
Computational Thinking, the Notional Machine, Pre-service
Teachers, and Research Opportunities

Matt Bower
School of Education

Macquarie University
Australia

matt.bower@mq.edu.au

Katrina Falkner
School of Computer Science

University of Adelaide
Australia

katrina.falkner@adelaide.edu.au

Abstract
There is general consensus regarding the urgent and
pressing need to develop school students' computational
thinking abilities, and to help school teachers develop
computational thinking pedagogies. One possible reason
that teachers (and students) may struggle with
computational thinking processes is because they have
poorly developed mental models of how computers work,
i.e., they have inadequate “notional machines”. Based on
a pilot survey of 44 pre-service teachers this paper
explores (mis)conceptions of computational thinking, and
proposes a research agenda for investigating the use of
notional machine activities as a way of developing pre-
service teacher computational thinking pedagogical
capabilities.

Keywords: Computational thinking, notional machine,
teacher education, K-12

1 Introduction
Recent changes in ICT curriculum have moved from a
focus on the use of ICT, i.e. digital literacy, to the need
for awareness of how to create and influence the creation
of new technologies. Recognition has grown, that in
addition to the need to increase awareness and interest in
Computer Science (CS), the fundamental concepts and
skills of CS are valuable for children to learn. This has
provided a driver for CS curriculum to be introduced as
early as the first year of schooling. Preparing students to
engage in current technologies and participate as creators
of future technologies requires more than is currently
being provided. We need to ensure that our educational
systems provide not only the fundamentals of digital
literacy – familiarity with the tools and approaches to
interact with technology – but also the computational
thinking processes needed to understand the scientific
practices that underpin technology.

In alignment with recent global trends, the Australian
primary and secondary school system is undergoing a
significant period of change, with the introduction of a
National Curriculum from K-10, new learning areas, and
the development of national assessment programs. This
new curriculum, defined by the Australian Curriculum

Assessment and Reporting Authority (ACARA),
identifies that “rapid and continuing advances in ICT are
changing the ways people share, use, develop and process
information and technology, and young people need to be
highly skilled in ICT. While schools already employ
these technologies in learning, there is a need to increase
their effectiveness significantly over the next decade”
(ACARA, 2012). The ACARA documents include ICT
awareness (i.e. digital literacy) as a key capability,
embedded throughout the curriculum, and introduce a
new learning area, Technologies, combining the “distinct
but related” areas of Design and Technologies and Digital
Technologies (DT) (ACARA, 2013a). DT explicitly
addresses the development of computational thinking
skills as core to the understanding of digital technologies.

The success with which the digital technologies
curriculum is implemented will depend, to a large extent,
on the quality of learning and teaching. Consultation with
Industry, Community and Education within Australia
(ACARA, 2013b) has identified significant concerns in
relation to teacher development (particularly at K-7),
appropriate pedagogy, and skills needed for integration of
DT learning objectives with the teaching of other learning
areas. Approximately 55% of respondents indicated
concern with the manageability of the implementation of
the proposed curriculum, while 45% of respondents did
not think that the learning objectives were realistic.
Support for the professional development of teachers,
including the creation of community networks to share
insights and pedagogical approaches and research, has
been identified as crucial in expanding CS curricula
(Gander, et al., 2013). Bell, Newton, Andreae, & Robins
(2012) describe the New Zealand experience of the rapid
introduction of a senior secondary CS curriculum, and the
need for extensive teacher development that addresses
both content knowledge and pedagogical knowledge.
However, many of the teachers who will be responsible
for teaching the DT curriculum have not completed any
studies that encompassed computational thinking
concepts or processes, let alone how to teach these.

A classic concept in the computing education literature
relevant to computational thinking is that of the “Notional
Machine” (du Boulay, O'Shea, & Monk, 1989). The
Notional Machine is a mental model that enables its user
to make predictions about how a machine will perform.
Without an adequate notional machine it is not possible to
perform computational thinking processes (as elaborated
later in this paper). Based on a pilot study of 44 pre-
service teachers, this paper analyses conceptions and
misconceptions of computational thinking, and based on
the survey results and literature review proposes a

Copyright (c) 2015, Australian Computer Society, Inc. This paper
appeared at the 17th Australasian Computer Education Conference
(ACE 2015), Sydney, Australia, January 2015. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 160. D. D'Souza
and K. Falkner, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

37

research agenda for developing computational thinking
capabilities based on notional machine activities.

2 What is Computational Thinking?
Computational thinking, as defined by Wing (2006) is:
“solving problems, designing systems, and understanding
human behaviour, by drawing on the concepts
fundamental to computer science”. Computational
thinking involves understanding the fundamental
concepts and abstractions that underpin computer science,
and then reformulating problems into a form that can be
solved readily using what we already understand.
ACARA defines computational thinking as “a problem-
solving method that involves various techniques and
strategies, such as organising data logically, breaking
down problems into components, and the design and use
of algorithms, patterns and models” (ACARA, 2012).
Understanding computational thinking involves
understanding core computer science concepts, and the
ability to conceptualise and create abstractions that define
solutions to problems. But why is it important that we
understand computational thinking? Why do we need to
develop these mental models as part of our education
system?

In the US, a recent survey of CS education at High
Schools identified that Schools are “failing to provide
students with access to the key academic discipline of CS,
despite the fact that it is intimately linked with current
concerns regarding national competitiveness…” (Gal-
Ezer & Stephenson, 2009). Furthermore, recent reports
from the US and Europe have argued that it is essential
that children be exposed to CS concepts and principles
from the very start of their education so that “every child
[may] have the opportunity to learn Computing at
School” (Gander, et al., 2013; Wilson & Guzdial, 2010).
If not, we face the risk of our youth being placed in the
position of consumers of technology produced elsewhere,
unable to actively participate as producers and leaders in
this field (Gal-Ezer & Stephenson, 2009; Gander, et al.,
2013; Wilson & Guzdial, 2010). As Alan Noble,
Engineering Director for Australia and New Zealand
notes, “there is a difference between using a smartphone
and creating an app that reaches millions of people”
(Noble, 2012).

New curricula introduced in England (British
Department for Education, 2013), Australia (ACARA,
2012), New Zealand and the new ACM CS standards
(Seehorn, et al., 2011) have identified the need to educate
for both digital literacy and CS, and the need to promote
both learning areas from the commencement of schooling
to support youth in participating in an increasingly digital
society. Students who are exposed early generally have
deeper interactions with computers, focused on exploring
computers and related concepts rather than just utilising
the computer for set tasks (Schulte & Knobelsdorf, 2007).
Early exposure increases interest in computing by
increasing computing self-efficacy (Akbulut & Looney,
2009).

However, it is also stressed that students would benefit
from education in CS as an independent scientific subject
on par with learning areas such as Mathematics or
English (Gander, et al., 2013). It is essential that our
education systems evolve, requiring the clear articulation

of CS as a distinct discipline, including the integration of
CS as a fundamental learning area across the curriculum
and the exploration of the societal and cultural impacts of
technology. Computational Thinking should be seen as an
enabling subject (such as literacy or numeracy) whereas
computing should be seen a separate discipline equivalent
to Mathematics or Physics (BCS, 2010).

Developing capacity for computational thinking goes
beyond building individual understanding and
capabilities, however, but helps address a significant
concern over the shrinking pool of qualified ICT
professionals available to meet the demands of a rapidly
growing industry. In a recent report by PWC (2013) on
strategies and challenges in accelerating Australian
innovation, they identify that “Even if all international
students were to stay in Australia post graduation, the
supply of computer science and engineering graduates
would still fall short of the numbers needed to accelerate
growth”, while the Bureau of Labor Statistics (Lockard
and Wolf, 2010), identifies that within computer and
mathematical occupations, there is a 22.0% increase in
employment projected from 2010-2020 (14.3% for all
occupations).

3 Notional Machine
For many decades before developing computational
thinking capabilities emerged as an important social
agenda, Computer Science education researchers have
been searching for the reasons why students find
computing difficult. A foundational theory in computer
science education that explains why students struggle to
master computing concepts and processes is that of the
“notional machine”. The notional machine is an abstract
version of the computer, “an idealised, conceptual
computer whose properties are implied by the constructs
in the programming language employed” (du Boulay, et
al., 1989, p. 431).

The notional machine has been used in numerous
studies (refer to Robins, Rountree, & Rountree, 2003, p.
149) and provides a theoretical orientation for examining
how people think about computing and the
misconceptions that may arise. That the notional machine
assists learning is not a hypothetical proposition. For
instance Mayer (1989) showed that students supplied
with a notional machine model were better at solving
some kinds of problems than students without the model.

In order for students to progress towards expert
behaviour as efficiently as possible it is important to have
an understanding of the difficulties they experience. This
allows educators to provide scaffolding that helps
learners to surmount these difficulties and allows the
students themselves to pre-empt impediments to their
learning by being aware of their potential before they
arise. Du Boulay (1989) describes five inextricably linked
potential sources of difficulty when learning computer
programming:

1. general orientation (what programs are for and
what can be done with them)

2. the notional machine (a model of the computer
as it relates to executing programs)

3. notation (the syntax and semantics of a
particular programming language)

4. structures (schemas and plans)

CRPIT Volume 160 - Computing Education 2015

38

5. pragmatics (the skills of planning, developing,
testing, debugging and so on).

Du Boulay et al. (1989) note that much of the early
difficulty in learning computing arises from the student’s
attempt to deal with these different kinds of difficulties
all at once. ‘Misapplication of analogy’, ‘interaction of
parts’ and ‘overgeneralisation’ errors result. In the early
stages teachers can assist the learning process by trying to
address these domains separately (as far as possible) so as
to reduce interference between them.

Du Boulay et al. (1989) suggest that in order for
novice programmers to overcome comprehension
problems caused by the hidden, unmarked actions and
side effects of visually unmarked processes the notional
machine needs to be simple and supported with some
kind of concrete tool which allows the model to be
observed. They suggest that the visibility component of
such models be supported through ‘commentary’ – a
teacher delivered or automated expose of the state of the
machine. On the other hand the simplicity component of
the machine can be supported through:

1. functional simplicity (operations require minimal
instructions to specify)

2. logical simplicity (problems posed to students
are of contained scale)

3. syntactic simplicity (the rules for writing
instructions are accessible and uniform).

Du Boulay et al. (1989) conclude that matching visibility
and simplicity components of notional machines to
different populations of novice learners leads to improved
educational outcomes. One would also suspect that
without notional machine cognitive models, students’
computational thinking progress would be severely
restricted in the long term, and that the more sophisticated
a student’s notional machine the more developed their
problem solving abilities. Both of these conjectures
represent potential areas for further research.

As mentioned, the Notional Machine is a discipline
specific mental model, and the literature on mental
models also sheds light on how learning and teaching
computational thinking may be enhanced. Norman (1983)
distinguishes between the target system (the system that
the person is learning or using), the conceptual model of
the target system (an accurate and appropriate
representation of the target system), the user’s mental
model of the target system (which may or may not be
accurate and suffice), the researcher’s conceptualization
of the learner’s model (a model of a model). Often
teachers attempt to provide students with a conceptual
model of a system to support the formation of students’
mental models. Effective representations are those that
capture the essential elements of the system leaving out
the rest, with the critical point being which aspects to
include and which to omit (Norman, 1993). Successfully
selecting and describing the poignant features of a system
allows students to concentrate upon the critical aspects of
the system without being distracted by irrelevancies.
When acquired, such conceptual models enhance
students’ capacity to reason and think. However if critical
features are omitted or represented in a way that students
misunderstand, then students may not comprehend crucial

aspects of the system and may subsequently form
misguided conclusions (Norman, 1993).

Some sub-domains of computer science have lead to
specialised mental models of how students learn
computing being developed. For instance, without a
viable mental model of recursion that correctly represents
active flow (when control is passed forward to new
instantiations) and passive flow (when control flows back
from the terminated instantiations) students cannot
reliably construct recursive algorithm traces (Gotschi,
Sanders, & Galpin, 2003).

There are several advantages to such domain specific
models. Firstly, they can inform educators’ decisions
about the required approach to learning – in the case of
recursion a constructivist approach is required in order for
students to create a viable mental model adequate to
apply design concepts and solve problems. Secondly,
domain specific models assist lecturers by providing
accurate mental models, such as Kayney’s ‘copies’ model
of recursion, that have been demonstrated as successful at
promoting understanding. Thirdly, such research
explicitly exposes non-viable mental models that students
may form (such as the looping, magic, and step models),
allowing lecturers and pupils to pre-empt student errors
(Gotschi, et al., 2003).

4 Developing Computational Thinking
There are a variety of broad recommendations about how
to develop computational thinking generally, most of
which emanate from the Computer Science education
literature. Pedagogues recommend connecting
Computational Thinking to young people’s interests
(Resnick, et al., 2009), for instance, through computer
games (Carter, 2006; Lenox, Jesse, & Woratschek, 2012)
or multimedia based learning tasks (Blank, et al., 2003).
A games based approach to introducing programming in
the middle years has been shown to help develop
computational thinking concepts (events, alternation,
iteration, parallelism, additional methods, parameters,
local and global variables) at the same time as enhancing
students enjoyment of learning computing (Repenning,
Webb, & Ioannidou, 2010).
Providing students with a low floor (easy to learn), high
ceiling (hard to master, many opportunities to learn),
wide walls (flexible and adaptable to a wide range of
applications) enables students of different ability levels to
remain engaged (Resnick, et al., 2009). Stephenson et al.
(2005) recommend designing course materials that
incorporate meaningful learning through the use of
problem-solving approaches, appealing experimental
environments, and an explicit emphasis on design and a
real-world focus. Supporting skills beyond programming
has been shown to increase student satisfaction with
computing and may broaden further participation
(Repenning & Ioannidou, 2008).

Creating a conducive learning environment has also
been proposed as a way to enhance computational
thinking. For instance, Stephenson et al. (2005)
recommend establishing a welcoming environment that
models life-long learning. Barr & Stephenson (2011)
suggest increased use of computational vocabulary by
teachers and students where appropriate, acceptance of

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

39

failed solution attempts by teachers and students, and
tasks involving team work by students. Yet, there is little
research to substantiate these claims.

5 The challenge of teaching Computational
Thinking

One of the main problems faced by the domain is that
many students perceive computing to be essentially the
same as technology training, which can be seen as
repetitive and teaching skills that the students already
know such as how to use standard Office tools (BCS,
2010). It is also possible that teachers (including pre-
service teachers) may not always have a firm
understanding of what computational thinking involves
(as will be explored later in this paper).

Studies have identified increased anxiety and concern
over preparation time when dealing with unfamiliar
content (Curzon, McOwan, Cutts, & Bell, 2009). Even in
cases where teachers are experienced with computing
fundamentals, the integration of new tools can create
anxiety that causes them to deviate from their planned
lessons (Meerbaum-Salant, Armoni, & Ben-Ari, 2013).

Training teachers to teach computational thinking is an
essential piece of the puzzle (BCS, 2010; Black, et al.,
2013). Poor lessons demotivate learners, creating
negative attitudes towards the subjects, and this can
create a vicious cycle of demotivating teachers who in
turn create poorer lessons (BCS, 2010). Professional
development is critical in order for teachers to effectively
develop computational thinking pedagogies, (Barr &
Stephenson, 2011). This is not only about offering
training courses, but also establishing effective
communities of practice to provide ongoing support and
sharing of resources (Black, et al., 2013).

It is also critical to provide resources to help teachers
effectively teach computational thinking concepts and
processes (Barr & Stephenson, 2011). Settle et al (2012)
identify specific difficulties for educators in translating
materials into existing curriculum, with an emphasis on
the increased difficulty in adopting and integrating new
tools. It is challenging is to provide teachers with material
which effectively conveys the most important aspects of
computing without reducing it to tool use or
programming, both of which are misconceptions of
computing (Battig, 2008). Tinapple, Sadauskas, & Olson
(2013) further comment on the challenge of
implementing lessons where expected software and/or
hardware are not easily available.

Another issue is that teachers often utilise fun
activities with a focus on impressive technology, physical
computing and programming using constructionist
environments rather than providing opportunities for deep
learning of computational thinking (Black, et al., 2013).
These results are indicative on a focus on tool usage for
engagement, rather than a deep understanding of
computational thinking processes and concepts.

6 A pilot survey of pre-service teachers
In order to gauge pre-service teachers’ perceptions of
computational thinking learning and teaching in light of
the upcoming Australian Digital Technologies
Curriculum a pilot survey was run in April of 2014. The

anonymous online survey was issued to 84 pre-service
teachers who were completing the 300 level subject
“EDUC362 – Digital Creativity and Learning” at
Macquarie University. The survey was conducted during
Week 3 of Semester 1 (March 2014). A total of 44 pre-
service teachers volunteered to respond. Apart from
demographic questions relating to age, gender and the
program of study in which the student was enrolled, the
survey asked about pre-service teachers’ awareness of the
upcoming Australian Digital Technologies curriculum,
their conceptions of the term ‘computational thinking’,
their understanding of pedagogies and technologies that
can be used to develop computational thinking, and their
confidence to teach computational thinking.

Open-ended responses were analysed using qualitative
coding techniques. First classified using an open-coding
phase to determine preliminary analytic categories. Next,
axial coding was carried out to determine emergent
themes and refine categorisations. Lastly, a selective-
coding phase supported representation of the conceptual
coding categories for reporting purposes. (See Neuman,
2006, for further details of the approach.) If responses
addressed multiple issues they were coded in more than
one category, meaning that it was possible to have a
greater tally of responses across the items than the
number of respondents.

Quantitative data was interpreted and reported using
standard descriptive statistics techniques.

6.1 Results
Of the 44 students who chose to respond, 38 were
intending to be primary school teachers and 5 were
planning to be secondary school teachers (2 science, 2
languages, and 1 english/history). On respondent did not
indicate their intended teaching level. The large majority
of respondents were in their third or fourth year of their
program (42 out of 44). The age distribution was right
skewed with 29 participants indicating that they were in
the 18-24 age range. A total of 33 females and 11 males
participated.

6.1.1 Awareness of Computational Thinking
Pre-service teachers’ awareness of the upcoming

Australian Digital Technologies Curriculum (ADTC) and
whether they had heard of the term ‘computational
thinking’ is shown in Table 1.

 Heard of

‘Computational
Thinking’

Not heard of
‘Computational

Thinking’
Aware of ADTC 15 11
Unaware of ADTC 11 7

Table 1: Awareness of the upcoming Australian
Digital Technologies Curriculum (ADTC) and the

term ‘computational thinking’

The table demonstrates that an awareness of the
upcoming ADTC did not necessarily imply an awareness
of ‘computational thinking’, even though computational
thinking was highlighted by the Australian Curriculum
Assessment and Reporting Authority (ACARA) as a
distinguishing core feature of the ADTC. Similarly,

CRPIT Volume 160 - Computing Education 2015

40

awareness of computational thinking did not necessarily
derive from the ADTC, with a quarter of students
indicating that they had heard of computational thinking
but did not know about the impending ADTC.

6.1.2 Conceptions of ‘computational thinking’
There were 32 pre-service teachers who chose to

respond to the question “what does computational
thinking mean to you?”. Table 2 summarises their
responses into the categories that emerged from the
coding process. Note once again that some responses are
tallied under two or more categories if the response
incorporated multiple elements. ‘Problem solving using
technology’ has been included as a separate category to
‘problem solving’ or ‘using technology’ as it
demonstrates a deeper understanding of computational
thinking than either of the latter two categories.

Computational thinking construct fn
problem solving using technology 11
using technology 10
technological thinking 5
logical thinking 5
gathering/organising/processing information 3
analytical thinking 3
critical thinking 2
creative thinking 2
mathematical thinking 2
problem solving 2
thinking like computer 2
scientific thinking 1
structured thinking 1
strategic thinking 1
testing 1
efficiency 1
non-descript 1

Table 2: Summary of pre-service teacher conceptions

of ‘computational thinking’

Over one third of respondents described computational

thinking as involving “problem solving using
technology”, though descriptions varied widely in
sophistication. For example:

Problem solving using technology; using technology in
a variety of ways to approach a problem; analysing
and logically organising data, generating problems
that require computers assistance; identifying, testing,
and implementing possible solutions

Using computer technology to solve a problem.

Having heard of the term computational thinking did
not necessarily result in more sophisticated responses
being provided. For instance, the first response above is
from someone who had not heard of computational
thinking and the second response is from someone who
had.

Nearly one third of the pre-service teachers considered
computational thinking to merely be using technology,
for instance “awareness of how to operate software,

ability to 'self help'”. Two students described it as
problem solving without associating it with technology,
and one student had a blurred conception of
computational thinking as both digital literacies and
problem solving using technology: “Digital Literacy, the
ability to use technology to solve problems and assist
learning, create digital artefacts”.

Pre-service teachers were able to identify types of
thinking associated with computational thinking, namely
logical thinking, analytical thinking, critical thinking,
creative thinking, mathematical thinking, scientific
thinking, structured thinking, and strategic thinking.
Some were able to identify activities and concepts
associated with computational thinking, such as testing,
efficiency, gathering information and organising data.
Only two students were able to associate computational
thinking with more than three of any of the above
elements.

Two pre-service teachers erroneously thought
computational thinking was thinking like a computer, for
instance “Thinking or memorising in a way that computer
works”. One pre-service teacher gave the non-descript
response “a process or a way of thinking to understand
topics”. There were five students who used the term
“technological thinking” or synonymic phrases, which
has no clear meaning,

6.1.3 Associated Pedagogies
There were 30 pre-service teachers who chose to respond
to the question “What pedagogical strategies do you have
(or can you think of) for developing school students'
computational thinking capabilities?” Their responses are
summarised in Table 3.

pedagogical strategies fn
using technology 13
group work 6
problem based tasks 6
active learning 4
direct instruction / modelling 3
inquiry based approach 3
games/play 2
none / non-descript 2
provide scaffolding 2
teacher familiarity with technology 2
authentic problems 1
brainstorming 1
establish purpose 1
provide process for thinking 1
safe environment 1
writing code 1

Table 3: Summary of pre-service teacher pedagogical

strategies to develop computational thinking

The most popular pedagogical strategy represented in

students’ responses (n=13) was to simply use technology,
for instance: “Continuous practice, engagement and
exposure to different computer technology”. Four of these
responses also mentioned problem solving in association
with the use of technology. Six students made general

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

41

mention of how group work strategies could be used (for
instance, collaborative learning, cooperative learning,
paired learning). There were sixteen instances where
responses discussed the nature of the learning process
(problem-based learning, active learning, inquiry
learning, games based learning, brainstorming, writing
code). It is interesting to note that only one pre-service
teacher mentioned writing code. There were another ten
cases where responses discussed the role and
responsibilities of the teacher (direct instruction /
modelling, provide scaffolding, be familiar with
technology, establish purpose, provide processes for
thinking, creating a safe environment).

Overall responses were lacking in detail so in most
cases it was difficult to tell whether pre-service teachers
had a concrete understanding of how the pedagogy could
be applied to develop computational thinking. Responses
also revealed more about pre-service teacher conceptions
of computational thinking. For instance, one respondent’s
pedagogical strategies were:

Using group work (heterogeneous groups) for students
to engage in negotiation, reasoning and student
discussion. I would also use apps for students to
engage in thinking abstractly and outside of the square
such as Comic life, I-movie.

It is unclear how this respondent would use group
work to develop computational thinking, and it appears
that while the student did associate abstraction with
computational thinking, they did not appear have a clear
understanding of how technology could be used to
develop computational thinking.

6.1.4 Supportive Technologies
Asking pre-service teachers the question “How can
technologies be used to help develop school students'
computational thinking capabilities? (Provide specific
examples if you can.)” offered further insight into their
conceptions of computational thinking (see Table 4). Of
the 26 students who responded to this question, 10
provided only unspecific suggestions about how
technology could be used to develop computational
thinking, for instance “organise and help the logical
thinking”. Six students talked generally about how
technology could be used to increase engagement, for of
which were from the unspecific respondents. For
example: “technological resources can be more
engaging/exciting to students”.

Technologies to support computational thinking fn
unspecific 10
engagement 6
conduct research (e.g. searching Internet) 5
presentation tools 4
software/apps - general 4
comic/story creation tools 3
mindmapping 3
create 3D objects 2
data analysis (e.g. spreadsheet) 2
practice - general 2
brainstorming software 1
none 1
program creation 1
publishing tools 1

websites 1

Table 4: Summary of pre-service teacher identified
technologies for developing computational thinking

Some pre-service teachers provided more specific

suggestions about how technology could be used to
develop computational thinking, but for many of these it
was unclear how it actually would develop computational
thinking. For instance, using comic/story creation tools,
mindmapping tools, brainstorming and presentation tools
are not obviously and usually related to developing
compuational thinking. The specific examples of
technologies that pre-service teachers identified were
Mindmeister, Comic Life, Toontastic. Prezi, iBooks, and
Google Sketchup. Five students mentioned using the
Internet for research purposes, and only one identified a
technology that was specifically related to computational
thinking (the code.org website).

6.1.5 Pre-service teacher confidence
There were 32 pre-service teachers who chose to

respond to the questions relating to how confident they
felt to develop their students’ computational thinking
capabilities (see Figure 1). From the graph it can be seen
that 18 of the 32 pre-service teachers (56%) indicated
that they were to some degree unconfident rather than
confident about teaching computational thinking.

Figure 1: Pre-service teachers’ confidence about

developing their students’ computational thinking
abilities

It is important to note that responses on the confident side
of the scale did not mean that pre-service teacher
confidence was warranted. For instance, some pre-service
teachers indicated that they were ‘slightly confident’
about developing their students’’ computational thinking
abilities, but had not heard of the term computational
thinking and had poor conceptions of computational
thinking such as:

Computational thinking is ones ability to navigate and
problem solve using the medium of technology such as
ipad, macbooks and IWB's.

teaching and learning using technology

More concerning, there were some teachers who had
heard of computational thinking and indicated that they
were ‘confident’ about developing their students’
computational thinking abilities yet had erroneous
conceptions of computational thinking, for instance:

CRPIT Volume 160 - Computing Education 2015

42

using the computer to help with forming ideas and
opinions / - how technology can help your thinking

6.1.6 Lack of Confidence
When pre-service teachers were asked “what prevents
you from feeling confident about developing your
students' computational thinking capabilities?” responses
related to pedagogical issues, technology issues, general
issues, circumstantial and affective issues.

Nine pre-service teachers felt unconfident about
developing their students’ computational thinking
because of pedagogical issues, including unfamiliarity
with the curriculum (5), lack of pedagogical strategies
(3), lack of lesson ideas (1), and uncertainty how to apply
computational thinking to real world situations (1). There
were eight pre-service teachers who felt that they did not
have the technological knowledge and experience to feel
confident about teaching computational thinking, though
many of these appeared to be confusing computational
thinking with general technology usage (for instance “I
lack ICT knowledge”). One of these pre-service teachers
felt they did not have the required computer science and
programming knowledge.

There were thirteen pre-service teachers who indicated
more general reasons for their lack of confidence
including a poor understanding of what computational
thinking means (4), a general lack of knowledge (6) and a
general lack of experience (3). Two pre-service teachers
did not feel confident about teaching computational
thinking due to circumstantial factors relating to
becoming a teacher:

Still learning about being a teacher so not yet
confident in any particular area

I wasn't not taught like this at school, content and the
use of technology

One pre-service teacher spoke directly about the fear
of the unfamiliar affecting their confidence:

Because it is something new to me and to teach
something i am just coming to terms with slightly
scares me and i lose confidence because of that

6.1.7 Building confidence
When pre-service teachers were asked “What could help
you to feel more confident about developing your
students' computational thinking capabilities?” the most
common response related to explicit professional
development (11 respondents). Other items identified by
students provide insight into the form that such
professional development might take. There were 6 pre-
service teachers who indicated they would like a better
understanding of pedagogical strategies, 7 who wanted
greater exposure to and experience with technology, and
7 who felt that a better understanding of computational
thinking would improve their confidence to teach
computational thinking. There were seven students who
indicated that greater understanding and practice
generally would be beneficial.

 Pre-service teachers identified other factors that could
improve their confidence in developing computational
thinking including more resources and information,

learning more about computer programming, learning
more about the research relating to computational
thinking, and having well planned lessons.

6.2 Limitations of this study
A limitation of this study is that it was only issued to a
small sample of pre-service teachers from one university,
and results may vary widely depending on the institution.
As well, students were not asked about their previous
studies of computing, which one would expect would
have a large influence on their responses. Any future
iterations of the survey will ask students about their
previous exposure to computing.

The survey was conducted before pre-service teachers
completed a topic on computational thinking in the third
year unit they were studying. This was done so that
responses were more representative of the general pre-
service teacher population of the university, most of
whom do not complete the unit which was offered for the
first time in 2014. After completing the unit student
responses may have been quite different. However, it is
conjectured that many universities do not yet have any
courses that cover computational thinking as an explicit
topic, and as such the responses may be more
representative of the broader pre-service teacher
population both nationally and internationally.

As this was an online survey students may not have
been motivated to provide elaborate responses that
accurately represented the full extent of their perceptions
and conceptions. Semi-structured interview techniques
may be necessary to probe more deeply into pre-service
teacher thoughts surrounding computational thinking.

7 Discussion of results
Generally speaking pre-service teachers had a weak
understanding of computational thinking. There are a
large proportion of pre-service teachers who confuse
computational thinking with using technology generally
(for instance word processing or searching the internet).
Pre-service teachers correctly associated computational
thinking with problem solving using technology, logical
thinking, gathering/organising/processing information,
analytical thinking, critical thinking, creative thinking,
mathematical thinking, scientific thinking, structured
thinking, strategic thinking, testing and efficiency, though
only two students were able to associate it with more than
three of these points. This indicates that there is extensive
potential to improve pre-service teachers' conceptions of
computational thinking. The data also implied we should
not assume that because pre-service teachers are aware of
the upcoming Digital Technologies Curriculum they
understand computational thinking, or visa versa – half of
respondents were aware of one but not the other.

For many of the pre-service teachers the extent of their
pedagogical strategies for developing computational
thinking was simply to have students use technology.
Collectively pre-service teachers were able to identify
generally appropriate pedagogical strategies such as types
of group work and student centred learning. Several
teachers identified the role of the teacher in providing
instruction and creating a conducive learning
environment. Yet because responses were almost

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

43

invariably lacking in detail there was no evidence to
indicate that the pre-service teachers had specific and
clear ideas about how to develop their students'
computational thinking capabilities.

The technologies they identified to support the
learning of computational thinking provided further
verification that many students did not understand what
was meant by computational thinking - the specific tools
that were suggested (such as Comic Life and iBooks)
bore no specific relation to computational thinking and
only one student mentioned a purpose built platform (the
code.org website).

Pre-service teachers were of varying confidence about
teaching computational thinking, and some were
overconfident based on their evidenced understanding.
Not only were the majority on the unconfident side of the
response spectrum, but several of those who indicated
confidence had poorly formed or incorrect conceptions of
what computational thinking actually meant. There were
classic examples of third order ignorance (Waite et al
2003) where pre-service teachers were unaware that they
did not know.

Responses from pre-service teachers indicated that
they would value professional learning opportunities that
focused on:

• Developing their computational thinking
pedagogical capabilities - understanding of the
curriculum, lesson ideas, strategies for
implementation, links to real world examples

• Technological understanding - exposure to and
practice with the sorts of technologies that can be
used to develop computational thinking, and even
elementary programming instruction

• Content knowledge - a better understanding of
what computational thinking is and means.

This accords with the well renowned Technology
Pedagogy and Content Knowledge (TPACK) model of
teacher learning and practice (Mishra & Koehler, 2006).
Responses also highlighted the need for both knowledge
and practice. Some pre-service teacher responses
highlighted the importance of affective considerations
when designing professional learning - this is unfamiliar
territory for many teachers who have never been taught or
learnt computational thinking so it is important to
sensitively scaffold their confidence.

8 Computational thinking research agenda
The notional machine has been an important and useful
construct in computer science education (Robins et al,
2003) but there has been little if any work investigating
how it can be used to understand and enhance
computational thinking learning and teaching. There is
urgent and pressing need to develop school students’
computational thinking capabilities and teachers’
computational thinking pedagogies (as established
through the literature review and also by the data
collected in this study). Thus there are several research
opportunities to investigate how notional machines can
inform our understanding of computational thinking and
improve how it is learnt. Phrased as research questions,
these are:

1. How do notional machine constructs map to
different computational thinking environments?
For instance, how do we define notional machines
for computational thinking systems that may vary
from Eclipse, to Scratch, to Beebots?

2. How can ‘visability’ (du Boulay et al., 1989) be
used to support computational thinking within
computational thinking environments? There may
be several pedagogical strategies along the lines of
including visual debugging-style output within
programs to make the operations of the machine
visible to students, thus enhancing their notional
machine, but their effectiveness has not been
investigated specifically from a computational
thinking frame of reference.

3. How can ‘functional simplicity’(du Boulay et al.,
1989) be best instantiated through easy to
understand instructional sets? This relates to the
quality of introduction and explanation of how the
machine works, and success may reside in
illuminating exemplars, economical explanation,
and powerful analogies). As Norman (1993) points
out in order to help students form accurate mental
models it is just as critical to decide what should
be left out as what should be included.

4. How can ‘syntactic simplicity’ (du Boulay et al.,
1989) be fostered through accessible and uniform
programming grammars? This has been applied in
some of the computational thinking tasks available
through Code.Org, Scratch, Alice, and the like that
use visual interfaces to write programs. Ideally
teachers would utilise and even create non-
computer based tasks that develop computational
thinking abilities, in which case an understanding
of syntactic simplicity is critical.

5. How do we incrementally graduate the ‘logical
simplicity’(du Boulay et al., 1989) of the problems
to be solved in line with the developing
conceptions of the novice computational thinker?
(Scope and sequencing and timing issues are
crucial so that students are neither bored nor
overwhelmed - low floor, high ceilings, wide
walls. Bower's Taxonomy of Task Types provides
a one possible hierarchy for incrementing task
complexity). The idea is to attempt to avoid
problems relating to trying to learn about what
computational thinking means, developing notional
machines, learning languages, learning computing
structures, and developing computational thinking
process skills all at once (the 5 sources of difficulty
identified by DuBoulay). Teachers need to know
how to deconstruct computational thinking to
avoid possible student cognitive overload.

6. Where do 'misapplication of analogy',
'overgeneralisation' and 'interaction of parts' and
potentially other types of errors commonly occur
in the curriculum? An understanding of these
errors and where they occur helps teachers to
better support the learning of computational
thinking constructs. More importantly, how can we
use these instances to create threshold learning
experiences.

CRPIT Volume 160 - Computing Education 2015

44

7. How do researchers and educators accurately
gauge novice mental models of target systems so
that we can understand how to effectively guide
learners towards correct conceptual models? As
Norman (1983) distinguishes between the correct
conceptual model of the target system, the user's
mental model of the target system, and the
researcher's conceptualisation of the learner's
model, understanding how to gauge and contrast
these may be the key to understanding
computational thinking learning and teaching, As
Gotschi, Sanders and Galpin (2003) point out,
domain specific models not only provide a point of
reference to help identify non-viable mental
models but also provide teachers with a resource to
help develop their students' mental models.

8. How do we best structure teacher professional
learning in order to most effectively develop their
computational thinking pedagogical capabilities?
This not only relates to the execution of
professional learning courses, but also the
development of an appropriate learning community
around computational thinking pedagogy
comprised of pre-service teachers, in-service
teachers, researchers and developers. The pre-
service teachers provide some general ideas, as
does the literature, yet the devil will be in the
detail.

Universities should be playing a key role in the
development of teachers, methods and curriculum
(Tucker, et al., 2003). A key element for a successful
curriculum in schools is founding the resources and
teaching practices on research into computer science
education (Hazzan, Gal-Ezer, & Blum, 2008). In order to
develop high quality computing curriculum is to have the
course part of the research process, whereby teaching and
learning data is used to iteratively refine the educational
process (Hazzan, et al., 2008). Teachers can then become
active participants in the research process. In Israel the
teacher preparation process includes some research
components, so that teachers can learn how to iteratively
refine their teaching practices. In this way, research
projects can contribute to the education of students,
teachers and the educational community at large.

9 Concluding remarks
Accurate notional machines underpin successful

performance in computational thinking. A structured
rather than haphazard approach to examining notional
machine understanding is required if we are to help
students (and teachers) identify their misconceptions and
take appropriate remedial action. Notional machine
understanding is a prerequisite for effective teaching of
computing, but not a guarantee. Teachers also need to
have an appropriate repertoire of computational thinking
pedagogies and technological knowledge in order to
successfully teach computational thinking concepts and
create a conducive learning environment for students.

This paper calls for further research into how the
notional machine can be used to better understand and
develop the computational thinking abilities of students
as well as the computational thinking pedagogical
capabilities of teachers. Results from this study suggest

that pre-service teachers are ill prepared to teaching
computational thinking, and need pedagogical strategies,
experience with relevant technologies, and a better
understanding of what computational thinking means.
The computer science and education fields more
generally need a greater understanding of how
computational thinking is effectively learnt and taught in
order to better support students and teachers.

The literature has identified visibility, functional
simplicity, syntactic simplicity, logical simplicity and
graduation as critical pedagogical issues, but how these
relate to specific aspects of computational thinking
learning is an open question. As yet there is no clear
understanding of how to best describe and gauge notional
machines, nor key places where novice misconceptions
appear in the computational thinking curriculum. This
paper is a call to action and an invitation to researchers
interested in working on understanding the computational
thinking research questions identified in this paper.

10 References
ACARA (2012). The shape of the Australian curriculum:

technologies. Retrieved 17 August, 2014, from
http://www.acara.edu.au/curriculum_1/learning_areas/
technologies.html

ACARA (2013a). The Australian curriculum:
Technologies information sheet. Retrieved 17 August,
2014, from
http://www.acara.edu.au/curriculum_1/learning_areas/
technologies.html

ACARA (2013b). Draft Australian Curriculum:
Technologies Foundation to Year 10 Consultation
Report. Retrieved 17 August, 2014, from
http://www.acara.edu.au/curriculum_1/learning_areas/
technologies.html

Akbulut, A. Y., & Looney, C. A. (2009). Improving IS
student enrollments: Understanding the effects of IT
sophistication in introductory IS courses. Journal of
Information Technology Education, 8, 87-100.

Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: what is Involved and
what is the role of the computer science education
community? ACM Inroads, 2(1), 48-54.

Battig, M. (2008). Piltdown man or inconvenient truth? A
two-year study of student perceptions about
computing. In Proceedings of ISECON.

BCS, T. C. I. f. I. (2010). Consultation response to Royal
Society’s Call for Evidence – Computing in Schools.
The Royal Society: T. C. I. f. I. BCS.

Bell, T., Newton, H., Andreae, P., & Robins, A. (2012).
The introduction of computer science to NZ high
schools: an analysis of student work. In Proceedings
of the 7th Workshop in Primary and Secondary
Computing Education, (pp. 5-15): ACM.

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan,
P. W., & Meagher, L. R. (2013). Making computing
interesting to school students: teachers' perspectives.
In Proceedings of the 18th ACM conference on
Innovation and technology in computer science
education, (pp. 255-260): ACM.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

45

Blank, G. D., Pottenger, W. M., Sahasrabudhe, S., Li, S.,
Wei, F., & Odi, H. (2003). Multimedia for computer
science: from CS0 to grades 7-12. EdMedia,
Honolulu, HI.

British Department for Education (2013). The national
curriculum in England. Cheshire, UK: Crown.

Carter, L. (2006). Why students with an apparent aptitude
for computer science don't choose to major in
computer science. In ACM SIGCSE Bulletin, (pp.
27-31): ACM.

Curzon, P., McOwan, P. W., Cutts, Q. I., & Bell, T.
(2009). Enthusing & inspiring with reusable
kinaesthetic activities. In ACM SIGCSE Bulletin,
(pp. 94-98): ACM.

du Boulay, B., O'Shea, T., & Monk, J. (1989). The black
box inside the glass box: presenting computing
concepts to novices. In E. Soloway & J. C. Spoher
(Eds.), Studying the Novice Programmer (pp. 431-
446). Hillsdale, NJ: Lawrence Erlbaum.

Gal-Ezer, J., & Stephenson, C. (2009). The current state
of computer science in US high schools: A report
from two national surveys. Journal for Computing
Teachers, 1-5.

Gander, W., Petit, A., Berry, G. r., Demo, B.,
Vahrenhold, J., McGettrick, A., et al. (2013).
Informatics education: Europe cannot afford to miss
the boat.

Gotschi, T., Sanders, I., & Galpin, V. (2003). Mental
models of recursion Proceedings of the 34th SIGCSE
technical symposium on Computer science education
(pp. 346-350): ACM Press.

Hazzan, O., Gal-Ezer, J., & Blum, L. (2008). A model for
high school computer science education: the four key
elements that make it! In ACM SIGCSE Bulletin,
(pp. 281-285): ACM.

Lenox, T., Jesse, G., & Woratschek, C. R. (2012). Factors
influencing students decisions to major in a computer-
related discipline. Information Systems Education
Journal, 10(6), 63.

Lockard, C.B and Wolf, M. (2012). Occupational
employment projections to 2020. Monthly Labor
Review , January 2012, 84-108.

Mayer, R. E. (1989). The psychology of how novices
learn computer programming. In E. Soloway & J. C.
Spoher (Eds.), Studying the Novice Programmer (pp.
129-159). Hillsdale, NJ: Lawrence Erlbaum.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2013). Learning computer science concepts with
scratch. Computer Science Education, 23(3), 239-264.

Neuman, W. L. (2006). Social research methods –
Qualitative and quantitative approaches (6th Edition).
Boston: Pearson Education.

Noble, A. (2012). Science the key to seize control of the
future (26th December). Sydney Morning Herald.
Retrieved from
http://www.smh.com.au/opinion/politics/science-the-
key-to-seize-control-of-the-future-20121225-
2bv55.html

Norman, D. A. (1983). Some observations on mental
models. In D. Gentner & A. L. Stevens (Eds.), Mental
Models. Hillsdale, NJ: Erlbaum.

Norman, D. A. (1993). Things That Make Us Smart:
Perseus Books.

PWC (2013). The startup economy: How to support tech
startups and accelerate Australian innovation.

Repenning, A., & Ioannidou, A. (2008). Broadening
participation through scalable game design. ACM
SIGCSE Bulletin, 40(1), 305-309.

Repenning, A., Webb, D., & Ioannidou, A. (2010).
Scalable game design and the development of a
checklist for getting computational thinking into
public schools. In Proceedings of the 41st ACM
technical symposium on Computer science education,
(pp. 265-269): ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., et al. (2009). Scratch:
programming for all. Communications of the ACM,
52(11), 60-67.

Robins, A., Rountree, J., & Rountree, N. (2003).
Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, 13(2), 137-
172.

Schulte, C., & Knobelsdorf, M. (2007). Attitudes towards
computer science-computing experiences as a starting
point and barrier to computer science. In Proceedings
of the third international workshop on Computing
education research, (pp. 27-38): ACM.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D.,
O'Grady-Cunniff, D., et al. (2011). CSTA K-12
Computer Science Standards: Revised 2011.

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson,
C., Rennert-May, C., et al. (2012). Infusing
computational thinking into the middle-and high-
school curriculum. In Proceedings of the 17th ACM
annual conference on Innovation and technology in
computer science education, (pp. 22-27): ACM.

Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A.
(2005). The new educational imperative: Improving
high school computer science education. Computer
Science Teachers Association (CSTA), New York, New
York.

Tinapple, D., Sadauskas, J., & Olson, L. (2013). Digital
culture creative classrooms (DC3): teaching 21st
century proficiencies in high schools by engaging
students in creative digital projects. In Proceedings of
the 12th International Conference on Interaction
Design and Children, (pp. 380-383): ACM.

Tucker, A., Deek, F., Jones, J., McCowan, D.,
Stephenson, C., & Verno, A. (2003). A Model
Curriculum for K–12 Computer Science. Final report
of the ACM K-12 task force curriculum committee.

Wilson, C., & Guzdial, M. (2010). How to make progress
in computing education. Communications of the ACM,
53(5), 35-37.

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.

CRPIT Volume 160 - Computing Education 2015

46

