 

(2009). The algorithm proposed by Hardy et al. (2007) 

does not allow for the failure of positive child nodes 

(lines 11-12). 

The creation of child nodes uses edge contraction and 

edge deletion. For a positive child, edge ek is contracted, 

merging its endpoints. For a negative child, ek is deleted, 

possibly leaving the endpoints disconnected. Vertices that 

are in Fk but not in Fk+1 are removed from both child 

nodes. If such a vertex removal results in an empty 

partition, this is also removed; when such a partition is 

removed the child node is failed because one or more of 

the K vertices are disconnected from others in K (lines 

11-12 and 18-19). 

This partitioning is itself encoded into a partition 

number, which is stored and can be transformed back into 

the partitioning when needed. The process makes use of 

Stirling numbers of the second kind (Aij). Details of this 

process can be found in (Hardy et al., 2005) and (Hardy 

et al., 2007) for ALL-REL
3
 and in (Herrmann and Soh, 

2009) for K-REL. 

One of the strengths of the ordered decision diagram is 

that isomorphic nodes (those that have identical sub-

trees) are merged; reducing the number of nodes that 

need to be stored and processed. This can be seen in 

Figure 3 where any node with multiple arrows entering is 

a merged node; each arrow represents one merged node. 

The use of boundary sets makes detecting isomorphic 

nodes simple. Any two nodes on the same level that have 

an identical partitioning of the boundary set (and hence 

identical partition number) are isomorphic. 

The OBDD created by BS working on the sample 

network is shown in Figure 3 with the assumption that 

K={0,3}. Solid arrows indicate the positive child and 

dashed arrows the negative. The shaded non-terminal 

nodes represent states which are neither succeeded nor 

                                                           
3
 Hardy et al. (2007) do give an algorithm to compute the 

partition numbers for K-REL but this is erroneously 

identical to the ALL-REL version and does not consider 

marked partitions. 

1. Create root node N2 

2. F0={v0}, and REL  0. 

3. for k = 1 to |E| do 

4.  compute Fk+1. 

5. for each Ni on level k do 

6.   translate partition number i into parti. 
7.  Create negative partition part0. 

8.   Create positive partition part1. 
9.  if part1 is successful then 

10.    positive child of Ni is 1. 

11.  else if part1 is failed then 

12.    positive child of Ni is 0. 

13.  else  

14.   translate part1 to number j. 

15.   if Nj is not in hash table then 

16.    create Nj and insert into hash table. 

17.   positive child of Ni is Nj. 

18.  if part0 is failed then 

19.    negative child of Ni is 0. 

20.  else  

21.   translate part0 to number j. 

22.   if Nj is not in hash table then 

23.    create Nj and insert into hash table. 

24.   negative child of Ni is Nj. 

 

Figure 2: BS Algorithm  



failed. Each such state includes the partitioning that it 

represents along with the associated partition number (in 

parentheses) and the probability of being in this state. 

Note that the partition itself is not stored by BS and the 

partition number is stored in a separate hash table instead 

of in the OBDD. Finally the probabilities are not stored in 

the node but also stored in the hash table when they are 

computed. The boundary set for each level is shown on 

the left and the edge being decided is shown on the right. 
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Figure 3: OBDD for Sample Network 

The performance of BS was shown to be closely related 

to the size of the boundary sets; in particular the size of 

the maximum boundary set (Fmax). The time and space 

complexity of the BS method were both shown to be 

bounded by 

            
       

  

where      
is the Bell number defined by 

                  

      

   

 

2.3 The OBDD-He Algorithm 
The OBDD-H was introduced by Herrmann and Soh 

(2009) for undirected graphs for which edges can fail but 

vertices are perfect. These conditions are identical to 

those for BS because the algorithms are closely related. 

Let us refer to this version of OBDD-H the OBDD-He. 

Note, in Section 3.1, we present OBDD-Hv for 

undirected graphs with failed vertices and perfect edges, 

and in Section 3.2 we describe OBDD-Hve that 

generalizes OBDD-He and OBDD-Hv for use in 

networks with failed vertices and/or edges.  

Like BS, the OBDD-He uses partitions of Fk to encode 

the network state. While the OBDD-He (Herrmann and 

Soh, 2009) initially translated these into partition 

numbers  it was shown empirically (Herrmann, 2010) that 

it is more efficient to store the partitions directly as 

structures. In either case, the information is stored 

directly in each OBDD-He node, either as partition 

numbers or structures. The OBDD-He for the sample 

network is shown in Figure 5 and the algorithm is shown 

in Figure 4. 
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Figure 5: OBDD-He for Sample Network 

Also stored in each OBDD-He node is the probability 

of being in the state represented by that node (and hence 

the partitioning of Fk stored in that node). BS instead 

stores this probability and the partition number in a 

separate hash. The root node of the OBDD-He has 

probability 1.0 and each child node’s probability is 

computed from that of its parent by multiplying by P(ek) 

is available (for the positive child) or unavailable (for the 

negative). 

Most nodes in the OBDD-He are exactly equivalent to 

the comparable node in BS since they have the same 

partition information. Children of each node are 

1. Create root node N0 

2. QC{N0}, QN{ }, k0, and REL  0. 

3. while (QC != { } or QN != { }) 

4.  if QC = { } then 

5.  QC  QN, QN  { } and k  k + 1. 

6.  Fk   Fk+1, Compute Fk+1 

7.  for each Ni on QC. 

8.  Create negative child 

9.   Create positive child for ek 

10.  for each child Nj 

11.    if Nj is non-terminal then 

12.    for each NqQN do 

13.     if Nj is isomorphic to Nq then 

14.      merge Nj into Nq  

15.      break. 

16.    if no Nq was isomorphic to Nj then 

17.     add Nj to QN. 

18.    else if Nj is a success node then 

19.    REL  REL + Pr(Nj). 

20. delete Ni 

 

Figure 4: OBDD-H for Edge Failure 



equivalent since these are created through the same 

process. When two nodes in the OBDD-He are 

isomorphic and are merged, the equivalent nodes in BS 

are also isomorphic and merged. 

The difference between the algorithms is that the 

OBDD-He nodes are not actually linked into a diagram; 

they are instead stored in queues representing levels k and 

k+1 of the diagram. Nodes on level k are processed and 

non-terminal child nodes are either merged with an 

isomorphic node on level k+1 or added to that queue if no 

isomorphic node exists. Once the child nodes are created 

the parent node is discarded. 

This difference means that the OBDD can be 

optimized after being created; in particular if both 

children of a node are isomorphic (and hence merge) the 

parent node is redundant. This process does not occur for 

the OBDD-He, as can be seen by the extra node on level 

2 of the diagram. It should be noted that this missing node 

is still created by OBDD and processed, and thus affects 

time complexity. Because it is subsequently merged it 

does not affect the space complexity, however. 

2.4 The Complexity of OBDD-He 

The OBDD-He uses the same methods as BS for 

generating and merging diagram nodes. For this reason, 

the structure and number of nodes of both the OBDD 

generated with BS and the OBDD-He are identical.
4
 

Since the time complexity of both algorithms is 

directly related to the number of diagram nodes 

generated, the OBDD-He has the same order of time 

complexity as BS. However the space complexity is not 

identical. 

The OBDD-He discards nodes once they have been 

processed. This means that nodes from no more than two 

levels are stored in memory at any one time. This 

indicates that the space complexity for OBDD-He is 

bounded by 

        
       

 . 

When a series of networks increase in size but retain a 

constant inter-connectivity, it was found (Herrmann and 

Soh, 2009) that the space complexity had a constant 

upper bound. The constant inter-connectivity of the 

networks means that Fmax is bounded by some constant Γ. 

Hence the bound for the space complexity 

becomes           which is constant and thus verifies 

the experimental results. 

 

3 The Generalized OBDD-H  

3.1 OBDD-H for Vertex Failure (OBDD-Hv) 

If vertices fail instead of edges, each level of the decision 

diagram represents the evaluation of a vertex, which 

could lead to a number of edges being contracted. For the 

worst case, each level will represent only one edge being 

contracted but in general there will be more than one. The 

                                                           
4
 Given the constraints that certain nodes are removed 

from the BS OBDD after being processed. These nodes 

do not affect the worst-case space complexity since the 

worst case assumes that there are a maximal number of 

nodes at each level. 

resulting nodes will be equivalent to having performed 

the contraction of each of the edges associated with the 

vertex, in turn. 

The OBDD-Hv for the sample network is shown in 

Figure 6, with Fk and the decision variable for each level 

k shown on the left and right of the diagram respectively. 

Note that this is smaller than the diagram created by 

OBDD-He (Figure 5) and BS (Figure 3). Indeed the 

diagram for OBDD-Hv is a subgraph of the larger 

diagrams.  

The process for constructing the OBDD-Hv is similar 

to that for the OBDD-He except that we effectively 

perform multiple edge contractions or deletions at every 

level; one for each edge adjacent to the vertex being 

decided. Hence the child nodes for OBDD-Hv are 

equivalent
5
 to the nodes in BS where either all adjacent 

vertices are available (the positive child) or unavailable 

(the negative child). Hence each level of the OBDD-Hv 

has the same complexity constraints as for an OBDD-He. 

However the number of levels of the OBDD-Hv is equal 

to the number of vertices instead of the number of edges. 

We deduce that the time complexity of the OBDD-Hv is: 

         
       

 . 

The space complexity of OBDD-Hv is identical to 

OBDD-He since there are still at most two levels of nodes 

stored in memory at any one time. 

                                                           
5
 The partitions are equivalent for both nodes, but the 

probabilities of being in the state represented by the 

nodes are obviously not equal. 

Figure 6: OBDD-Hv of Sample Network 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: OBDD-Hve for Sample Network 



3.2 OBDD-H for Vertex and Edge Failure 

When both vertices and edges are fallible each must be 

decided in turn. We decide each vertex in turn, and decide 

each edge immediately after the lower endpoint. So for 

the sample network shown in Figure 1 the variable 

ordering is v0, e0, e1, v1, e2, e3, v2, e4, v3. The resulting 

OBDD-Hve is shown in Figure 7. Again, Fk for each level 

is shown on the left of the diagram and the decision 

variable is shown on the right. Note that the probabilities 

shown are rounded to five decimal places where needed. 

Note that for the negative child when deciding a vertex 

we remove the unavailable vertex from its partition. 

While this means that the result is, strictly speaking, not a 

complete partitioning of Fk anymore it saves unnecessary 

computation in the following levels. This means that 

partition numbers are no longer appropriate, but since 

OBDD-H does not use them this is not an issue. 

Note that the last level of both OBDD-Hv and OBDD-

Hve will be a single node containing the partition of the 

last vertex in the ordering. In some applications it is 

assumed that the target vertex is always available, in 

which case the ordering is modified to ensure that the 

target is last and this level can be omitted. We do not 

make this assumption in this work, and hence retain the 

final level. 

The depth of the OBDD-Hve means that the number 

of non-terminal nodes are greater than for both the 

OBDD-He and OBDD-Hv combined. 

The time and space complexities for OBDD-Hve can 

be similarly deduced to be 

                  
       

  

and 

        
       

   

respectively, when each vertex and edge is decided in 

turn. It can be seen that the time required to compute 

OBBD-Hve is considerably larger than either OBDD-Hv 

and OBDD-He. The amount of memory required is not 

greatly affected, however. 

4 The Multivariate Hybrid Decision Diagram 

Algorithm 

4.1 The OMDD-A 

The augmented ordered multi-variate decision diagram 

(OMDD-A) was introduced (Herrmann et al., 2009) for 

solving both REL and the Expected Hop Count problems 

for networks with both device and link failure. The 

OMDD-A groups each vertex with any adjacent edges 

that have not yet been grouped with another vertex. Each 

level of the diagram decides one grouping. The grouping 

of variables in a MDD has been shown to affect its 

performance (Nagayama and Sasao, 2005) 

The diagram is further optimized by automatically 

creating a merged node for the case when all edges in the 

group are unavailable together with all cases where the 

vertex is unavailable. For this reason a grouping of m 

edges with a vertex results in 2
m
 children for each node 

before merging, instead of 2
m+1

. This number is further 

reduced by merging isomorphic nodes.  

As with the OBDD-A, the OMDD-A tracks paths in 

the graph that have not yet been reached. This number of 

paths increases rapidly for large networks, degrading the 

performance. The OBDD-H does not suffer from this 

issue, since it uses the boundary set system which is 

independent of the number of paths of the network and 

depends only of Fmax and BFmax. 

4.2 The OMDD-H 

The hybrid ordered multi-variate decision diagram 

(OMDD-H) groups variables in the same way as the 

OMDD-A but uses partitions of Fk to track connectivity 

information. Like the OBDD-H it is restricted to 

undirected networks.  

For this work we only consider OMDD-H for 

networks with both vertex and edge failure and don’t 

consider the task of grouping vertices or edges together 

for other failure conditions (such as fallible vertices and 

perfect edges).  

The OMDD-H for the sample network is shown in 

Figure 9 with the variable groupings shown on the right 

and probabilities rounded to five decimal places where 

required. It has 8 non-terminal nodes compared to the 4 

nodes of the OBDD-Hv, the 10 nodes of the OBDD-He 

and the 24 nodes of the OBDD-Hve. Each link between 

nodes is labelled with a comma-separated list of the 

combination of edges that are available, with an X 

representing the negative child where either no edges are 

available or the vertex is unavailable. For example the 

label 3,23 means that this link is followed if edge e3 is 

available and all other edges (in this case only e2) are 

unavailable, and also if both e2 and e3 are available. The 

vertex in each grouping is available for each link not 

marked X. 

 

1. Create root node N0 

2. QC{N0}, QN{ }, k0, and REL  0. 

3. while (QC != { } or QN != { }) 

4.  if QC = { } then 

5.  QC  QN, QN  { } and k  k + 1. 

6.  Fk   Fk+1, Compute Fk+1 

7.  for each Ni on QC. 

8.  Create negative child 

9.   for each combination of edges (vk,vx): 

10.     create positive child for these edges. 

11.  for each child Nj 

12.    if Nj is non-terminal then 

13.    for each NqQN do 

14.     if Nj is isomorphic to Nq then 

15.      merge Nj into Nq  

16.      break. 

17.    if no Nq was isomorphic to Nj then 

18.     add Nj to QN. 

19.    else if Nj is a success node then 

20.    REL  REL + Pr(Nj). 

21. delete Ni 

 

Figure 8: OMDD-H Algorithm 



 

Figure 9: OMDD-H for Sample Network 

It can be seen that the nodes of the OMDD-H are 

equivalent to nodes of the OBDD-Hve on levels that 

decide vertices. The intermediate nodes on levels of the 

OBDD-Hve that decide edges are subsumed by the 

processing of multiple edges on each level of the OMDD-

H. Both methods give identical results, but the OMDD-H 

has fewer nodes. 

4.3 The OMDD-H Algorithm 

The OMDD-H algorithm given in Figure 8 is closely 

related to the OBDD-Hv algorithm (Herrmann and Soh, 

2009). However instead of one variable being decided per 

level, an entire grouping of variables is decided. 

First the negative child (representing the vertex or all 

edges in the grouping being unavailable) is created (line 

8) by deleting every edge in the grouping. Then the 

algorithm loops through each combination of available 

edges and creates the corresponding positive node by 

contracting every available edge and deleting every 

unavailable edge (lines 9-10). Note that the combination 

in which all edges are unavailable is part of the negative 

child and hence is not considered for the positive loop. 

Each non-terminal child created, whether positive or 

negative, is then compared to the nodes in QN. If an 

isomorphic node is found both are merged. If not the 

child node is added to QN
6
 (lines 12-18). 

Terminal nodes are never added to the queue. Failure 

nodes are ignored while success nodes have their 

probabilities added to REL. When the algorithm 

terminates, the variable REL contains the appropriate 

network reliability. 

                                                           
6
 In implementations of OMDD-H it is best to keep QN 

sorted in order to reduce the number of comparisons 

made. This does not affect the worst-case complexity but 

does reduce the average processing time. 

4.4 The Complexity of OMDD-H 

Since the OMDD-H uses partitions of boundary sets, each 

level is subject to the same bounds as the OBDD-H. Like 

the OBDD-H, only two levels of nodes are kept in 

memory at any one time. Hence the time complexity of 

the OMDD-H is 

            
       

  

and the space complexity is 

        
       

   

It can be seen that these complexities are identical to 

those of OBDD-Hv. 

While this seems to coincides with the experimental 

results finding that the performance of the OMDD-A is 

comparable to that of the OBDD-A (Herrmann et al., 

2009) it should be noted that the nodes of the OMDD-A 

may be larger than those of the OBDD-A. By contrast, 

each OMDD-H node is identical to the corresponding 

OBDD-H node except that it can have multiple children. 

Since nodes are never explicitly linked the number of 

children has no effect on the memory requirements for a 

node. Hence the sizes of the OMDD-H and OBDD-H 

nodes are identical. 

While the space complexities of OBDD-Hv and 

OMDD-H are closely related, the time complexities are 

somewhat misleading. Although the time complexities 

show that both diagrams process a comparable number of 

nodes, many OMDD-H nodes processed requires that 

multiple positive children are created. Many of these will 

be found to be isomorphic, but the process of creating 

them and checking for isomorphism must be carried out 

first. Hence the processing overhead of an OMDD-H 

node will be greater than that of an OBDD-H node, even 

if the number of nodes after isomorphism are comparable. 

It should be noted that the time complexity for 

OMDD-H is slightly misleading since it does not take 

into account that slightly more processing is needed for 

each positive child compared to OBDD-He, OBDD-Hv 

and OBDD-Hve. 

5 Conclusion 

We have described a generalized hybrid ordered binary 

decision diagram (OBDD-H) method that can be used on 

networks with edge and/or vertex failures. OBDD-H is 

shown analytically more efficient than the BS method 

which is extremely efficient at computing REL for 

undirected networks with only edge failures. We also 

proposed the Hybrid Ordered Multi-variate Decision 

Diagram (OMDD-H) which combines the best features of 

both the augmented ordered multi-variate decision 

diagram (OMDD-A) and the boundary set method (BS). 

The resulting OMDD-H has been shown to have better 

time complexity than the OBDD-H for networks with 

fallible devices and links and to have comparable space 

efficiency. It is thus an extremely appropriate tool for 

analysing these types of networks.  

All of the methods using partitioning of the boundary 

set (i.e., BS, OBDD-H, OMDD-H) require that the 

networks be undirected. The less efficient augmented 

diagrams (i.e., OBDD-A, OMDD-A) have the advantage 

in that directed networks can be analysed. It would be 

useful to extend the hybrid diagrams to allow analysis of 



directed networks as well, if this can be done without 

sacrificing performance. 

Finally, the OBDD-A and OMDD-A have been shown 

to be capable of computing metrics other than REL. 

Experiments will be undertaken to test whether the 

OBDD-H and OMDD-H can be extended for this 

purpose. 
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