
Cryptanalysis of RC4-Based Hash Function

Mohammad Ali Orumiehchiha Josef Pieprzyk Ron Steinfeld

Center for Advanced Computing, Algorithms and Cryptography, Department of Computing,
Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia

Email: {mohammad.orumiehchiha,josef.pieprzyk,ron.steinfeld}@mq.edu.au

Abstract

RC4-Based Hash Function is a new proposed hash
function based on RC4 stream cipher for ultra low
power devices. In this paper, we analyse the security
of the function against collision attack. It is shown
that the attacker can find collision and multi-collision
messages with complexity only 6 compress function
operations and negligible memory with time complex-
ity 213. In addition,we show the hashing algorithm
can be distinguishable from a truly random sequence
with probability close to one.
Keywords: RC4-Based Hash Function, RC4 Stream
Cipher, Cryptanalysis, Collision resistance.

1 Introduction

Cryptographic hash functions are functions that map
an input of arbitrary length to a string of a fixed
length. It means that the output of a hash func-
tion has a fixed length but the input stream can be a
string of an arbitrary length (as short as a single bit
or as long as several terabytes). Hash functions are
indispensable for variety of security applications that
include message authentication, integrity verification,
and digital signatures. Recent developments in anal-
ysis of hash functions have demonstrated that most
members of the MD family have many weaknesses that
may compromise security of applications in which the
hash functions are used. It turns out that for hash
functions such as MD5, SHA-0 and SHA-1 (6; 7; 8),
there are attacks that allow to find random collisions
faster than expected. These advances in cryptanalysis
of hashing functions is the main reason for the NIST
call for the new SHA-3 cryptographic hash standard
(4). SHA-3 is public and has generated a lot of inter-
est from the cryptographic community.

There has been a constant flow of new design ideas
and new analysis techniques. One such idea is the
usage of stream ciphers to construct new hash func-
tions. The RC4 stream cipher - designed by Rivest in
1987 (5)- seems to be an attractive option to build a
fast and light-weight hash function(1; 2). It is a very
simple and elegant cipher that can be implemented us-
ing relatively modest computing resources. More im-
portantly, RC4 has been studied for many years and
its efficiency makes it a good cryptographic tool for

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 10th Australasian Information Security
Conference (AISC 2012), Melbourne, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 125, Josef Pieprzyk and Clark Thomborson, Ed. Repro-
duction for academic, not-for-profit purposes permitted pro-
vided this text is included.

building hash functions that can be implemented as
a light-weight algorithm. In 2006 Chang, Gupta, and
Nandi (2) proposed a hash function that uses RC4 as
the building block. The hash function was called RC4-
Hash. The compression function in RC4-Hash applies
the key scheduling algorithm (KSA) that is one of the
main components of RC4. Because of a specific struc-
ture of RC4-Hash, the generic attacks (that are so
effective against hash functions from the MD family)
fail to work. However, in 2008 Idesteege and Preneel
(3) have showed that RC4-Hash is not collision resis-
tant.

Recently Yu, Zhang, and Haung (1) came up with
an another hash function design that is based on RC4
as well. The function was called the RC4-based hash
function and in the paper we are going to call it
RC4-BHF. In addition to the KSA function, the RC4-
BHF hash function uses also two other RC4 functions,
namely KSA* and PRGA*. The aim of the designers
was to avoid the attacks by Idesteege and Preneel.
The KSA* function is similar to KSA but without the
initialization part. The PRGA* is similar to the orig-
inal pseudorandom generation algorithm (PRGA) of
RC4 with a difference that PRGA* does not gener-
ate output but changes the internal state. Note that
padding of messages in RC4-BHF is different from the
one used in RC4-Hash. The brief description of RC4-
BHF is given in the next Section. Full details about
RC4-BHF can be found in (1). The authors of RC4-
BHF argue that their hash function is collision resis-
tant and very efficient. They claim that RC4-BHF
is roughly 4.6 times faster than SHA-1 and 16 times
faster than MD4 (1).

In this paper, we show that their claim about se-
curity of RC4-BHF is not true and we describe how
to find collisions. We propose two attacks including
collision attack and distinguishing attack. In the first
one, by using periodic manner of internal states, we
construct colliding message pairs with complexity 213

compress function operations. And also we exploit
this attack to make multicollisions. In the second at-
tack, we show that output of RC4-BHF is distinguish-
able from random sequences.

The rest of the paper is structured as follows. Sec-
tion 2 gives details of the RC4-BHF construction. Sec-
tion 3 consists the main results of this work. In this
section, after identifying weak points of the algorithm,
we present a method to find colliding messages and
also show how to construct a distinguisher for the hash
function. Section 4 concludes the work.

Proceedings of the Tenth Australasian Information Security Conference (AISC 2012), Melbourne, Australia

33

2 Description of the RC4-BHF hash function

The hash function has been designed by Yu, Zhang
and Hung in 2010 and the reader interested in its full
description is referred to (1). The hash function uses
the building blocks used in the RC4 stream cipher.
These blocks, however, are modified by the authors.
The blocks in question are:

• KSA (key scheduling algorithm of RC4) – this
function takes as an input a 64-byte message M =
(M [0], . . . ,M [63]) and outputs the internal state
〈S, i, j〉, where S = (S[0], . . . , S[255]) is a 256-
byte sequence and j is a 1-byte index. And also
a 1-byte index called i. The function is described
in Figure 1.

1. Input: Message M

2. Output: Internal State 〈S, i, j〉

3. for i = 0 to 255

4. S[i] = i;

5. end for

4. for i = 0 to 255

6. j = (j + S[i] + M [i mod 64]) mod 256;

7. swap(S[i], S[j]);

8. end for

Figure 1: KSA Function

Note that the KSA function is called at the very
beginning of the RC4-BHF to initialize the inter-
nal state.

• KSA* – the function takes the pair: the message
M , the internal state 〈S, i, j〉 as the input and
provides an updated internal state. The full de-
tails are given in Figure 2.

1. Input: Message M and Internal State 〈S, i, j〉

2. Output: Updated Internal State 〈S, i, j〉

3. for i = 0 to 255

4. j = (j + S[i] + M [i mod 64]) mod 256;

5. swap(S[i], S[j]);

6. end for

Figure 2: KSA* Function

• PRGA* (pseudorandom generation algorithm) –
the function takes the pair: an integer len, the
internal state 〈S, i, j〉 as the input and generates
an updated internal state on its input. The pseu-
docode of the function is given in Figure 3.

1. Input: Integer len, Internal State 〈S, i, j〉

2. Output: Updated Internal State 〈S, i, j〉

3. for i = 0 to len

4. i = i + 1 mod 256;

5. j = (j + S[i]) mod 256;

6. swap(S[i], S[j]);

7. end for

Figure 3: PRGA* Function

The building blocks (functions) are used to create
a sequence of compression functions according to the
well-known Merkle-Damg̊ard (MD) structure. Given
a binary message M of an arbitrary length, the hash-
ing algorithm proceeds through the following steps:

1. padding – binary representation of the padding
length is appended to the message and then an
appropriate number of bits (constant or random)
is attached so the number of bits in the resulting
message is a multiple of 512. Consequently, the
message can be represented as a sequence of M =
(M1, . . . ,Mn), where each Mi is a 512-bit long (or
alternatively 64-byte) sequence,

2. compression – the message M1 is used to ini-
tialize the internal state 〈S, i, j〉 as follows

〈S, i, j〉 ← KSA(M1)

and then the function PRGA* modifies the state
depending on the length len1 of the message M1

(len1 = M1 mod 25)

〈S, i, j〉 ← PRGA∗(len1, 〈S, i, j〉).

For k; k = 2, . . . , n, the internal states are up-
dated step by step

〈S, i, j〉 ← PRGA∗(lenk, KSA∗(Mk, 〈S, i, j〉)

where lenk = Mk mod 25. Figure 4 illustrates
the compression process. Note that the number
of rounds applied in PRGA* is controlled by the
integer leni = (Mi mod 25).

3. truncation – the output of the compression step
consists of 258 bytes (256 bytes of the state to-
gether with 2 index bytes). The final hash value
includes the least significant bit of each state byte
and the indices. This means that hash value is
272-bit long.

The internal state of RC4-BHF 〈S, i, j〉, where S
indicates internal state of RC4-BHF and (i, j) are the
indices used in KSA, KSA*, and PRGA* functions.
The state can be divided to four parts S0, S1, S2, S3,
where

S0 = {sk | 0 ≤ k < 64},
S1 = {sk | 64 ≤ k < 128},
S2 = {sk | 128 ≤ k < 192},
S3 = {sk | 192 ≤ k < 256},

where sk is the k-th byte of the internal state.

CRPIT Volume 125 - Information Security 2012

34

Figure 4: RC4-BHF Scheme

3 Cryptanalysis of RC4-BHF

In this section, we prove that RC4-BHF is not collision
resistant. The proposed attack takes 213 compression
function operations and negligible memory. To ap-
ply collision attack on the algorithm, first we describe
the weaknesses of hashing algorithm and then by ex-
ploiting these weaknesses, we propose collision attack
and also present two distinguishers to tell apart the
outputs generated by either RC4-BHF or a random
number generator.

3.1 The weaknesses of RC4-BHF

Before describing our attack, we discuss properties of
the RC4-BHF that underpin our attack.

1. The internal state is controlled by the input mes-
sages and can be manipulated by an appropriate
choice of message bytes. In particular, we will
show that we can select messages in a such way
that the internal state repeats periodically.

2. The execution of the function PRGA* is con-
trolled by the integer len. Note that if len = Mk

mod 25 = 0, then the function PRGA* is not ex-
ecuted and can be skipped.

3. The index i is defined to be a byte or integer
between 0 and 255. But after each execution of
the function KSA*, the index i = 255. Similarly,
after each execution of PRGA*, the index i can
be an integer between 0 and 31. These properties
are not used in collision attack but they may be
exploited to enhance distinguishing attack on the
scheme.

Now, we can describe our collision attack on the RC4-
BHF.

3.2 Collision attack on RC4-BHF

The attack takes advantage of the periodicity of the
function KSA* as formulated in the following theo-
rem.

Theorem 1 Given the function KSA* of the
RC4-BHF. Let the input internal state be
S = 〈S0, S1, S2, S3, 63〉, the output internal state
be S′ = 〈S′0, S′1, S′2, S′3, 63〉 and the message sequence
be M = (m0, . . . ,m63), where mi = −(si − 1)
mod 256; 0 ≤ i < 64 . Then

KSA∗(〈S0, S1, S2, S3, 63〉) = 〈S′0 = S0, S
′
1 =

S2, S
′
2 = S3, S

′
3 = S1, 63〉

Proof. It can be easily shown by applying KSA*
on the internal state or by induction such as a gener-
alisation of Theorem 2 from (3). Denote by 〈S(i), j(i)〉
the internal state of RC4-BHF after the i-th step of
the compression function KSA*. Note that

M [i mod 64] = mi mod 64 = −(si mod 64−1) mod 256.

First, we prove by induction that for every i < 256,
the following equations hold:

j(i) = i + 63 mod 256, and

S(i)[i + 1 mod 256] = si+1 mod 64,

S(i)[i + 2 mod 256] = si+2 mod 64,

...

S(i)[i + 64 mod 256] = si+63 mod 64.

It is clear that this holds before the first step, i.e.,
for i = −1, since j(−1) = 1, S(−1)[0] = S[0] = s0 till
S(−1)[63] = S[63] = s63. Assume that the condition
holds after step i (i < 255). Then, the update of the
pointer j in the (i + 1)-th step is

j(i+1) = j(i) + S(i)[i + 1] + M [i mod 64] mod 256
= ((i + 63) + si+1) mod 256
+ (−(si+1 mod 64− 1) mod 256
= i + 64 mod 256.

Thus, S(i+1) is found by swapping the (i + 1)-th
and (i + 64)-th element of S(i). Hence, S(i+1)[i +
64 mod 256] = S(i)[i + 1 mod 256] = si+1 mod 64. Of
course, S(i+1)[i+64 mod 256] = S(i)[i+2 mod 256] =
si mod 64. This implies that the condition also holds
for step i + 1. After 254 steps, all the elements of S
have been rotated as follows:

S0, S1, S2, S3

S0, S2, S3, S1

Observe that if we apply the result of Theorem 1 in
three consecutive calls to KSA* (3 ∗ 256 steps), then

Proceedings of the Tenth Australasian Information Security Conference (AISC 2012), Melbourne, Australia

35

the first state repeats. The situation is illustrated
below:

S0, S1, S2, S3

KSA∗=⇒ S0, S2, S3, S1

KSA∗=⇒ S0, S3, S1, S2

KSA∗=⇒ S0, S1, S2, S3

This means that the application of the function
KSA* three times to the state causes that the same
state is reached. Note that in addition to the above
periodic behaviour of internal states, one can choose
other specific messages to achieve the same periodic
behaviour with longer periods. In (3), this behaviour
of internal states of RC4 stream cipher is investigated
and the reader is referred to it for details. Note that
the construction of colliding message pairs is easy. To
apply attack on RC4-BHF, we need to satisfy two con-
ditions:

Condition 1: j must be equal 63, and
Condition 2: the least 5 significant bits of −(s63−

1) mod 256 must be zero.
(1)

We expect that these requirements will be satisfied
after testing ≈ 28 ∗ 25 messages.

3.3 Other Period Properties

As mentioned before, in addition to cycles of length 3,
other cycles can be found for the KSA* function. In
fact, the relation M [i mod 64] in the functions KSA
and KSA* can be used to apply other input messages
to construct internal states with periods 7, 15, 31, 63,
127.

In similar way to Theorem 1, we can formulate ap-
propriate conditions for internal state and the message
M . The results are summarized in Table 1.

Using Table 1, we can find other colliding messages.
Finding appropriate internal state requires the same
effort (given by the time complexity column) for all
cycles. Although we present two methods for the cycle
equal to 3, these methods can be easily generalized for
other cycles different from 3. In next section we show
how we can construct colliding messages.

3.4 Finding Collisions

To construct colliding messages, two methods can be
used.

• Method 1. In this method, after applying mes-
sage M0, we obtain the suitable internal state
to satisfy the conditions (1). Then, by apply-
ing message M1 three times and padding block,
the hash value will be computed. Now, to gen-
erate other same hash value, we can repeat the
message M1 as in blocks of 3 and finally apply
padding block and compute the final hashing di-
gest. The following relations show how colliding

messages can be constructed by method 1.

M0 = M0 || Padding

M1 = M0 ||MP || Padding

M2 = M0 ||MP ||MP || Padding

...

Mn = M0 ||MP ||...||MP || Padding

where MP = M1||M1||M1 and M i, 0 ≤ i ≤ n, are
colliding messages.

Table 2: Example for Method 1 including M0, M1,M2
and generated hash value.

M0 (64-byte) M1 (64-byte) Hash
Value
(272-
bis)

1 03DE074C6CB1A37
A201C0C8187BA03
6E87A3CCC89C35D
F742B14E0D6136F
D13986858771176
85ABE130121F415
555ED9D506B5CF4
11DA3B3CF066C04
11DC5548

FF520B5101BFC98
C743E178B6521E7
A30C2E95C43FA77
B25E2E8BB5A3DD0
D9CF299EDA05B11
8CA1A57676E4FB8
041FF520BCED417
8A94D7FCD399347
AA9F5B40

0350EA16
4598FCEC
553FF9C6
9535B628
1F87F266
01D26F48
EEF72985
64265C95
007B

2 004BB7F857C5080
B47B92603AED617
99F14278CAA881C
CD997991397E173
9FE27885236CD8A
E0DBEF561157C71
0616EA139D1DAF7
5A5C0D9FC3CB222
0D879471

52D5AFD2DA1ACFA
B46F514E32F9784
086CB228253A649
BE57835E699275A
799CC8D4F2D7F3D
B95F8A21DAA37DD
94E4AC128BB6290
9E0B566560487BA
6EC3EA00

E42DD715
2E9EAB3F
4851B2A0
AFD358F2
B98DF972
0CD285FD
CA314801
842ECF4B
0009

We expect that after 28.25 = 213 executions of
the compression function for random messages, a
suitable M0 can be found. Table 2 presents two
examples of messages M0, messages M1 and hash
values obtained using Method 1.
Note that changing the length of input mes-
sage M i does not effect on padding content.
So, we can construct arbitrary number of
colliding messages with same hash value. This
property can be used to compute multi-collisions.

• Method 2. The principle used is the same as in
the previous method. We first find two messages
M0 and M1 which satisfy the condition (1). After
these two messages, the messages M1, M3 can be
made using Theorem 1.Finally, collision pairs can
be made by the following relations:

M0 = M0||M1||M1||M1||M2||Padding

M1 = M0||M2||M3||M3||M3||Padding

...

We expect that after (28.25)2 executions of the
compression function for random messages, a
suitable M0 and M2 can be found. Table 3 shows

CRPIT Volume 125 - Information Security 2012

36

Table 1: Properties and conditions to apply collision attack on Algorithm for other cycles
The
Cycle
Length

Condition
1

Condition 2 Time Com-
plexity

Relations

1 7 j = 31 −(s31 − 1) mod 64 = 0 28.25 mi = −(si − 1) mod 256 , mi = mi+32, 0 ≤ i < 32
2 15 j = 15 −(s15 − 1) mod 64 = 0 28.25 mi = −(si − 1) mod 256 , mi = mi+16 = mi+32 =

mi+64, 0 ≤ i < 16
3 31 j = 7 −(s7 − 1) mod 64 = 0 28.25 mi = −(si − 1) mod 256 , mi = mi+8 = mi+16 =

... = mi+56, 0 ≤ i < 8
4 63 j = 3 −(s3 − 1) mod 64 = 0 28.25 mi = −(si − 1) mod 256 ,mi = mi+4 = mi+8 = ... =

mi+60, 0 ≤ i < 4
5 127 j = 1 −(s1 − 1) mod 64 = 0 28.25 mi = −(s0 − 1) mod 256 i even

mi = −(s1 − 1) mod 256 i odd
6 255 j = 0 −(s0 − 1) mod 64 = 0 28.25 mi = −(s0 − 1) mod 256 , 0 ≤ i < 64

two examples of messages M0, M1 M2, M3, and
hash values obtained using Method 2.

Table 3: Example for Method 2 including M0,
M1,M2,M3 and generated hash values.

M0 (64-
byte)

M1 (64-
byte)

M2 (64-
byte)

M3 (64-
byte)

Hash
Value
(272-
bis)

1 273A4F51
FAA4A7CF
3225E700
0A9ACDBC
CABD7CAC
49991F5B
B042CF90
80C2B7DC
D756756F
EFDBC42F
E783580C
C6CC0A8D
BDB335AF
AC2460F0
E8B61DA7
3C953096

BAFB22B0
6E1F20C5
0948DF65
A260D573
927B5606
25198784
0044523F
1435862F
FC41E3CE
BBDDB3D0
A5885890
D759AACB
89CD72D2
C1D3BDAB
C7364505
F3EECF80

8FFD0B0A
03E6C6BF
7714E1C0
BF9B71DE
3AED7139
574F6556
57893E71
55E27E14
844B9CE8
B9DBAACC
297B3524
73E36D73
E1C5852D
EA475DC6
FCB75F0F
797AA7C2

4459229F
9B50A1E3
F8A3A772
D464CA05
4F5DE628
84295ADC
B3260921
0CC0E1A4
DDBBC8AE
71E00A12
43B77EAB
017B1F48
0B4AE795
8A1B4EB8
D2F902FD
DAB01900

BEDE
F059
71AC
F6A3
AF04
5311
0417
28D5
D77E
D338
5D58
4085
46A3
040B
5757
67FE
0029

2 7B45A927
E089C366
BB75CB2E
06E9AD05
3F3A007F
BF33F060
48597B01
DD73E1F5
D64A55EB
33AEF9D6
31B9094C
1B58562C
6306F784
F1DB3BB2
BBC6E2C9
96178C36

5A154DFF
7B6D869E
3DC2DF25
3F894F68
D2B2F776
1C4674CA
6A8B5B94
4EF6BFAB
B5792BC5
D89B7CA9
26D0118C
83698D6B
A0BB9D90
61014CB6
8477F8A3
1D6536C0

5CFA81B5
EE3730B8
FB0B01A3
5FB4C45B
78E9ECD3
7CD38830
1059752B
16A0D2B7
C6D2B5E4
001F1C04
E002270C
94C6843D
6A482A03
2DFE4A1D
B23882FE
AEA65573

587C8C02
5B0B462B
B83B3C40
FFEDF472
B6CCD8CF
6299285A
8FCA0768
E2EB787D
36EA2A6C
2E94B301
9103B169
7BC3D057
00313FD4
96C7521F
FDC19BC8
59649580

11D3
C922
63F9
EFB1
65B6
370A
A78D
6690
79B2
0706
2FE4
1228
2691
9A04
FBDF
ED97
0019

3.5 Randomness properties of hash digest

As mentioned in Section 2, the hash value is generated
by concatenating the least significant bits of each byte
of the final internal state S and two bytes indices i
and j. Note that the first 256 bits of the hash value is
the least significant bit of the numbers 0 till 255 which

are swapped based on three functions KSA, KSA*,and
PRGA*. Although the positions of the integers are
changed but their values are not modified and it means
that the hamming weight of the first 256 bits of hash
value for every input message with arbitrary length
will be exactly 128.

In addition, index i in the last round just depends
to the last input message Mn as i = Mn mod 25 and so
it will be an integer between 0 and 31. The designers
dedicated one byte for index i in the hash value. So
first we can see that the three most significant bits for
all input messages will be zero and second attacker
can change the other five bits of 259-th -263-th bits
by changing five least significant bits of the last input
message Mn with probability one. Of course, if we
consider the effect of padding block in the last round,
then the index i will be fixed while padding block does
not change. These two weaknesses lead attacker to
a strong distinguisher with distinguishing advantage
close to 1.

4 Conclusion

We presented collision attack on RC4-BHF. The at-
tack requires negligible memory and time complexity
213 compress function (KSA*) operations. The practi-
cality of the attack has been demonstrated with some
colliding messages for RC4-BHF. We also showed the
hashing algorithm can be distinguishable from a truly
random sequence with probability close to one.

References

[1] Yu Q., Zang C.N., Hung X., ”An RC4-Based Hash
Function for Ultra-Low Power Devices”, 2nd Inter-
national Conference on Computer Engineering and
Technology (ICCET), pp. 323-328, IEEE Publica-
tion, 2010.

[2] Chang, D., Gupta, K.C., Nandi, M.: ”RC4-Hash:
A New Hash Function Based on RC4”. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, pp. 80-94. Springer, 2006.

[3] S. Indesteege, and B. Preneel, ”Collisions for RC4-
Hash,” In Information Security - 11th Interna-
tional Conference, ISC 2008, Lecture Notes in
Computer Science 5222, C. Lei, V. Rijmen, and
T. Wu (eds.), Springer-Verlag, pp. 355-366, 2008.

[4] NIST: Cryptographic hash algorithm competition
http://www.nist.gov/hash-competition.

[5] Schneier, B.:” Applied Cryptograph”y, 2nd edn.
John Wiley and Sons, Chichester, 1996.

Proceedings of the Tenth Australasian Information Security Conference (AISC 2012), Melbourne, Australia

37

[6] Wang, X., Yu, H.: How to Break MD5 and
Other Hash Functions. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 19-35.
Springer, 2005.

[7] Wang, X., Yu, H., Yin, Y.L.: Efficient Colli-
sion Search Attacks on SHA-0. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1-16.
Springer, 2005.

[8] Wang, X., Yin, Y.L., Yu, H.: Finding Collisions
in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 17-36, Springer, 2005.

CRPIT Volume 125 - Information Security 2012

38

