
Comparison of Binary and Multi-Variate Hybrid Decision Diagram

Algorithms for K-Terminal Reliability

Johannes U. Herrmann and Sieteng Soh
Department of Computing

Curtin University of Technology

GPO Box U1987, Perth 6845, West Australia

jherrmann@ieee.org

Abstract

The Ordered Binary Decision Diagram (OBDD) has been

efficiently used to compute the communication network

(CN) reliability (REL). The boundary set method (BS) is

used to improve the efficiency of the OBDD approach,

while the augmented OBDD diagrams (OBDD-A) that

stores CN information in its nodes has been proposed to

solve other CN performance metrics in addition to REL.

The hybrid OBDD (OBDD-H) combines the BS and

OBDD-A features to further improve the performance of

the OBDD method. However, both BS and OBDD-H

address only CN with communication link (edge) failure.

In this paper, we generalize OBDD-H for networks with

edge and/or device (vertex) failures. We also present a

hybrid ordered multi-variate decision diagram (OMDD-

H) to compute the performance metrics of CN with vertex

and link failures. This paper examines the time and space

complexities of OBDD-H, and shows that OMDD-H can

compute the REL in CN with fallible vertices and edges

in the same order of complexities as BS or OBDD-H

computing the same network with only vertex failure
 .

Keywords: boundary set, decision diagram, network

reliability, time and space complexity.

Acronyms

ALL-REL – All terminal reliability – As reliability (q.v.)

but with the requirement that all devices in the network

be connected.

BS – Boundary Set – A way to store information on the

state of a network; in this work BS refers to the method of

using a boundary set and an OBDD q.v. to compute

network reliability.

CN – Communication Network – A wired or wireless

network where communication occurs between source

and target devices.

DD – Decision Diagram – A structure used to compute

network reliability.

K-REL - K terminal reliability – As reliability (q.v.) but

with the requirement that a set K of devices in the

network be mutually connected.

Copyright © 2011, Australian Computer Society, Inc. This

paper appeared at the Thirty-Fourth Australasian Computer

Science Conference (ACSC2010), Perth, Australia.

Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 113. M. Reynolds, Ed. Reproduction

for academic, not-for-profit purposes permitted provided this

text is included.

OBDD – Ordered Binary Decision Diagram - A DD

whose binary variables are decided in a fixed order.

OBDD-A – Augmented OBDD – An OBDD with

information on network paths stored in each node.

OBDD-H – Hybrid OBDD – An OBDD with information

on boundary set connectivity stored in each node; a

hybrid of the OBDD-A and BS methods.

OMDD – Ordered Multi-variate DD - As OBDD but

without the requirement that all variables be binary.

There are also multi-variate versions of the OBDD-A and

OBDD-H.

REL – Reliability – The probability that the source and

target vertices are connected by active devices and

communication links.

WSN – Wireless Sensor Network – A communication

network in which the devices are sensor devices which

communicate with each other in a wireless manner and

co-operate to route transmissions to target devices.

1 Introduction

As the use of both wired and wireless communication

networks (CNs) increases, their reliability is of

importance for both their design and analysis. When

components of a network fail, parts of the network may

become unavailable and/or performance can degrade. The

reliability (REL) of networks has been studied

extensively (Hardy et al., 2005, Hardy et al., 2007,

Herrmann and Soh, 2009, Herrmann et al., 2009,

Herrmann, 2010, Herrmann et al., 2007, Yeh et al., 2002,

Carlier and Lucet, 1996) and methods utilizing ordered

binary decision diagrams (OBDD) have been shown to be

superior to other methods in general (Hardy et al., 2007).

The boundary set OBDD method (BS) introduced by

Hardy, et al. (2005) uses edge contraction to construct an

OBDD which can be used to compute all terminal

reliability (ALL-REL) (Hardy et al., 2005) and K-

terminal reliability (K-REL) (Hardy et al., 2007) for the

network. BS was shown (Hardy et al., 2005) (Hardy et

al., 2007) to be more efficient than other methods

available at the time, such as the EED_BFS method

proposed by Yeh, et al. (2002).

A disadvantage of BS is that it first generates the

entire OBDD and then uses this to generate REL, which

means that all OBDD nodes must be stored in memory.

For large networks this can require that millions of nodes

must be stored (Hardy et al., 2007). In addition, the

partition numbers used in BS can quickly become larger

than native data types in programming languages (e.g., C)

can store, requiring the use of computationally expensive

libraries that permit the use of numbers of arbitrary size.

Further, BS can be used only for computing the REL of

undirected networks whose communication links can fail

but whose devices (vertices) are not susceptible to failure.

A network model with fallible communication links

but perfect devices is not always appropriate. Wireless

networks may suffer both from device failure and the

interruption of communication signals (Akyildiz et al.,

2002); indeed this holds true for wired networks as well.

For example, a mobile telephone communication can fail

if the phone battery runs out (device failure) or the phone

is taken into a tunnel (link failure).

The augmented ordered decision diagram (OBDD-A)

was proposed by Herrmann, et al. (2007) to solve K-REL

and a number of other metrics (e.g., the expected hop

count – EHC). The OBDD-A stores additional

information (e.g., the state probability) in diagram nodes,

allowing nodes to be discarded after use and the metrics

to be computed without traversing the diagram a second

time. Information was stored by recording which devices

were connected to the source device(s) and tracking any

existing paths that had not yet been utilized.

Both the BS and OBDD-A methods decrease greatly

in performance when computing REL for networks with

both link and device failure as compared to device (or

link) failure only. The augmented ordered multi-variate

decision diagram (OMDD-A) was introduced (Herrmann

et al., 2009) as an extension to OBDD-A. It was shown

that computing REL and EHC using OMDD-A is

comparable in runtime performance to the same

computation for a network with only device failure using

OBDD-A on networks with only vertex failures.

While the augmented diagram methods are able to

solve more general networks (e.g., directed networks or

those with edge and/or vertex failure) its execution time

was far inferior to that of the BS method.

The OBDD-A and BS methods were combined

(Herrmann and Soh, 2009) into the hybrid ordered binary

decision diagram (OBDD-H) which stored the partition

numbers of BS partitioning in diagram nodes. This

method was shown empirically to have comparable

execution time performance to BS while requiring far less

memory (Herrmann and Soh, 2009). However the

OBDD-H is also restricted to undirected networks and

does not account for vertex failure. In addition, early

versions of OBDD-H stored partition numbers, requiring

the same libraries as BS for large numbers. This was later

modified (Herrmann, 2010) to store partition information

directly instead of using partition numbers. This

modification decreases running times while maintaining

the low space usage of the earlier version.

Our contributions in this paper are twofold. First, we

generalize the OBDD-H method to solve networks with

vertex and/or edge failures. Then, we propose a multi-

variate hybrid decision diagram (OMDD-H) to improve

the performances of both OBDD-H and OMDD-A. Our

OMDD-A can be used in networks with vertex and link

failures.

The rest of this paper is organized as follows. Section

2 presents the necessary network models and

terminology, and reviews the BS and OBDD-H methods.

The OBDD-H is modified for vertex and edge failure in

Section 3 and its performance analysed. We introduce the

OMDD-H in Section 4 and summarize the work in

Section 5.

2 Background

2.1 Network Model

An undirected network η is modelled using an undirected

graph G = (V,E) whose vertices, V, represent the

communication devices of η and whose edges, E,

represent the communication links of η. If devices are

fallible, each vertex viV has probability P(vi) of being

available. Similarly if communication links are fallible,

each edge eiE has probability P(ei) of being active. If

these probabilities are not known they can be estimated as

described in (Colbourn, 1987). Each edge between

vertices vx and vy is written as (vx, vy) or simply (x, y)

where x<y
1
.

A network whose devices do not fail is modelled by a

graph with perfect vertices (i.e., Pr(v)=1.0).

Similarly a network whose communication links do not

fail is modelled by a graph with perfect edges (i.e.,

Pr(e)=1.0). For this work, when a device can fail

we assume it does so with a probability of 0.1 (i.e. it has a

probability of 0.9 of being active).
2

Depending on the connectivity model in use, each

network has one or more source vertices as well as one or

more target vertices. For the case where we require a set

K of vertices to be connected we choose one of these

vertices as the source and the others as targets.

For ordered decision diagrams, networks must be

ordered. We use a breadth-first ordering for the graph

representing each network which orders vertices in

increasing distance from the source(s) (except that at least

one of the vertices in K must be the last vertex in the

ordering) and edges in increasing order of lower and then

higher endpoints. As an example, consider the network

given in Figure 1, with the source vertex v0 and target v3.

The vertices have been labelled using the ordering given

above. Note that switching the labelling of vertices v1 and

v2 would have been equally correct since both are the

same distance from the source vertex. Given the vertex

1
 Strictly speaking this should be x≤y to allow for self

loops. However such loops do not affect the reliability of

the network and can hence be ignored.
2
 The algorithm functions with other component

probabilities; however this is the standard assumption in

the literature.

0

1

2

3

3

4

0

1

2

Figure 1: Sample Network

ordering there is only one correct ordering of edges,

which is shown in their labelling.

A network state =(V,Eof network G=(V,E) is a

partition of G such that all vertices in VV and edges in

EE are available and all other vertices in V and edges

in E are unavailable. The probability of state is

computed as:

For K-terminal reliability (K-REL), is a successful state

if KV and each vertex in K is connected to all vertices

in K by a path of vertices in V and edges in E REL can

be calculated by summing the probabilities of the success

states of the network.

Since each edge and vertex can be in one of two states

(available or unavailable), there are 2
|E|+|V|

 states for

network G, and therefore K-REL cannot be solved for

large networks through state enumeration.

2.2 Boundary Set Algorithm

Boundary sets were introduced for network reliability by

Carlier and Lucet (1996). This method was combined

with an OBDD into the BS method by Hardy et al. to

efficiently solve ALL-REL (2005) and K-REL (2007).

BS first builds an OBDD and then traverses this

diagram to compute REL. Each level of the OBDD

represents the evaluation of edge ek of the network. Each

node Ni has two children; a positive child representing ek

being available and a negative child representing ek being

unavailable. We refer to the variable (in this case ek)

being decided on level k of the diagram as the decision

variable of that level.

BS utilizes the boundary set (Fk) of each level k of the

diagram; that is the set of vertices that are of importance

to the algorithm at each stage. Fk (deciding edge ek) is

defined as:

Each node of the OBDD represents a state of the

network, and is encoded by a partitioning of the boundary

set. Each partition represents a subset of Fk that is

connected; in other words each vertex in the partition is

connected to each other vertex by some path.

When computing K-REL, we want all vertices in K to

end up in one partition, showing that they are connected.

A node that has such a partition is a success node and a

node in which such a partition can no longer exist is a

failure node. The connection to K is tracked by marking

the partition that is connected to the source vertex with an

asterisk. If a vertex in K is disconnected from the marked

partition the node is failed.

The BS algorithm is shown in Figure 2. The algorithm

presented here is the one presented by Herrmann and Soh

(2009). The algorithm proposed by Hardy et al. (2007)

does not allow for the failure of positive child nodes

(lines 11-12).

The creation of child nodes uses edge contraction and

edge deletion. For a positive child, edge ek is contracted,

merging its endpoints. For a negative child, ek is deleted,

possibly leaving the endpoints disconnected. Vertices that

are in Fk but not in Fk+1 are removed from both child

nodes. If such a vertex removal results in an empty

partition, this is also removed; when such a partition is

removed the child node is failed because one or more of

the K vertices are disconnected from others in K (lines

11-12 and 18-19).

This partitioning is itself encoded into a partition

number, which is stored and can be transformed back into

the partitioning when needed. The process makes use of

Stirling numbers of the second kind (Aij). Details of this

process can be found in (Hardy et al., 2005) and (Hardy

et al., 2007) for ALL-REL
3
 and in (Herrmann and Soh,

2009) for K-REL.

One of the strengths of the ordered decision diagram is

that isomorphic nodes (those that have identical sub-

trees) are merged; reducing the number of nodes that

need to be stored and processed. This can be seen in

Figure 3 where any node with multiple arrows entering is

a merged node; each arrow represents one merged node.

The use of boundary sets makes detecting isomorphic

nodes simple. Any two nodes on the same level that have

an identical partitioning of the boundary set (and hence

identical partition number) are isomorphic.

The OBDD created by BS working on the sample

network is shown in Figure 3 with the assumption that

K={0,3}. Solid arrows indicate the positive child and

dashed arrows the negative. The shaded non-terminal

nodes represent states which are neither succeeded nor

3
 Hardy et al. (2007) do give an algorithm to compute the

partition numbers for K-REL but this is erroneously

identical to the ALL-REL version and does not consider

marked partitions.

1. Create root node N2

2. F0={v0}, and REL  0.

3. for k = 1 to |E| do

4. compute Fk+1.

5. for each Ni on level k do

6. translate partition number i into parti.
7. Create negative partition part0.

8. Create positive partition part1.
9. if part1 is successful then

10. positive child of Ni is 1.

11. else if part1 is failed then

12. positive child of Ni is 0.

13. else

14. translate part1 to number j.

15. if Nj is not in hash table then

16. create Nj and insert into hash table.

17. positive child of Ni is Nj.

18. if part0 is failed then

19. negative child of Ni is 0.

20. else

21. translate part0 to number j.

22. if Nj is not in hash table then

23. create Nj and insert into hash table.

24. negative child of Ni is Nj.

Figure 2: BS Algorithm

failed. Each such state includes the partitioning that it

represents along with the associated partition number (in

parentheses) and the probability of being in this state.

Note that the partition itself is not stored by BS and the

partition number is stored in a separate hash table instead

of in the OBDD. Finally the probabilities are not stored in

the node but also stored in the hash table when they are

computed. The boundary set for each level is shown on

the left and the edge being decided is shown on the right.

[0]* (2)

1.0

[0]*[1] (4)

0.1

[0 1]* (2)

0.9

[1][2]* (5)

0.009

[1]*[2] (4)

0.009

[1 2]* (2)

0.972

[2]*[3] (4)

0.0981

Fail

0.02071

Success

0.97929

F0 = {0}

F1 = {0,1}

F2 = {1,2}

F3 = {1,2}

[1][2]* (5)

0.09

[1]*[2] (4)

0.09

F3 = {2,3}

e0

e1

e2

e3

e4

Figure 3: OBDD for Sample Network

The performance of BS was shown to be closely related

to the size of the boundary sets; in particular the size of

the maximum boundary set (Fmax). The time and space

complexity of the BS method were both shown to be

bounded by

where
is the Bell number defined by

2.3 The OBDD-He Algorithm
The OBDD-H was introduced by Herrmann and Soh

(2009) for undirected graphs for which edges can fail but

vertices are perfect. These conditions are identical to

those for BS because the algorithms are closely related.

Let us refer to this version of OBDD-H the OBDD-He.

Note, in Section 3.1, we present OBDD-Hv for

undirected graphs with failed vertices and perfect edges,

and in Section 3.2 we describe OBDD-Hve that

generalizes OBDD-He and OBDD-Hv for use in

networks with failed vertices and/or edges.

Like BS, the OBDD-He uses partitions of Fk to encode

the network state. While the OBDD-He (Herrmann and

Soh, 2009) initially translated these into partition

numbers it was shown empirically (Herrmann, 2010) that

it is more efficient to store the partitions directly as

structures. In either case, the information is stored

directly in each OBDD-He node, either as partition

numbers or structures. The OBDD-He for the sample

network is shown in Figure 5 and the algorithm is shown

in Figure 4.

[0]* (2)

1.0

[0]*[1] (4)

0.1

[0 1]* (2)

0.9

[1][2]* (5)

0.009

[1]*[2] (4)

0.009

[1 2]* (2)

0.972

[2]*[3] (4)

0.0981

Fail

0.02071

Success

0.97929

F0 = {0}

F1 = {0,1}

F2 = {1,2}

F3 = {1,2}

[1][2]* (5)

0.09

[1]*[2] (4)

0.09

[1 2]* (2)

0.81

F3 = {2,3}

e0

e1

e2

e3

e4

Figure 5: OBDD-He for Sample Network

Also stored in each OBDD-He node is the probability

of being in the state represented by that node (and hence

the partitioning of Fk stored in that node). BS instead

stores this probability and the partition number in a

separate hash. The root node of the OBDD-He has

probability 1.0 and each child node’s probability is

computed from that of its parent by multiplying by P(ek)

is available (for the positive child) or unavailable (for the

negative).

Most nodes in the OBDD-He are exactly equivalent to

the comparable node in BS since they have the same

partition information. Children of each node are

1. Create root node N0

2. QC{N0}, QN{ }, k0, and REL  0.

3. while (QC != { } or QN != { })

4. if QC = { } then

5. QC  QN, QN  { } and k  k + 1.

6. Fk  Fk+1, Compute Fk+1

7. for each Ni on QC.

8. Create negative child

9. Create positive child for ek

10. for each child Nj

11. if Nj is non-terminal then

12. for each NqQN do

13. if Nj is isomorphic to Nq then

14. merge Nj into Nq

15. break.

16. if no Nq was isomorphic to Nj then

17. add Nj to QN.

18. else if Nj is a success node then

19. REL  REL + Pr(Nj).

20. delete Ni

Figure 4: OBDD-H for Edge Failure

equivalent since these are created through the same

process. When two nodes in the OBDD-He are

isomorphic and are merged, the equivalent nodes in BS

are also isomorphic and merged.

The difference between the algorithms is that the

OBDD-He nodes are not actually linked into a diagram;

they are instead stored in queues representing levels k and

k+1 of the diagram. Nodes on level k are processed and

non-terminal child nodes are either merged with an

isomorphic node on level k+1 or added to that queue if no

isomorphic node exists. Once the child nodes are created

the parent node is discarded.

This difference means that the OBDD can be

optimized after being created; in particular if both

children of a node are isomorphic (and hence merge) the

parent node is redundant. This process does not occur for

the OBDD-He, as can be seen by the extra node on level

2 of the diagram. It should be noted that this missing node

is still created by OBDD and processed, and thus affects

time complexity. Because it is subsequently merged it

does not affect the space complexity, however.

2.4 The Complexity of OBDD-He

The OBDD-He uses the same methods as BS for

generating and merging diagram nodes. For this reason,

the structure and number of nodes of both the OBDD

generated with BS and the OBDD-He are identical.
4

Since the time complexity of both algorithms is

directly related to the number of diagram nodes

generated, the OBDD-He has the same order of time

complexity as BS. However the space complexity is not

identical.

The OBDD-He discards nodes once they have been

processed. This means that nodes from no more than two

levels are stored in memory at any one time. This

indicates that the space complexity for OBDD-He is

bounded by

 .

When a series of networks increase in size but retain a

constant inter-connectivity, it was found (Herrmann and

Soh, 2009) that the space complexity had a constant

upper bound. The constant inter-connectivity of the

networks means that Fmax is bounded by some constant Γ.

Hence the bound for the space complexity

becomes which is constant and thus verifies

the experimental results.

3 The Generalized OBDD-H

3.1 OBDD-H for Vertex Failure (OBDD-Hv)

If vertices fail instead of edges, each level of the decision

diagram represents the evaluation of a vertex, which

could lead to a number of edges being contracted. For the

worst case, each level will represent only one edge being

contracted but in general there will be more than one. The

4
 Given the constraints that certain nodes are removed

from the BS OBDD after being processed. These nodes

do not affect the worst-case space complexity since the

worst case assumes that there are a maximal number of

nodes at each level.

resulting nodes will be equivalent to having performed

the contraction of each of the edges associated with the

vertex, in turn.

The OBDD-Hv for the sample network is shown in

Figure 6, with Fk and the decision variable for each level

k shown on the left and right of the diagram respectively.

Note that this is smaller than the diagram created by

OBDD-He (Figure 5) and BS (Figure 3). Indeed the

diagram for OBDD-Hv is a subgraph of the larger

diagrams.

The process for constructing the OBDD-Hv is similar

to that for the OBDD-He except that we effectively

perform multiple edge contractions or deletions at every

level; one for each edge adjacent to the vertex being

decided. Hence the child nodes for OBDD-Hv are

equivalent
5
 to the nodes in BS where either all adjacent

vertices are available (the positive child) or unavailable

(the negative child). Hence each level of the OBDD-Hv

has the same complexity constraints as for an OBDD-He.

However the number of levels of the OBDD-Hv is equal

to the number of vertices instead of the number of edges.

We deduce that the time complexity of the OBDD-Hv is:

 .

The space complexity of OBDD-Hv is identical to

OBDD-He since there are still at most two levels of nodes

stored in memory at any one time.

5
 The partitions are equivalent for both nodes, but the

probabilities of being in the state represented by the

nodes are obviously not equal.

Figure 6: OBDD-Hv of Sample Network

Figure 7: OBDD-Hve for Sample Network

3.2 OBDD-H for Vertex and Edge Failure

When both vertices and edges are fallible each must be

decided in turn. We decide each vertex in turn, and decide

each edge immediately after the lower endpoint. So for

the sample network shown in Figure 1 the variable

ordering is v0, e0, e1, v1, e2, e3, v2, e4, v3. The resulting

OBDD-Hve is shown in Figure 7. Again, Fk for each level

is shown on the left of the diagram and the decision

variable is shown on the right. Note that the probabilities

shown are rounded to five decimal places where needed.

Note that for the negative child when deciding a vertex

we remove the unavailable vertex from its partition.

While this means that the result is, strictly speaking, not a

complete partitioning of Fk anymore it saves unnecessary

computation in the following levels. This means that

partition numbers are no longer appropriate, but since

OBDD-H does not use them this is not an issue.

Note that the last level of both OBDD-Hv and OBDD-

Hve will be a single node containing the partition of the

last vertex in the ordering. In some applications it is

assumed that the target vertex is always available, in

which case the ordering is modified to ensure that the

target is last and this level can be omitted. We do not

make this assumption in this work, and hence retain the

final level.

The depth of the OBDD-Hve means that the number

of non-terminal nodes are greater than for both the

OBDD-He and OBDD-Hv combined.

The time and space complexities for OBDD-Hve can

be similarly deduced to be

and

respectively, when each vertex and edge is decided in

turn. It can be seen that the time required to compute

OBBD-Hve is considerably larger than either OBDD-Hv

and OBDD-He. The amount of memory required is not

greatly affected, however.

4 The Multivariate Hybrid Decision Diagram

Algorithm

4.1 The OMDD-A

The augmented ordered multi-variate decision diagram

(OMDD-A) was introduced (Herrmann et al., 2009) for

solving both REL and the Expected Hop Count problems

for networks with both device and link failure. The

OMDD-A groups each vertex with any adjacent edges

that have not yet been grouped with another vertex. Each

level of the diagram decides one grouping. The grouping

of variables in a MDD has been shown to affect its

performance (Nagayama and Sasao, 2005)

The diagram is further optimized by automatically

creating a merged node for the case when all edges in the

group are unavailable together with all cases where the

vertex is unavailable. For this reason a grouping of m

edges with a vertex results in 2
m
 children for each node

before merging, instead of 2
m+1

. This number is further

reduced by merging isomorphic nodes.

As with the OBDD-A, the OMDD-A tracks paths in

the graph that have not yet been reached. This number of

paths increases rapidly for large networks, degrading the

performance. The OBDD-H does not suffer from this

issue, since it uses the boundary set system which is

independent of the number of paths of the network and

depends only of Fmax and BFmax.

4.2 The OMDD-H

The hybrid ordered multi-variate decision diagram

(OMDD-H) groups variables in the same way as the

OMDD-A but uses partitions of Fk to track connectivity

information. Like the OBDD-H it is restricted to

undirected networks.

For this work we only consider OMDD-H for

networks with both vertex and edge failure and don’t

consider the task of grouping vertices or edges together

for other failure conditions (such as fallible vertices and

perfect edges).

The OMDD-H for the sample network is shown in

Figure 9 with the variable groupings shown on the right

and probabilities rounded to five decimal places where

required. It has 8 non-terminal nodes compared to the 4

nodes of the OBDD-Hv, the 10 nodes of the OBDD-He

and the 24 nodes of the OBDD-Hve. Each link between

nodes is labelled with a comma-separated list of the

combination of edges that are available, with an X

representing the negative child where either no edges are

available or the vertex is unavailable. For example the

label 3,23 means that this link is followed if edge e3 is

available and all other edges (in this case only e2) are

unavailable, and also if both e2 and e3 are available. The

vertex in each grouping is available for each link not

marked X.

1. Create root node N0

2. QC{N0}, QN{ }, k0, and REL  0.

3. while (QC != { } or QN != { })

4. if QC = { } then

5. QC  QN, QN  { } and k  k + 1.

6. Fk  Fk+1, Compute Fk+1

7. for each Ni on QC.

8. Create negative child

9. for each combination of edges (vk,vx):

10. create positive child for these edges.

11. for each child Nj

12. if Nj is non-terminal then

13. for each NqQN do

14. if Nj is isomorphic to Nq then

15. merge Nj into Nq

16. break.

17. if no Nq was isomorphic to Nj then

18. add Nj to QN.

19. else if Nj is a success node then

20. REL  REL + Pr(Nj).

21. delete Ni

Figure 8: OMDD-H Algorithm

Figure 9: OMDD-H for Sample Network

It can be seen that the nodes of the OMDD-H are

equivalent to nodes of the OBDD-Hve on levels that

decide vertices. The intermediate nodes on levels of the

OBDD-Hve that decide edges are subsumed by the

processing of multiple edges on each level of the OMDD-

H. Both methods give identical results, but the OMDD-H

has fewer nodes.

4.3 The OMDD-H Algorithm

The OMDD-H algorithm given in Figure 8 is closely

related to the OBDD-Hv algorithm (Herrmann and Soh,

2009). However instead of one variable being decided per

level, an entire grouping of variables is decided.

First the negative child (representing the vertex or all

edges in the grouping being unavailable) is created (line

8) by deleting every edge in the grouping. Then the

algorithm loops through each combination of available

edges and creates the corresponding positive node by

contracting every available edge and deleting every

unavailable edge (lines 9-10). Note that the combination

in which all edges are unavailable is part of the negative

child and hence is not considered for the positive loop.

Each non-terminal child created, whether positive or

negative, is then compared to the nodes in QN. If an

isomorphic node is found both are merged. If not the

child node is added to QN
6
 (lines 12-18).

Terminal nodes are never added to the queue. Failure

nodes are ignored while success nodes have their

probabilities added to REL. When the algorithm

terminates, the variable REL contains the appropriate

network reliability.

6
 In implementations of OMDD-H it is best to keep QN

sorted in order to reduce the number of comparisons

made. This does not affect the worst-case complexity but

does reduce the average processing time.

4.4 The Complexity of OMDD-H

Since the OMDD-H uses partitions of boundary sets, each

level is subject to the same bounds as the OBDD-H. Like

the OBDD-H, only two levels of nodes are kept in

memory at any one time. Hence the time complexity of

the OMDD-H is

and the space complexity is

It can be seen that these complexities are identical to

those of OBDD-Hv.

While this seems to coincides with the experimental

results finding that the performance of the OMDD-A is

comparable to that of the OBDD-A (Herrmann et al.,

2009) it should be noted that the nodes of the OMDD-A

may be larger than those of the OBDD-A. By contrast,

each OMDD-H node is identical to the corresponding

OBDD-H node except that it can have multiple children.

Since nodes are never explicitly linked the number of

children has no effect on the memory requirements for a

node. Hence the sizes of the OMDD-H and OBDD-H

nodes are identical.

While the space complexities of OBDD-Hv and

OMDD-H are closely related, the time complexities are

somewhat misleading. Although the time complexities

show that both diagrams process a comparable number of

nodes, many OMDD-H nodes processed requires that

multiple positive children are created. Many of these will

be found to be isomorphic, but the process of creating

them and checking for isomorphism must be carried out

first. Hence the processing overhead of an OMDD-H

node will be greater than that of an OBDD-H node, even

if the number of nodes after isomorphism are comparable.

It should be noted that the time complexity for

OMDD-H is slightly misleading since it does not take

into account that slightly more processing is needed for

each positive child compared to OBDD-He, OBDD-Hv

and OBDD-Hve.

5 Conclusion

We have described a generalized hybrid ordered binary

decision diagram (OBDD-H) method that can be used on

networks with edge and/or vertex failures. OBDD-H is

shown analytically more efficient than the BS method

which is extremely efficient at computing REL for

undirected networks with only edge failures. We also

proposed the Hybrid Ordered Multi-variate Decision

Diagram (OMDD-H) which combines the best features of

both the augmented ordered multi-variate decision

diagram (OMDD-A) and the boundary set method (BS).

The resulting OMDD-H has been shown to have better

time complexity than the OBDD-H for networks with

fallible devices and links and to have comparable space

efficiency. It is thus an extremely appropriate tool for

analysing these types of networks.

All of the methods using partitioning of the boundary

set (i.e., BS, OBDD-H, OMDD-H) require that the

networks be undirected. The less efficient augmented

diagrams (i.e., OBDD-A, OMDD-A) have the advantage

in that directed networks can be analysed. It would be

useful to extend the hybrid diagrams to allow analysis of

directed networks as well, if this can be done without

sacrificing performance.

Finally, the OBDD-A and OMDD-A have been shown

to be capable of computing metrics other than REL.

Experiments will be undertaken to test whether the

OBDD-H and OMDD-H can be extended for this

purpose.

6 References

Akyildiz, W. S., Su, W., Sankarasubramaniam, Y. &

Cayirci, R. (2002). A Survey on Sensor

Networks. IEEE Communications Magazine,

August: 102-114.

Carlier, J. & Lucet, C. (1996). A Decomposition

Algorithm for Network Reliability Evaluation.

Discrete Applied Mathematics, 65: 141-156.

Colbourn, C. J. 1987. The Combinatorics of Network

Reliability, New York, Oxford University Press.

Hardy, G., Lucet, C. & Limnios, N. (2005). Computing

all-terminal reliability of stochastic networks

with Binary Decision Diagrams. In: 11th

International Symposium on Applied Stochastic

Models, 2005.

Hardy, G., Lucet, C. & Limnios, N. (2007). K-Terminal

Network Reliability Measures With Binary

Decision Diagrams. IEEE Trans. Reliability, 56:

506 - 515.

Herrmann, J. (2010). Improving Reliability Calculation

with Augmented Binary Decision Diagrams. In:

AINA, Apr. 2010 Perth, Australia. IEEE.

Herrmann, J., Soh, S. & West, G. (2007). An OBDD

Approach for Computing Expected Hop Count

of Communication Networks. In: PEECS 2007,

2007 Perth, Australia. Curtin University of

Technology.

Herrmann, J. U. & Soh, S. (2009). A Space Efficient

Algorithm for Network Reliability. In: 15
th

Asia-Pacific Conf. Communications

(APCC2009), Oct. 2009.

Herrmann, J. U., Soh, S., West, G. & Rai, S. (2009).

Using Multi-valued Decision Diagrams to Solve

the Expected Hop Count Problem. In: IEEE

23rd Int. Conf. Advanced Information

Networking and Applications Workshops, 2009

Bradford, UK. 419-424.

Nagayama, S. & Sasao, T. (2005). On the optimization of

heterogeneous MDDs. IEEE Trans. Computer-

Aided Design of Integrated Circuits and

Systems, 24: 1645-1659.

Yeh, F.-M., Lu, S.-K. & Kuo, S.-Y. (2002). OBDD-

Based Evaluation of k-Terminal Network

Reliability. IEEE Trans. Reliability, 51: 443-

451.

	Comparison of Binary and Multi-Variate Hybrid Decision Diagram Algorithms for K-Terminal Reliability
	Acronyms
	1 Introduction
	2 Background
	2.1 Network Model
	2.2 Boundary Set Algorithm
	2.3 The OBDD-He Algorithm
	2.4 The Complexity of OBDD-He

	3 The Generalized OBDD-H
	3.1 OBDD-H for Vertex Failure (OBDD-Hv)
	3.2 OBDD-H for Vertex and Edge Failure

	4 The Multivariate Hybrid Decision Diagram Algorithm
	4.1 The OMDD-A
	4.2 The OMDD-H
	4.3 The OMDD-H Algorithm
	4.4 The Complexity of OMDD-H

	5 Conclusion
	6 References

