Complexity of Counting Output Patterns of Logic Circuits

Kei Uchizawa¹

Zhenghong Wang²

Hiroki Morizumi³

Xiao Zhou²

¹ Graduate School of Science and Engineering Yamagata University, Jonan 4-3-16, Yonezawa-shi Yamagata, 992-8510 Japan, Email: uchizawa@yz.yamagata-u.ac.jp

² Graduate School of Information Sciences Tohoku University,

Aramaki-aza Aoba 6-6-05, Aoba-ku, Sendai, 980-8579, Japan, Email: wang@nishizeki.ecei.tohoku.ac.jp, zhou@ecei.tohoku.ac.jp

³ Interdisciplinary Faculty of Science and Engineering Shimane University, Nishikawatsu-cho 1060, Matsue, Shimane, 690-8504, Japan,

Email: morizumi@cis.shimane-u.ac.jp

Abstract

Let *C* be a logic circuit consisting of *s* gates g_1, g_2, \ldots, g_s , then the output pattern of *C* for an input $\boldsymbol{x} \in \{0,1\}^n$ is defined to be a vector $(g_1(\boldsymbol{x}), g_2(\boldsymbol{x}), \ldots, g_s(\boldsymbol{x})) \in \{0,1\}^s$ of the outputs of g_1, g_2, \ldots, g_s for \boldsymbol{x} . For each $f : \{0,1\}^2 \to \{0,1\}$, we define an *f*-circuit as a logic circuit where every gate computes *f*, and investigate computational complexity of the following counting problem: Given an *f*-circuit *C*, how many output patterns arise in *C*? We then provide a dichotomy result on the counting problem: We prove that the problem is solvable in polynomial time if *f* is PARITY or any degenerate function, while the problem is #P-complete even for constant-depth *f*-circuits if *f* is one of the other functions, such as AND, OR, NAND and NOR.

Keywords: Boolean functions, counting complexity, logic circuits, minimum AND-circuits problem.

1 Introduction

Neural circuits in the brain consist of computational units, called *neurons*. Neurons communicate with each other by firing in order to perform various information processing. Many theoretical models of neurons are proposed in the literature, and a circuit consisting of such particular model of neurons is intensively studied (See, for example, a survey (Sima & Orponen 2003)). Among these models, a logic circuit (i.e., a combinatorial circuit consisting of gates, each of which computes a Boolean function) plays a fundamental role; a threshold circuit is an example of such important theoretical models (Parberry 1994,

Siu et al. 1995). In these models, gates in a logic circuit C output 0 or 1 for a given input assignment to C, and an output "1" of a gate is considered to represent a "firing" of a neuron. From the viewpoint of neuroscience, such a computation of a logic circuit shows an information coding carried out by a neural circuit: a stimulus to a neural circuit is coded to a set of firing and non-firing neurons, that is, an output pattern. More formally, an output pattern of a logic circuit is defined as follows: For a logic circuit C consisting of s gates g_1, g_2, \ldots, g_s and n input variables, an *output* pattern of C for a circuit input $\boldsymbol{x} \in \{0, 1\}^n$ is defined to be a vector $(g_1(\boldsymbol{x}), g_2(\boldsymbol{x}), \ldots, g_s(\boldsymbol{x})) \in \{0, 1\}^s$ of the outputs of g_1, g_2, \ldots, g_s for \boldsymbol{x} . In previous re-search, it turns out that the number of output patterns that arise in a circuit closely related to its computational power: a threshold circuit of n + 1 patterns can compute the Parity function of n variables, while any threshold circuit of n output patterns cannot (Uchizawa et al. 2011); thus, there exists a gap of computational power between threshold circuits of n+1 patterns and those of n patterns. Furthermore, it is known that a threshold circuit C of Γ patterns can be simulated by a threshold circuit C' of $\Gamma + 1$ gates (Uchizawa et al. 2006); thus, if we can decide whether a given circuit C has a small number of patterns, we can construct such C' of small size.

In this paper, we focus more on the number of patterns that arise in a logic circuit. In particular, we investigate the following *counting* problem: Given a circuit C, how many output patterns arise in C? We show that the counting problem can be intractable even for very simple case. Consider a logic circuit C, every gate of which has fan-in two and computes a common function. More specifically, for each $f: \{0,1\}^2 \to \{0,1\}$, we define an *f*-circuit as a logic circuit where every gate computes f, and investigate computational complexity of counting output patterns of a given *f*-circuit. An *f*-circuit computes an elementary function, but analyzing its computation is not so trivial if it computes a multi-output function. For example, a multi-output \wedge -circuit is extensively studied in a context of automated circuit design, and minimizing size of such an \wedge -circuit performing a particular task is known to be an APX-hard problem (Årpe & Manthey 2009, Charikar et al. 2005, Morizumi 2011). Let B_2 be a set of all the Boolean functions $f : \{0,1\}^2 \to \{0,1\}$ with two input vari-

This work was supported by JSPS KAKENHI Grant Numbers 23500001, 23700003, 23700020.

Copyright ©2013, Australian Computer Society, Inc. This paper appeared at the 19th Computing: Australasian Theory Symposium (CATS 2013), Adelaide, South Australia, January-February 2013. Conferences in Research and Practice in Information Technology (CRPIT), Vol. 141, Anthony Wirth, Ed. Reproduction for academic, not-for-profit purposes permitted provided this text is included.

f	Complexity
$\fbox{0,1,z_1,z_2,\overline{z_1},\overline{z_2},\oplus,\overline{\oplus}}$	FP
$\land,\lor,\land\rceil,\lor\rceil, \lceil\land, \lceil\lor$	#P-complete even for depth-2 circuits
$\overline{\land}, \overline{\lor}$	#P-complete even for depth-3 circuits

Table 1: Complexity of counting output patterns of a given f-circuit.

ables z_1 and z_2 . Clearly, $|B_2| = 2^{2^2} = 16$. We denote the sixteen functions in B_2 as follows:

$$\mathbf{0}(z_1, z_2) = 0, \quad \mathbf{1}(z_1, z_2) = 1, \\
 z_1, \quad z_2, \quad \overline{z_1}, \quad \overline{z_2}, \\
 \oplus(z_1, z_2) = z_1 \oplus z_2, \quad \overline{\oplus}(z_1, z_2) = \overline{z_1 \oplus z_2}, \\
 \wedge(z_1, z_2) = z_1 \wedge z_2, \quad \vee(z_1, z_2) = z_1 \vee z_2, \\
 \overline{\wedge}(z_1, z_2) = \overline{z_1} \wedge z_2, \quad \overline{\vee}(z_1, z_2) = \overline{z_1} \vee z_2, \\
 [\wedge(z_1, z_2) = \overline{z_1} \wedge z_2, \quad [\vee(z_1, z_2) = \overline{z_1} \vee z_2, \\
 \wedge](z_1, z_2) = z_1 \wedge \overline{z_2}, \quad \vee](z_1, z_2) = z_1 \vee \overline{z_2}.$$

We make a complete analysis on the problem of computing the number of the output patterns that arise in an *f*-circuit *C* for each $f \in B_2$, and provide the dichotomy result as follows: We prove that the problem is solvable in polynomial time if $f \in$ $\{\mathbf{0}, \mathbf{1}, z_1, z_2, \overline{z_1}, \overline{z_2}, \oplus, \overline{\oplus}\}$; while the problem is #Pcomplete even for constant-depth *f*-circuits if $f \in$ $\{\wedge, \vee, \wedge], \vee], \lceil \wedge, \lceil \vee, \overline{\wedge}, \overline{\vee}\}$ (See Table 1).

The rest of the paper is organized as follows. In Section 2, we define some terms on logic circuits and counting problems. In Section 3, we consider $f \in \{0, 1, z_1, z_2, \overline{z_1}, \overline{z_2}, \oplus, \overline{\oplus}\}$, and show that counting patterns of an *f*-circuit is solvable in polynomial time. In Section 4, we prove #P-completeness for $f \in \{\wedge, \vee, \wedge], \vee\}, [\wedge, [\vee, \overline{\wedge}, \overline{\vee}\}$. In Section 5, we conclude with some remarks.

2 Definitions

Let B_2 be a set of all the Boolean functions $f : \{0,1\}^2 \to \{0,1\}$ with two input variables. We denote each of the functions in B_2 by the letter in (1). For $f \in B_2$, an f-gate is a logic gate that computes f, and an f-circuit C of n input variables is expressed as a directed acyclic graph where each node of indegree 0 in C corresponds to one of the n input variables x_1, x_2, \ldots, x_n , and the other nodes correspond to f-gates. Let C be an f-circuit with n input variables. Let s be the number of gates in C, and let g_1, g_2, \ldots, g_s be the s gates. The output pattern of C for an input $\mathbf{x} \in \{0,1\}^n$ is defined to be the vector $(g_1(\mathbf{x}), g_2(\mathbf{x}), \ldots, g_s(\mathbf{x}))$, where $g_i(\mathbf{x}), 1 \leq i \leq s$, is the output of the gate g_i for \mathbf{x} . We often abbreviate an output pattern as a pattern. We say that a pattern $\mathbf{p} = (p_1, p_2, \ldots, p_s) \in \{0,1\}^s$ arises in C if there exists an input $\mathbf{x} \in \{0,1\}^n$ such that $g_i(\mathbf{x}) = p_i$ for every $i, 1 \leq i \leq s$. We denote by $\Gamma(C)$ a set of the patterns that arise in C. Clearly, we have $\Gamma(C) \subseteq \{0,1\}^s$ and hence $|\Gamma(C)| \leq 2^s$. For each $f \in B_2$, a counting problem #PAT(f) is to compute $|\Gamma(C)|$ for a given f-circuit C.

The class #P is defined to be a set of functions that can be expressed as the number of accepting path of a nondeterministic polynomial-time Turing machine. Let FP be a class of functions that can be computed by a polynomial-time deterministic Turing machine. A function f is #P-hard if $\#P \subseteq FP^f$, where FP^f is a class of functions that can be computed by a polynomial-time deterministic Turing machine with an oracle to f. We say that f is #Pcomplete if $f \in \#P$ and f is #P-hard.

3 Tractable cases

In this section, we prove that #PAT(f) is solvable in polynomial time if $f \in \{0, 1, z_1, z_2, \overline{z_1}, \overline{z_2}, \oplus, \overline{\oplus}\}$. That is, we prove the following theorem.

Theorem 1. For any $f \in \{0, 1, z_1, z_2, \overline{z_1}, \overline{z_2}, \oplus, \overline{\oplus}\},$ #PAT(f) is in FP.

It is trivially true that $\#PAT(\mathbf{0})$ and $\#PAT(\mathbf{1})$ are in FP, since any **0**-cirucit and **1**-circuit have only one output pattern. It thus suffices to give proofs for the other six functions $\{z_1, z_2, \overline{z_1}, \overline{z_2}, \oplus, \overline{\oplus}\}$. We first consider the cases for $z_1, z_2, \overline{z_1}$ and $\overline{z_2}$.

Lemma 1. For any $f \in \{z_1, z_2, \overline{z_1}, \overline{z_2}\}, \# PAT(f)$ is in FP.

Proof. In this proof, we verify the lemma only for $\#PAT(z_1)$, since the proofs for the other cases are similar.

Let C be a circuit consisting of a number s of z_1 -gates g_1, g_2, \ldots, g_s together with n input variables. Without loss of generality, we assume that g_1, g_2, \ldots, g_s are topologically ordered in the underlying graph of C. Then, for each $i, 1 \leq i \leq s$, we inductively label g_i by an index of an input variable as follows: If the left input of g_i is an input variable x_j , then the label of g_i is j; otherwise, the label of g_i is same as the one for the left input gate of g_i . Clearly, the output of every gate labelled by j equals to x_j for every $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in \{0, 1\}^n$. Let l be the number of distinct labels by which we give at least a gate in C, then we have $|\Gamma(C)| = 2^l$.

We then consider the cases for \oplus and $\overline{\oplus}$.

Lemma 2. For any $f \in \{\oplus, \overline{\oplus}\}$, #PAT(f) is in FP.

Proof. We first consider \oplus -circuits. Let C be a \oplus -circuit with n input variables x_1, x_2, \ldots, x_n . Without loss of generality, we assume that every input variable is connected to some gate in C. Let A be a set of gates whose inputs are both input variables. We denote by G(C) = (V, E) a graph obtained from C as follows:

$$V = \{1, 2, \dots, n\}$$

and

$$E = \{(i_1, i_2) \in V \times V \mid a \text{ gate } g \in A \text{ receives } x_{i_1} \text{ and } x_{i_2} \text{ s.t. } i_1 < i_2\}.$$

Note that G(C) is an undirected graph. We denote by r the number of connected components in G(C), and by $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \dots, G_r = (V_r, E_r)$ the *r* connected components of G(C). Note that some connected component may consist of only a single node. Let B be a set of gates whose inputs are an input variable and an output of a gate. We now define r Boolean values $\beta_1, \beta_2, \ldots, \beta_r \in \{0, 1\}$ as follows: For each $j, 1 \leq j \leq r$, we have $\beta_j = 1$ if there is a gate $g \in B$ that receives $x_i, i \in V_j$, as its input; and $\beta_j = 0$ otherwise. Below we prove that

$$|\Gamma(C)| = \prod_{j=1}^{r} 2^{|V_j| + \beta_j - 1}$$
(2)

by induction on r; Eq. (2) implies that $\#PAT(\oplus)$ is in FP, since we can obtain V_1, V_2, \ldots, V_r and $\beta_1, \beta_2, \ldots, \beta_r$ in polynomial time. For each $j, 1 \leq j \leq r$, let $A_j \subseteq A$ be a set of gates whose input variables are x_{i_1} and x_{i_2} , $i_1, i_2 \in V_j$.

Clearly, A_1, A_2, \ldots, A_r compose a partition of A. We use the following simple claim in the inductive proof.

Claim. Let $j, 1 \leq j \leq r$, be a positive integer, and let $\boldsymbol{a} = (a_1, a_2, \dots, a_n), \boldsymbol{b} = (b_1, b_2, \dots, b_n) \in \{0, 1\}^n$ be a pair of input assignments to C. Then $g(\boldsymbol{a}) = g(\boldsymbol{b})$ for every $g \in A_j$ if and only if either $a_i = b_i$ for every $i \in V_j$ or $a_i \neq b_i$ for every $i \in V_j$.

Proof. Sufficiency. Assume that either $a_i = b_i$ for every $i \in V_j$ or $a_i \neq b_i$ for every $i \in V_j$. Then, we have $a_i + a_j \equiv b_i + b_j \pmod{2}$ for any pair of $i, j \in V_j$. Since every gate $g \in A_j$ is a \oplus -gate, we clearly have $g(\boldsymbol{a}) = g(\boldsymbol{b})$ for every $g \in A_j$.

Necessity. Assume that

$$g(\boldsymbol{a}) = g(\boldsymbol{b}) \tag{3}$$

for every $g \in A_j$, and suppose for the sake of contradiction that there exist indices $i_1, i_2 \in V_j$ such that $a_{i_1} = b_{i_1}$ and $a_{i_2} \neq b_{i_2}$. Consider the *j*th connected component $G_j = (V_j, E_j)$ of G, then there is a path p between $i_1 \in V_j$ and $i_2 \in V_j$; we denote by l the length of p, and by $(i_1, v_1), (v_1, v_2), \ldots, (v_{l-1}, i_2)$ be the edges on p. Since $a_{i_1} = b_{i_1}$, Eq. (3) implies that, for every $z, 1 \le z \le l-1$, we have $a_{v_z} = b_{v_z}$, and thus $a_{i_2} = b_{i_2}$. This contradicts the fact that $a_{i_2} \neq b_{i_2}$. \Box

The claim implies that a same output pattern arises for $\boldsymbol{a}, \boldsymbol{b} \in \{0, 1\}^n$ only if $\boldsymbol{a} = \overline{\boldsymbol{b}}$ where $\overline{\boldsymbol{b}}$ is the bitwise complement of \boldsymbol{b} .

For the basis, we verify that Eq. (2) holds for r = 1. Clearly, the claim implies that, for any pair of input assignment $\boldsymbol{a}, \boldsymbol{b} \in \{0, 1\}^n$, $g(\boldsymbol{a}) = g(\boldsymbol{b})$ for every gate $q \in A_1(=A)$ if and only if $a = \overline{b}$. Consider the case where $\beta_1 = 0$. In this case, we have $B = \emptyset$, and thus every gate $g \notin A$ in C receives two inputs from outputs of gates. Therefore, any pattern that arises in C is determined by the outputs of the gates in A. Consequently, for any pair of input assignment $a, b \in \{0, 1\}^n$, g(a) = g(b) for every gate g in C if and only if $\boldsymbol{a} = \boldsymbol{\overline{b}}$. Thus, we have

$$|\Gamma(C)| = 2^{|V_1|-1} = 2^{|V_1|+\beta_1-1}.$$

Consider the other case where $\beta_1 = 1$. In this case, we have $B \neq \emptyset$. Let g' be an arbitrary gate in B. The gate g' receives an input variable, say x_i , and an output of a gate, say g''. If $\boldsymbol{a} = \boldsymbol{\overline{b}}$, then $g'(\boldsymbol{a}) = g'(\boldsymbol{b})$ if and only if $q''(a) \neq q''(b)$. Furthermore, by the claim,

we have $g(\boldsymbol{a}) = g(\boldsymbol{b})$ for every gate $g \in A_1(=A)$ if and only if $\boldsymbol{a} = \overline{\boldsymbol{b}}$. Thus, we have

$$|\Gamma(C)| = 2^{|V_1|} = 2^{|V_1| + \beta_1 - 1}$$

For inductive hypothesis, assume that Eq. (2)holds for r-1, and that the graph G(C) has r connected components $G_1 = (V_1, E_1), G_2 =$ $(V_2, E_2), \ldots, G_r = (V_r, E_r)$. For each $j, 1 \le j \le r$, we define $k_j = |V_j|$, and then relabel the k_j input vari-ables whose indices are in V_j as $x_{j,1}, x_{j,2}, \ldots, x_{j,k_j}$. Consider a circuit C' given by applying any partial input assignment to the variables $x_{r,1}, x_{r,2}, \ldots, x_{r,k_r}$ and removing the gates whose outputs are deter-mined. Let G(C') be a graph obtained from C'. Clearly, G(C') has r-1 connected components, and hence the induction hypothesis implies that C' has

$$\prod_{j=1}^{r-1} 2^{|V_j| + \beta_j - 1} \tag{4}$$

patterns. Note that there are $2^{|V_r|}$ partial input assignments to $x_{r,1}, x_{r,2}, \ldots, x_{r,k_r}$. Therefore, if $\beta_r = 0$, the claim and Eq. (4) imply that C has

$$2^{|V_r|-1} \times \prod_{j=1}^{r-1} 2^{|V_j|+\beta_j-1} = \prod_{j=1}^r 2^{|V_j|+\beta_j-1}$$
(5)

patterns, as required. On the other hand, if $\beta_r = 1$, we have a gate $g' \in B$ that receives an input variable, say $x_i, i \in V_r$, and an output of a gate, say g''. If $\boldsymbol{a} = \overline{\boldsymbol{b}}$, then $g'(\boldsymbol{a}) = g'(\boldsymbol{b})$ if and only if $g''(\boldsymbol{a}) \neq g''(\boldsymbol{b})$. By the claim, we have g(a) = g(b) for every gate $g \in A_r$ if and only if $\boldsymbol{a} = \overline{\boldsymbol{b}}$. Therefore, C has

$$2^{|V_r|} \times \prod_{j=1}^{r-1} 2^{|V_j| + \beta_j - 1} = \prod_{j=1}^r 2^{|V_j| + \beta_j - 1} \tag{6}$$

patterns. Consequently, by Eqs. (5) and (6), Eq. (2)holds for r.

We can similarly compute the number of patterns of a $\overline{\oplus}$ -circuit, and so omit the proof.

Intractable cases 4

In this section, we consider eight functions $\land, \lor, \overline{\land}, \overline{\lor}, [\land, [\lor, \land], \lor]$, and show that every case is intractable even for constant-depth circuits.

Theorem 2. For any $f \in \{\land, \lor, [\land, [\lor, \land], \lor]\}$, #PAT(f) is #P-complete even for circuits of depth two. For any $f \in \{\overline{\wedge}, \overline{\vee}\}$, #PAT(f) is #P-complete even for circuits of depth three.

In the following lemma, we show that counting patterns of a circuit C is contained in #P.

Lemma 3. For any $f \in \{\land, \lor, [\land, [\lor, \land], \lor], \overline{\land}, \overline{\lor}\}$, #PAT(f) is contained in #P.

Proof. Let $f \in \{\land, \lor, [\land, [\lor, \land], \lor], \overline{\land}, \overline{\lor}\}$, and let C be an f-circuit of s gates and n input variables. It is enough to show that, given a pattern $p = (p_1, p_2, \ldots, p_s) \in \{0, 1\}^s$ of C, we can decide in polynomial time if the pattern p arises in C: If p arises in C, we decide to *accept*, and otherwise *reject*. Since the satisfiability of 2CNF formula is decidable in polynomial time (Johnson 1990, p. 86), it suffices to construct a formula ϕ such that ϕ is satisfiable if and only

CRPIT Volume 141 - Theory of Computing 2013

if \boldsymbol{p} arises in C, and each clause of ϕ contains at most two literals. We below construct the desired formula ϕ .

Let g_1, g_2, \ldots, g_s be the gates in *C*. We initially have an empty set $S(=\emptyset)$ of clauses, and for each *i*, $1 \le i \le s$, we repeat the following procedure:

- (1) If g_i has two inputs from the outputs of two gates, say g_{i_1} and g_{i_2} , then check whether $p_i = g_i(p_{i_1}, p_{i_2})$. If $p_i \neq g_i(p_{i_1}, p_{i_2})$, then **p** never arises in *C*, and hence we decide to reject; otherwise, we continue the procedure.
- (2) If g_i has an input from an output of a gate, say g_{i_1} , and the other input from an input variable, say x_{i_2} , then check whether $p_i = g_i(p_{i_1}, y)$ for each $y \in \{0, 1\}$. If $p_i \neq g_i(p_{i_1}, y)$ for all $y \in \{0, 1\}$, then we decide to reject. If $p_i = g_i(p_{i_1}, y)$ for exactly one of y = 0 and y = 1, we add a literal of x_{i_2} to S so that the following equation holds

$$p_i = g_i(p_{i_1}, x_{i_2}). (7)$$

That is, if $p_i = g_i(p_{i_1}, 1)$, then we add a positive literal of x_{i_2} to S; and if $p_i = g_i(p_{i_1}, 0)$, then we add a negative literal $\neg x_{i_2}$ of x_{i_2} to S. If $p_i = g_i(p_{i_1}, y)$ for all $y \in \{0, 1\}$, we do nothing and continue the procedure.

(3) If both of the inputs of g_i are input variables, say x_{i_1} and x_{i_2} , then we add clauses to S so that the following equation holds

$$p_i = g_i(x_{i_1}, x_{i_2}). (8)$$

Since g_i computes a function of two inputs, it is sufficient to add at most two clauses, each of which contains at most two literals.

Then we construct ϕ by taking a conjunction of all the clauses in S. Since we add at most two clauses to S for each $i, 1 \leq i \leq s, \phi$ is a 2CNF formula of at most 2s input variables and at most 2s clauses. Clearly, ϕ is satisfiable if and only if Eqs. (7) and (8) holds for every $i, 1 \leq i \leq s$. Thus, ϕ is satisfiable if and only if p arises in C.

We now show that the problems are #P-hard. We first prove that $\#PAT(\wedge)$ and $\#PAT(\vee)$ are #P-hard by a reduction from a counting problem for graphs. Let G = (V, E) be a graph with a vertex set V and an edge set E. A subset $V' \subseteq V$ is called an *independent set* if for any pair of $u, v \in V'$, $(u, v) \notin E$. We employ the following canonical #P-complete problem (Provan & Ball 1983).

#INDEPENDENT SET Input: A graph GOutput: The number of independent sets in G

Lemma 4. For any $f \in \{\land,\lor\}$, #PAT(f) is #P-hard even for circuits of depth two.

Proof. We first give a proof for $\#PAT(\land)$. Let G = (V, E) be an instance of #INDEPENDENT SET, where $V = \{1, 2, \ldots, n\}$ and $E \subseteq V \times V$. For each assignment $\boldsymbol{a} = (a_1, a_2, \ldots, a_n) \in \{0, 1\}^n$, we define $S_{\boldsymbol{a}} = \{i \in V \mid a_i = 1\}$, and let

 $I = \{ \boldsymbol{a} \in \{0,1\}^n \mid \ S_{\boldsymbol{a}} \text{ is an independent set of } G \}.$

We prove the lemma by constructing in polynomial time a depth-2 \wedge -circuit C_G such that

$$|\Gamma(C_G)| = 2^n - |I| + 1.$$
(9)

If Eq. (9) holds, we can obtain |I| by just subtracting $|\Gamma(C_G)|$ from $2^n + 1$ and hence complete the proof. The desired circuit C_G is given as follows. C_G

The desired circuit C_G is given as follows. C_G receives n input variables x_1, x_2, \ldots, x_n . In the first layer, C_G has a gate g_e for every $e = (i_1, i_2) \in E$ that computes " x_{i_1} and x_{i_2} " In the second layer, C_G has a gate $g_{i,e}$ for each pair of $i, 1 \leq i \leq n$, and $e \in E$ that computes " x_i and the output of g_e ." Clearly, we can construct C_G in polynomial time, and C_G is a depth-2 \wedge -circuit. We note that if g_e outputs one for an assignment $\boldsymbol{a} = (a_1, a_2, \ldots, a_n) \in \{0, 1\}^n$, then we have $g_{i,e}(\boldsymbol{a}) = a_i$ for each $i, 1 \leq i \leq n$.

We now verify that Eq. (9) holds. Consider an arbitrary assignment $a \in I$. Clearly, every gate in the first layer of C_G outputs zero for a, and hence every gate in the second layer of C_G outputs zero for a too. Thus, the pattern $(0, 0, \ldots, 0)$ arises in C_G for a. Moreover, $(0, 0, \ldots, 0)$ arises only for an input $a \in I$, since, otherwise, we have $g_e(z) = 1$ for some $e \in E$.

Let $\bar{I} = \{0,1\}^n \setminus I$. We show that C_G has an unique output pattern for each $a \in \bar{I}$. Consider an arbitrary pair of assignments $a = (a_1, a_2, \ldots, a_n) \in \bar{I}$ and $b = (b_1, b_2, \ldots, b_n) \in \bar{I}$, where $a \neq b$. Let E_a (resp., E_b) be a set of the edges in a subgraph of G induced by S_a (resp., S_b). One may assume without loss of generality that $|E_a| \geq |E_b|$. If $E_a \neq E_b$, then, for any edge e such that $e \in E_a$ and $e \notin E_b$, we have $g_e(a) \neq g_e(b)$, and hence the pattern for a is different from the one for b. If $E_a = E_b$, then $g_e(a) = g_e(b)$ for every $e \in E$, and hence $g_{i,e}(a) = a_i$ and $g_{i,e}(b) = b_i$ for each $i, 1 \leq i \leq n$. Since $a \neq b$, there is an index i^* such that $a_{i^*} \neq b_{i^*}$, and hence we have $a_{i^*} =$ $g_{i^*,e}(a) \neq g_{i^*,e}(a') = b_{i^*}$. Therefore, the pattern for a is different from the one for b. Consequently, we have $|\Gamma(C_G)| = |\bar{I}| + 1$. Since $|I| + |\bar{I}| = 2^n$, Eq. (9) holds.

A proof for $\#PAT(\vee)$ can be easily obtained by C_G and De Morgan's law, that is, we can construct an \vee -circuit C'_G from C_G so that $|\Gamma(C'_G)| = |\Gamma(C_G)|$ as follows: (1) negate every input variable of C_G by NOT-gates, (2) push the NOT-gates forward to the outputs of the gates in the second layer, and (3) remove the NOT-gates. Since each of (1), (2) and (3) preserves the number of output patterns, we complete the proof. \Box

We can prove #P-hardness of #PAT(f) for every $f \in \{ [\land, [\lor, \land], \lor] \}$ in a very similar manner to the proof of Lemma 4. Below, we give proofs for the completeness. We employ the following variant of #IN-DEPENDENT SET (Provan & Ball 1983).

#Bipartite Independent Set

Input: A bipartite graph G

Output: The number of independent sets in G

Lemma 5. For any $f \in \{ [\land, [\lor, \land], \lor] \}$, #PAT(f) is #P-hard even for circuits of depth two.

Proof. We give a proof only for $\#PAT([\land))$, since proofs for the other cases are obtained by the hardness of $\#PAT([\land))$ and De Morgan's law.

ness of $\#PAT([\land])$ and De Morgan's law. Let G = (U, V, E) be an instance of #BIPARTITEINDEPENDENT SET, where $U = \{1, 2, ..., n\}, V = \{n + 1, n + 2, ..., 2n\}$ and $E \subseteq U \times V$. For each

$$a = (a_1, a_2, \dots, a_n) \in \{0, 1\}^{2n}$$
, we define $S_a = \{i \in U \mid a_i = 0\} \cup \{i \in V \mid a_i = 1\}$, and let

 $I = \{ \boldsymbol{a} \mid S_{\boldsymbol{a}} \text{ is an independet set of } G. \}.$

We now construct a depth-2 [\wedge -circuit C_G such that

$$|\Gamma(C_G)| = 2^n - |I| + 1.$$
(10)

The desired circuit C_G receives 2n input variables x_1, x_2, \ldots, x_{2n} . In the first layer, C_G has a gate g_e for every $e = (i_1, i_2) \in E$ that computes " $\overline{x_{i_1}}$ and y_{i_2} ," where $\overline{x_{i_1}}$ is the negation of x_{i_1} . In the second layer, C_G has a gate g_{i_e} for each pair of $i \in U \cup V$ and $e \in E$ that computes " $\overline{x_i}$ and the output of g_e ." Clearly, we can construct C_G in polynomial time, and C_G is a depth-2 circuit consisting of only $[\land$ -gates.

We can now verify that Eq. (10) holds; we can prove that C_G has the output pattern (0, 0, ..., 0)for every $\mathbf{a} \in I$, and has an unique output pattern for each $\mathbf{a} = (a_1, a_2, ..., a_n) \in \overline{I}$. We omit the detail, since the rest of the proof is same as the one for Lemma 4.

We lastly verify that $\#PAT(\overline{\wedge})$ and $\#PAT(\overline{\vee})$ are #P-hard:

Lemma 6. $\#PAT(\overline{\wedge})$ and $\#PAT(\overline{\vee})$ are #P-hard even for circuits of depth three.

Proof. Note that an \wedge -gate g can be replaced by two $\overline{\wedge}$ -gates g' and g'' such that g' receives same inputs as ones of g, and g'' receives two copies of the output of g'; similarly, \vee -gate can be replaced by two $\overline{\vee}$ -gates.

We prove the lemma by the fact above and Lemma 4 as follows. Recall that the circuit C_G given in the proof of Lemma 4 is a depth-2 \wedge -circuit. By replacing each \wedge -gate in the first layer of C_G with two $\overline{\wedge}$ -gates, we obtain a depth-3 circuit whose number of patterns is same as C_G . Then we can safely replace each \wedge -gate in the third layer with a $\overline{\wedge}$ -gate, and obtain C'_G . Clearly, C'_G consists of only $\overline{\wedge}$ -gates, and $|\Gamma(C'_G)| = |\Gamma(C_G)|$. Thus we complete the proof for #PAT($\overline{\wedge}$). We can similarly prove the hardness of #PAT($\overline{\vee}$), and so omit the proof. \Box

5 Conclusions

In this paper, we investigate computational complexity of counting output patterns of a given f-circuit, and give a a complete analysis for the counting problem on $f \in B_2$. More formally, we prove that the problem of counting the number of the outputs patterns that arise in an f-circuit is solvable in polynomial time if $f \in \{0, 1, a_1, a_2, \overline{a_1}, \overline{a_2}, \oplus, \overline{\oplus}\}$; while the problem is #P-complete even for constant-depth fcircuits if $f \in \{\wedge, \vee, \wedge], \vee], [\wedge, [\vee, \overline{\wedge}, \overline{\vee}\}$.

References

- Arpe, J. & Manthey, B. (2009), 'Approximability of minimum AND-circuits', Algorithmica 53(3), 337– 357.
- Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A. & Shelat, A. (2005),
 'The smallest grammar problem', *IEEE Transactions on Information Theory* 51(7), 2554–2576. Cited By (since 1996): 35.
- Johnson, D. S. (1990), A catalog of complexity classes, in 'Handbook of Theoretical Computer Science', Vol. A, Elsevier Science Publishers, chapter 2, pp. 67–161.

- Morizumi, H. (2011), 'Improved approximation algorithms for minimum AND-circuits problem via k-set cover', Information Processing Letters 111(5), 218 – 221.
- Parberry, I. (1994), Circuit Complexity and Neural Networks, MIT Press, Cambridge, MA.
- Provan, J. S. & Ball, M. O. (1983), 'The complexity of counting cuts and of computing the probability that a graph is connected', *SIAM Journal on Computing* 12(4), 777–788.
- Sima, J. & Orponen, P. (2003), 'General-purpose computation with neural networks: A survey of complexity theoretic results', *Neural Computation* 15, 2727–2778.
- Siu, K. Y., Roychowdhury, V. & Kailath, T. (1995), Discrete Neural Computation; A Theoretical Foundation, Prentice-Hall, Inc., Upper Saddle River, NJ.
- Uchizawa, K., Douglas, R. & Maass, W. (2006), 'On the computational power of threshold circuits with sparse activity', *Neural Computation* **18**(12), 2994– 3008.
- Uchizawa, K., Takimoto, E. & Nishizeki, T. (2011), 'Size-energy tradeoffs of unate circuits computing symmetric Boolean functions', *Theoretical Computer Science* **412**, 773–782.

CRPIT Volume 141 - Theory of Computing 2013