
Customizing Internal Activity Behaviour for
Flexible Process Enforcement

Belinda M. Carter, Joe Y.-C. Lin, Maria E. Orlowska
School of Information Technology and Electrical Engineering

The University of Queensland
St Lucia, Brisbane 4072, Queensland

{bcarter, jlin, maria}@itee.uq.edu.au

Abstract
Workflow technology has met with success in a variety of
industries, although several limitations have emerged.
One such drawback is the inflexibility of specification
languages, including a lack of support for inter-task
dependencies. Expressiveness of the specification
language is believed to be a determining factor of
workflows applicability and its industrial value as
solution for process support.

This paper attempts to address this limited language
expressiveness by suggesting an alternative approach to
modelling that more accurately captures behavioural
information about tasks and enables greater precision
when modelling inter-task dependencies.

Current workflow technology associates one generic,
predefined finite state machine with each activity in a
process, and inter-task dependencies of the type
‘completion of one activity triggers scheduling of the next
activity’ are also enforced.

The potential improvement relaxes these constraints to
enable the specification of user-defined finite state
machines to represent each activity and support the
modelling of inter-task constraints at the activity state
level. In this paper, we present an introduction to this
modelling extension and demonstrate the applicability of
existing workflow verification algorithms to these more
descriptive process models.

Keywords: Workflow, Business Process Modelling,
Verification, Task Behaviour, Inter-task Dependencies.

1 Introduction
Workflow technology has been used in practice for
managing process oriented business activities for many
years. However, enterprises are undergoing rapid and
significant changes, and current workflow technology is
no longer sufficient to manage complex business
processes and satisfy business’ requirements.

It is important to consider improvements and extensions
to the current solutions to overcome the limitations in
order to make workflow technology more flexible and
limitations of workflow technology have emerged
(Alonso and Schek 1996).

Copyright © 2003, Australian Computer Society, Inc. This
paper appeared at Fifteenth Australasian Database Conference
(ADC2004), Dunedin, New Zealand, Conferences in Research
and Practice in Information Technology, Vol. 27. Klaus-Dieter
Schewe and Hugh Williams, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

These criticisms include:

• Limited support for inter-task dependencies

• Inflexibility in specification languages
• Difficulty in modifying process dynamically

• Difficulty in integration of heterogeneous
workflow systems

A number of recent enhancements dealing with dynamic
modification of workflows (e.g. Sadiq 2000), pockets of
flexibility (e.g. Sadiq, S., Sadiq, W. and Orlowska 2001)
and smarter verification during the process design phase
(e.g. Sadiq and Orlowska 2000, Aalst and Hofstede 2000)
have made contributions towards overcoming some of
these limitations. However the potential exists for further
improvement.

In this paper, we attempt to address the issues of limited
flexibility in the specification and support for inter-task
dependencies in workflow modelling languages and
corresponding implementations. In particular, we will
investigate the specification of internal activity behaviour
and of ‘fine-grained’ inter-task dependencies defined
between activity states in the process model. While the
proposed extension can support more flexible execution,
the impact on process complexity and correctness should
not be ignored. We will demonstrate that the enhanced
process model can also be verified with an established
algorithm (Sadiq and Orlowska 2000) that was developed
for traditional (activity-level) workflow process
specification.

2 What is an Activity?
Since this paper focuses on the modelling of internal
activity behaviour and inter-task dependencies at the
activity state level, it would seem appropriate at this point
to clarify the definition of an activity. There appears to be
no commonly accepted definition in the literature,
although most converge on “a piece of work that forms
one logical step within a process” (Workflow
Management Coalition 1995) or “some work to be done
by a person, by a software system or by both of them”
(Casati, Ceri, Pernici and Pozzi 1995). Some
publications differentiate a task from an activity, for
example, defining that a task represents “a concrete run-
time work request to a particular person to perform a
specific activity” (Leymann and Atlenhuber 1994).

We will use the terms ‘task’ and ‘activity’
interchangeably, and define tasks as logical units of work
within a process that may be either manual or automated
but performed by a single workflow participant.

2.1 Granularity
It is important to consider the issue of granularity in order
to define an activity more precisely. In a workflow
process model, the finest structure is an activity and the
coarsest is the process as a whole. A business process
could be modelled as one activity or multiple activities.
However, an activity boundary is generally defined in
respect to one of three factors:

• What (data object) – An activity is associated
with a set of data objects that are processed or
manipulated by the activity. For transactional
purposes, data objects being processed in one
task may be isolated from the access of other
activities.

• Who (performer) – Each activity has an
associated performer or participant possessing
the relevant skills or job role.

• When (temporal) – Each activity may have a set
of associated temporal constraints or properties,
such as the minimum, average, or maximum
durations to be expended for the activity. For
example, an activity may be defined such that
one hour is spent performing a particular task.

Clearly, the granularity of an activity determines the
complexity of the model and subsequent execution of the
workflow process, since the performer is required to
interact with the Workflow Management System
(WFMS) for each individual activity. The workflow
modeller should specify the process in order to achieve
the most efficient performance while enforcing as many
constraints as possible.

2.2 Execution
Each activity in a process has an associated finite state
machine (FSM) to represent the execution of an instance
of the activity. The FSM consists of a set of visible states
and a set of transitions between these states (Sadiq 2000).
States in the machine represent the internal conditions
that define the status of an activity instance at a particular
point in time (Workflow Management Coalition 1999).

The generic FSM presented by the Workflow
Management Coalition is suggested to have the states of
Scheduled, Active, Completed, Suspended, and
Terminated (Workflow Management Coalition 1995) and
is presented in Figure 1. Current workflow products
enforce that the FSM is predefined for all activities in a
process, although different products may vary in their
choice of FSM.

Scheduled Active Completed

Terminated Suspended

Figure 1: Example FSM for an Activity Instance

The WFMS is able to observe only the states represented
in the FSM. Generally, the transitions between the states
represent user events, and the workflow participant
controls transitions from one internal state of an activity

instance to another, for example, by indicating
commencement or completion of the activity to the
WFMS.

3 Control Flow
Current technology also enforces that the final state of an
activity (generally ‘completed’) triggers the process flow
to the next activity in the process, according the stored
process definition. Transitions triggered from the
completion of one or more activities are the only way in
which the scheduling of tasks may be controlled.

In order to illustrate process execution, we introduce two
types of objects: nodes and control flow. Each node is
classified into three subclasses: task, coordinator and
state. A task, graphically represented by a rectangle,
represents the work to be done to achieve some
objectives. It is also used implicitly to build sequence,
fork, and synchronizer structures. A coordinator,
graphically represented by a circle, is used to construct
choice and merge structures. In addition, the states within
an activity are graphically represented by an ellipse.
Control flow links two nodes in the graph and is
graphically represented by a directed edge. It represents
execution order and flow between its tail and head nodes.
The modelling objects are presented in Figure 2.

Task Condition Control flow State

 Figure 2: Process Modelling Objects

As previously mentioned, traditional workflow limits the
control flow from the completed state of an activity to the
scheduled state of the next activity. Figure 3(a) illustrates
control flow in traditional workflow technology. Note
that for simplicity, the scheduled, active and completed
activity states have been abbreviated as ‘S’, ‘A’ and ‘C’,
respectively, and the suspended and terminated states
have been omitted. The dashed line indicates inter-task
(or process level) control flow.

S A

C

S A

C

Task A Task B
Figure 3(a): Traditional control flow

In relation to actual process execution, this restriction
enforces that all activities ‘before’ the currently executing
task(s) in terms of control flow must have been
completed.

3.1 Limitations of Traditional Control Flow
The current approach is obviously restrictive in that only
one type of inter-task dependency can be modelled and
subsequently enforced.

Figure 3(b) illustrates an example of an inter-task
dependency that cannot be modelled under the current
workflow specification framework.

S A

C

S A

C

Task A Task B

Figure 3(b): Relaxed Control Flow
We argue that there is a need for the ability to model such
control flow to provide intermediate task behaviour
management.

For example, consider a business scenario where an
employee is able to email a document to the printing
department for printing and binding and then pick up the
document when it is ready. Assume that the printing
department is busy and so cannot guarantee when a piece
of work will be started, however it can guarantee that
once a printer has started working on a particular
document, the document will be ready for pickup in one
hour. A business policy was thus created such that as
soon as a printer commenced work on a particular
document, an email was automatically generated and sent
to the employee informing them that their document will
be ready for collection in one hour.

This policy clearly requires the specification of an inter-
task dependency such that the task to generate the email
is triggered when the printing activity enters its ‘active’
state. However, the current modelling approach cannot
enforce dependencies below the activity level. In order to
model this scenario with the existing modelling
technique, the granularity of the printing task would need
to be reduced. This example is modelled under the current
approach in Figure 4(a).

Clearly, this is not an acceptable way to model this
scenario, as splitting the printing task into two tasks is
neither intuitive in terms of modelling nor effectively
enforceable in terms of execution, and the policy would
probably not be enforced. Figure 4(b) illustrates the ideal
modelling approach, in which the specification of trigger
transitions at the task state level is permitted.

S A

C

S A

C

Generate Email

S A

C
Printing Continued

S A

C
Next Activity

Printing Commenced

Figure 4(a): Business Policy Modelled Under Current

Framework

S A

C

Printing

S A

C

Generate Email

S A

C
Next Activity

Figure 4(b): Business Policy Modelled Under

Proposed Framework

4 Proposed Modelling Enhancement
Due to the absence of any constraints on activity
definition, we are investigating an alternative ‘fine-
grained’ approach to workflow process modelling that
involves increasing the expressiveness of specification
languages in order to more accurately capture task
behaviour and model inter-task constraints. The proposed
modelling enhancement is comprised of two aspects – the
ability to more accurately model inter-task dependencies
and the ability to specify customised FSMs to represent
activity behaviour. Generally, tasks in a process are
inter-related in such a way that initiation of one task is
dependent on successful completion of a set of other
tasks. However, we propose that under certain
circumstances, advantages may be gained in terms of the
overall process execution from modelling at the activity
state level.

4.1 Flexible Inter-task Dependencies
Attie, Singh, Sheth and Rusinkiewicz (1993) describes
inter-task dependencies as “the specification of
constraints on the occurrence and temporal order of
events, describing how the execution of a task is related
to that of others (based on the state of execution of other
tasks and their data outputs) and external events (e.g.
messages from the user).” However, most process
modelling languages are based on Petri Net like or
equivalent semantics, where an activity is represented as
one monolithic block that consumes all input information
once it is started, and produces all outputs when it has
finished. Inter-task dependencies therefore cannot be
specified in terms of the execution states of constituent
tasks; only ‘complete � schedule’ dependencies can be
defined.

Modelling the workflow process at the task state level
allows us to relax the restrictions on inter-task
dependency modelling to enable the specification of
inter-task dependencies on the basis of the internal states
of constituent tasks, both in terms of individual
dependencies and collections of dependencies (facilitated
through the use of a coordinator). We refer to these
relaxed dependencies as ‘fine-grained’ inter-task
dependencies. Although the traditional specification of
inter-task dependencies is sufficiently expressive to
model most business scenarios, we argue that fine-
grained dependencies have applications in the modelling
of some business processes (for example, in the scenario

presented above) and should be supported in modelling
languages.

Although the specification of inter-task dependencies at
the task state level seems to imply that dependencies can
be defined between any two arbitrary states, not all
dependencies may be practically enforced. We will
classify the types of inter-task dependencies and reason
them in the next section.

4.1.1 Classification of Inter-task Dependencies
Since inter task dependencies control the order of
execution of tasks in a process, it would be appropriate to
begin our classification of inter task dependencies with an
appreciation of the possible ordering options under the
current modelling approach. Ordering of tasks in current
workflow models can comprise sequential, parallel, or
conditional execution. The parallel execution is facilitated
through the use of fork and synchroniser coordinators,
and the conditional execution is facilitated through the
use of choice and merge coordinators.

Each of these types of ordering is enforced through
dependencies of the form ‘Y cannot be scheduled until X
completes’, which we will term typical trigger
transitions. This is the only class of inter-task constraint
that is currently specifiable in most modelling languages.
However, we observe that typical trigger transitions
constitute just one class of possible inter-task
dependencies. The proposed classification scheme of
inter-task dependencies is illustrated in Figure 5.

DEPENDENCIES

TRIGGER
TRANSITIONS

NON-TRIGGER
TRANSITIONS

TYPICAL
TRIGGER

TRANSITIONS

ATYPICAL
TRIGGER

TRANSITIONS

ending at
scheduled state

not ending at
scheduled state

starting at
completed state

not starting at
completed state

Figure 5: Classes of Inter-task Dependencies

We observe that two types of inter task dependencies
exist – one in which the transitions trigger the scheduling
of some activity, and the other where they do not. We
label inter-task dependencies where the transition ends at
a scheduled state as trigger transitions. As already noted,
typical trigger transitions describe the special case where
the transition begins at a completed state and ends at a
scheduled state.

Atypical trigger transitions are not intuitively specifiable
with the current modelling approach, and can only be
enforced through reducing the granularity of the tasks
involved in the dependency, which is undesirable for
reasons already discussed and does not really capture the
semantics of the constraint. Note that it does not make
sense to specify an atypical trigger transition from a
scheduled state to a scheduled state, because the
transition would fire immediately (assuming the
scheduling of a task requires a negligible amount of
time); this constraint would be more intuitively modelled

through a fork coordinator. Therefore, we anticipate that
atypical trigger transitions will effectively always be
defined from an active state to a scheduled state.

The example presented in Figure 4(b) illustrates the use
of an atypical inter-task trigger transition to model a
business policy. Inter-task trigger transitions are also
useful in any otherwise sequential execution scenario
where there are no data or temporal conflicts and where
knowledge that the first task has commenced is enough to
satisfy business policy or legal requirements and schedule
the next activity. In this way, all business rules and
requirements can be satisfied while allowing maximum
parallelism between activities in a process, ultimately
expediting process execution.

Non-trigger dependencies represent a constraint between
tasks that does not result in the scheduling of an activity.
An example of a non-trigger dependency is that ‘Task A
cannot be completed until Task B is completed’. These
dependencies are not able to be expressed under the
current modelling framework and further investigation is
required into the implications of these dependencies on
process execution.

Many non-trigger dependencies may not be practically
enforceable. For example, it may not be appropriate to
specify a constraint on the completion of an activity
performed by a human participant since it may result in
abnormal interaction between the human and the WFMS.
However, issues concerning interaction between the
WFMS and workflow participants may be resolved at the
implementation level. A comprehensive analysis of the
types of non-trigger dependencies that are able to be
practically enforced is a key area of future research.

4.2 Customisable Activity Behaviour
Just as activities may have different transactional,
temporal, and resource properties, they may have
different execution behaviour, and we believe that the
generic FSM may not be the most appropriate way of
representing certain classes of activities.

We are therefore investigating the relaxation of the
restriction of one predefined FSM representing all
activities in a process, and considering some of the
implications of allowing a different FSM to be associated
with each activity.

The proposal is to allow each activity to have a
customisable FSM that accurately captures its execution
behaviour as a property. For example, the execution
behaviour of a task may be more accurately modelled
through zero or more than one active states. As another
example, the suspended state may not be applicable to
some tasks, while others may require multiple types of
suspended states.

A full analysis into the circumstances under which this
enhancement may be beneficial is yet to be completed.
The issue of structural and semantic constraints on the
composition of the customisable FSMs will also require
further investigation. However, we have identified
preliminary syntactic correctness criteria for each task
FSM, as detailed below as part of the verification process.

4.3 Structural Verification of the Proposed
Modelling Enhancement

While the specification enhancement allows us to model
with greater precision, the workflow process model could
potentially become much more complex.

It is possible to create error situations when specifying
complex business processes, even under the current
modelling framework in which each activity must be
completed before process execution can proceed past the
activity and each activity is represented by a pre-defined
FSM. Verification algorithms based on graph reduction
techniques have been successfully applied to detect
structural conflicts such as deadlock and lack of
synchronisation in process models defined under the
current framework. In this section, the applicability of
such an algorithm (i.e. Sadiq and Orlowska 2000) in
detecting structural conflicts in these more descriptive
process models will be demonstrated. Such modelling
conflicts may lead to undesirable execution of some or all
possible workflow instances, and possibly prevent further
execution of the process. It is essential to correct such
problems at the design phase rather than after deploying
the workflow application.

We partition the verification process for the enhanced
workflow structures into three phases. In the first phase,
basic syntax checking is performed to ensure that all task
FSMs are well formed. In the second phase, a
transformation process is applied to translate the state-
level process model into a traditional process model in a
manner that preserves semantics and neither generates
nor removes structural conflicts. In the third phase, the
workflow model is analysed using existing algorithms to
identify inconsistencies in the model that could arise due
to conflicting use of modelling structures (specifically
due to a mismatch of split/join types).

4.3.1 Activity FSM Syntax
All activity FSMs must conform to the following
syntactic correctness properties:

• It is a directed, connected graph

• The only possible state types in the FSM are
Scheduled, Active, Completed, Suspended, and
Terminated

• All states are reachable from the Scheduled state

• It contains exactly one Scheduled state, exactly
one Completed state, and some number of
Active, Suspended, and Terminated states

• Beginning at the Scheduled state, exactly one
path is possible through the Active states to the
Completed state

• It contains only well-formed cycles. That is, all
cycles are made from a pair of transitions where
one transition originates from one of the Active
states and ends at one of the Suspended states,
and the other transitions begins at that
Suspended state and ends at that same Active
state. No other transitions are permitted to or
from the Suspended states, and no other cycles
are permitted in the machine.

4.3.2 Transformation Rules
Once the validity of all FSMs has been established, the
transformation rules can be applied. Note that these
transformation rules preserve semantics and neither
generate nor remove structural conflicts. The following
transformation rules are applied to each activity in the
process:

1. Immediately discard all Suspended states and all
transitions to and from these states.

The Suspended state necessitates a special type of
iteration that is controlled by the workflow participant
and completely unrelated to the process instance data.
These special semantics cannot be captured by existing
split and join structures. However, the integrity of the
Suspended state(s) and associated transitions has already
been established at the state level, plus these states
cannot, by definition, participate in inter-task
dependencies. Therefore, these states and corresponding
transitions cannot possibly contribute towards a structural
conflict at the process level, and removal of these nodes
and transitions cannot introduce or remove any split or
join structures into the graph. Note that the remaining
FSM must be a directed, connected, acyclic graph with all
states reachable from the Scheduled state.

Consider now the semantics of a task FSM. By
definition, the instance must be in exactly one state at any
time. All branch cases in the FSM, where more than one
outgoing transition exists from one state to more than one
other state (where the other states are internal to this
activity), thus have implicit choice semantics. The next
steps in the transformation process explicitly model these
choice semantics inside the FSM, through the correct
placement of the choice coordinators and merge
coordinators.

2. For any states that possess two or more outgoing
transitions to other states that are internal to this
activity, a choice coordinator is constructed such
that there is a transition from the state to the
coordinator, and all original outgoing transitions
of the state become outgoing transitions of the
coordinator.

3. For any states that possess two or more
incoming transitions from other states that are
internal to this activity, a merge coordinator is
constructed such that there is a transition from
the coordinator to the state, and all original
incoming transitions of the state become
incoming transitions of the merge node.

Current models do not emphasise the internal workings of
tasks (Sadiq and Orlowska 2000), and recall that
modifying task granularity is a current mechanism for the
enforcement of certain constraints under the current
modelling framework. We therefore argue that every
remaining state in the FSM is more or less equivalent in
semantics to tasks specified in a current process model,
and can be considered equivalent for the purposes of
verification.

4. Transform every remaining state into a regular
task.

This transformation replaces each original task in the
process model with a well-formed workflow, free from
the structural and grammatical errors presented in Sadiq
and Orlowska (2000). (Note that structural conflicts can
only arise when combining types of split/join structures,
and only choice/merge structures have been introduced at
this stage.) In the absence of any non-standard inter-task
dependencies (i.e. atypical trigger transitions or non-
trigger transitions), these segments of the overall models
could be aggregated into blocks in current process
models.

Inter-task dependencies have fork/synchronise semantics.
That is, all inter-task transitions ending at a state must be
fired in order to enter that state, and all inter-transitions
originating at a state must be fired upon leaving that state.
Combining the concepts of internal and external
transitions yields that all inter-task (external) transitions
leading to the state must be fired, along with one (if any)
internal transitions that lead to the state, in order to
activate a state. The corresponding situation applies for
all transitions leaving a state.

The resulting graph is therefore correct in terms of
implicit fork/synchroniser semantics. Note that the
semantics of inter-task dependencies may be explicitly
modelled through the correct placement of fork and
synchroniser coordinators although this is not required for
the purposes of verification (Sadiq and Orlowska 2000).

4.3.3 Application of Existing Algorithm
The placement of the split/join structures in the graph will
then be analysed through the application of the existing
verification algorithm (Sadiq and Orlowska 2000), which
forms the third phase of the overall verification process.

Presented below are two examples of the transformation
process being applied to a process model defined at the
activity state level in order to detect structural errors.

For simplicity, the scheduled, active and completed
activity states have been abbreviated ‘S’, ‘A’ and ‘C’,
respectively, and the suspended and terminated states
have been omitted.

The transformation illustrations remove the activity
boundaries and create new activities that are each
assigned a unique identifier. For example, the scheduled
state of task ‘A’ is transformed into an activity with the
identifier of ‘A-Scheduled’ which is abbreviated as ‘AS’.

The transformation illustrated in Figure 6 demonstrates a
process model on which an existing algorithm may be
applied in order to detect a deadlock structural error.

AS AA

S A

C

S A

C

Task A

Task B

AC

BS BA BC

Choice Merge

Choice Merge

Figure 6: Deadlock Structural Error

The example shows that a deadlock occurs whenever
there is an inter-task dependency between two tasks that
are on mutually exclusive execution paths.

Figure 7 presents a transformation resulting in a process
model on which an existing algorithm may be applied in
order to detect a lack of synchronisation structural error.

AS AA

S A

C

S C

A

Task A

Task B

AC

BS BA BC

Merge

Merge

Figure 7: Lack of Synchronization Error

This example illustrates that lack of synchronisation
occurs when an activity creates another execution path
via an atypical trigger transition and the parallel
execution paths are subsequently merged.

4.4 Additional Considerations
We have already demonstrated that structural conflicts in
process models defined at the state level may be detected
through existing verification algorithms after a
transformation process has been applied.

However, it is possible to define an inter-task dependency
between two activities that is structurally sound but is
impossible to execute. The issues that could impact on
the specification and verification of these more
descriptive process models can be broadly classified into
three classes – FSM semantics, data flow, temporal
constraints, and failure recovery.

4.4.1 Activity FSM Semantics
As already noted, the goal of a task FSM is to represent
the behaviour of a task as defined through interaction
between the user and the WFMS. As such, it is

imperative to realise that task FSMs are complex
structures with rich semantics that that must be carefully
considered in order to prevent the violation of any
semantic constraints in the enhanced (state-level) process
models.

Clearly, one example of a semantic constraint is that each
activity must be scheduled. That is, it does not make
sense to allow an inter-task dependency to ‘trigger’ or
‘allow’ any state in a task FSM if there is not such a
dependency defined on the scheduled state of the task.
Note that this requirement would be checked during the
final stage of the verification process as there must be
exactly one initial task (Sadiq and Orlowska 2000).

Moreover, no dependencies should be specified that
prohibit normal user interaction with the system. Further
investigation is required in order to detail the semantics
and types of fine-grained inter-task dependencies that can
and cannot be enforced.

4.4.2 Data Flow
Data flow is a semantic issue that needs to be considered
when enabling inter-task dependencies to be defined at
the task state level. Data is potentially produced and/or
required in each of the active states in an activity. It
should thus be possible to define the exact data item
required and produced by each active state, as opposed to
the task as a whole. Consider for example the process
fragment illustrated in Figure 8. Task A produces data
item X, task B required data item X, and task B is
scheduled when task A has commenced. Even through
the states where X is produced and required can be
reached along a directed path, there is obviously potential
for data conflict, namely in the case where B becomes
active before A is completed.

Scheduled

Active Completed

Scheduled

Active Completed

X produced X required

Figure 8: Data Conflict Produced by an Atypical
Trigger Transition

4.4.3 Temporal Constraints
It should also be noted that the introduction of fine-
grained inter-task dependencies may have implications in
terms of temporal constraints.

For example, it is obviously not useful to define a
constraint between tasks A and B such that B cannot
complete until A completes if there is also a temporal
constraint in place that B must or will always require a
shorter time than A to complete. This situation is
illustrated in Figure 9.

Scheduled

Active Completed

Scheduled

Active Completed

Expected Duration: 3 hours

Expected Duration: 2 hours

Fork

Figure 9: Potential Temporal Conflict at State Level

4.4.4 Failure Recovery
Another issue that should be considered when defining
atypical trigger transitions is the possibility of failure (i.e.
occurrence of system or application errors). Because the
introduction of atypical trigger transitions into the process
model violates the rules of (all-or-nothing) atomic
execution, it is possible that execution may have been
able to proceed past the task in the process where the
problem was experienced.

In the example illustrated in Figure 4(b), the notification
was generated as the printing activity commenced. If
there had been a problem associated with the printing
activity, the notification would have already been
generated. This situation would certainly constitute a
failure in terms of the business logic.

Failure recovery under the enhanced modelling
framework is therefore a semantic issue that must be
considered on a case-by-case basis and may not be able to
be automated inside a verification algorithm. Failure to
consider this issue may result in a complex situation
requiring a cascading semantic abort that may need to be
handled externally.

5 Conclusion
In this paper, we attempted to address the issue of limited
flexibility in and support for inter-task dependencies in
process specification languages by presenting an
alternative approach to modelling that more accurately
captures behavioural information about tasks and enables
greater precision when modelling inter-task
dependencies.

In particular, we proposed that advantages could be
gained by allowing ‘fine-grained’ inter-task dependencies
to be defined at the task state level and a customisable
FSM to be associated with each activity.

However, we noted that the advantages of the fine-
grained modelling were not forthcoming without an
equivalent increase in the complexity of the process
model and in verifying the enhanced process models. We
demonstrated the applicability of an existing verification
algorithm in ascertaining the structural integrity of the
more descriptive process models. We then outlined a
number of issues that should be considered in order to
complete the verification of the complex process models
and make a more accurate assessment on the value of the
proposed modelling technique.

The areas of future research that could be based on the
work presented in this paper include:

• Formalisation of inter-task dependencies and the
transformation process for subsequent
verification,

• A full investigation into implication of the
proposed modelling technique into the areas of
data flow, temporal constraints, and failure
recovery, and

• A full analysis of the types of inter-task
dependencies that can and cannot be enforced in
order to preserve normal interaction between the
user and the WFMS.

6 References
Aalst, W.M.P. van der and Hofstede, A.H.M. ter. (2002):

An Alternative Way to Analyze Workflow Graphs. In
Proceedings of 14th International Conference, on
Advanced Information Systems Engineering
(CAiSE’02). Proceedings Lecture Notes, 2002, pp.
757-60.

Alonso, G. and Schek, H.-J. (1996): Research Issues in
Large Workflow Management Systems. Proc. of NFS
Workshop on Workflow and Process Automation in
Information Systems State-of-the-Art and Future
Directions, Edited-by A. Sheth, Athens, Georgia, May
1996.

Attie, P.C., Singh, M.P., Sheth, A. and Rusinkiewicz, M.
(1993): Specifying and Enforcing Intertask
Dependencies. In Proceedings of the 19th VLDB,
Dublin, Ireland, 1993.

Casati, F., Ceri, S., Pernici, B. and Pozzi, G. (1995):
Conceptual Modeling of Workflows. In Proceedings of
14th Object Oriented and Entity-Relationship
Approach international Conference, Gold Coast,
Australia, Springer Verlag Lecture Notes in Computer
Science 341-354, 1995.

Leymann, F. and Atlenhuber, W., (1994): Managing
Business Processes as an Information Resource. IBM
Systems Journal, Vol 33, No2, 1994Sadiq, S. (2000):
Handling Dynamic Schema Change in Process Models.
In Proceedings of the 11th Australian Database
Conference, Canberra, Australia. Jan 27 - Feb 02,
2000. IEEE Computer Society, 2000.

Sadiq, S., Sadiq and W., Orlowska, M. (2001): Pockets of
Flexibility in Workflow Specifications. In Proceedings
of the 20th International Conference on Conceptual
Modelling (ER2001). Yokohama, Japan. November 27-
30, 2001.

Sadiq, W. and Orlowska, M. (2000): Analysing Process
Models using Graph Reduction Techniques. In
Information Systems, Vol. 25, No. 2, pp. 117-134,
2000. Elsevier Science. June 2000.

Workflow Management Coalition (1995): The Workflow
Reference Model, Document No. TC00-1003.

Workflow Management Coalition (1999): Workflow
Management Coalition - Terminology, Document No.
TC00-1011. Issue 3.0.

