Customizing I nternal Activity Behaviour for
Flexible Process Enfor cement

Belinda M. Carter, Joe Y .-C. Lin, Maria E. Orlowska

School of Information Technology and Electrical Eegring
The University of Queensland
St Lucia, Brisbane 4072, Queensland

{bcarter, jlin, naria}@tee.uq.edu. au
Abstract These criticisms include:
Workflow technology has met with success in a \arid * Limited support for inter-task dependencies
industries, although several limitations have ermdrg « Inflexibility in specification languages

One such drawback is the inflexibility of specifica
languages, including a lack of support for inteskta . .)
dependencies. Expressiveness of the specification ® Difficulty in integration of heterogeneous

< Difficulty in modifying process dynamically

language is believed to be a determining factor of workflow systems
workflows applicability and its industrial value asA number of recent enhancements dealing with dyaami
solution for process support. modification of workflows (e.g. Sadig 2000), pockeif

This paper attempts to address this limited Ianguagexibility (e.9. Sadig, S., Sadig, W. and Orlowska01)
expressiveness by suggesting an alternative apprac nd smar_ter verification during the process degigase
modelling that more accurately captures behaviourd-9- Sadig and Orlowska 2000, Aalst and HofsteliDp

information about tasks and enables greater peecisi’@veé made contributions towards overcoming some of
when modelling inter-task dependencies. these limitations. However the potential existsffather

. .improvement.
Current workflow technology associates one generic

predefined finite state machine with each actiiitya [N this paper, we attempt to address the issudinaéd
process, and inter-task dependencies of the tyB@xmlllty in the specification and support fortén-task

‘completion of one activity triggers schedulingtbé next dependencies in workflow modelling languages and
activity’ are also enforced. corresponding implementations. In particular, wdl wi

. .. Investigate the specification of internal actiitghaviour
The potential |mp'r(.)ve.ment relaxes the;se co.ng,tramts and of ‘fine-grained’ inter-task dependencies ddin
enab[e the specification of user-defmed finite testa etween activity states in the process model. Wihiée
maCh'nes to represent each activity and Support tE?aoposed extension can support more flexible eimzut
modelling of inter-task constraints at the activetate o impact on process complexity and correctnessalgh
level. _In this paper, we present an |ntroduct|_onth_|s not be ignored. We will demonstrate that the enbdnc
qu?”'ng extension "’."’_‘d Qemonstrqte the applidyoi process model can also be verified with an estadydis
existing workflow verification algorithms to theseore algorithm (Sadiq and Orlowska 2000) that was deyedo

descriptive process models. for traditional (activity-level) workflow process
Keywords: Workflow, Business Process Modelling,specification.

Verification, Task Behaviour, Inter-task Dependesci
2 What isan Activity?

1 Introduction Since this paper focuses on the modelling of irlern
Workflow technology has been used in practice fogctivity behaviour and inter-task dependencies hat t
managing process oriented business activities fanym activity state level, it would seem appropriaténig point
years. However, enterprises are undergoing raptl a clarify the definition of an activity. There agars to be
significant changes, and current workflow technglé® no commonly accepted definition in the literature,
no longer sufficient to manage complex businesgithough most converge on “a piece of work thatmir
processes and satisfy business’ requirements. one logical step within a process” (Workflow
It is important to consider improvements and exters Management Coalition 1995) or “some work to be done
to the current solutions to overcome the limitasiagn by a person, by a software system or by both ofnthe

order to make workflow technology more flexible andCasati, Ceri, Pernici and Pozzi 1995). = Some
limitations of workflow technology have emergedpublications differentiate a task from an activitipr
(Alonso and Schek 1996). example, defining that a task represents “a coaanat-

time work request to a particular person to perfam
specific activity” (Leymann and Atlenhuber 1994).

Copyright © 2003, Australian Computer Society, Indhis We will use the terms ‘task’ and ‘activity’
paper appeared &ifteenth Australasian Database Conference jnterchangeably, and define tasks as logical wfitsork

(ADC2004), Dunedin, New Zealand, Conferences in Researqnithin a process that may be either manual or aated

and Practice in Information Technology, Vol. 27 al$-Dieter . -
Schewe and Hugh Williams, Eds. Reproduction fordeodc, but performed by a single workflow participant.

not-for profit purposes permitted provided thisttisxincluded.

2.1 Granularity instance to another, for example, by indicating

It is important to consider the issue of granujairitorder commencement or completion of the activity to the
to define an activity more precisely. In a workiflo WEMS.

process model, the finest structure is an actiaityg the

coarsest is the process as a whole. A businessas',yfoc3 Control Flow

could be modelled as one activity or multiple atite. ~ Current technology also enforces that the finaestd an
However, an activity boundary is generally definied activity (generally ‘completed’) triggers the preseflow
respect to one of three factors: to the next activity in the process, according $tered
rocess definition. Transitions triggered from the

. . ompletion of one or more activities are the ongyvin
with a set of data objects that are processed P

manipulated by the activity. For transactiona}(ﬂhICh the s.chedulmg of tasks may bg contrqlled.
purposes, data objects being processed in oHeorder to illustrate process execution, we intioe two

task may be isolated from the access of othdyPes of objects: nodes and control flow. Eale is
activities. classified into three subclasses: task, coordinatud

. state. Atask, graphically represented by a rectangle,
© Who _(performer) —~ Each _a_ct|V|ty has a_nrepresents the work to be done to achieve some
associated pe.rforme'r or participant possess'rl9ojectives. It is also used implicitly to build smmce,
the relevant skills or job role. fork, and synchronizer structures. Aoordinator,
* When (temporal) — Each activity may have a sajraphically represented by a circle, is used tostant
of associated temporal constraints or propertieghoice and merge structures. In addition,shges within
such as the minimum, average, or maximuman activity are graphically represented by an sdip
durations to be expended for the activity. FoControl flow links two nodes in the graph and is
example, an activity may be defined such thagraphically represented by a directed edge. Itesgts
one hour is spent performing a particular task. execution order and flow between its tail and heades.
Clearly, the granularity of an activity determingse The modelling objects are presented in Figure 2.
complexity of the model and subsequent executiothef

« What (data object) — An activity is associatedé

workflow process, since the performer is required t

interact with the Workflow Management System O —_— O
(WFMS) for each individual activity. The workflow

modeller should specify the process in order toieseh Task Condition Control flow State
the most efficient performance while enforcing aangn : : :
constraints as possible. Figure 2: Process M odelling Objects

As previously mentioned, traditional workflow lirsithe
control flow from the completed state of an acyivid the
scheduled state of the next activity. Figure 8ladtrates
control flow in traditional workflow technology. dte
that for simplicity, the scheduled, active and cteten
activity states have been abbreviated as ‘'S’, Bd &',
respectively, and the suspended and terminate@sstat

2.2 Execution

Each activity in a process has an associated fstdge
machine (FSM) to represent the execution of araims
of the activity. The FSM consists of a set of blisistates
and a set of transitions between these statesq2800).
States in the machine represent the internal dondit

that define the status of an activity instance padicular 5ve been omitted. The dashed line indicates-tatk
pointin time (Workflow Management Coalition 1999). 4 process level) control flow.

The generic FSM presented by the Workflow

Management Coalition is suggested to have thesstsdte e Q P e Q

Scheduled, Active, Completed, Suspended, and

Terminated (Workflow Management Coalition 1995) and e - G

is presented in Figure 1. Current workflow products

enforce that the FSM is predefined for all actastiin a Task A N Task B

process, although different products may vary ieirth Figure 3(a): Traditional control flow

choice of FSM. In relation to actual process execution, this ret#bn

enforces that all activities ‘before’ the currergiyecuting
task(s) in terms of control flow must have been
completed.

Scheduled 'I Completed

3.1 Limitationsof Traditional Control Flow

The current approach is obviously restrictive iattnly
one type of inter-task dependency can be modelheld a

Suspended
subsequently enforced.

Figure I .ExampIeFSM for an Activity Instance Figure 3(b) illustrates an example of an inter-task
The WFMS is able to observe only the states reptede gependency that cannot be modelled under the durren
in the FSM. Generally, the transitions betweensfages ;o kflow specification framework.

represent user events, and the workflow participant
controls transitions from one internal state ofaativity

Terminated

Printing Generate Email

Task A Task B S~

(A
©

Figure 3(b): Relaxed Control Flow e Q
©,

We argue that there is a need for the ability talehcuch
control flow to provide intermediate task behaviour

management. Next Activity
For example, consider a business scenario where an Figure 4(b): Business Policy Modelled Under
employee is able to email a document to the pgntin Proposed Framework

department for printing and binding and then pipktloe

document when it is ready. Assume that the printing Proposed M odelling Enhancement

department is busy and so cannot guarantee Wh@t@ p p e 1o the absence of any constraints on activity
of work will be started, however it can guaranteatt yefinition, we are investigating an alternativenéi
once a printer has started working on a particulyfiaineq' approach to workflow process modelliingttha
document, the document will be ready for pickupi® jn\olves increasing the expressiveness of spetitiica
hour. A business policy was thus created such @sat |anqya0es in order to more accurately capture task
soon as a printer commenced work on a particulgfonayiour and model inter-task constraints. Thegsed
document, an email was automatically generatedsant modelling enhancement is comprised of two aspette —

to the employee informing them that their documeiit ity 1o more accurately model inter-task deperuites

be ready for collection in one hour. and the ability to specify customised FSMs to regné
This policy clearly requires the specification of @ter- activity behaviour. Generally, tasks in a process
task dependency such that the task to generatentaé inter-related in such a way that initiation of otask is

is triggered when the printing activity enters ‘#istive’ dependent on successful completion of a set ofrothe
state. However, the current modelling approachhefin tasks. However, we propose that under certain
enforce dependencies below the activity level.riteoto circumstances, advantages may be gained in terrise of
model this scenario with the existing modellingoverall process execution from modelling at thevitgt
technique, the granularity of the printing task Vdoneed state level.

to be reduced. This example is modelled under tinesot

approach in Figure 4(a). 4.1 FlexibleInter-task Dependencies

Clearly, this is not an acceptable way to modeé thiAttie, Singh, Sheth and Rusinkiewicz (1993) dessib
scenario, as splitting the printing task into tvesks is inter-task dependencies as “the specification of
neither intuitive in terms of modelling nor effaely constraints on the occurrence and temporal order of
enforceable in terms of execution, and the polioud events, describing how the execution of a taslelated
probably not be enforced. Figure 4(b) illustrates ideal to that of others (based on the state of execwifasther
modelling approach, in which the specification riidder tasks and their data outputs) and external evenmts (
transitions at the task state level is permitted. messages from the user).” However, most process
modelling languages are based on Petri Net like or
equivalent semantics, where an activity is repriestas
one monolithic block that consumes all input infation
Q once it is started, and produces all outputs widras
finished. Inter-task dependencies therefore carimmt
G specified in terms of the execution states of dturesit
- tasks; only ‘complete> schedule’ dependencies can be
(A
©,

Printing Commenced Generate Email

-

. defined.
CO—(|-t

Modelling the workflow process at the task stateele
allows us to relax the restrictions on inter-task
dependency modelling to enable the specification of
inter-task dependencies on the basis of the intstates
Figure 4(a): Business Policy Modelled Under Current ~ Of constituent tasks, both in terms of individual

Framework dependencies and collections of dependenciesi(éded
through the use of a coordinator). We refer to éhes
relaxed dependencies as ‘fine-grained’ inter-task
dependencies. Although the traditional specifaratof
inter-task dependencies is sufficiently expressiee
model most business scenarios, we argue that fine-
grained dependencies have applications in the rioglel
of some business processes (for example, in theagoe

Printing Continued Next Activity

presented above) and should be supported in mogellithrough a fork coordinator. Therefore, we anticgpttat
languages. atypical trigger transitions will effectively alwaybe

Although the specification of inter-task dependeacat defined from an active state to a scheduled state.
the task state level seems to imply that dependsr@@n The example presented in Figure 4(b) illustrates uke
be defined between any two arbitrary states, nbt af an atypical inter-task trigger transition to rsbca
dependencies may be practically enforced. We wibusiness policy. Inter-task trigger transitions also
classify the types of inter-task dependencies aadan useful in any otherwise sequential execution sdenar
them in the next section. where there are no data or temporal conflicts ahdrev
knowledge that the first task has commenced is giméol
4.11 Clasdfication of Inter-task Dependencies satisfy business policy or legal requirements arfbdule
Since inter task dependencies control the order #1€ next activity. In this way, all business rulasd
execution of tasks in a process, it would be apjaitgpto requirements can be satisfied while allowing maximu
begin our classification of inter task dependenuigk an parallelism between activities in a process, ultéha
appreciation of the possible ordering options untther €xpediting process execution.
current modelling approach. Ordering of tasks iment Non-trigger dependencies represent a constraint between
workflow models can comprise sequential, paralt#l, tasks that does not result in the scheduling odcivity.
conditional execution. The parallel execution isilfiated An example of a non-trigger dependency is that KTAs
through the use of fork and synchroniser coordisato cannot be completed until Task B is completed’.eSeh
and the conditional execution is facilitated throuthe dependencies are not able to be expressed under the
use of choice and merge coordinators. current modelling framework and further investigatis
Each of these types of ordering is enforced througiquired into the implications of these dependencie
dependencies of the form ‘Y cannot be scheduleil Xint process execution.
completes’, which we will termtypical trigger Many non-trigger dependencies may not be pragicall
transitions. This is the only class of inter-task constrainenforceable. For example, it may not be approptiate
that is currently specifiable in most modellingdaages. specify a constraint on the completion of an ativi
However, we observe that typical trigger transsionperformed by a human participant since it may teisul
constitute just one class of possible inter-taskbnormal interaction between the human and the WFMS
dependencies. The proposed classification scheme Wdwever, issues concerning interaction between the
inter-task dependencies is illustrated in Figure 5. WFMS and workflow participants may be resolvedhat t
implementation level. A comprehensive analysighef
types of non-trigger dependencies that are abldeto

DEPENDENCIES

ending at | not ending at practically enforced is a key area of future reclear
l_scheduled state scheduled state_l
4.2 Customisable Activity Behaviour
TRIGGER NON-TRIGGER o . .
TRANSITIONS TRANSITIONS Just as activiies may have different transactional
i at i at temporal, and resource properties, they may have
starting at not starting al . . . A
completed state—L—completed Siate different execution behaviour, and we believe ttre
I I generic FSM may not be the most appropriate way of
TYPICAL ATYPICAL representing certain classes of activities.
TRIGGER TRIGGER
TRANSITIONS TRANSITIONS We are therefore investigating the relaxation oé th

)) restriction of one predefined FSM representing all
Figures: Classes of Inter-task Dependencies activities in a process, and considering some & th
We observe that two types of inter task dependsncigmplications of allowing a different FSM to be asited
exist — one in which the transitions trigger thaestuling with each activity.

of some activity, and the other where they do ndle The proposal is to allow each activity to have a

label inter-task depe_ndenues _V\{here the transeus at customisable FSM that accurately captures its di@tu
a scheduled state &$gger transitions. As already noted, behaviour as a property. For example, the executio

typical trigger trans_itions describe the special case Wherq)ehaviour of a task may be more accurately modelled
the transition begins at a completed state and @0@s y,6,,9h zero or more than one active states. Ashan

sche_duled. state. o 3 example, the suspended state may not be applitable
Atypical trigger tranditions are not intuitively specifiable some tasks, while others may require multiple types
with the current modelling approach, and can ordy bsuspended states.

enforced through reducing the granularity of thek& A f| analysis into the circumstances under whibfs

involved in the dependency, which is undesirable foenhancement may be beneficial is yet to be conglete

reasons already discussed and does not reallyreapl 11 jssue of structural and semantic constraintghen

semantics of the constraint. No?e that it dogsmake composition of the customisable FSMs will also fegu
sense to specify an atypical trigger transitionmfr@ ¢ 1her investigation. However, we have identified

scheduled state to a scheduled state, because Wgjiminary syntactic correctness criteria for eaak

transition ~would ~fire immediately (assuming thecqy; a5 detailed below as part of the verificapioocess
scheduling of a task requires a negligible amouint o~ P '

time); this constraint would be more intuitively dedled

4.3 Structural Verification of the Proposed 4.3.2 Transformation Rules

Modelling Enhancement Once the validity of all FSMs has been establishied,
While the specification enhancement allows us taleho transformation rules can be applied. Note thasedhe
with greater precision, the workflow process maootmild transformation rules preserve semantics and neither
potentially become much more complex. generate nor remove structural conflicts. Theofeihg
It is possible to create error situations when ipieg transformation rules are applied to each activitythe
complex business processes, even under the currBhpC€SS:
modelling framework in which each activity must be 1. Immediately discard all Suspended states and all
completed before process execution can proceedlpast transitions to and from these states.

activity and each activity is represented by ageBred The Suspended state necessitates a special type of
FSM. Verification algorithms based on graph redwtti jteration that is controlled by the workflow paitiant
techniques have been successfully applied to detegid completely unrelated to the process instanda. da
structural conflicts such as deadlock and lack ofhese special semantics cannot be captured byirexist
synchronisation in process models defined under thglit and join structures. However, the integrity the
current framework. In this section, the applicépibf Suspended state(s) and associated transitionsireasiya
such an algorithm (i.e. Sadiq and Orlowska 2000) iBeen established at the state level, plus thesessta
detecting structural conflicts in these more d@si@ cannot, by definition, participate in inter-task
process models will be demonstrated. Such modellijependencies. Therefore, these states and congingo
conflicts may lead to undesirable execution of semall transitions cannot possibly contribute towardsracstiral
possible workflow instances, and possibly preverther conflict at the process level, and removal of thesdes
execution of the process. It is essential to corsech and transitions cannot introduce or remove anyt spli
problems at the design phase rather than afteogiegl join structures into the graph. Note that the rieing
the workflow application. FSM must be a directed, connected, acyclic grapin ai
We partition the verification process for the enfemh states reachable from the Scheduled state.

workflow structures into three phases. In thetfiisase, Consider now the semantics of a task FSM. By
basic syntax checking is performed to ensure thaask definition, the instance must be in exactly on¢éesta any
FSMs are well formed. In the second phase, @me. All branch cases in the FSM, where more thaa
transformation process is applied to translate sfa¢e- outgoing transition exists from one state to mbentone
level process model into a traditional process rhode other state (where the other states are internahit
manner that preserves semantics and neither geserajctivity), thus have implicit choice semantics. eTimext
nor removes structural conflicts. In the third phiathe steps in the transformation process explicitly nahbese

workflow model is analysed using existing algorito choice semantics inside the FSM, through the correc
identify inconsistencies in the model that couldadue placement of the choice coordinators and merge
to conflicting use of modelling structures (spe@fly coordinators.

due to a mismatch of split/join types). 2. For any states that possess two or more outgoing
transitions to other states that are internal i® th
activity, a choice coordinator is constructed such
that there is a transition from the state to the
coordinator, and all original outgoing transitions
of the state become outgoing transitions of the
coordinator.

For any states that possess two or more

431 Activity FSM Syntax

All activity FSMs must conform to the following
syntactic correctness properties:

« ltis a directed, connected graph

* The only possible state types in the FSM are
Scheduled, Active, Completed, Suspended, and 3.

Terminated
All states are reachable from the Scheduled state

It contains exactly one Scheduled state, exactly
one Completed state, and some number of
Active, Suspended, and Terminated states

incoming transitions from other states that are
internal to this activity, a merge coordinator is
constructed such that there is a transition from
the coordinator to the state, and all original
incoming transitions of the state become
incoming transitions of the merge node.

« Beginning at the Scheduled state, exactly ongurrent models do not emphasise the internal wgekof
path is possible through the Active states to thgysks (Sadiq and Orlowska 2000), and recall that
Completed state modifying task granularity is a current mechanismthe

« It contains only well-formed cycles. That is, allenforcement of certain constraints under the ctirren
cycles are made from a pair of transitions whergodelling framework. We therefore argue that every
one transition originates from one of the Activelémaining state in the FSM is more or less equntaile
states and ends at one of the Suspended staggnantics to tasks specified in a current procesgem
and the other transitons begins at tha@nd can be considered equivalent for the purpo$es o
Suspended state and ends at that same Activerification.
state. No other transitions are permitted to or 4. Transform every remaining state into a regular
from the Suspended states, and no other cycles task.
are permitted in the machine.

This transformation replaces each original tasktha —(A

process model with a well-formed workflow, free rfro

the structural and grammatical errors presente8aidiq ©,

and Orlowska (2000). (Note that structural cotslican @ Task A @
only arise when combining types of split/join stuwres, o—C A

and only choice/merge structures have been intextiat

this stage.) In the absence of any non-standaed-iask ©

dependencies (i.e. atypical trigger transitions non- Task B

trigger transitions), these segments of the ovenaliels ﬂ

could be aggregated into blocks in current process

models. AS I__.l AA l__.l AC
Inter-task dependencies have fork/synchronise secsan @ / @
That is, all inter-task transitions ending at aestaust be

fired in order to enter that state, and all intamsitions BS [—{ BA[—{ BC

originating at a state must be fired upon leavirgg ttate. :
Co?nbinin% the concepts of intgrnal arrll(? external Figure 6: Deadlock Structural Error

transitions yields tha#ll inter-task (external) transitions The example shows that a deadlock occurs whenever
leading to the state must be fired, along waitie (if any) there is an inter-task dependency between two theks
internal transitions that lead to the state, ineorto are on mutually exclusive execution paths.

activate a state. The corresponding situationiepbr Figure 7 presents a transformation resulting inacess

all transitions leaving a state. model on which an existing algorithm may be applied
The resulting graph is therefore correct in ternfs drder to detect a lack of synchronisation strudtenaor.
implicit fork/synchroniser semantics. Note that the

semantics of inter-task dependencies may be etiplici (—(A)

modelled through the correct placement of fork and Task A (O ,"

synchroniser coordinators although this is not ireglfor a‘—;— @

the purposes of verification (Sadiq and Orlowsk@®0 !

4.3.3 Application of Existing Algorithm kB

The placement of the split/join structures in thapi will

then be analysed through the application of thetieg

verification algorithm (Sadiq and Orlowska 2000)ieh ﬁ

forms the third phase of the overall verificationgess.

Presented below are two examples of the transfawmat — As —{ aa |—{ AC

process being applied to a process model defingHeat / @
activity state level in order to detect structigabrs.

For simplicity, the scheduled, active and completed | BS |—| BA [—{ BC

activity states have been abbreviated ‘S’, ‘A’ af],] o
respectively, and the suspended and terminateésstat Figure 7: Lack of Synchronization Error
have been omitted. This example illustrates that lack of synchronimati

The transformation illustrations remove the agjivit 0ccurs when an activity creates another executith p
boundaries and create new activities that are ea¥i® an atypical trigger transition and the parallel
assigned a unique identifier. For example, the cicleel ~€Xecution paths are subsequently merged.

state of task ‘A’ is transformed into an activitythvthe

identifier of ‘A-Scheduled’ which is abbreviated'as’. ~ 44 Additional Considerations _
The transformation illustrated in Figure 6 demoatsts a W€ have already demonstrated that structural atsfin

process model on which an existing algorithm may bR/0C€SS models defined at the state level may teetel

applied in order to detect a deadlock structunairer through ~ existing verification algorithms after a
transformation process has been applied.
However, it is possible to define an inter-tasketefency
between two activities that is structurally sound ks
impossible to execute. The issues that could itnpac
the specification and verification of these more
descriptive process models can be broadly cladsifit
three classes — FSM semantics, data flow, temporal
constraints, and failure recovery.

4.4.1 Activity FSM Semantics

As already noted, the goal of a task FSM is to esgnt
the behaviour of a task as defined through interact
between the user and the WFMS. As such, it is

imperative to realise that task FSMs are complex
structures with rich semantics that that must brefally
considered in order to prevent the violation of any
semantic constraints in the enhanced (state-lgvebess
models.

Clearly, one example of a semantic constraintas ¢éach
activity must be scheduled. That is, it does natken
sense to allow an inter-task dependency to ‘trigger
‘allow’ any state in a task FSM if there is not Bua
dependency defined on the scheduled state of #ie ta
Note that this requirement would be checked duthrey

final stage of the verification process as therestirhe

exactly one initial task (Sadiq and Orlowska 2000). Expected Duration: 2 hours

Moreover, no dependencies should be specified thatprigyre9: Potential Temporal Conflict at State Level
prohibit normal user interaction with the systeRurther

investigation is required in order to detail thensetics 4.4.4 Failure Recovery
and types of fine-grained inter-task dependentiasdan
and cannot be enforced.

Scheduled

Another issue that should be considered when agfini
atypical trigger transitions is the possibilityfaflure (i.e.
442 DataFElow occurrence of system or application errors). Beedhe

i o) introduction of atypical trigger transitions intoet process

required in each of the active states in an agtiMit roplem was experienced.

should thus be possible to define the exact da&ta it . - it
required and produced by each active state, asseppo In the example illustrated n I_:lgure ‘.Kb)’ the lon
was generated as the printing activity commencéd. |

the task as a whole. Consider for example the gmoce) : o
fragment illustrated in Figure 8. Task A producegad there had been a problem associated with the pyinti

item X, task B required data item X, and task B iglctlwty, the notification would have already been

scheduled when task A has commenced. Even throuEﬁnerated' This situation would certainly conggita

the states where X is produced and required can eIIure in terms of the business logic.

reached along a directed path, there is obviousigrgial Failure recovery under the enhanced modelling
for data conflict, name|y in the case where B besom framework is therefore a semantic issue that mest b
active before A is completed. considered on a case-by-case basis and may nbldma
be automated inside a verification algorithm. ailto
consider this issue may result in a complex situmati
requiring a cascading semantic abort that may hedx
handled externally.

Scheduled Scheduled

Completed Completed

X pro&liuced X relquired 5 Conclusion

In this paper, we attempted to address the isslimiéd
flexibility in and support for inter-task depend&xin
process specification languages by presenting an
443 Temporal Constraints alternative approach to modelling that more acelyat
captures behavioural information about tasks aradles
greater precision when modelling inter-task
dependencies.

In particular, we proposed that advantages could be
?ined by allowing ‘fine-grained’ inter-task dependies

Figure 8: Data Conflict Produced by an Atypical
Trigger Transition

It should also be noted that the introduction afefi
grained inter-task dependencies may have implicatio
terms of temporal constraints.

For example, it is obviously not useful to define
constraint between tasks A and B such that B can be defined at the task state level and a custite
complete until A completes if there is also a temapo FSM to be associated with each activity
constraint in place that B must or will always regua '

shorter time than A to complete. This situation j§lowever, we noted that the advantages of the fine-
illustrated in Figure 9. grained modelling were not forthcoming without an

equivalent increase in the complexity of the preces
model and in verifying the enhanced process modals.
demonstrated the applicability of an existing \viedfion
algorithm in ascertaining the structural integrdaf the
more descriptive process models. We then outliaed
number of issues that should be considered in aer
complete the verification of the complex procesdets
and make a more accurate assessment on the valoe of
proposed modelling technique.

The areas of future research that could be basetheon
work presented in this paper include:

» Formalisation of inter-task dependencies and the
transformation process for subsequent
verification,

A full investigation into implication of the
proposed modelling technique into the areas of
data flow, temporal constraints, and failure
recovery, and

« A full analysis of the types of inter-task
dependencies that can and cannot be enforced in
order to preserve normal interaction between the
user and the WFMS.

6 References

Aalst, W.M.P. van der and Hofstede, A.H.M. ter.@20
An Alternative Way to Analyze Workflow Graphs. In
Proceedings of 14™ International Conference, on
Advanced Information Systems Engineering
(CAISE’'02). Proceedings Lecture Notes, 2002, pp.
757-60.

Alonso, G. and Schek, H.-J. (1996). Research Issues
Large Workflow Management Systentaroc. of NFS
Workshop on Workflow and Process Automation in
Information Systems Sate-of-the-Art and Future
Directions, Edited-by A. Sheth, Athens, Georgia, May
1996.

Attie, P.C., Singh, M.P., Sheth, A. and Rusinkieayilsl.
(1993): Specifying and Enforcing Intertask
Dependencies. InProceedings of the 19th VLDB,
Dublin, Ireland, 1993.

Casati, F., Ceri, S., Pernici, B. and Pozzi, G.96)9
Conceptual Modeling of Workflows. IRroceedings of
14th Object Oriented and Entity-Relationship
Approach international Conference, Gold Coast,
Australia, Springer Verlag Lecture Notes in Compute
Science 341-354, 1995.

Leymann, F. and Atlenhuber, W., (1994). Managing
Business Processes as an Information ResoliBdé.
Systems Journal, Vol 33, No2, 1994Sadiq, S. (2000):
Handling Dynamic Schema Change in Process Models.
In Proceedings of the 11th Australian Database
Conference, Canberra, Australia. Jan 27 - Feb 02,
2000. IEEE Computer Society, 2000.

Sadiq, S., Sadiq and W., Orlowska, M. (2001): Ptxké
Flexibility in Workflow Specifications. IfProceedings
of the 20th International Conference on Conceptual
Modelling (ER2001). Yokohama, Japan. November 27-
30, 2001.

Sadiqg, W. and Orlowska, M. (2000): Analysing Praces
Models using Graph Reduction Techniques. In
Information Systems, Vol. 25, No. 2, pp. 117-134,
2000. Elsevier Science. June 2000.

Workflow Management Coalition (1995The Workflow
Reference Model, Document No. TC00-1003.

Workflow Management Coalition (1999)Workflow
Management Coalition - Terminology, Document No.
TCO00-1011. Issue 3.0.

