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Abstract

Let C be a logic circuit consisting of s gates
g1, g2, . . . , gs, then the output pattern of C for
an input x ∈ {0, 1}n is defined to be a vector
(g1(x), g2(x), . . . , gs(x)) ∈ {0, 1}s of the outputs of
g1, g2, . . . , gs for x. For each f : {0, 1}2 → {0, 1},
we define an f -circuit as a logic circuit where every
gate computes f , and investigate computational com-
plexity of the following counting problem: Given an
f -circuit C, how many output patterns arise in C?
We then provide a dichotomy result on the counting
problem: We prove that the problem is solvable in
polynomial time if f is PARITY or any degenerate
function, while the problem is #P-complete even for
constant-depth f -circuits if f is one of the other func-
tions, such as AND, OR, NAND and NOR.

Keywords: Boolean functions, counting complexity,
logic circuits, minimum AND-circuits problem.

1 Introduction

Neural circuits in the brain consist of computational
units, called neurons. Neurons communicate with
each other by firing in order to perform various in-
formation processing. Many theoretical models of
neurons are proposed in the literature, and a circuit
consisting of such particular model of neurons is in-
tensively studied (See, for example, a survey (Sima
& Orponen 2003)). Among these models, a logic cir-
cuit (i.e., a combinatorial circuit consisting of gates,
each of which computes a Boolean function) plays a
fundamental role; a threshold circuit is an example
of such important theoretical models (Parberry 1994,
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Siu et al. 1995). In these models, gates in a logic cir-
cuit C output 0 or 1 for a given input assignment to C,
and an output “1” of a gate is considered to represent
a “firing” of a neuron. From the viewpoint of neuro-
science, such a computation of a logic circuit shows an
information coding carried out by a neural circuit: a
stimulus to a neural circuit is coded to a set of firing
and non-firing neurons, that is, an output pattern.
More formally, an output pattern of a logic circuit is
defined as follows: For a logic circuit C consisting of
s gates g1, g2, . . . , gs and n input variables, an output
pattern of C for a circuit input x ∈ {0, 1}n is defined
to be a vector (g1(x), g2(x), . . . , gs(x)) ∈ {0, 1}s of
the outputs of g1, g2, . . . , gs for x. In previous re-
search, it turns out that the number of output pat-
terns that arise in a circuit closely related to its com-
putational power: a threshold circuit of n + 1 pat-
terns can compute the Parity function of n variables,
while any threshold circuit of n output patterns can-
not (Uchizawa et al. 2011); thus, there exists a gap
of computational power between threshold circuits of
n+1 patterns and those of n patterns. Furthermore,
it is known that a threshold circuit C of Γ patterns
can be simulated by a threshold circuit C ′ of Γ + 1
gates (Uchizawa et al. 2006); thus, if we can decide
whether a given circuit C has a small number of pat-
terns, we can construct such C ′ of small size.

In this paper, we focus more on the number of
patterns that arise in a logic circuit. In particu-
lar, we investigate the following counting problem:
Given a circuit C, how many output patterns arise in
C? We show that the counting problem can be in-
tractable even for very simple case. Consider a logic
circuit C, every gate of which has fan-in two and
computes a common function. More specifically, for
each f : {0, 1}2 → {0, 1}, we define an f -circuit as a
logic circuit where every gate computes f , and inves-
tigate computational complexity of counting output
patterns of a given f -circuit. An f -circuit computes
an elementary function, but analyzing its computa-
tion is not so trivial if it computes a multi-output
function. For example, a multi-output ∧-circuit is
extensively studied in a context of automated circuit
design, and minimizing size of such an ∧-circuit per-
forming a particular task is known to be an APX-hard
problem (Arpe & Manthey 2009, Charikar et al. 2005,
Morizumi 2011). Let B2 be a set of all the Boolean
functions f : {0, 1}2 → {0, 1} with two input vari-
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f Complexity

0,1, z1, z2, z1, z2,⊕,⊕ FP

∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨ #P-complete even for depth-2 circuits

∧,∨ #P-complete even for depth-3 circuits

Table 1: Complexity of counting output patterns of a given f -circuit.

ables z1 and z2. Clearly, |B2| = 22
2

= 16. We denote
the sixteen functions in B2 as follows:

0(z1, z2) = 0, 1(z1, z2) = 1,

z1, z2, z1, z2,

⊕(z1, z2) = z1 ⊕ z2, ⊕(z1, z2) = z1 ⊕ z2,

∧(z1, z2) = z1 ∧ z2, ∨(z1, z2) = z1 ∨ z2,

∧(z1, z2) = z1 ∧ z2, ∨(z1, z2) = z1 ∨ z2,

⌈∧(z1, z2) = z1 ∧ z2, ⌈∨(z1, z2) = z1 ∨ z2,

∧⌉(z1, z2) = z1 ∧ z2, ∨⌉(z1, z2) = z1 ∨ z2.

(1)

We make a complete analysis on the problem of
computing the number of the output patterns that
arise in an f -circuit C for each f ∈ B2, and pro-
vide the dichotomy result as follows: We prove that
the problem is solvable in polynomial time if f ∈
{0,1, z1, z2, z1, z2,⊕,⊕}; while the problem is #P-
complete even for constant-depth f -circuits if f ∈
{∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨,∧,∨} (See Table 1).

The rest of the paper is organized as follows. In
Section 2, we define some terms on logic circuits
and counting problems. In Section 3, we consider
f ∈ {0,1, z1, z2, z1, z2,⊕,⊕}, and show that count-
ing patterns of an f -circuit is solvable in polynomial
time. In Section 4, we prove #P-completeness for
f ∈ {∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨,∧,∨}. In Section 5, we con-
clude with some remarks.

2 Definitions

Let B2 be a set of all the Boolean functions f :
{0, 1}2 → {0, 1} with two input variables. We de-
note each of the functions in B2 by the letter in (1).
For f ∈ B2, an f -gate is a logic gate that computes f ,
and an f -circuit C of n input variables is expressed
as a directed acyclic graph where each node of in-
degree 0 in C corresponds to one of the n input vari-
ables x1, x2, . . . , xn, and the other nodes correspond
to f -gates. Let C be an f -circuit with n input vari-
ables. Let s be the number of gates in C, and let
g1, g2, . . . , gs be the s gates. The output pattern of C
for an input x ∈ {0, 1}n is defined to be the vector
(g1(x), g2(x), . . . , gs(x)), where gi(x), 1 ≤ i ≤ s, is
the output of the gate gi for x. We often abbreviate
an output pattern as a pattern. We say that a pat-
tern p = (p1, p2, . . . , ps) ∈ {0, 1}s arises in C if there
exists an input x ∈ {0, 1}n such that gi(x) = pi for
every i, 1 ≤ i ≤ s. We denote by Γ(C) a set of the pat-
terns that arise in C. Clearly, we have Γ(C) ⊆ {0, 1}s
and hence |Γ(C)| ≤ 2s. For each f ∈ B2, a counting
problem #Pat(f) is to compute |Γ(C)| for a given
f -circuit C.

The class #P is defined to be a set of functions
that can be expressed as the number of accepting
path of a nondeterministic polynomial-time Turing

machine. Let FP be a class of functions that can be
computed by a polynomial-time deterministic Turing
machine. A function f is #P-hard if #P ⊆ FP f ,
where FP f is a class of functions that can be com-
puted by a polynomial-time deterministic Turing ma-
chine with an oracle to f . We say that f is #P-
complete if f ∈ #P and f is #P-hard.

3 Tractable cases

In this section, we prove that #Pat(f) is solvable
in polynomial time if f ∈ {0,1, z1, z2, z1, z2,⊕,⊕}.
That is, we prove the following theorem.

Theorem 1. For any f ∈ {0,1, z1, z2, z1, z2,⊕,⊕},
#Pat(f) is in FP.

It is trivially true that #Pat(0) and #Pat(1) are
in FP, since any 0-cirucit and 1-circuit have only one
output pattern. It thus suffices to give proofs for the
other six functions {z1, z2, z1, z2,⊕,⊕}. We first con-
sider the cases for z1, z2, z1 and z2.

Lemma 1. For any f ∈ {z1, z2, z1, z2}, #Pat(f) is
in FP.

Proof. In this proof, we verify the lemma only for
#Pat(z1), since the proofs for the other cases are
similar.

Let C be a circuit consisting of a number s of
z1-gates g1, g2, . . . , gs together with n input vari-
ables. Without loss of generality, we assume that
g1, g2, . . . , gs are topologically ordered in the under-
lying graph of C. Then, for each i, 1 ≤ i ≤ s, we
inductively label gi by an index of an input variable
as follows: If the left input of gi is an input variable
xj , then the label of gi is j; otherwise, the label of
gi is same as the one for the left input gate of gi.
Clearly, the output of every gate labelled by j equals
to xj for every x = (x1, x2, . . . , xn) ∈ {0, 1}n. Let l
be the number of distinct labels by which we give at
least a gate in C, then we have |Γ(C)| = 2l.

We then consider the cases for ⊕ and ⊕.

Lemma 2. For any f ∈ {⊕,⊕}, #Pat(f) is in FP.

Proof. We first consider ⊕-circuits. Let C be a ⊕-
circuit with n input variables x1, x2, . . . , xn. Without
loss of generality, we assume that every input variable
is connected to some gate in C. Let A be a set of gates
whose inputs are both input variables. We denote by
G(C) = (V,E) a graph obtained from C as follows:

V = {1, 2, . . . , n}

and

E = {(i1, i2) ∈ V × V |
a gate g ∈ A receives xi1 and xi2 s.t. i1 < i2}.
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Note that G(C) is an undirected graph. We denote by
r the number of connected components in G(C), and
by G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er)
the r connected components of G(C). Note that some
connected component may consist of only a single
node. Let B be a set of gates whose inputs are an
input variable and an output of a gate. We now de-
fine r Boolean values β1, β2, . . . , βr ∈ {0, 1} as follows:
For each j, 1 ≤ j ≤ r, we have βj = 1 if there is a
gate g ∈ B that receives xi, i ∈ Vj , as its input; and
βj = 0 otherwise. Below we prove that

|Γ(C)| =
r∏

j=1

2|Vj |+βj−1 (2)

by induction on r; Eq. (2) implies that #Pat(⊕)
is in FP, since we can obtain V1, V2, . . . , Vr and
β1, β2, . . . , βr in polynomial time.

For each j, 1 ≤ j ≤ r, let Aj ⊆ A be a set of gates
whose input variables are xi1 and xi2 , i1, i2 ∈ Vj .
Clearly, A1, A2, . . . , Ar compose a partition of A. We
use the following simple claim in the inductive proof.

Claim. Let j, 1 ≤ j ≤ r, be a positive integer, and let
a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ {0, 1}n be
a pair of input assignments to C. Then g(a) = g(b)
for every g ∈ Aj if and only if either ai = bi for every
i ∈ Vj or ai ̸= bi for every i ∈ Vj.

Proof. Sufficiency. Assume that either ai = bi for
every i ∈ Vj or ai ̸= bi for every i ∈ Vj . Then, we
have ai+aj ≡ bi+bj (mod 2) for any pair of i, j ∈ Vj .
Since every gate g ∈ Aj is a ⊕-gate, we clearly have
g(a) = g(b) for every g ∈ Aj .

Necessity. Assume that

g(a) = g(b) (3)

for every g ∈ Aj , and suppose for the sake of contra-
diction that there exist indices i1, i2 ∈ Vj such that
ai1 = bi1 and ai2 ̸= bi2 . Consider the jth connected
component Gj = (Vj , Ej) of G, then there is a path
p between i1 ∈ Vj and i2 ∈ Vj ; we denote by l the
length of p, and by (i1, v1), (v1, v2), . . . , (vl−1, i2) be
the edges on p. Since ai1 = bi1 , Eq. (3) implies that,
for every z, 1 ≤ z ≤ l−1, we have avz = bvz , and thus
ai2 = bi2 . This contradicts the fact that ai2 ̸= bi2 .

The claim implies that a same output pattern arises
for a, b ∈ {0, 1}n only if a = b where b is the bitwise
complement of b.

For the basis, we verify that Eq. (2) holds for r = 1.
Clearly, the claim implies that, for any pair of input
assignment a, b ∈ {0, 1}n, g(a) = g(b) for every gate
g ∈ A1(= A) if and only if a = b. Consider the
case where β1 = 0. In this case, we have B = ∅,
and thus every gate g ̸∈ A in C receives two inputs
from outputs of gates. Therefore, any pattern that
arises in C is determined by the outputs of the gates
in A. Consequently, for any pair of input assignment
a, b ∈ {0, 1}n, g(a) = g(b) for every gate g in C if
and only if a = b. Thus, we have

|Γ(C)| = 2|V1|−1 = 2|V1|+β1−1.

Consider the other case where β1 = 1. In this case,
we have B ̸= ∅. Let g′ be an arbitrary gate in B.
The gate g′ receives an input variable, say xi, and an
output of a gate, say g′′. If a = b, then g′(a) = g′(b) if
and only if g′′(a) ̸= g′′(b). Furthermore, by the claim,

we have g(a) = g(b) for every gate g ∈ A1(= A) if
and only if a = b. Thus, we have

|Γ(C)| = 2|V1| = 2|V1|+β1−1.

For inductive hypothesis, assume that Eq. (2)
holds for r − 1, and that the graph G(C) has
r connected components G1 = (V1, E1), G2 =
(V2, E2), . . . , Gr = (Vr, Er). For each j, 1 ≤ j ≤ r, we
define kj = |Vj |, and then relabel the kj input vari-
ables whose indices are in Vj as xj,1, xj,2, . . . , xj,kj .
Consider a circuit C ′ given by applying any partial
input assignment to the variables xr,1, xr,2, . . . , xr,kr

and removing the gates whose outputs are deter-
mined. Let G(C ′) be a graph obtained from C ′.
Clearly, G(C ′) has r − 1 connected components, and
hence the induction hypothesis implies that C ′ has

r−1∏
j=1

2|Vj |+βj−1 (4)

patterns. Note that there are 2|Vr| partial input as-
signments to xr,1, xr,2, . . . , xr,kr . Therefore, if βr = 0,
the claim and Eq. (4) imply that C has

2|Vr|−1 ×
r−1∏
j=1

2|Vj |+βj−1 =

r∏
j=1

2|Vj |+βj−1 (5)

patterns, as required. On the other hand, if βr = 1,
we have a gate g′ ∈ B that receives an input variable,
say xi, i ∈ Vr, and an output of a gate, say g′′. If
a = b, then g′(a) = g′(b) if and only if g′′(a) ̸= g′′(b).
By the claim, we have g(a) = g(b) for every gate
g ∈ Ar if and only if a = b. Therefore, C has

2|Vr| ×
r−1∏
j=1

2|Vj |+βj−1 =
r∏

j=1

2|Vj |+βj−1 (6)

patterns. Consequently, by Eqs. (5) and (6), Eq. (2)
holds for r.

We can similarly compute the number of patterns
of a ⊕-circuit, and so omit the proof.

4 Intractable cases

In this section, we consider eight functions
∧,∨,∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉, and show that every case is
intractable even for constant-depth circuits.

Theorem 2. For any f ∈ {∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉},
#Pat(f) is #P-complete even for circuits of depth
two. For any f ∈ {∧,∨}, #Pat(f) is #P-complete
even for circuits of depth three.

In the following lemma, we show that counting
patterns of a circuit C is contained in #P.

Lemma 3. For any f ∈ {∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉,∧,∨},
#Pat(f) is contained in #P.

Proof. Let f ∈ {∧,∨, ⌈∧, ⌈∨,∧⌉,∨⌉,∧,∨}, and let
C be an f -circuit of s gates and n input variables.
It is enough to show that, given a pattern p =
(p1, p2, . . . , ps) ∈ {0, 1}s of C, we can decide in poly-
nomial time if the pattern p arises in C: If p arises in
C, we decide to accept, and otherwise reject. Since the
satisfiability of 2CNF formula is decidable in polyno-
mial time (Johnson 1990, p. 86), it suffices to con-
struct a formula ϕ such that ϕ is satisfiable if and only
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if p arises in C, and each clause of ϕ contains at most
two literals. We below construct the desired formula
ϕ.

Let g1, g2, . . . , gs be the gates in C. We initially
have an empty set S(= ∅) of clauses, and for each i,
1 ≤ i ≤ s, we repeat the following procedure:

(1) If gi has two inputs from the outputs of two
gates, say gi1 and gi2 , then check whether pi =
gi(pi1 , pi2). If pi ̸= gi(pi1 , pi2), then p never
arises in C, and hence we decide to reject; oth-
erwise, we continue the procedure.

(2) If gi has an input from an output of a gate, say
gi1 , and the other input from an input variable,
say xi2 , then check whether pi = gi(pi1 , y) for
each y ∈ {0, 1}. If pi ̸= gi(pi1 , y) for all y ∈
{0, 1}, then we decide to reject. If pi = gi(pi1 , y)
for exactly one of y = 0 and y = 1, we add a
literal of xi2 to S so that the following equation
holds

pi = gi(pi1 , xi2). (7)

That is, if pi = gi(pi1 , 1), then we add a positive
literal of xi2 to S; and if pi = gi(pi1 , 0), then
we add a negative literal ¬xi2 of xi2 to S. If
pi = gi(pi1 , y) for all y ∈ {0, 1}, we do nothing
and continue the procedure.

(3) If both of the inputs of gi are input variables, say
xi1 and xi2 , then we add clauses to S so that the
following equation holds

pi = gi(xi1 , xi2). (8)

Since gi computes a function of two inputs, it
is sufficient to add at most two clauses, each of
which contains at most two literals.

Then we construct ϕ by taking a conjunction of all
the clauses in S. Since we add at most two clauses
to S for each i, 1 ≤ i ≤ s, ϕ is a 2CNF formula of
at most 2s input variables and at most 2s clauses.
Clearly, ϕ is satisfiable if and only if Eqs. (7) and (8)
holds for every i, 1 ≤ i ≤ s. Thus, ϕ is satisfiable if
and only if p arises in C.

We now show that the problems are #P-hard. We
first prove that #Pat(∧) and #Pat(∨) are #P-hard
by a reduction from a counting problem for graphs.
Let G = (V,E) be a graph with a vertex set V and
an edge set E. A subset V ′ ⊆ V is called an indepen-
dent set if for any pair of u, v ∈ V ′, (u, v) ̸∈ E. We
employ the following canonical #P-complete prob-
lem (Provan & Ball 1983).

#Independent Set
Input: A graph G
Output: The number of independent sets in G

Lemma 4. For any f ∈ {∧,∨}, #Pat(f) is #P-hard
even for circuits of depth two.

Proof. We first give a proof for #Pat(∧). Let G =
(V,E) be an instance of #Independent Set, where
V = {1, 2, . . . , n} and E ⊆ V × V . For each as-
signment a = (a1, a2, . . . , an) ∈ {0, 1}n, we define
Sa = {i ∈ V | ai = 1}, and let

I = {a ∈ {0, 1}n | Sa is an independent set of G}.

We prove the lemma by constructing in polynomial
time a depth-2 ∧-circuit CG such that

|Γ(CG)| = 2n − |I|+ 1. (9)

If Eq. (9) holds, we can obtain |I| by just subtracting
|Γ(CG)| from 2n + 1 and hence complete the proof.

The desired circuit CG is given as follows. CG
receives n input variables x1, x2, . . . , xn. In the first
layer, CG has a gate ge for every e = (i1, i2) ∈ E that
computes “xi1 and xi2 .” In the second layer, CG has
a gate gi,e for each pair of i, 1 ≤ i ≤ n, and e ∈ E
that computes “xi and the output of ge.” Clearly, we
can construct CG in polynomial time, and CG is a
depth-2 ∧-circuit. We note that if ge outputs one for
an assignment a = (a1, a2, . . . , an) ∈ {0, 1}n, then we
have gi,e(a) = ai for each i, 1 ≤ i ≤ n.

We now verify that Eq. (9) holds. Consider an
arbitrary assignment a ∈ I. Clearly, every gate in
the first layer of CG outputs zero for a, and hence
every gate in the second layer of CG outputs zero for
a too. Thus, the pattern (0, 0, . . . , 0) arises in CG
for a. Moreover, (0, 0, . . . , 0) arises only for an input
a ∈ I, since, otherwise, we have ge(z) = 1 for some
e ∈ E.

Let Ī = {0, 1}n\I. We show that CG has an unique
output pattern for each a ∈ Ī. Consider an arbitrary
pair of assignments a = (a1, a2, . . . , an) ∈ Ī and b =
(b1, b2, . . . , bn) ∈ Ī, where a ̸= b. Let Ea (resp., Eb)
be a set of the edges in a subgraph of G induced
by Sa (resp., Sb). One may assume without loss of
generality that |Ea| ≥ |Eb|. If Ea ̸= Eb, then, for
any edge e such that e ∈ Ea and e ̸∈ Eb, we have
ge(a) ̸= ge(b), and hence the pattern for a is different
from the one for b. If Ea = Eb, then ge(a) = ge(b) for
every e ∈ E, and hence gi,e(a) = ai and gi,e(b) = bi
for each i, 1 ≤ i ≤ n. Since a ̸= b, there is an
index i∗ such that ai∗ ̸= bi∗ , and hence we have ai∗ =
gi∗,e(a) ̸= gi∗,e(a

′) = bi∗ . Therefore, the pattern for
a is different from the one for b. Consequently, we
have |Γ(CG)| = |Ī| + 1. Since |I| + |Ī| = 2n, Eq. (9)
holds.

A proof for #Pat(∨) can be easily obtained by
CG and De Morgan’s law, that is, we can construct
an ∨-circuit C ′

G from CG so that |Γ(C ′
G)| = |Γ(CG)|

as follows: (1) negate every input variable of CG by
NOT-gates, (2) push the NOT-gates forward to the
outputs of the gates in the second layer, and (3) re-
move the NOT-gates. Since each of (1), (2) and (3)
preserves the number of output patterns, we complete
the proof.

We can prove #P-hardness of #Pat(f) for every
f ∈ {⌈∧, ⌈∨,∧⌉,∨⌉} in a very similar manner to the
proof of Lemma 4. Below, we give proofs for the com-
pleteness. We employ the following variant of #In-
dependent Set (Provan & Ball 1983).

#Bipartite Independent Set
Input: A bipartite graph G
Output: The number of independent sets in G

Lemma 5. For any f ∈ {⌈∧, ⌈∨,∧⌉,∨⌉}, #Pat(f)
is #P-hard even for circuits of depth two.

Proof. We give a proof only for #Pat(⌈∧), since
proofs for the other cases are obtained by the hard-
ness of #Pat(⌈∧) and De Morgan’s law.

Let G = (U, V,E) be an instance of #Bipartite
Independent Set, where U = {1, 2, . . . , n}, V =
{n + 1, n + 2, . . . , 2n} and E ⊆ U × V . For each
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a = (a1, a2, . . . , an) ∈ {0, 1}2n, we define Sa = {i ∈
U | ai = 0} ∪ {i ∈ V | ai = 1}, and let

I = {a | Sa is an independet set of G.}.

We now construct a depth-2 ⌈∧-circuit CG such that

|Γ(CG)| = 2n − |I|+ 1. (10)

The desired circuit CG receives 2n input variables
x1, x2, . . . , x2n. In the first layer, CG has a gate ge
for every e = (i1, i2) ∈ E that computes “xi1 and
yi2 ,” where xi1 is the negation of xi1 . In the second
layer, CG has a gate gi,e for each pair of i ∈ U ∪ V
and e ∈ E that computes “xi and the output of ge.”
Clearly, we can construct CG in polynomial time, and
CG is a depth-2 circuit consisting of only ⌈∧-gates.

We can now verify that Eq. (10) holds; we can
prove that CG has the output pattern (0, 0, . . . , 0)
for every a ∈ I, and has an unique output pattern
for each a = (a1, a2, . . . , an) ∈ Ī. We omit the de-
tail, since the rest of the proof is same as the one for
Lemma 4.

We lastly verify that #Pat(∧) and #Pat(∨) are
#P-hard:

Lemma 6. #Pat(∧) and #Pat(∨) are #P-hard
even for circuits of depth three.

Proof. Note that an ∧-gate g can be replaced by two
∧-gates g′ and g′′ such that g′ receives same inputs as
ones of g, and g′′ receives two copies of the output of
g′; similarly, ∨-gate can be replaced by two ∨-gates.

We prove the lemma by the fact above and
Lemma 4 as follows. Recall that the circuit CG given
in the proof of Lemma 4 is a depth-2 ∧-circuit. By
replacing each ∧-gate in the first layer of CG with
two ∧-gates, we obtain a depth-3 circuit whose num-
ber of patterns is same as CG. Then we can safely
replace each ∧-gate in the third layer with a ∧-gate,
and obtain C ′

G. Clearly, C
′
G consists of only ∧-gates,

and |Γ(C ′
G)| = |Γ(CG)|. Thus we complete the proof

for #Pat(∧). We can similarly prove the hardness of
#Pat(∨), and so omit the proof.

5 Conclusions

In this paper, we investigate computational complex-
ity of counting output patterns of a given f -circuit,
and give a a complete analysis for the counting prob-
lem on f ∈ B2. More formally, we prove that the
problem of counting the number of the outputs pat-
terns that arise in an f -circuit is solvable in polyno-
mial time if f ∈ {0,1, a1, a2, a1, a2,⊕,⊕}; while the
problem is #P-complete even for constant-depth f -
circuits if f ∈ {∧,∨,∧⌉,∨⌉, ⌈∧, ⌈∨,∧,∨}.
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