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Abstract 
Workflow technology has met with success in a variety of 
industries, although several limitations have emerged.  
One such drawback is the inflexibility of specification 
languages, including a lack of support for inter-task 
dependencies.  Expressiveness of the specification 
language is believed to be a determining factor of 
workflows applicability and its industrial value as 
solution for process support.   

This paper attempts to address this limited language 
expressiveness by suggesting an alternative approach to 
modelling that more accurately captures behavioural 
information about tasks and enables greater precision 
when modelling inter-task dependencies.  

Current workflow technology associates one generic, 
predefined finite state machine with each activity in a 
process, and inter-task dependencies of the type 
‘completion of one activity triggers scheduling of the next 
activity’ are also enforced.   

The potential improvement relaxes these constraints to 
enable the specification of user-defined finite state 
machines to represent each activity and support the 
modelling of inter-task constraints at the activity state 
level.  In this paper, we present an introduction to this 
modelling extension and demonstrate the applicability of 
existing workflow verification algorithms to these more 
descriptive process models. 

Keywords:  Workflow, Business Process Modelling, 
Verification, Task Behaviour, Inter-task Dependencies. 

1 Introduction 
Workflow technology has been used in practice for 
managing process oriented business activities for many 
years. However, enterprises are undergoing rapid and 
significant changes, and current workflow technology is 
no longer sufficient to manage complex business 
processes and satisfy business’ requirements.  

It is important to consider improvements and extensions 
to the current solutions to overcome the limitations in 
order to make workflow technology more flexible and 
limitations of workflow technology have emerged 
(Alonso and Schek 1996).  
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These criticisms include:  

• Limited support for inter-task dependencies 

• Inflexibility in specification languages 
• Difficulty in modifying process dynamically  

• Difficulty in integration of heterogeneous 
workflow systems 

A number of recent enhancements dealing with dynamic 
modification of workflows (e.g. Sadiq 2000), pockets of 
flexibility (e.g. Sadiq, S., Sadiq, W. and Orlowska 2001) 
and smarter verification during the process design phase 
(e.g. Sadiq and Orlowska 2000, Aalst and Hofstede 2000) 
have made contributions towards overcoming some of 
these limitations. However the potential exists for further 
improvement. 

In this paper, we attempt to address the issues of limited 
flexibility in the specification and support for inter-task 
dependencies in workflow modelling languages and 
corresponding implementations. In particular, we will 
investigate the specification of internal activity behaviour 
and of ‘fine-grained’ inter-task dependencies defined 
between activity states in the process model. While the 
proposed extension can support more flexible execution, 
the impact on process complexity and correctness should 
not be ignored. We will demonstrate that the enhanced 
process model can also be verified with an established 
algorithm (Sadiq and Orlowska 2000) that was developed 
for traditional (activity-level) workflow process 
specification. 

2 What is an Activity? 
Since this paper focuses on the modelling of internal 
activity behaviour and inter-task dependencies at the 
activity state level, it would seem appropriate at this point 
to clarify the definition of an activity. There appears to be 
no commonly accepted definition in the literature, 
although most converge on “a piece of work that forms 
one logical step within a process” (Workflow 
Management Coalition 1995) or “some work to be done 
by a person, by a software system or by both of them” 
(Casati, Ceri, Pernici and Pozzi 1995).  Some 
publications differentiate a task from an activity, for 
example, defining that a task represents “a concrete run-
time work request to a particular person to perform a 
specific activity” (Leymann and Atlenhuber 1994).  

We will use the terms ‘task’ and ‘activity’ 
interchangeably, and define tasks as logical units of work 
within a process that may be either manual or automated 
but performed by a single workflow participant. 



2.1 Granularity 
It is important to consider the issue of granularity in order 
to define an activity more precisely.  In a workflow 
process model, the finest structure is an activity and the 
coarsest is the process as a whole. A business process 
could be modelled as one activity or multiple activities.  
However, an activity boundary is generally defined in 
respect to one of three factors: 

• What (data object) – An activity is associated 
with a set of data objects that are processed or 
manipulated by the activity.  For transactional 
purposes, data objects being processed in one 
task may be isolated from the access of other 
activities.  

• Who (performer) – Each activity has an 
associated performer or participant possessing 
the relevant skills or job role.  

• When (temporal) – Each activity may have a set 
of associated temporal constraints or properties, 
such as the minimum, average, or maximum 
durations to be expended for the activity.   For 
example, an activity may be defined such that 
one hour is spent performing a particular task. 

Clearly, the granularity of an activity determines the 
complexity of the model and subsequent execution of the 
workflow process, since the performer is required to 
interact with the Workflow Management System 
(WFMS) for each individual activity.  The workflow 
modeller should specify the process in order to achieve 
the most efficient performance while enforcing as many 
constraints as possible.   

2.2 Execution 
Each activity in a process has an associated finite state 
machine (FSM) to represent the execution of an instance 
of the activity.  The FSM consists of a set of visible states 
and a set of transitions between these states (Sadiq 2000). 
States in the machine represent the internal conditions 
that define the status of an activity instance at a particular 
point in time (Workflow Management Coalition 1999). 

The generic FSM presented by the Workflow 
Management Coalition is suggested to have the states of 
Scheduled, Active, Completed, Suspended, and 
Terminated (Workflow Management Coalition 1995) and 
is presented in Figure 1. Current workflow products 
enforce that the FSM is predefined for all activities in a 
process, although different products may vary in their 
choice of FSM. 
 

Scheduled Active Completed 

Terminated Suspended 

 
Figure 1: Example FSM for an Activity Instance 

The WFMS is able to observe only the states represented 
in the FSM. Generally, the transitions between the states 
represent user events, and the workflow participant 
controls transitions from one internal state of an activity 

instance to another, for example, by indicating 
commencement or completion of the activity to the 
WFMS.  

3 Control Flow 
Current technology also enforces that the final state of an 
activity (generally ‘completed’) triggers the process flow 
to the next activity in the process, according the stored 
process definition. Transitions triggered from the 
completion of one or more activities are the only way in 
which the scheduling of tasks may be controlled.   

In order to illustrate process execution, we introduce two 
types of objects: nodes and control flow. Each node is 
classified into three subclasses: task, coordinator and 
state. A task, graphically represented by a rectangle, 
represents the work to be done to achieve some 
objectives. It is also used implicitly to build sequence, 
fork, and synchronizer structures. A coordinator, 
graphically represented by a circle, is used to construct 
choice and merge structures. In addition, the states within 
an activity are graphically represented by an ellipse. 
Control flow links two nodes in the graph and is 
graphically represented by a directed edge. It represents 
execution order and flow between its tail and head nodes. 
The modelling objects are presented in Figure 2.  
 

Task Condition Control flow State 

 
 Figure 2: Process Modelling Objects 

As previously mentioned, traditional workflow limits the 
control flow from the completed state of an activity to the 
scheduled state of the next activity.  Figure 3(a) illustrates 
control flow in traditional workflow technology.  Note 
that for simplicity, the scheduled, active and completed 
activity states have been abbreviated as ‘S’, ‘A’ and ‘C’, 
respectively, and the suspended and terminated states 
have been omitted.  The dashed line indicates inter-task 
(or process level) control flow. 

S A 

C 

S A 

C 

Task A Task B  
Figure 3(a): Traditional control flow 

In relation to actual process execution, this restriction 
enforces that all activities ‘before’ the currently executing 
task(s) in terms of control flow must have been 
completed. 

3.1 Limitations of Traditional Control Flow 
The current approach is obviously restrictive in that only 
one type of inter-task dependency can be modelled and 
subsequently enforced. 

Figure 3(b) illustrates an example of an inter-task 
dependency that cannot be modelled under the current 
workflow specification framework. 
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Figure 3(b): Relaxed Control Flow 
We argue that there is a need for the ability to model such 
control flow to provide intermediate task behaviour 
management. 

For example, consider a business scenario where an 
employee is able to email a document to the printing 
department for printing and binding and then pick up the 
document when it is ready. Assume that the printing 
department is busy and so cannot guarantee when a piece 
of work will be started, however it can guarantee that 
once a printer has started working on a particular 
document, the document will be ready for pickup in one 
hour. A business policy was thus created such that as 
soon as a printer commenced work on a particular 
document, an email was automatically generated and sent 
to the employee informing them that their document will 
be ready for collection in one hour.  

This policy clearly requires the specification of an inter-
task dependency such that the task to generate the email 
is triggered when the printing activity enters its ‘active’ 
state.  However, the current modelling approach cannot 
enforce dependencies below the activity level. In order to 
model this scenario with the existing modelling 
technique, the granularity of the printing task would need 
to be reduced. This example is modelled under the current 
approach in Figure 4(a).  

Clearly, this is not an acceptable way to model this 
scenario, as splitting the printing task into two tasks is 
neither intuitive in terms of modelling nor effectively 
enforceable in terms of execution, and the policy would 
probably not be enforced. Figure 4(b) illustrates the ideal 
modelling approach, in which the specification of trigger 
transitions at the task state level is permitted.   
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Figure 4(a): Business Policy Modelled Under Current 

Framework 
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Figure 4(b): Business Policy Modelled Under 

Proposed Framework 

4 Proposed Modelling Enhancement 
Due to the absence of any constraints on activity 
definition, we are investigating an alternative ‘fine-
grained’ approach to workflow process modelling that 
involves increasing the expressiveness of specification 
languages in order to more accurately capture task 
behaviour and model inter-task constraints. The proposed 
modelling enhancement is comprised of two aspects – the 
ability to more accurately model inter-task dependencies 
and the ability to specify customised FSMs to represent 
activity behaviour.  Generally, tasks in a process are 
inter-related in such a way that initiation of one task is 
dependent on successful completion of a set of other 
tasks.  However, we propose that under certain 
circumstances, advantages may be gained in terms of the 
overall process execution from modelling at the activity 
state level.  

4.1 Flexible Inter-task Dependencies 
Attie, Singh, Sheth and Rusinkiewicz (1993) describes 
inter-task dependencies as “the specification of 
constraints on the occurrence and temporal order of 
events, describing how the execution of a task is related 
to that of others (based on the state of execution of other 
tasks and their data outputs) and external events (e.g. 
messages from the user).” However, most process 
modelling languages are based on Petri Net like or 
equivalent semantics, where an activity is represented as 
one monolithic block that consumes all input information 
once it is started, and produces all outputs when it has 
finished. Inter-task dependencies therefore cannot be 
specified in terms of the execution states of constituent 
tasks; only ‘complete � schedule’ dependencies can be 
defined.  

Modelling the workflow process at the task state level 
allows us to relax the restrictions on inter-task 
dependency modelling to enable the specification of 
inter-task dependencies on the basis of the internal states 
of constituent tasks, both in terms of individual 
dependencies and collections of dependencies (facilitated 
through the use of a coordinator). We refer to these 
relaxed dependencies as ‘fine-grained’ inter-task 
dependencies.  Although the traditional specification of 
inter-task dependencies is sufficiently expressive to 
model most business scenarios, we argue that fine-
grained dependencies have applications in the modelling 
of some business processes (for example, in the scenario 



presented above) and should be supported in modelling 
languages.  

Although the specification of inter-task dependencies at 
the task state level seems to imply that dependencies can 
be defined between any two arbitrary states, not all 
dependencies may be practically enforced.  We will 
classify the types of inter-task dependencies and reason 
them in the next section. 

4.1.1 Classification of Inter-task Dependencies 
Since inter task dependencies control the order of 
execution of tasks in a process, it would be appropriate to 
begin our classification of inter task dependencies with an 
appreciation of the possible ordering options under the 
current modelling approach. Ordering of tasks in current 
workflow models can comprise sequential, parallel, or 
conditional execution. The parallel execution is facilitated 
through the use of fork and synchroniser coordinators, 
and the conditional execution is facilitated through the 
use of choice and merge coordinators. 

Each of these types of ordering is enforced through 
dependencies of the form ‘Y cannot be scheduled until X 
completes’, which we will term typical trigger 
transitions. This is the only class of inter-task constraint 
that is currently specifiable in most modelling languages. 
However, we observe that typical trigger transitions 
constitute just one class of possible inter-task 
dependencies. The proposed classification scheme of 
inter-task dependencies is illustrated in Figure 5. 
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Figure 5: Classes of Inter-task Dependencies 

We observe that two types of inter task dependencies 
exist – one in which the transitions trigger the scheduling 
of some activity, and the other where they do not.  We 
label inter-task dependencies where the transition ends at 
a scheduled state as trigger transitions. As already noted, 
typical trigger transitions describe the special case where 
the transition begins at a completed state and ends at a 
scheduled state.  

Atypical trigger transitions are not intuitively specifiable 
with the current modelling approach, and can only be 
enforced through reducing the granularity of the tasks 
involved in the dependency, which is undesirable for 
reasons already discussed and does not really capture the 
semantics of the constraint.  Note that it does not make 
sense to specify an atypical trigger transition from a 
scheduled state to a scheduled state, because the 
transition would fire immediately (assuming the 
scheduling of a task requires a negligible amount of 
time); this constraint would be more intuitively modelled 

through a fork coordinator. Therefore, we anticipate that 
atypical trigger transitions will effectively always be 
defined from an active state to a scheduled state.  

The example presented in Figure 4(b) illustrates the use 
of an atypical inter-task trigger transition to model a 
business policy. Inter-task trigger transitions are also 
useful in any otherwise sequential execution scenario 
where there are no data or temporal conflicts and where 
knowledge that the first task has commenced is enough to 
satisfy business policy or legal requirements and schedule 
the next activity. In this way, all business rules and 
requirements can be satisfied while allowing maximum 
parallelism between activities in a process, ultimately 
expediting process execution. 

Non-trigger dependencies represent a constraint between 
tasks that does not result in the scheduling of an activity.  
An example of a non-trigger dependency is that ‘Task A 
cannot be completed until Task B is completed’.  These 
dependencies are not able to be expressed under the 
current modelling framework and further investigation is 
required into the implications of these dependencies on 
process execution.   

Many non-trigger dependencies may not be practically 
enforceable. For example, it may not be appropriate to 
specify a constraint on the completion of an activity 
performed by a human participant since it may result in 
abnormal interaction between the human and the WFMS.  
However, issues concerning interaction between the 
WFMS and workflow participants may be resolved at the 
implementation level.  A comprehensive analysis of the 
types of non-trigger dependencies that are able to be 
practically enforced is a key area of future research. 

4.2 Customisable Activity Behaviour 
Just as activities may have different transactional, 
temporal, and resource properties, they may have 
different execution behaviour, and we believe that the 
generic FSM may not be the most appropriate way of 
representing certain classes of activities.  

We are therefore investigating the relaxation of the 
restriction of one predefined FSM representing all 
activities in a process, and considering some of the 
implications of allowing a different FSM to be associated 
with each activity.  

The proposal is to allow each activity to have a 
customisable FSM that accurately captures its execution 
behaviour as a property.  For example, the execution 
behaviour of a task may be more accurately modelled 
through zero or more than one active states.  As another 
example, the suspended state may not be applicable to 
some tasks, while others may require multiple types of 
suspended states. 

A full analysis into the circumstances under which this 
enhancement may be beneficial is yet to be completed.  
The issue of structural and semantic constraints on the 
composition of the customisable FSMs will also require 
further investigation.  However, we have identified 
preliminary syntactic correctness criteria for each task 
FSM, as detailed below as part of the verification process. 



4.3 Structural Verification of the Proposed 
Modelling Enhancement 

While the specification enhancement allows us to model 
with greater precision, the workflow process model could 
potentially become much more complex.  

It is possible to create error situations when specifying 
complex business processes, even under the current 
modelling framework in which each activity must be 
completed before process execution can proceed past the 
activity and each activity is represented by a pre-defined 
FSM. Verification algorithms based on graph reduction 
techniques have been successfully applied to detect 
structural conflicts such as deadlock and lack of 
synchronisation in process models defined under the 
current framework.  In this section, the applicability of 
such an algorithm (i.e. Sadiq and Orlowska 2000) in 
detecting structural conflicts in these more descriptive 
process models will be demonstrated.  Such modelling 
conflicts may lead to undesirable execution of some or all 
possible workflow instances, and possibly prevent further 
execution of the process. It is essential to correct such 
problems at the design phase rather than after deploying 
the workflow application.  

We partition the verification process for the enhanced 
workflow structures into three phases.  In the first phase, 
basic syntax checking is performed to ensure that all task 
FSMs are well formed.  In the second phase, a 
transformation process is applied to translate the state-
level process model into a traditional process model in a 
manner that preserves semantics and neither generates 
nor removes structural conflicts.  In the third phase, the 
workflow model is analysed using existing algorithms to 
identify inconsistencies in the model that could arise due 
to conflicting use of modelling structures (specifically 
due to a mismatch of split/join types). 

4.3.1 Activity FSM Syntax 
All activity FSMs must conform to the following 
syntactic correctness properties: 

• It is a directed, connected graph 

• The only possible state types in the FSM are 
Scheduled, Active, Completed, Suspended, and 
Terminated 

• All states are reachable from the Scheduled state 

• It contains exactly one Scheduled state, exactly 
one Completed state, and some number of 
Active, Suspended, and Terminated states 

• Beginning at the Scheduled state, exactly one 
path is possible through the Active states to the 
Completed state 

• It contains only well-formed cycles.  That is, all 
cycles are made from a pair of transitions where 
one transition originates from one of the Active 
states and ends at one of the Suspended states, 
and the other transitions begins at that 
Suspended state and ends at that same Active 
state.  No other transitions are permitted to or 
from the Suspended states, and no other cycles 
are permitted in the machine. 

4.3.2 Transformation Rules 
Once the validity of all FSMs has been established, the 
transformation rules can be applied.  Note that these 
transformation rules preserve semantics and neither 
generate nor remove structural conflicts.  The following 
transformation rules are applied to each activity in the 
process: 

1. Immediately discard all Suspended states and all 
transitions to and from these states. 

The Suspended state necessitates a special type of 
iteration that is controlled by the workflow participant 
and completely unrelated to the process instance data.  
These special semantics cannot be captured by existing 
split and join structures.  However, the integrity of the 
Suspended state(s) and associated transitions has already 
been established at the state level, plus these states 
cannot, by definition, participate in inter-task 
dependencies.  Therefore, these states and corresponding 
transitions cannot possibly contribute towards a structural 
conflict at the process level, and removal of these nodes 
and transitions cannot introduce or remove any split or 
join structures into the graph.  Note that the remaining 
FSM must be a directed, connected, acyclic graph with all 
states reachable from the Scheduled state.   

Consider now the semantics of a task FSM.  By 
definition, the instance must be in exactly one state at any 
time.  All branch cases in the FSM, where more than one 
outgoing transition exists from one state to more than one 
other state (where the other states are internal to this 
activity), thus have implicit choice semantics.  The next 
steps in the transformation process explicitly model these 
choice semantics inside the FSM, through the correct 
placement of the choice coordinators and merge 
coordinators. 

2. For any states that possess two or more outgoing 
transitions to other states that are internal to this 
activity, a choice coordinator is constructed such 
that there is a transition from the state to the 
coordinator, and all original outgoing transitions 
of the state become outgoing transitions of the 
coordinator. 

3. For any states that possess two or more 
incoming transitions from other states that are 
internal to this activity, a merge coordinator is 
constructed such that there is a transition from 
the coordinator to the state, and all original 
incoming transitions of the state become 
incoming transitions of the merge node.   

Current models do not emphasise the internal workings of 
tasks (Sadiq and Orlowska 2000), and recall that 
modifying task granularity is a current mechanism for the 
enforcement of certain constraints under the current 
modelling framework.  We therefore argue that every 
remaining state in the FSM is more or less equivalent in 
semantics to tasks specified in a current process model, 
and can be considered equivalent for the purposes of 
verification. 

4. Transform every remaining state into a regular 
task. 



This transformation replaces each original task in the 
process model with a well-formed workflow, free from 
the structural and grammatical errors presented in Sadiq 
and Orlowska (2000).  (Note that structural conflicts can 
only arise when combining types of split/join structures, 
and only choice/merge structures have been introduced at 
this stage.)  In the absence of any non-standard inter-task 
dependencies (i.e. atypical trigger transitions or non-
trigger transitions), these segments of the overall models 
could be aggregated into blocks in current process 
models. 

Inter-task dependencies have fork/synchronise semantics.  
That is, all inter-task transitions ending at a state must be 
fired in order to enter that state, and all inter-transitions 
originating at a state must be fired upon leaving that state.  
Combining the concepts of internal and external 
transitions yields that all inter-task (external) transitions 
leading to the state must be fired, along with one (if any) 
internal transitions that lead to the state, in order to 
activate a state.  The corresponding situation applies for 
all transitions leaving a state. 

The resulting graph is therefore correct in terms of 
implicit fork/synchroniser semantics. Note that the 
semantics of inter-task dependencies may be explicitly 
modelled through the correct placement of fork and 
synchroniser coordinators although this is not required for 
the purposes of verification (Sadiq and Orlowska 2000). 

4.3.3 Application of Existing Algorithm 
The placement of the split/join structures in the graph will 
then be analysed through the application of the existing 
verification algorithm (Sadiq and Orlowska 2000), which 
forms the third phase of the overall verification process. 

Presented below are two examples of the transformation 
process being applied to a process model defined at the 
activity state level in order to detect structural errors. 

For simplicity, the scheduled, active and completed 
activity states have been abbreviated ‘S’, ‘A’ and ‘C’, 
respectively, and the suspended and terminated states 
have been omitted.   

The transformation illustrations remove the activity 
boundaries and create new activities that are each 
assigned a unique identifier. For example, the scheduled 
state of task ‘A’ is transformed into an activity with the 
identifier of ‘A-Scheduled’ which is abbreviated as ‘AS’. 

The transformation illustrated in Figure 6 demonstrates a 
process model on which an existing algorithm may be 
applied in order to detect a deadlock structural error. 
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Figure 6: Deadlock Structural Error 

The example shows that a deadlock occurs whenever 
there is an inter-task dependency between two tasks that 
are on mutually exclusive execution paths. 

Figure 7 presents a transformation resulting in a process 
model on which an existing algorithm may be applied in 
order to detect a lack of synchronisation structural error. 
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Figure 7: Lack of Synchronization Error 

This example illustrates that lack of synchronisation 
occurs when an activity creates another execution path 
via an atypical trigger transition and the parallel 
execution paths are subsequently merged. 

4.4 Additional Considerations 
We have already demonstrated that structural conflicts in 
process models defined at the state level may be detected 
through existing verification algorithms after a 
transformation process has been applied. 

However, it is possible to define an inter-task dependency 
between two activities that is structurally sound but is 
impossible to execute.  The issues that could impact on 
the specification and verification of these more 
descriptive process models can be broadly classified into 
three classes – FSM semantics, data flow, temporal 
constraints, and failure recovery. 

4.4.1 Activity FSM Semantics 
As already noted, the goal of a task FSM is to represent 
the behaviour of a task as defined through interaction 
between the user and the WFMS.  As such, it is 



imperative to realise that task FSMs are complex 
structures with rich semantics that that must be carefully 
considered in order to prevent the violation of any 
semantic constraints in the enhanced (state-level) process 
models.   

Clearly, one example of a semantic constraint is that each 
activity must be scheduled.  That is, it does not make 
sense to allow an inter-task dependency to ‘trigger’ or 
‘allow’ any state in a task FSM if there is not such a 
dependency defined on the scheduled state of the task.  
Note that this requirement would be checked during the 
final stage of the verification process as there must be 
exactly one initial task (Sadiq and Orlowska 2000). 

Moreover, no dependencies should be specified that 
prohibit normal user interaction with the system.  Further 
investigation is required in order to detail the semantics 
and types of fine-grained inter-task dependencies that can 
and cannot be enforced. 

4.4.2 Data Flow 
Data flow is a semantic issue that needs to be considered 
when enabling inter-task dependencies to be defined at 
the task state level. Data is potentially produced and/or 
required in each of the active states in an activity. It 
should thus be possible to define the exact data item 
required and produced by each active state, as opposed to 
the task as a whole. Consider for example the process 
fragment illustrated in Figure 8. Task A produces data 
item X, task B required data item X, and task B is 
scheduled when task A has commenced. Even through 
the states where X is produced and required can be 
reached along a directed path, there is obviously potential 
for data conflict, namely in the case where B becomes 
active before A is completed. 

Scheduled 

Active Completed 

Scheduled 

Active Completed 

X produced X required 
 

Figure 8: Data Conflict Produced by an Atypical 
Trigger Transition 

4.4.3 Temporal Constraints 
It should also be noted that the introduction of fine-
grained inter-task dependencies may have implications in 
terms of temporal constraints. 

For example, it is obviously not useful to define a 
constraint between tasks A and B such that B cannot 
complete until A completes if there is also a temporal 
constraint in place that B must or will always require a 
shorter time than A to complete. This situation is 
illustrated in Figure 9. 

 

Scheduled 

Active Completed 

Scheduled 

Active Completed 

Expected Duration: 3 hours 

Expected Duration: 2 hours 

Fork 

 
Figure 9: Potential Temporal Conflict at State Level 

4.4.4 Failure Recovery 
Another issue that should be considered when defining 
atypical trigger transitions is the possibility of failure (i.e. 
occurrence of system or application errors). Because the 
introduction of atypical trigger transitions into the process 
model violates the rules of (all-or-nothing) atomic 
execution, it is possible that execution may have been 
able to proceed past the task in the process where the 
problem was experienced.   

In the example illustrated in Figure 4(b), the notification 
was generated as the printing activity commenced. If 
there had been a problem associated with the printing 
activity, the notification would have already been 
generated.  This situation would certainly constitute a 
failure in terms of the business logic.  

Failure recovery under the enhanced modelling 
framework is therefore a semantic issue that must be 
considered on a case-by-case basis and may not be able to 
be automated inside a verification algorithm.  Failure to 
consider this issue may result in a complex situation 
requiring a cascading semantic abort that may need to be 
handled externally.   

5 Conclusion 
In this paper, we attempted to address the issue of limited 
flexibility in and support for inter-task dependencies in 
process specification languages by presenting an 
alternative approach to modelling that more accurately 
captures behavioural information about tasks and enables 
greater precision when modelling inter-task 
dependencies.   

In particular, we proposed that advantages could be 
gained by allowing ‘fine-grained’ inter-task dependencies 
to be defined at the task state level and a customisable 
FSM to be associated with each activity.   

However, we noted that the advantages of the fine-
grained modelling were not forthcoming without an 
equivalent increase in the complexity of the process 
model and in verifying the enhanced process models.  We 
demonstrated the applicability of an existing verification 
algorithm in ascertaining the structural integrity of the 
more descriptive process models.  We then outlined a 
number of issues that should be considered in order to 
complete the verification of the complex process models 
and make a more accurate assessment on the value of the 
proposed modelling technique. 



The areas of future research that could be based on the 
work presented in this paper include: 

• Formalisation of inter-task dependencies and the 
transformation process for subsequent 
verification, 

• A full investigation into implication of the 
proposed modelling technique into the areas of 
data flow, temporal constraints, and failure 
recovery, and 

• A full analysis of the types of inter-task 
dependencies that can and cannot be enforced in 
order to preserve normal interaction between the 
user and the WFMS. 
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