
Complexity of Counting Output Patterns of Logic Circuits

Kei Uchizawa1 Zhenghong Wang2 Hiroki Morizumi3 Xiao Zhou2

1 Graduate School of Science and Engineering
Yamagata University,

Jonan 4-3-16, Yonezawa-shi Yamagata, 992-8510 Japan,
Email: uchizawa@yz.yamagata-u.ac.jp

2 Graduate School of Information Sciences
Tohoku University,

Aramaki-aza Aoba 6-6-05, Aoba-ku, Sendai, 980-8579, Japan,
Email: wang@nishizeki.ecei.tohoku.ac.jp, zhou@ecei.tohoku.ac.jp

3 Interdisciplinary Faculty of Science and Engineering
Shimane University,

Nishikawatsu-cho 1060, Matsue, Shimane, 690-8504, Japan,
Email: morizumi@cis.shimane-u.ac.jp

Abstract

Let C be a logic circuit consisting of s gates
g1, g2, . . . , gs, then the output pattern of C for
an input x ∈ {0, 1}n is defined to be a vector
(g1(x), g2(x), . . . , gs(x)) ∈ {0, 1}s of the outputs of
g1, g2, . . . , gs for x. For each f : {0, 1}2 → {0, 1},
we define an f -circuit as a logic circuit where every
gate computes f , and investigate computational com-
plexity of the following counting problem: Given an
f -circuit C, how many output patterns arise in C?
We then provide a dichotomy result on the counting
problem: We prove that the problem is solvable in
polynomial time if f is PARITY or any degenerate
function, while the problem is #P-complete even for
constant-depth f -circuits if f is one of the other func-
tions, such as AND, OR, NAND and NOR.

Keywords: Boolean functions, counting complexity,
logic circuits, minimum AND-circuits problem.

1 Introduction

Neural circuits in the brain consist of computational
units, called neurons. Neurons communicate with
each other by firing in order to perform various in-
formation processing. Many theoretical models of
neurons are proposed in the literature, and a circuit
consisting of such particular model of neurons is in-
tensively studied (See, for example, a survey (Sima
& Orponen 2003)). Among these models, a logic cir-
cuit (i.e., a combinatorial circuit consisting of gates,
each of which computes a Boolean function) plays a
fundamental role; a threshold circuit is an example
of such important theoretical models (Parberry 1994,

This work was supported by JSPS KAKENHI Grant Numbers
23500001, 23700003, 23700020.

Copyright c⃝2013, Australian Computer Society, Inc. This pa-
per appeared at the 19th Computing: Australasian Theory
Symposium (CATS 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 141, Anthony Wirth, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

Siu et al. 1995). In these models, gates in a logic cir-
cuit C output 0 or 1 for a given input assignment to C,
and an output “1” of a gate is considered to represent
a “firing” of a neuron. From the viewpoint of neuro-
science, such a computation of a logic circuit shows an
information coding carried out by a neural circuit: a
stimulus to a neural circuit is coded to a set of firing
and non-firing neurons, that is, an output pattern.
More formally, an output pattern of a logic circuit is
defined as follows: For a logic circuit C consisting of
s gates g1, g2, . . . , gs and n input variables, an output
pattern of C for a circuit input x ∈ {0, 1}n is defined
to be a vector (g1(x), g2(x), . . . , gs(x)) ∈ {0, 1}s of
the outputs of g1, g2, . . . , gs for x. In previous re-
search, it turns out that the number of output pat-
terns that arise in a circuit closely related to its com-
putational power: a threshold circuit of n + 1 pat-
terns can compute the Parity function of n variables,
while any threshold circuit of n output patterns can-
not (Uchizawa et al. 2011); thus, there exists a gap
of computational power between threshold circuits of
n+1 patterns and those of n patterns. Furthermore,
it is known that a threshold circuit C of Γ patterns
can be simulated by a threshold circuit C ′ of Γ + 1
gates (Uchizawa et al. 2006); thus, if we can decide
whether a given circuit C has a small number of pat-
terns, we can construct such C ′ of small size.

In this paper, we focus more on the number of
patterns that arise in a logic circuit. In particu-
lar, we investigate the following counting problem:
Given a circuit C, how many output patterns arise in
C? We show that the counting problem can be in-
tractable even for very simple case. Consider a logic
circuit C, every gate of which has fan-in two and
computes a common function. More specifically, for
each f : {0, 1}2 → {0, 1}, we define an f -circuit as a
logic circuit where every gate computes f , and inves-
tigate computational complexity of counting output
patterns of a given f -circuit. An f -circuit computes
an elementary function, but analyzing its computa-
tion is not so trivial if it computes a multi-output
function. For example, a multi-output ∧-circuit is
extensively studied in a context of automated circuit
design, and minimizing size of such an ∧-circuit per-
forming a particular task is known to be an APX-hard
problem (Arpe & Manthey 2009, Charikar et al. 2005,
Morizumi 2011). Let B2 be a set of all the Boolean
functions f : {0, 1}2 → {0, 1} with two input vari-

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

37

f Complexity

0,1, z1, z2, z1, z2,⊕,⊕ FP

∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨ #P-complete even for depth-2 circuits

∧,∨ #P-complete even for depth-3 circuits

Table 1: Complexity of counting output patterns of a given f -circuit.

ables z1 and z2. Clearly, |B2| = 22
2

= 16. We denote
the sixteen functions in B2 as follows:

0(z1, z2) = 0, 1(z1, z2) = 1,

z1, z2, z1, z2,

⊕(z1, z2) = z1 ⊕ z2, ⊕(z1, z2) = z1 ⊕ z2,

∧(z1, z2) = z1 ∧ z2, ∨(z1, z2) = z1 ∨ z2,

∧(z1, z2) = z1 ∧ z2, ∨(z1, z2) = z1 ∨ z2,

⌈∧(z1, z2) = z1 ∧ z2, ⌈∨(z1, z2) = z1 ∨ z2,

∧⌉(z1, z2) = z1 ∧ z2, ∨⌉(z1, z2) = z1 ∨ z2.

(1)

We make a complete analysis on the problem of
computing the number of the output patterns that
arise in an f -circuit C for each f ∈ B2, and pro-
vide the dichotomy result as follows: We prove that
the problem is solvable in polynomial time if f ∈
{0,1, z1, z2, z1, z2,⊕,⊕}; while the problem is #P-
complete even for constant-depth f -circuits if f ∈
{∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨,∧,∨} (See Table 1).

The rest of the paper is organized as follows. In
Section 2, we define some terms on logic circuits
and counting problems. In Section 3, we consider
f ∈ {0,1, z1, z2, z1, z2,⊕,⊕}, and show that count-
ing patterns of an f -circuit is solvable in polynomial
time. In Section 4, we prove #P-completeness for
f ∈ {∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨,∧,∨}. In Section 5, we con-
clude with some remarks.

2 Definitions

Let B2 be a set of all the Boolean functions f :
{0, 1}2 → {0, 1} with two input variables. We de-
note each of the functions in B2 by the letter in (1).
For f ∈ B2, an f -gate is a logic gate that computes f ,
and an f -circuit C of n input variables is expressed
as a directed acyclic graph where each node of in-
degree 0 in C corresponds to one of the n input vari-
ables x1, x2, . . . , xn, and the other nodes correspond
to f -gates. Let C be an f -circuit with n input vari-
ables. Let s be the number of gates in C, and let
g1, g2, . . . , gs be the s gates. The output pattern of C
for an input x ∈ {0, 1}n is defined to be the vector
(g1(x), g2(x), . . . , gs(x)), where gi(x), 1 ≤ i ≤ s, is
the output of the gate gi for x. We often abbreviate
an output pattern as a pattern. We say that a pat-
tern p = (p1, p2, . . . , ps) ∈ {0, 1}s arises in C if there
exists an input x ∈ {0, 1}n such that gi(x) = pi for
every i, 1 ≤ i ≤ s. We denote by Γ(C) a set of the pat-
terns that arise in C. Clearly, we have Γ(C) ⊆ {0, 1}s
and hence |Γ(C)| ≤ 2s. For each f ∈ B2, a counting
problem #Pat(f) is to compute |Γ(C)| for a given
f -circuit C.

The class #P is defined to be a set of functions
that can be expressed as the number of accepting
path of a nondeterministic polynomial-time Turing

machine. Let FP be a class of functions that can be
computed by a polynomial-time deterministic Turing
machine. A function f is #P-hard if #P ⊆ FP f ,
where FP f is a class of functions that can be com-
puted by a polynomial-time deterministic Turing ma-
chine with an oracle to f . We say that f is #P-
complete if f ∈ #P and f is #P-hard.

3 Tractable cases

In this section, we prove that #Pat(f) is solvable
in polynomial time if f ∈ {0,1, z1, z2, z1, z2,⊕,⊕}.
That is, we prove the following theorem.

Theorem 1. For any f ∈ {0,1, z1, z2, z1, z2,⊕,⊕},
#Pat(f) is in FP.

It is trivially true that #Pat(0) and #Pat(1) are
in FP, since any 0-cirucit and 1-circuit have only one
output pattern. It thus suffices to give proofs for the
other six functions {z1, z2, z1, z2,⊕,⊕}. We first con-
sider the cases for z1, z2, z1 and z2.

Lemma 1. For any f ∈ {z1, z2, z1, z2}, #Pat(f) is
in FP.

Proof. In this proof, we verify the lemma only for
#Pat(z1), since the proofs for the other cases are
similar.

Let C be a circuit consisting of a number s of
z1-gates g1, g2, . . . , gs together with n input vari-
ables. Without loss of generality, we assume that
g1, g2, . . . , gs are topologically ordered in the under-
lying graph of C. Then, for each i, 1 ≤ i ≤ s, we
inductively label gi by an index of an input variable
as follows: If the left input of gi is an input variable
xj , then the label of gi is j; otherwise, the label of
gi is same as the one for the left input gate of gi.
Clearly, the output of every gate labelled by j equals
to xj for every x = (x1, x2, . . . , xn) ∈ {0, 1}n. Let l
be the number of distinct labels by which we give at
least a gate in C, then we have |Γ(C)| = 2l.

We then consider the cases for ⊕ and ⊕.

Lemma 2. For any f ∈ {⊕,⊕}, #Pat(f) is in FP.

Proof. We first consider ⊕-circuits. Let C be a ⊕-
circuit with n input variables x1, x2, . . . , xn. Without
loss of generality, we assume that every input variable
is connected to some gate in C. Let A be a set of gates
whose inputs are both input variables. We denote by
G(C) = (V,E) a graph obtained from C as follows:

V = {1, 2, . . . , n}

and

E = {(i1, i2) ∈ V × V |
a gate g ∈ A receives xi1 and xi2 s.t. i1 < i2}.

CRPIT Volume 141 - Theory of Computing 2013

38

Note that G(C) is an undirected graph. We denote by
r the number of connected components in G(C), and
by G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er)
the r connected components of G(C). Note that some
connected component may consist of only a single
node. Let B be a set of gates whose inputs are an
input variable and an output of a gate. We now de-
fine r Boolean values β1, β2, . . . , βr ∈ {0, 1} as follows:
For each j, 1 ≤ j ≤ r, we have βj = 1 if there is a
gate g ∈ B that receives xi, i ∈ Vj , as its input; and
βj = 0 otherwise. Below we prove that

|Γ(C)| =
r∏

j=1

2|Vj |+βj−1 (2)

by induction on r; Eq. (2) implies that #Pat(⊕)
is in FP, since we can obtain V1, V2, . . . , Vr and
β1, β2, . . . , βr in polynomial time.

For each j, 1 ≤ j ≤ r, let Aj ⊆ A be a set of gates
whose input variables are xi1 and xi2 , i1, i2 ∈ Vj .
Clearly, A1, A2, . . . , Ar compose a partition of A. We
use the following simple claim in the inductive proof.

Claim. Let j, 1 ≤ j ≤ r, be a positive integer, and let
a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ {0, 1}n be
a pair of input assignments to C. Then g(a) = g(b)
for every g ∈ Aj if and only if either ai = bi for every
i ∈ Vj or ai ̸= bi for every i ∈ Vj.

Proof. Sufficiency. Assume that either ai = bi for
every i ∈ Vj or ai ̸= bi for every i ∈ Vj . Then, we
have ai+aj ≡ bi+bj (mod 2) for any pair of i, j ∈ Vj .
Since every gate g ∈ Aj is a ⊕-gate, we clearly have
g(a) = g(b) for every g ∈ Aj .

Necessity. Assume that

g(a) = g(b) (3)

for every g ∈ Aj , and suppose for the sake of contra-
diction that there exist indices i1, i2 ∈ Vj such that
ai1 = bi1 and ai2 ̸= bi2 . Consider the jth connected
component Gj = (Vj , Ej) of G, then there is a path
p between i1 ∈ Vj and i2 ∈ Vj ; we denote by l the
length of p, and by (i1, v1), (v1, v2), . . . , (vl−1, i2) be
the edges on p. Since ai1 = bi1 , Eq. (3) implies that,
for every z, 1 ≤ z ≤ l−1, we have avz = bvz , and thus
ai2 = bi2 . This contradicts the fact that ai2 ̸= bi2 .

The claim implies that a same output pattern arises
for a, b ∈ {0, 1}n only if a = b where b is the bitwise
complement of b.

For the basis, we verify that Eq. (2) holds for r = 1.
Clearly, the claim implies that, for any pair of input
assignment a, b ∈ {0, 1}n, g(a) = g(b) for every gate
g ∈ A1(= A) if and only if a = b. Consider the
case where β1 = 0. In this case, we have B = ∅,
and thus every gate g ̸∈ A in C receives two inputs
from outputs of gates. Therefore, any pattern that
arises in C is determined by the outputs of the gates
in A. Consequently, for any pair of input assignment
a, b ∈ {0, 1}n, g(a) = g(b) for every gate g in C if
and only if a = b. Thus, we have

|Γ(C)| = 2|V1|−1 = 2|V1|+β1−1.

Consider the other case where β1 = 1. In this case,
we have B ̸= ∅. Let g′ be an arbitrary gate in B.
The gate g′ receives an input variable, say xi, and an
output of a gate, say g′′. If a = b, then g′(a) = g′(b) if
and only if g′′(a) ̸= g′′(b). Furthermore, by the claim,

we have g(a) = g(b) for every gate g ∈ A1(= A) if
and only if a = b. Thus, we have

|Γ(C)| = 2|V1| = 2|V1|+β1−1.

For inductive hypothesis, assume that Eq. (2)
holds for r − 1, and that the graph G(C) has
r connected components G1 = (V1, E1), G2 =
(V2, E2), . . . , Gr = (Vr, Er). For each j, 1 ≤ j ≤ r, we
define kj = |Vj |, and then relabel the kj input vari-
ables whose indices are in Vj as xj,1, xj,2, . . . , xj,kj .
Consider a circuit C ′ given by applying any partial
input assignment to the variables xr,1, xr,2, . . . , xr,kr

and removing the gates whose outputs are deter-
mined. Let G(C ′) be a graph obtained from C ′.
Clearly, G(C ′) has r − 1 connected components, and
hence the induction hypothesis implies that C ′ has

r−1∏
j=1

2|Vj |+βj−1 (4)

patterns. Note that there are 2|Vr| partial input as-
signments to xr,1, xr,2, . . . , xr,kr . Therefore, if βr = 0,
the claim and Eq. (4) imply that C has

2|Vr|−1 ×
r−1∏
j=1

2|Vj |+βj−1 =

r∏
j=1

2|Vj |+βj−1 (5)

patterns, as required. On the other hand, if βr = 1,
we have a gate g′ ∈ B that receives an input variable,
say xi, i ∈ Vr, and an output of a gate, say g′′. If
a = b, then g′(a) = g′(b) if and only if g′′(a) ̸= g′′(b).
By the claim, we have g(a) = g(b) for every gate
g ∈ Ar if and only if a = b. Therefore, C has

2|Vr| ×
r−1∏
j=1

2|Vj |+βj−1 =
r∏

j=1

2|Vj |+βj−1 (6)

patterns. Consequently, by Eqs. (5) and (6), Eq. (2)
holds for r.

We can similarly compute the number of patterns
of a ⊕-circuit, and so omit the proof.

4 Intractable cases

In this section, we consider eight functions
∧,∨,∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉, and show that every case is
intractable even for constant-depth circuits.

Theorem 2. For any f ∈ {∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉},
#Pat(f) is #P-complete even for circuits of depth
two. For any f ∈ {∧,∨}, #Pat(f) is #P-complete
even for circuits of depth three.

In the following lemma, we show that counting
patterns of a circuit C is contained in #P.

Lemma 3. For any f ∈ {∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉,∧,∨},
#Pat(f) is contained in #P.

Proof. Let f ∈ {∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉,∧,∨}, and let
C be an f -circuit of s gates and n input variables.
It is enough to show that, given a pattern p =
(p1, p2, . . . , ps) ∈ {0, 1}s of C, we can decide in poly-
nomial time if the pattern p arises in C: If p arises in
C, we decide to accept, and otherwise reject. Since the
satisfiability of 2CNF formula is decidable in polyno-
mial time (Johnson 1990, p. 86), it suffices to con-
struct a formula ϕ such that ϕ is satisfiable if and only

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

39

if p arises in C, and each clause of ϕ contains at most
two literals. We below construct the desired formula
ϕ.

Let g1, g2, . . . , gs be the gates in C. We initially
have an empty set S(= ∅) of clauses, and for each i,
1 ≤ i ≤ s, we repeat the following procedure:

(1) If gi has two inputs from the outputs of two
gates, say gi1 and gi2 , then check whether pi =
gi(pi1 , pi2). If pi ̸= gi(pi1 , pi2), then p never
arises in C, and hence we decide to reject; oth-
erwise, we continue the procedure.

(2) If gi has an input from an output of a gate, say
gi1 , and the other input from an input variable,
say xi2 , then check whether pi = gi(pi1 , y) for
each y ∈ {0, 1}. If pi ̸= gi(pi1 , y) for all y ∈
{0, 1}, then we decide to reject. If pi = gi(pi1 , y)
for exactly one of y = 0 and y = 1, we add a
literal of xi2 to S so that the following equation
holds

pi = gi(pi1 , xi2). (7)

That is, if pi = gi(pi1 , 1), then we add a positive
literal of xi2 to S; and if pi = gi(pi1 , 0), then
we add a negative literal ¬xi2 of xi2 to S. If
pi = gi(pi1 , y) for all y ∈ {0, 1}, we do nothing
and continue the procedure.

(3) If both of the inputs of gi are input variables, say
xi1 and xi2 , then we add clauses to S so that the
following equation holds

pi = gi(xi1 , xi2). (8)

Since gi computes a function of two inputs, it
is sufficient to add at most two clauses, each of
which contains at most two literals.

Then we construct ϕ by taking a conjunction of all
the clauses in S. Since we add at most two clauses
to S for each i, 1 ≤ i ≤ s, ϕ is a 2CNF formula of
at most 2s input variables and at most 2s clauses.
Clearly, ϕ is satisfiable if and only if Eqs. (7) and (8)
holds for every i, 1 ≤ i ≤ s. Thus, ϕ is satisfiable if
and only if p arises in C.

We now show that the problems are #P-hard. We
first prove that #Pat(∧) and #Pat(∨) are #P-hard
by a reduction from a counting problem for graphs.
Let G = (V,E) be a graph with a vertex set V and
an edge set E. A subset V ′ ⊆ V is called an indepen-
dent set if for any pair of u, v ∈ V ′, (u, v) ̸∈ E. We
employ the following canonical #P-complete prob-
lem (Provan & Ball 1983).

#Independent Set
Input: A graph G
Output: The number of independent sets in G

Lemma 4. For any f ∈ {∧,∨}, #Pat(f) is #P-hard
even for circuits of depth two.

Proof. We first give a proof for #Pat(∧). Let G =
(V,E) be an instance of #Independent Set, where
V = {1, 2, . . . , n} and E ⊆ V × V . For each as-
signment a = (a1, a2, . . . , an) ∈ {0, 1}n, we define
Sa = {i ∈ V | ai = 1}, and let

I = {a ∈ {0, 1}n | Sa is an independent set of G}.

We prove the lemma by constructing in polynomial
time a depth-2 ∧-circuit CG such that

|Γ(CG)| = 2n − |I|+ 1. (9)

If Eq. (9) holds, we can obtain |I| by just subtracting
|Γ(CG)| from 2n + 1 and hence complete the proof.

The desired circuit CG is given as follows. CG
receives n input variables x1, x2, . . . , xn. In the first
layer, CG has a gate ge for every e = (i1, i2) ∈ E that
computes “xi1 and xi2 .” In the second layer, CG has
a gate gi,e for each pair of i, 1 ≤ i ≤ n, and e ∈ E
that computes “xi and the output of ge.” Clearly, we
can construct CG in polynomial time, and CG is a
depth-2 ∧-circuit. We note that if ge outputs one for
an assignment a = (a1, a2, . . . , an) ∈ {0, 1}n, then we
have gi,e(a) = ai for each i, 1 ≤ i ≤ n.

We now verify that Eq. (9) holds. Consider an
arbitrary assignment a ∈ I. Clearly, every gate in
the first layer of CG outputs zero for a, and hence
every gate in the second layer of CG outputs zero for
a too. Thus, the pattern (0, 0, . . . , 0) arises in CG
for a. Moreover, (0, 0, . . . , 0) arises only for an input
a ∈ I, since, otherwise, we have ge(z) = 1 for some
e ∈ E.

Let Ī = {0, 1}n\I. We show that CG has an unique
output pattern for each a ∈ Ī. Consider an arbitrary
pair of assignments a = (a1, a2, . . . , an) ∈ Ī and b =
(b1, b2, . . . , bn) ∈ Ī, where a ̸= b. Let Ea (resp., Eb)
be a set of the edges in a subgraph of G induced
by Sa (resp., Sb). One may assume without loss of
generality that |Ea| ≥ |Eb|. If Ea ̸= Eb, then, for
any edge e such that e ∈ Ea and e ̸∈ Eb, we have
ge(a) ̸= ge(b), and hence the pattern for a is different
from the one for b. If Ea = Eb, then ge(a) = ge(b) for
every e ∈ E, and hence gi,e(a) = ai and gi,e(b) = bi
for each i, 1 ≤ i ≤ n. Since a ̸= b, there is an
index i∗ such that ai∗ ̸= bi∗ , and hence we have ai∗ =
gi∗,e(a) ̸= gi∗,e(a

′) = bi∗ . Therefore, the pattern for
a is different from the one for b. Consequently, we
have |Γ(CG)| = |Ī| + 1. Since |I| + |Ī| = 2n, Eq. (9)
holds.

A proof for #Pat(∨) can be easily obtained by
CG and De Morgan’s law, that is, we can construct
an ∨-circuit C ′

G from CG so that |Γ(C ′
G)| = |Γ(CG)|

as follows: (1) negate every input variable of CG by
NOT-gates, (2) push the NOT-gates forward to the
outputs of the gates in the second layer, and (3) re-
move the NOT-gates. Since each of (1), (2) and (3)
preserves the number of output patterns, we complete
the proof.

We can prove #P-hardness of #Pat(f) for every
f ∈ {⌈∧, ⌈∨,∧⌉,∨⌉} in a very similar manner to the
proof of Lemma 4. Below, we give proofs for the com-
pleteness. We employ the following variant of #In-
dependent Set (Provan & Ball 1983).

#Bipartite Independent Set
Input: A bipartite graph G
Output: The number of independent sets in G

Lemma 5. For any f ∈ {⌈∧, ⌈∨,∧⌉,∨⌉}, #Pat(f)
is #P-hard even for circuits of depth two.

Proof. We give a proof only for #Pat(⌈∧), since
proofs for the other cases are obtained by the hard-
ness of #Pat(⌈∧) and De Morgan’s law.

Let G = (U, V,E) be an instance of #Bipartite
Independent Set, where U = {1, 2, . . . , n}, V =
{n + 1, n + 2, . . . , 2n} and E ⊆ U × V . For each

CRPIT Volume 141 - Theory of Computing 2013

40

a = (a1, a2, . . . , an) ∈ {0, 1}2n, we define Sa = {i ∈
U | ai = 0} ∪ {i ∈ V | ai = 1}, and let

I = {a | Sa is an independet set of G.}.

We now construct a depth-2 ⌈∧-circuit CG such that

|Γ(CG)| = 2n − |I|+ 1. (10)

The desired circuit CG receives 2n input variables
x1, x2, . . . , x2n. In the first layer, CG has a gate ge
for every e = (i1, i2) ∈ E that computes “xi1 and
yi2 ,” where xi1 is the negation of xi1 . In the second
layer, CG has a gate gi,e for each pair of i ∈ U ∪ V
and e ∈ E that computes “xi and the output of ge.”
Clearly, we can construct CG in polynomial time, and
CG is a depth-2 circuit consisting of only ⌈∧-gates.

We can now verify that Eq. (10) holds; we can
prove that CG has the output pattern (0, 0, . . . , 0)
for every a ∈ I, and has an unique output pattern
for each a = (a1, a2, . . . , an) ∈ Ī. We omit the de-
tail, since the rest of the proof is same as the one for
Lemma 4.

We lastly verify that #Pat(∧) and #Pat(∨) are
#P-hard:

Lemma 6. #Pat(∧) and #Pat(∨) are #P-hard
even for circuits of depth three.

Proof. Note that an ∧-gate g can be replaced by two
∧-gates g′ and g′′ such that g′ receives same inputs as
ones of g, and g′′ receives two copies of the output of
g′; similarly, ∨-gate can be replaced by two ∨-gates.

We prove the lemma by the fact above and
Lemma 4 as follows. Recall that the circuit CG given
in the proof of Lemma 4 is a depth-2 ∧-circuit. By
replacing each ∧-gate in the first layer of CG with
two ∧-gates, we obtain a depth-3 circuit whose num-
ber of patterns is same as CG. Then we can safely
replace each ∧-gate in the third layer with a ∧-gate,
and obtain C ′

G. Clearly, C
′
G consists of only ∧-gates,

and |Γ(C ′
G)| = |Γ(CG)|. Thus we complete the proof

for #Pat(∧). We can similarly prove the hardness of
#Pat(∨), and so omit the proof.

5 Conclusions

In this paper, we investigate computational complex-
ity of counting output patterns of a given f -circuit,
and give a a complete analysis for the counting prob-
lem on f ∈ B2. More formally, we prove that the
problem of counting the number of the outputs pat-
terns that arise in an f -circuit is solvable in polyno-
mial time if f ∈ {0,1, a1, a2, a1, a2,⊕,⊕}; while the
problem is #P-complete even for constant-depth f -
circuits if f ∈ {∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨,∧,∨}.

References

Arpe, J. & Manthey, B. (2009), ‘Approximability of
minimum AND-circuits’, Algorithmica 53(3), 337–
357.

Charikar, M., Lehman, E., Liu, D., Panigrahy, R.,
Prabhakaran, M., Sahai, A. & Shelat, A. (2005),
‘The smallest grammar problem’, IEEE Transac-
tions on Information Theory 51(7), 2554–2576.
Cited By (since 1996): 35.

Johnson, D. S. (1990), A catalog of complexity
classes, in ‘Handbook of Theoretical Computer Sci-
ence’, Vol. A, Elsevier Science Publishers, chap-
ter 2, pp. 67–161.

Morizumi, H. (2011), ‘Improved approximation
algorithms for minimum AND-circuits problem
via k-set cover’, Information Processing Letters
111(5), 218 – 221.

Parberry, I. (1994), Circuit Complexity and Neural
Networks, MIT Press, Cambridge, MA.

Provan, J. S. & Ball, M. O. (1983), ‘The complexity
of counting cuts and of computing the probability
that a graph is connected’, SIAM Journal on Com-
puting 12(4), 777–788.

Sima, J. & Orponen, P. (2003), ‘General-purpose
computation with neural networks: A survey of
complexity theoretic results’, Neural Computation
15, 2727–2778.

Siu, K. Y., Roychowdhury, V. & Kailath, T. (1995),
Discrete Neural Computation; A Theoretical Foun-
dation, Prentice-Hall, Inc., Upper Saddle River,
NJ.

Uchizawa, K., Douglas, R. & Maass, W. (2006), ‘On
the computational power of threshold circuits with
sparse activity’, Neural Computation 18(12), 2994–
3008.

Uchizawa, K., Takimoto, E. & Nishizeki, T. (2011),
‘Size-energy tradeoffs of unate circuits computing
symmetric Boolean functions’, Theoretical Com-
puter Science 412, 773–782.

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

41

CRPIT Volume 141 - Theory of Computing 2013

42

