
Computer	 Science	 in	 New	 Zealand	 High	 Schools	

Tim Bell
Department of Computer Science and Software Engineering

University of Canterbury
Christchurch, New Zealand
tim.bell@canterbury.ac.nz

Peter Andreae
School of Engineering and Computer Science

Victoria University of Wellington
New Zealand

Peter.Andreae@ecs.vuw.ac.nz

Lynn Lambert
Physics, Computer Science and Engineering Department

Christopher Newport University
Newport News, Virginia, USA

llambert@cnu.edu

Abstract
The New Zealand Ministry of Education has
recently released a new “Digital Technologies”
proposal for delivering computing topics in the
final three years of High Schools. The proposal
aims to address a number of issues by offering
topics that will be academically challenging for
students, and provide them with a broader view
of the kinds of advanced topics they might study
beyond High School. The proposed structure
includes having Digital Technologies as a
separate area in the technology curriculum, and
includes a strand called “Computer Science and
Programming” that has sufficient coverage to
communicate to students what the subject area
is really about.
This paper reviews the circumstances that led to
this proposal, describes the international context
(especially in the US) for High School
computing curricula, and examines the
published proposal in some detail. It also
considers the issues that are likely to come up in
the implementation of the proposal, and how
they might be addressed.
Keywords: Computer Science curriculum.
Copyright © 2010, Australian Computer Society, Inc. This
paper appeared at the Twelfth Australasian Computing
Education Conference (ACE2010), Brisbane, Australia, January
2010. Conferences in Research and Practice in Information
Technology, Vol. 103. Tony Clear and John Hamer, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

1 Introduction	
A secondary school Computer Science
curriculum can have a significant influence on
student career paths, both for laying the
groundwork for further study, but more
importantly, for exposing students to the topic.
The latter is particularly valuable because the
discipline of Computer Science is not well
understood by High School students, who often
make career choices based on an inaccurate
perception and bad experiences unrelated to the
topic itself (Margolis and Fisher 2002).

In recent times, New Zealand schools have
rarely taught Computer Science – at best there
have been courses on programming at some
schools, but often computing education has
been focused on general purpose applications
and skills. Even worse, sometimes courses that
teach “computing as a tool” have given students
the impression that CS must be an extension of
these topics. Of course, it is important for
students to be able to use computers effectively,
but often this has been a distraction from getting
students involved in “computing as a
discipline”.

For a period (1974-1985) computing was
taught as a discipline in NZ schools through
“Applied Maths”. However, there have been
several changes since then, and recently
assessment for computing courses that go

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

15

beyond just using applications have typically
been via “unit standards”, which are pass/fail
skills-based standards that are not attractive to
top students who would like to get high grades
to reflect their academic achievements.

In addition to these issues, NZ had adopted a
technology curriculum that provided generic
assessment tools for teaching areas ranging
from food technology to digital technology,
which meant that computing wasn’t a subject
area of its own, and the same kind of
assessment criteria would be used for a large
range of technologies (such as meal planning
and software development). Because computing
was combined with other technologies, it was
less accessible as a discipline in its own right,
and less attractive to students who were
specifically interested in the discipline of
computing.

Some progress had been made towards a
broader and deeper approach to the curriculum,
such as the “Fluency in IT” project (Clear and
Bidois 2005), but mapping such proposals onto
the new national technology curriculum was
proving to be problematic.

In 2008, two reports were released that very
clearly pointed out the weaknesses of the
current offerings in schools, and called for
action from the government agencies that set
the standards used to determine the courses
delivered by schools (Grimsey and Phillipps
2008; Carrell, Gough-Jones, and Fahy 2008).

This resulted in the Ministry of Education
calling together a “Digital Technologies Experts
Panel” (DTEP) representing industry, tertiary
and High Schools, to develop a plan to address
the issues raised in these two reports. The panel
first met in November 2008, and by mid 2009 it
had produced a body of knowledge and
recommendations for a way forward.

The DTEP recommendations were released
in May 2009, along with an agreement
negotiated with the Ministry of Education for
moving forward1. The agreement included:
• A specific area called “Digital

Technologies” within the technology
learning area.

1 The full version is available from

http://www.techlink.org.nz/curriculum-
support/tks/

• An aggressive timeline for implementation,
with guidelines to be made available to
schools in 2010, so that courses in this area
could be run from 2011.

• A body of knowledge in five strands of
Digital Technologies (see below).

The DTEP report also mentions the following,
which seem likely to be achieved by the
changes planned:
• Better alignment of school material to

tertiary and industry expectations of areas
such as Computer Science.

• Assessment standards that are academically
challenging, and help students to meet
entrance standards for tertiary study.

• Use of ICT-related terminology in schools
that reflects the usage in industry and
tertiary organisations.

• Urgent professional development for
teachers.

Considerable work had already been done in
previous years on “Digital Technology
Guidelines” (DTG)2, and the DTEP
recommendations included adapting these
guidelines to match the recommended body of
knowledge, rather than starting from scratch.
This meant that the new material could be
delivered taking advantage of the existing
momentum achieved by the DTG.

The new proposal (called “Technological
Context Knowledge and Skills”) was posted
publicly for comment in August 20093. At the
time of writing, the plan is being updated to
take account of feedback, and the version
reported on here is the August 2009 version.
The public discussions of the proposal indicate
that it is being well received by industry,
tertiary institutions, and schools, which bodes
well for its implementation.

If the new proposal is successful, it should
inspire and prepare students to contribute to the
growth of New Zealand’s economy through
innovative work based on good foundations in
subject knowledge, and give students an
understanding of the different areas in ICT so
that students can make sensible choices. It
should also address the issue of computing not
being regarded as having a high academic status

2 http://dtg.tki.org.nz/
3 http://www.techlink.org.nz/curriculum-
support/tks/

CRPIT Volume 103 - Computing Education 2010

16

in schools, and so should attract more high
academic achievers into the field.

Section 2 reviews some of the international
work on the development of CS curricula that
constitutes a context for the new NZ guidelines;
section 3 describes the proposed NZ learning
area for Digital Technologies in general, and
section 4 focuses on the proposed Computer
Science topics within Digital Technologies. The
issues surrounding implementation of the new
guidelines are discussed in section 5, and we
draw conclusions in section 6.

2 CS	 in	 school	 curricula	
Computing in school curricula is often diluted
because it has to cover three quite different
directions: (1) using computers as a tool for
teaching (e.g. e-learning), (2) using computers
as a tool for general purpose applications
(sometimes called ICT), and (3) computing as a
discipline in its own right (including
programming and CS). Sometimes
administrators and leaders confuse these roles,
and this can make it difficult for Computer
Science to be visible as a discipline in its own
right.

Although computing as a tool is commonly
taught around the world, relatively few
countries have a significant CS curriculum, and
even fewer make such a curriculum mandatory
for schools (Ragonis 2007).

In the United States, there is no federal
organization that guides the curriculum of
Computer Science. The main federal law
regarding education in the United States is the
“No Child Left Behind” act. This law states that
all teachers must be highly qualified except
teachers in non-core areas (Wilson and Harsha
2009). The non-core areas are: Physical
Education, Computer Science, and vocational
education. There are several implications of
this: first, Computer Science is not considered a
core area, so schools tend to emphasize it less
than core areas (the states receive funding based
on how well they are doing in core areas).
Second, it is up to the 50 states to implement
Computer Science programmes. Thus, there is
no single technology or Computer Science
program in the United States, but many.

Although there are no federal guidelines and
differing state requirements, several different
organizations have developed technology or

computer guidelines for the United States. The
Computer Science Teachers Association
(CSTA) standards differentiate technology and
using computers in the support of education in
general from the field of Computer Science in
its model K-12 Computer Science curriculum
(Tucker et al. 2006). The International Society
for Technology in Education (ISTE) has
developed technology standards called NETS,
National Education Technology Standards4. The
National Association for Educational Progress
(NAEP) is developing technology literacy
guidelines5 that will become part of the nation’s
report card in 2012, although these are not
specifically computing technology. With no
federally enforced standard, the de facto
standard for High School curricula are
Advanced Placement exams – of 23,000 high
schools nationally, 17,000 offer some AP
courses. AP Computer Science, which has the
same curriculum and test across the country, is
almost exclusively programming (currently in
Java). A group of prominent Computer Science
educators is attempting to redesign the AP
curriculum to create a course that is less centred
on programming (Cuny 2009).

Many of the difficulties implementing
effective computing curricula are common to a
number of countries, and the NZ experience has
reflected the experience of others, including the
rapid decline in tertiary CS enrolments after the
year 2000 (Vegso 2008). The recent
developments in NZ appear to have addressed
many of the issues raised, and no doubt there
will be lessons to learn and new material
developed as the new proposal is implemented
in schools.

3 New	 Digital	 Technology	
Guidelines	

The proposed guidelines for Digital Technology
in NZ schools are given in a “Technological
Context Knowledge and Skills” (TCKS)
document released by the NZ Ministry of

4http://www.iste.org/AM/Template.cfm?Section
=NETS
5 A draft is available at
http://www.edweek.org/media/nagb_assessment
_devel_comm_aug_7-09.pdf

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

17

Education (Dinning 2009). The guidelines have
five “contexts” for Digital Technologies:
• Digital Information (digital tools and

systems for managing information),
• Digital Infrastructure (hardware and

networks, including installing software),
• Digital media (video, audio, layout/design,

web, graphics, animation, games, web),
• Electronics (electronic and embedded

systems), and
• Programming and Computer Science

(concepts from CS and Software
Engineering, designing and implementing
programs).

These five areas address a range of interests
and career paths that students might take, and
are aimed at the final three years of high school.

Each area contains a set of objectives
specifying the different aspects of knowledge
and skill in the area. Each objective is broken
down into three levels (6, 7 and 8) of the NZ
curriculum, which would correspond to the last
three years of High School for most students
(years 11 to 13) with a list of “indicators” that
give more details of the objective for each level.

In addition to these subject-specific
guidelines there are supplementary “generic”
achievement standards on “Technological
practice”, “Nature of technology” and
“Technological knowledge”, which would be
available to assess topics such as the history of
computing, the effect of digital technology on
society, or project management.

If the proposed guidelines are accepted, then
the ministry will develop a set of achievement
standards addressing the knowledge and skills
described by the indicators in the document, and
guidelines for teachers. The way the curriculum
works in NZ, schools will then be free to make
up courses that are built around their own
selection of achievement standards, based on
local interests and strengths. A likely outcome
in many schools is that a year 11 student may
study an introduction to several of the five areas
in a single course, whereas at year 13 schools
might offer a whole course based on just one or
two of them.

Some of the “contexts” (especially Digital
Information and Digital Media) will be more
concerned with the computer as a tool, but the
others are more concerned with the computer
itself. In the following section we will look in

detail at the “Programming and Computer
Science” context.

4 CS	 in	 the	 new	 guidelines	
What had previously been just “programming”
in the existing Digital Technology Guidelines
now appears as “Programming and Computer
Science”, reflecting a concern for giving
students a broader basis for making an informed
decision about possible paths in the tertiary
sector. The first of the three objectives in the
published proposal addresses this broadening:

“ Demonstrate an understanding of
concepts across Computer Science and
Software Engineering.”

The indicators for the above objective
introduce the fundamental concepts of
algorithms and programming languages at level
6. At level 7, these are expanded to include four
further important concepts:
• The ideas of complexity/tractability/

computability – that some problems are
inherently difficult or impossible to solve
on a computer.

• Coding (e.g., compression, error correction,
encryption), and how it has enabled new
technologies.

• That programming languages are specified
precisely.

• The need for Software Engineering
methodologies, and an appreciation of the
steps in the Software Development Life
cycle.

The indicator at Level 8 is broader, and
allows a selection of topics from across
Computer Science and Software Engineering.

The wording of (and the examples in) the
indicators make it clear that the goal is an
appreciation of what Computer Science and
Software Engineering are about, and not an in-
depth understanding of the content of the topics.
For example, the concepts of
complexity/tractability/computability at level 7
are intended only to have the students
understand that some problems are very
difficult to solve, no matter how clever the
algorithm, and that some problems are
impossible. It would not be appropriate at this
level for the students to have to determine the
complexity class of a problem or construct a
proof of intractability, but they might appreciate

CRPIT Volume 103 - Computing Education 2010

18

that binary search is significantly better than
linear search, even if only for searching a
telephone book. Students who gain an
appreciation of these concepts will know that
Computer Science is more than just
programming and will be much better placed to
start a tertiary qualification in Computer
Science – or to decide that Computer Science is
not what they want to study!

The other two objectives for the
Programming and CS context address two
complementary aspects of programming. One
addresses the design of programs:

“ Be able to understand, select and design
data types, data structures, algorithms,
and program structures for a program to
meet specified requirements, and evaluate
user interfaces.”

The other addresses the processes for actually
constructing programs:

“ Be able to read, understand, write, and
debug software programs using an
appropriate programming language, tools,
and software development process.”

Although these two aspects would almost
certainly be intertwined in teaching practice,
distinguishing designing from constructing
emphasises that programming involves
understanding and design at a more abstract
level, as well as knowing the technical details of
a programming language and being able to read
and write programs in that language. There is
also a practical advantage in distinguishing
them, at least for assessment, in that weaker
students who cannot cope with the design
aspects may still be able to pass achievement
standards addressing the practical skills of
reading, understanding, writing and debugging
programs if they are given sufficient guidance
and support on the design aspect.

The design objective also includes a
component on evaluating user interfaces.
Although actually designing a good user
interface is a more advanced topic than is
appropriate at school level, it is quite feasible
for students to analyse existing interfaces from
a design perspective. Because most students
will already have used a wide variety of
interactive programs in a range of contexts,
including multiple programs for the same task
(e.g., mobile phones, browsers, mail clients,

picture viewers, DVD players), there will be
plenty of options for getting students to
compare, evaluate, and suggest improvements
to existing user interfaces. At level 6, such
evaluation would be strictly informal; at level 7,
it would be based on lists of useability
heuristics, and level 8 would use a wider range
of Human-Computer Interaction (HCI)
principles. Having students look at this aspect
of computing means that they can broaden their
view to appreciate the broader skills and
knowledge (such as psychology for HCI or
linear algebra for graphics) that are valuable for
constructing successful digital systems.

Both programming objectives have a
sequence of indicators at the three levels that
build up from having students develop very
simple programs. At level 6, the indicators
require only programs that use variables,
expressions, selection, and loops, and the
primitive data types available in the chosen
language. This is sufficiently simple that
popular introductory languages (such as Scratch
or Alice) could be used to assess them if
delivered appropriately. Level 7 extends the
indicators to include methods (or procedures/
functions/subroutines) and compound data
structures (e.g., arrays, or lists); level 8 adds the
use of data from files and procedures with
parameters and return values. The higher levels
are likely to require a conventional general
purpose language to cover the concepts listed
(e.g. Java, Python, or Visual Basic).

Level 8 also adds a greater understanding of
data types, with an appreciation of the
properties and limitations of different data
types. This might include an understanding of
different ways of representing numeric data
(binary, hexadecimal, fixed point, floating
point, etc.) but it could equally be addressed in
the context of representing textual data or image
data. For many students, understanding
different ways of representing pixel colour
values for images may provide better
motivation than traditional scientific
calculation.

The proposal makes no mention of topics
such as classes, packages, inheritance, or
exceptions, and does not require programs to
have graphical user interfaces. Of course, with
some languages or program development tools,

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

19

students may be exposed to programs using
such concepts, but they are not required.

 No particular programming language is
specified, and teachers could use any
appropriate language they wish as long as it has
sufficient constructs to cover the structures
required. At level 6, a very wide range of
languages would be possible, including domain
or application specific languages, as long as
they supported programming with variables,
expressions, selection, and loops. At level 7,
the selected language would need to support
procedural abstraction. At level 8, a general
purpose programming language is required,
along with an appropriate software development
environment.

The indicators also require some
documentation in the students’ programs, but
this is at the level of choosing good names,
suitable layout, and using some appropriate
comments. For the small programs that the
students would be able to construct, elaborate
documentation is not only unnecessary, but is
generally unmotivating. Level 7 also introduces
testing.

At Level 8, the indicator for the program
construction objective requires some level of
discipline in the programming process, with
some problem analysis for simple requirements,
and the use of a simple software development
process. In general, this would be a simplified
version of an agile process, emphasising
repeated cycles with increasing requirements
and careful testing against the requirements at
each stage. The goal is not to gain a mastery of
software engineering practice, but to become
aware of the need for discipline in the
programming process, and to appreciate the role
of aspects such as requirement specification,
testing, and debugging, in addition to the actual
writing of program code.

5 Implementation	
The proposed changes have a number of
implementation challenges and implications for
teacher training and student career paths.

Because the proposal introduces some topics
not previously taught in schools, most teachers
will require professional development to be able
to teach them. For many, this may mean
learning to program, and even for some of those
who are comfortable teaching programming, it

will require gaining some familiarity with the
overview of Computer Science topics.
Fortunately the new standards will be
introduced over a period of four years, which
gives teachers some time to get up to speed.
During this time, there will need to be extensive
communication with teachers so that they can
keep in touch with developments, be aware of
strong support for the transition, and feel
engaged in the process.
New material will be needed for teaching topics
that haven’t existed before in schools. The
Computer Science academic community in NZ
is offering extensive support to develop material
and help with professional development. This
material will be published online, so it can be
used by the international community.

If the new guidelines bring about the hoped-
for growth in the discipline, more teachers will
need to be found to deliver the resulting classes.
This in turn will require more training
opportunities, particularly in the Colleges of
Education where teachers receive their key
qualifications. For new teachers, College of
Education courses will need to expand to cover
the new topics proposed. Some teachers who
are already in service, but are not currently
involved in computing, might elect to retrain in
these areas, in which case distance-learning or
flexible courses may be more accessible.
Finally, students and graduates with a
background in Computer Science might be
recruited to become teachers and bring their
expertise to the classroom, given appropriate
training to qualify them for the role.

There will be implications for tertiary
institutions because the students leaving school
may now have more advanced knowledge and
experience in the discipline. While some
schools may not offer the full range of standards
proposed, others could potentially have students
graduating who are competent programmers in
a language such as Java or Python, and who
have a reasonable understanding of algorithm
analysis, including simple searching and sorting
algorithms. For some tertiary institutions, this
may represent a similar standard to their first-
year Computer Science courses, and they may
need to consider alternative paths for such
students. In either case, students who have done
well in these areas can be identified and

CRPIT Volume 103 - Computing Education 2010

20

potentially offered scholarships or more
challenging courses.

In addition, students will need guidance on
what other subjects to take at school. For
example, Computer Science departments would
typically be looking for students with strong
mathematics and communication skills, and
structures may need to be put in place to ensure
that students are aware of the importance of
these complementary subjects for success in
their chosen career path. This will include
communicating the new pathways to career
counsellors and advisors.

6 Conclusions	
New Zealand is on the verge of delivering an
exciting programme for computing as a
discipline in High Schools. The current design
reflects enough technical material that students
can get some insight into the career paths
available to them, and also provide academic
challenges to make the courses attractive to top
students.

Implementing such changes requires a lot of
careful design and testing, particularly for
topics that have never been taught before.
Teachers will need considerable help to become
comfortable with new topics, and given the fast
time scale, support from the tertiary community
will be essential.

It is important that the change is not seen as a
bigger list of things to learn in less time. The
new topics are generally at the level of exposing
students to them so they have an appreciation
of their significance. More important than the
details of what is taught is that students know
what career paths are available, and are able to
get a sufficiently accurate taste of the discipline
to find out if it suits them or not, rather than
making up their mind based on incorrect
information and mislabelled topics.

Once the context and skills outlined above
have been finalised, they will guide the creation
of guidelines for teachers, and standards for
assessment. This process will need to be
complete enough by early 2010 that schools can
plan and publish their Year 11 (level 6)
programmes for students making decisions
about their 2011 courses. Despite this rapid
pace, the pipeline is three years long, and the
first students to leave school having completed
the new programmes will not be entering the

tertiary institutions (or the workforce) until
2014, so it will be some time before the effects
of the changes are fully realised.

7 Acknowledgement	
We are grateful to an anonymous referee for
detailed feedback and suggestions.

8 References	
Carrell, T., Gough-Jones, V. and Fahy, K.

(2008): The future of Computer Science and
Digital Technologies in New Zealand secondary
schools: Issues of 21st teaching and learning,
senior courses and suitable assessments.
http://dtg.tki.org.nz/content/download/670/3222
/file/Digital%20Technologies%20discussion%2
0paper.pdf. Accessed 16 Sep 2009.

Clear, T. and Bidois, G. (2005): Fluency in
Information Technology – FITNZ: An ICT
Curriculum Meta-Framework for New Zealand
High Schools. Bulletin of Applied Computing
and Information Technology Vol. 3, Issue 3.
ISSN 1176-4120. http://www.naccq.ac.nz/
bacit/0303/2005Clear_FITNZ.htm. Accessed 16
Sep 2009.

Cuny, J. (2009): A clean-slate approach to
High School CS. http://www.cra.org/Activities/
summit/Cuny_A_Clean_Slate_Approach_to_Hi
gh_School_CS.pdf. Accessed 16 Sep 2009.

Dinning, N. (2009): Technological Context
Knowledge and skills: Exploring specific
knowledge and skills to support programmes in
technology. Materials for consultation to
support Ministry decision making.
http://www.techlink.org.nz/curriculum-
support/tks/resources/Technological-Context-
Knowledge-and-Skills-07-2009.pdf. Accessed
15 Sep 2009.

Grimsey, G., and Phillipps, M. (2008):
Evaluation of Technology Achievement
Standards for use in New Zealand Secondary
School Computing Education: A critical report.
NZ Computer Society. Available from
http://www.nzcs.org.nz/news/uploads/PDFs/200
805NCEAReport.pdf. Accessed 16 Sep 2009.

Margolis, J. and Fisher, A. (2002): Unlocking
the clubhouse: Women in computing , The MIT
Press, Boston, MA.

Ragonis, N. (2007): Computing Pre-
University: Secondary Level Computing
Curricula. In Encyclopedia of Computer

Proc. 12th Australasian Computing Education Conference (ACE 2010), Brisbane, Australia

21

Science, 4th Edition, Ralston, A., Reilly E. D.,
and Hemmendinger, D. (Eds.)

Tucker, A. (editor), Deek, F., Jones, J.,
McCowan, D., Stephenson, C., and Verno, A.
(2006): A Model Curriculum for K-12
Computer Science: Final Report of the ACM K-
12 Task Force Curriculum Committee.
Association for Computing Machinery (ACM),
New York, New York, (Second Ed.)

Vegso, J. (2008): Enrollments and Degree
Production at US CS Departments Drop Further
in 2006/2007, CRA bulletin, 1 March 2008.
http://www.cra.org/wp/index.php?p=139.
Accessed 16 Sep 2009.

Wilson, C. and Harsha, P. (2009): IT policy
The long road to Computer Science education
reform. Commun. ACM 52, 9 (Sep. 2009), 33-
35.

CRPIT Volume 103 - Computing Education 2010

22

