
DAC: Database Application Context Analysis applied to
Enterprise Applications

Johannes Wust Carsten Meyer Hasso Plattner

Hasso Plattner Institute for Software Systems Engineering,
University of Potsdam,

PO Box 14440, Potsdam, Germany,
Email: johannes.wust@hpi.uni-potsdam.de

Abstract

In today’s fast-paced business environment, we see an
ongoing trend towards the need for analytics on the
latest operational data. The data management layer
of enterprise applications needs to adapt to this re-
quirement and In-Memory Column Stores have been
proposed as a new architecture that can handle such
mixed workload scenarios. A thorough understand-
ing of the resulting query workload is required to
validate and optimize data management concepts for
this new challenge. Consequently, this paper intro-
duces Database Application Context (DAC) analysis
—an holistic framework to analyze database work-
loads, data characteristics as well as access patterns
on specific domain types. We present results for a pro-
ductive enterprise resource planning system, as well
as widely accepted database benchmarks for transac-
tional and mixed workloads. In contrast to existing
work, we have analyzed correlations between issued
queries and the domain types of accessed attributes.
Our main findings are (i) that enterprise workloads
are read heavy, (ii) that specific database operators
predominantly operate on attributes with a specific
domain type, and (iii) that data characteristics differ
depending on the data type. Furthermore, based on
our analysis of trends in modern enterprise applica-
tions, we expect workloads with an increased runtime
share of complex queries in the future. These findings
help in designing and optimizing the data manage-
ment layer of modern enterprise applications.

Keywords: Database, In-Memory Database, Work-
load Analysis, Enterprise Applications

1 Introduction

A traditional enterprise IT landscape largely sepa-
rates systems for operational data management and
reporting. The main reasons for this fact are fun-
damental differences in functional and performance
requirements of both domains (Chaudhuri & Dayal
1997). However, companies often demand more flexi-
ble, ad-hoc reporting on the latest data, also referred
to as Operational Business Intelligence (Gillin 2007,
Golfarelli et al. 2004, Kuno et al. 2010, White 2005).
To avoid an additional load of analytical capabilities
on the operational database, these applications typ-
ically rely on synchronized copies of the operational
data, so-called operational data stores (White 2005).

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Thirty-Seventh Australasian Computer
Science Conference (ACSC2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 147, Bruce H. Thomas and
David Parry, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

Maintaining such a redundant real-time copy is com-
plex and expensive.

A radically different approach has been proposed
by database architectures that are designed for a
mixed workload of both, transactional and analytical
queries (Plattner 2009, Kemper & Neumann 2010).
The main reasons for the increased performance that
allows processing both type of query workloads on
a single database instance are massive intra-query
parallelism on many-core CPUs and a primary data
store in main memory instead of disks or SSDs. It is
now possible to store and process data sets of enter-
prise applications, such as enterprise resource plan-
ning (ERP) systems, entirely in main memory (Plat-
tner 2009). Holding the entire data set of an appli-
cation in main memory, rather than on secondary
storage such as hard disks and optimizing data ac-
cess towards main memory and CPU-integrated mem-
ory, offers data access performance that is in orders
of magnitudes faster than traditional disk-based sys-
tems. Applied to the domain of enterprise applica-
tions, the performance gain is so dramatic, that it
becomes feasible to build analytical capabilities on
top of transactional systems. Additionally, the per-
formance increase allows a rethink of the design of
database schema. As an example, complex material-
ized aggregates that require a predefinition of avail-
able aggregations can be replaced by dynamic views
that aggregate on the fly, enabling a simpler and more
flexible database schema.

Optimizing data structures of the data manage-
ment layer for these new applications requires a thor-
ough knowledge of the resulting workload in such a
scenario with a mix of transactional and analytical
applications on a single database instance. Therefore,
the objective of this research is to improve the un-
derstanding of current and anticipate future database
workloads of enterprise applications to optimize the
data structures of in-memory databases for these sce-
narios. As we are right at the beginning of this rev-
olutionary trend, we do not have access to a large
productive database installation running in such a
mixed scenario. Therefore, our approach presented in
this paper is to start with an analysis of a large, pro-
ductive ERP system as a representative for a trans-
actional system. Based on this baseline, we look
into two areas to understand how a mixed workload
will look like: (i) we analyze an existing database
benchmark, specifically designed for mixed workload,
and (ii) we analyze recent developments in enterprise
applications and formulate expected changes to the
transactional baseline workload. It is important to
note, that the obvious approach of combining the
queries of existing transactional and analytical appli-
cations fails due to different data schema, as explained
in more detail in Section 5. As a foundation of these

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

39



workload analyses, we have defined a framework to
analyze database workloads by classifying queries and
data access patterns. In contrast to existing work, we
have also analyzed correlations between the domain
types of attributes and data access patterns across
workloads.

The contributions of this paper are as follows:

• Database Application Context (DAC) Analysis
—A framework used to extract and parse queries,
database operations, and data characteristics, as
well as execution times from different SQL work-
loads

• A classification and quantification of queries,
database operations and data schema definitions
from a productive enterprise system, as well as a
benchmark for mixed enterprise workloads

• An analysis of the expected changes of the
database workload due to new enterprise appli-
cations, as well as changed database schema.

This paper is structured as follows: Section 2 gives
a brief overview of the basic concepts of in-memory
data management for enterprise applications and dis-
cuss trends we see in modern enterprise applications.
Section 3 describes our framework DAC for classifying
database workloads. In Section 4, we introduce the
analyzed database workloads and present the results
of our analysis in Section 5. We discuss the results
of the workload analysis together with the trends we
see in modern enterprise applications in Section 6.
Section 7 discusses related work and the last Section
closes with some concluding remarks.

2 Trends in Modern Enterprise Applications

This section gives a short overview of an in-memory
database that allows processing of mixed database
workloads of both, transactional, as well as analyt-
ical queries. Furthermore, we describe trends that
we have identified by analyzing new applications that
have been developed for these new database manage-
ment systems. We will discuss these trends in the
context of the results of the analyses of a productive
enterprise application and of benchmarks in Section 6.

2.1 In-Memory Database Management
Here, we give a brief overview of the architecture of
an in-memory database as introduced as SanssouciDB
in (Plattner 2011). Other architectures for in-memory
databases targeted towards mixed workloads have
been proposed, for example HyPer (Kemper & Neu-
mann 2010). In this paper we briefly introduce the ar-
chitecture of SanssouciDB to demonstrate the change
in database technology that triggers new usage pat-
terns. However, the workload analyses presented
in this paper are largely independent on a specific
database architecture and can be generally applied
as a starting point for optimization of data structures
for enterprise application specific data management.

In SanssouciDB, all columns are stored dictionary-
compressed to utilize main memory efficiently. Dic-
tionary compression replaces all values by a small in-
teger representative that references the original value
that is uniquely stored in a dictionary. Databases
that use a column-wise data store typically favor read-
mostly analytical workloads, making updates and in-
serts into dictionary-compressed columns a challenge.
To achieve high read and write performance, a com-
mon concept in column-oriented databases is to use
an additional data store besides the read-optimized

main partition (Krueger et al. 2011): a write opti-
mized differential store.

To achieve durability in case of a system failure,
the in-memory database writes log information to
persistent memory. This log information is used to
recover the latest consistent state in case of a failure
and thus guarantees durability. We have proposed an
efficient logging mechanism for dictionary-compressed
columns in (Wust et al. 2012). We apply multi ver-
sion concurrency control (MVCC) based on transac-
tion IDs (TID) to determine which records are visible
to each transaction when multiple transactions run
in parallel. TIDs issued by a transaction manager for
each arriving query define the start order of transac-
tions. See (Plattner 2011) for more details.

2.2 Mixed Database Workloads
New enterprise applications that leverage the perfor-
mance of new database architectures potentially lead
to a changed database workload. Our objective is to
describe what changes we have to expect in order to
optimize database architectures for these use cases.
However, observations from analyzing individual ap-
plications are hard to generalize. During our research
we have looked at existing applications that have been
redesigned for in-memory databases, cases of new
feature-sets on existing data and also entirely new ap-
plications that rely on analytical queries running on
transactional data. In this paper, we briefly describe
two major trends we have observed, namely replacing
materialized aggregates with on-the-fly aggregations,
and applications that mix transactional queries and
analytical queries. In Section 6, we discuss the impli-
cations of these trends on future database workloads,
considering our findings from the analysis of exist-
ing enterprise workloads using our analysis framework
DAC, as presented in the following Sections.

On-the-fly Aggregates Replace
Materialized Views
The concept of materializing certain views in order to
speed up the processing of queries is common prac-
tice in database systems (Yang & Larson 1987, P.
Larson and H. Z. Yang 1985). Today, all major
analytical database systems support the definition
of de-normalized, pre-calculated views (Bello et al.
1998, Halevy 2001) for frequently executed queries.
In SAP ERP (SAP 2013), the concept of material-
ized views is realized using additional, transactional
tables that are maintained by the application logic.
They hold subsets or even entire table projections of
huge transactional relations, filtered and aggregated
on pre-defined granularity. This redundancy has been
necessary to get reasonable response times for com-
plex aggregates and lookups on huge tables. However,
there are three major limitations:

• Data redundancy,

• Reduced query flexibility and

• Maintenance cost (inserts and updates of mate-
rialized tables)

Consequently, an in-memory database replaces mate-
rialized aggregates using on-the-fly queries that run
on the original tables (Plattner 2009). In order to
estimate the impact of such a redesign, we have ana-
lyzed the workload on the most relevant materialized
tables in SAP ERP Financial, based on the execution
count:

• Sum table holding customer balances on a
monthly basis

CRPIT Volume 147 - Computer Science 2014

40



• Secondary index table that allows fast access to
accounting documents

• Sum table holding balances of general ledger ac-
count on a monthly basis

Each query that calculates these aggregates on the fly
based on the transactional schema contains a join on
at least two transactional tables, calculating aggre-
gates, grouped by a set of attributes.

Mixed Workload Applications
Providing a platform that can run transactional and
analytical queries on a common dataset opens the
way for new business applications. As an example,
(Wust et al. 2011) proposes an application that gives
sales representatives a tool to generate cross-selling
recommendations on the fly adjusted to the actual
customer. Product recommendations are calculated
on-the-fly, in order to handle a range of different pa-
rameters (products, regions, branches or customers).
Additionally, the abundance of pre-calculated, ma-
terialized result sets leads to a less complex data
schema. Prior to xSellerate, product recommenda-
tions needed long-running, inflexible batch-job oper-
ations that were persisted in dedicated, materialized
tables. xSellerate shows the need and feasibility of
analytic queries on transactional data. As another
example, (Tinnefeld et al. 2011) presents a real- time
availability-to-promise service that calculates a stock
projection in real-time for each request; this applica-
tion includes transactional queries for ordering prod-
ucts that depend on analytical style queries calcu-
lating the current stock level, and therefore need to
run on a consistent data set of a single database in-
stance. Furthermore, (Krueger, Tinnefeld, Grund,
Zeier & Plattner 2010) gives a detailed overview of
the characteristics of these applications. Analyzing
at the queries issued by these applications, we see
large joins, as well as groupings and aggregations.

3 Database Application Context
(DAC) Analysis

This Section introduces our framework to analyze
database workloads. We start with a presentation of
the overall process and then describe the individual
steps in more detail in the subsequent section.

3.1 Overview
The motivation of this research is to get a thorough
understanding of the database workload issued by to-
day’s enterprise application and derive characteristics
of future mixed workload scenarios. In the context of
columnar databases we intend to provide rationales
for optimizations of data structures, compression and
operators based on existing domain type schema def-
initions.

Typical questions that arise are: What kind of
statements and operations are issued most by certain
workloads and on what attributes do they operate?
Answers to these questions can help to optimize the
data management layer for specific workloads. To find
answers to these questions, we designed a framework
called Database Application Context (DAC) analy-
sis, shown in Figure 1.

An application’s workload, data schema and data
characteristics are the elementary aspects of an appli-
cation that determine the performance of a database.
DAC describes and quantifies those aspects with the
objective of understanding the predominantly used

Figure 1: Database Application Context Analysis

queries, database operations, data types, and data
characteristics for a given application.

First, we use the access pattern model AP , to
describe database operations such as joins, group-
ings, selection, projections and aggregations parsed in
each query statements. Based on that the query-class
model Q, separates statements into distinct groups.
Then all table attributes in AP are classified using
a domain model D, that separates columns based on
their domain information.

As a first step of the analysis, the application
workload, its data schema definition and data statis-
tics are captured from various sources. Then the
workload is parsed for specific AP and the schema in-
formation is classified before it gets consolidated into
a central data repository. Typically the workload is
captured as an SQL trace, or as a snapshot of the
SQL plan cache of a database, ideally annotated with
performance data, such as execution count, runtime
per query, and returned rows. Obviously, retrieving
all performance data is only partially possible in a live
system due to potential overhead. The data schema
and information about the data can be extracted di-
rectly from the database.

The different models are applied to classify work-
loads into distinct query classes (Q), characteristic
operations into access pattern (AP ) and data seg-
ments, respectively relational attributes into domain
groups (D), based on their domain-type information.
Additionally, the data of each domain group in D
is characterized, using the average data distribution,
distinct value count and total number of the columns
in each group. The extracted workload characteris-
tics are then mapped with characteristics of the data
schema and data statistics to find correlations for each
workload.

3.2 Models of the DAC Analysis
This section describes the models used in DAC anal-
ysis in detail. We apply different models to analyze
workload queries, access patterns as well as an appli-
cation’s data schema and data characteristics.

Classification of Queries
A first step towards characterizing a workload is to
classify the queries of each workload.

The separation of statements into query classes is
done by parsing the type of SQL statement as well
as specific operations in the query. We currently con-
sider the SQL statement types SELECT, INSERT,
DELETE, and UPDATE. That allows a simple sep-
aration of all select- or read- (QR), delete- (QDEL),

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

41



Description

APAgg Aggregate operations (e.g. count(),
max(), min(), sum())

APJoin Join operation on a field
APSel Data selection using where predicates
APGrp Group by operation on a field
APSort Order by operation on a field
APProj Projection of a field

Table 1: Access Patterns

update- (QUPD), and insert- (QINS) queries. By ana-
lyzing the data characteristics stored in the database,
QR-queries are further divided into Point or Single Se-
lect (QSingle), Range Select (QRange), and Complex
Select (QComplex) statements. We define Range Se-
lect (QRange) as statements that have a low selectivity
and read a set of data entities. In contrast to Com-
plex Selects (QComplex), they do not aggregate, join
or group a set of data, but only read them. Point or
Single Select (QSingle) statements have a high selec-
tivity, reading only single data sets. Finally, Complex
Selects (QComplex) are defined as statements that op-
erate and modify sets of data. Aggregate, grouping
and join operations are considered complex, because
they change and re-define the original data structure.
QSingle-queries must provide a equi-predicate on the
(compound)-key attribute. QRange-queries are iden-
tified by a range-select operation or by a selection
on non-key table attributes. QComplex-queries are
characterized by complex database operations, such
as joins, groupings, or aggregations.

Classification of Access Pattern
Data Access Patterns (AP ) considered in this paper
are all standard SQL operations such as a projec-
tion, selection, join, grouping, aggregation or sort on
a particular table column. Table 1 gives an overview
of the considered access patterns. Provided that we
have performance indicators for the issued SQL state-
ments of the analyzed workload, such as execution
count, rows processed and time elapsed, we can rank
the relevance of database operations (AP ) that are
extracted from the statements.

We believe that a detailed access pattern analysis
helps to characterize the application workload and fo-
cus on the relevant optimizations strategies. For ex-
ample, conducting an access pattern analysis, it is
possible to tell on which data segments join opera-
tions are executed, how often they are executed and
if there are multi-column or single-column joins.

Listing 1: Example SQL Statement

SELECT ∗ FROM DISTRICT WHERE
WID=:B2 AND DID>B1

As an example, consider the SQL query illustrated
in Listing 1. Assuming that it was executed ten times,
and that we retrieved the average runtime of 500 ms
on the query on statement level. Then, we could cap-
ture access patterns and performance characteristics
as shown in Table 2. Besides the AP we use an addi-
tional text field to capture AP relevant information,
such as the aggregate function in APAgg or the pred-
icate for APSel.

It is important to note in that example, that the
(run-)time performance for each AP is derived from
the original query. Although, a more fine granular
run-time information on access pattern level is sup-
ported by the model and would allow a better analysis

Type Table Attr Exec Time Info
APProj DISTRICT * 10 500
APSel DISTRICT WID 10 500 =
APSel DISTRICT DID 10 500 >

Table 2: Extracted AP of Listing 1

of the importance of each access pattern, it is typi-
cally not a feasible option for analyzing productive
workloads due to the overhead of generating the per-
formance data. Therefore, we used the runtime infor-
mation on statement level in our analysis presented
in Section 5.

Analysis of the Data Schema
In a relational database, relations are the basic en-
tities, where each element is defined by attributes.
Each attribute has a defined data type, either a primi-
tive type, predefined by the database system or a user
defined type, also called domain-type. In enterprise
applications, domain-types are used in a schema to
enforce data integrity among attributes of different
relations. A domain-type limits the range of pos-
sible values, of all columns of that type. It is an
abstraction of a primitive data-type, having a set of
additional, application-specific constraints. For ex-
ample, a check constraint in a domain-type MONEY
requires all price columns to be greater than zero or a
foreign-key constraint in domain PRODUCT ID lim-
its all columns to the values defined in the primary
table column.

Depending on the domain definition (constraints)
the number and change frequency of legal values
differs. Domains, such as NAME, STREET or
DESCRIPTION, defined only by a data type do
not have a well-defined, reasonably-sized list of val-
ues. They are called qualified domains. In con-
trast, the value range of enumerated domains (e.g.
GENDER, CATEGORY ID, PRODUCT ID or CUS-
TOMER ID) and all columns defined by them is pre-
determined and sorted by default. Either by a in-
cremental primary table column or even fixed by the
application itself.

Domain constraints provide valuable information
for columns that are dictionary compressed. Espe-
cially enumerated domain constraints, as they provide
a dictionary-like, well defined value range. Moreover,
we believe that a column’s domain type also has an
impact on how it is accessed by a workload. For ex-
ample, an enumerated domain column is likely to be
used in a join operation in order to link the primary
table relation with its own. In order to prove this
assumption, the DAC analysis references a model to
segment columns, based on their domain.

Our column classification first separates quali-
fied (DQ) and enumerated domain (DE) columns.
Within DQ there are three subgroups: datetime type
(DQ−DT ), numeric type (DQ−N ), and character type
(DQ−C) qualified domains, are separated based on
the data type of the domain. We divided enumer-
ated domains (DE) by the type of their primary do-
main table and adopted the SAP specific definition
of master data, transaction data and Organizational
and customizing tables (SAP 2013).

While master data tables and their list of do-
main values (DE−Master) are frequently read, new in-
serts are rare. Transaction data, respectively domain
values (DE−Trans) are frequently inserted. Organi-
zational and customizing domain values (DE−Cust)
are unchanged during runtime, because they are de-
fined before the system is run productively. Finally,

CRPIT Volume 147 - Computer Science 2014

42



DE−Fix domain columns have a value range that is
defined at design time. We adopted this distinction,
as it can provide valuable insights for designing spe-
cific compression techniques for different types.

Analysis of Data Characteristics
Data characteristics, such as number of distinct and
total data items, value distribution and default-value
density are essential for database compression and op-
timization. As an example, the effectiveness of dictio-
nary compression depends on the number of distinct
values of a column.

Therefore, being part of our DAC analysis, we ex-
tract three basic data indicators. In contrast to previ-
ously conducted data characterizations, we aggregate
these indicators on domain level for enumerated do-
main types. We determine the following figures for
each column:

• Default-value count,

• Distinct value count and

• Total data items (length).

The default-value count describes the number of data
entries that are equal to the most frequent value in
the column. This might be a NULL value as well
as any other domain value. Distinct values count is
the number of unique values in a column. Total data
items of a column is equal to the number of rows in
the table. Based on this information we derive the
following characteristics for each domain group D.

• Distinct item count,

• Total data item count and

• Default value share

For DQ domains the distinct data items are the sum of
distinct values of all columns in that domain. In con-
trast, the number of distinct values in a DE domain
is only based on the distinct values of the primary do-
main column, because all other columns use a subset
of the primary domain column. Total data items in
a domain are the sum of all column data items. De-
fault value share is calculated by the number default
values across all domain columns and the total data
item count. It gives us the share of default data items
in a domain.

4 Analyzed Application Contexts

This Section introduces the different database appli-
cation contexts we have analyzed.

Transactional applications are the backbone of
any enterprise. Invoices, sales orders and account-
ing documents - all enterprise specific business en-
tities are first captured and processed in a transac-
tional systems. Analytical applications built upon
a star schema, typically trade intense data compres-
sion, data redundancy as well as limited update per-
formance for the efficiency to process and analyze
increasing amounts of data in a fraction of time.
However, transactional applications, built on a nor-
malized data schema remain the necessary prerequi-
site and source for these systems. As proposed by
Plattner in (Plattner 2009), our research builds on
on the assumption that the central data source for
mixed-workloads is based on a normalized transac-
tional schema. Consequently, all application contexts
analyzed here are based on a normalized data schema.

The first application context is a productive trans-
actional workload, captured from a productive SAP

ERP (SAP 2013) system of a company with roughly
20,000 employees. It provides the status-quo and
the basis of future mixed-workload applications. The
well established TPC-C benchmark (TPC 2010) is
used to compare a transactional benchmark with the
productive, transactional workload. Furthermore, we
have analyzed the mixed-workload benchmark CH-
benCHmark (Cole et al. 2011).

4.1 Transactional Enterprise Application
Our transactional context analysis is based on data
from a large productive SAP ERP system, used for
financial-, sales-, distribution- and production- pro-
cessing. The workload of that application was traced
over the period of one work-week. During that time,
there were no untypical periodic loads, such as year-
end-processing, etc. The analysis of a single system
may not be representative for transactional enterprise
applications in general. However, as the analyzed sys-
tem had only few modifications to the standard SAP
ERP system, which is widely used and a de-facto stan-
dard in most industries, it can be considered as highly
representative. Besides, we consider the possibility
to analyze a productive ERP system of a company of
that size as a great opportunity and expect that these
results are valuable for the community. We constantly
try to find more companies that are willing to share
data to increase the data base.

In the presented case, the workload information
was extracted from the shared pool buffer of the un-
derlying database of the running ERP system. Along
with the executed SQL statements (without variable
binding), we tracked relevant usage statistics of each
statement, such as the number of executions, the time
elapsed (runtime) and the number of rows processed.

In total, we extracted the following quantities:

• Total number of SQL queries: 144.000

• Analyzed SQL queries: 23.000 (92% load)

• Users: ≈ 1.000 active SAP Users (24h)

• Number of SQL executions: 3.300.000.000

• Rows processed: 20.200.000.000

• Total query runtime: 1.900 h

4.2 Transactional TPC-C Benchmark
In order to allow references to existing research
and compare the transactional, enterprise application
with a benchmark context, we analyzed the workload
and schema of a TPC-C benchmark (TPC 2010). In
the following, this workload is referred to WTPC−C .
WTPC−C consists of 33 transactional queries, each
having a defined share of the entire runtime and exe-
cution count.

4.3 Mixed-Workload
CH-benCHmark Benchmark

With the motivation of comparing the performance
of mixed workload databases, a group of researchers
designed a benchmark, called CH-benCHmark (Cole
et al. 2011). CH-benCHmark is a composite bench-
mark, combining the well known, transactional TPC-
C (TPC 2010) and the analytical TPC-H (TPC 2013)
on the normalized TPC-C data schema.

(Cole et al. 2011) examine three scenarios, weight-
ing OLTP and decision support (DS) workload
streams with different factors. Then they compare
the execution results to see how those workloads ef-
fect each other in terms of tpmC and QphH, using

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

43



a reference number where each workload was run in
isolation. The number of OLTP and DS streams does
not emulate the number of business users, but can
be interpreted as a ratio between those two workload
types. For our workload analysis we chose two work-
load mixtures. One, where OLTP and DS queries
have the same share - WCH11 and, as a reference for
a analytical workload, one that consists of TPC-H
queries only - WCH01.

As we do not intend testing performance scala-
bility of a system under load or how the different
workloads effect each other, we are only interested
in relative execution statistics (execution count, run-
time) of each query in the same time frame. The
benchmark conducted in (Cole et al. 2011), running
on a PostgreSQL system provided the reference num-
bers. It is based on the assumption, that there is no
contention between workloads, that they run on the
same database size and that there is no think-time
between requests. After a 5 minutes warm-up, one
OLAP client running in isolation performs in aver-
age 5200 tpmC, whereas one OLAP stream runs 902
QphH. These reference numbers were used to calcu-
late the execution statistics of each query presented
in Section 5.

5 Analysis of Workload Characteristics

In this Section, we present the results of our DAC
analysis of the workloads described in Section 4.

The results of our analysis are presented for each
of the models introduced in Section 3 (i) analysis
of query classes, (ii) analysis of access patterns, (iii)
analysis of the accessed domain types, and (iv) data
characteristics. A comprehensive discussion of the re-
sults will follow in Section 6.

5.1 Classification of Queries
Figure 2 shows the query classes of the workloads in-
troduced in Section 4, by displaying for each of the
six query classes (QRange, QSingle, QComplex, QINS ,
QUPD, QDEL) of the Q model the percentage of to-
tal executions and total runtime for each query class.
This way, we can compare the relative importance
of each query class between workloads, even as they
differ in absolute numbers.

Looking at the results of QComplex in Figure 2,
it is notable that the share of the total runtime is
higher than the share of executions, which is in line
with our expectations when defining the query classes.
Comparing the workloads, it is striking that WTPC−C
and WCH11 have a much higher number of update
and insert statements as the productive workload
WTrans. Comparing WTPC−C , WCH01 and WCH11
we see an increasing percentage of complex query
runtime, which is as expected given the increasing
amount of analytical queries.

The total number of executed queries of WCH01
is almost negligibly low compared to WTPC−C , as
the analytical queries run orders of magnitude longer.
The WCH11 workload is a mix of WTPC−C and
WCH01. Consequently, the total number of executed
queries in WCH11 is almost equal to WTPC−C . How-
ever, comparing the runtime of the statements we see
an increase of QComplex queries for WCH11 and ob-
viously for WCH01 as well, compared to the transac-
tional workloads WTPC−C and WTrans.

The “total execution count” provides a runtime-
independent figure of the share and the impact of each
query class Q. Unfortunately, this is not meaningful
for the WCH11 benchmark. Because the runtime for
the TPC-C part is the same as for TPC-H part, it

causes very few TPC-H queries to be executed. A
difference in execution count between WTPC−C and
WCH11 is almost not perceivable. However, compar-
ing the runtime of the statements, we see an increase
of QComplex queries for WCH11, and obviously for
WCH01 as well, compared to the transactional work-
load WTPC−C . Hence, we consider runtime as the
performance indicator to analyze the relevance of ac-
cess patterns in the next section.

5.2 Classification of Access Patterns
In order to measure the occurrence and importance of
individual database operations, we use the extracted
AP and the performance figures of their SQL state-
ment. For each AP we know to which SQL state-
ment it belongs. Based on the performance figures of
those statements, we measure the share and impact
of AP . This way, we determine the relevance of an
AP in a workload. It is important to mention that
we could only extract runtime information on state-
ment level. Thus, the indicated percentage of total
runtime for an AP indicates that the execution time
of all queries that contained this specific AP accounts
for this percentage, but not necessarily the AP itself.
Extracting more fine granular performance data on
database operation level would have had a too high
performance impact on the live system and was not
a viable option.

Figure 3 illustrates and compares the share of
statements having certain AP , in WTrans, WTPC−C ,
WCH11 and WCH01. It shows that joins do not ac-
count for a significant percentage of the total runtime
in WTPC−C , whereas WTrans shows a relevant share.
As expected the impact of complex database opera-
tions such as aggregations, sorting, joins or grouping
plays a much greater role in WCH11 and WCH01. Al-
though this analysis does not reveal the individual
runtime contribution of each of these more complex
AP , we can confirm that more complex AP play a
significant role in analytical style workloads executed
on a normalized data schema.

In the next section the qualitative characteristics
of access patterns in workloads will be analyzed, il-
lustrating detailed figures on the data segments that
are accessed by AP.

5.3 Classification of Data Schema
This section shows the qualitative analysis of the ac-
cess patterns AP and their correlations with accessing
certain domain types. We restrict the presentation
here to read queries QR, as they account for most
executions and runtime in our productive application
context WTrans.

Each AP references a data segment (table and at-
tribute), has two performance indicators (execution
count and runtime) and an additional text-field, used
to qualify the AP with additional information, such as
select-predicate or aggregate function (Section 3.2).

In this paper, we show in detail the access patterns
of selections and joins, as selections are the most used
access pattern and join is the access pattern that typ-
ically has the longest execution time. We have further
analyzed the accessed data types of aggregations and
groupings and briefly mention the results.

For aggregations, SUM, AVG as well as MAX and
MIN are primarily used on DQ−N columns. Espe-
cially SUM as the basic analytic operation is only
conducted on numeric domain columns. The COUNT
function is typically applied to the anonymous star-
column and returns the number of rows in a query.

Group by operations are the requirement for most
aggregate functions. As shown in Figure 3 they are

CRPIT Volume 147 - Computer Science 2014

44



QRange QSingle QComplex QUPD QDEL QINS

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

E
xecutions

R
untim

e
WTrans WTPCC WCH11 WCH01

Figure 2: Query-Class Workload Characteristics

APProj APAgg APSel APSort APJoin APGrp

0.00%

30.00%

60.00%

90.00%

R
untim

e

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

W
T

rans

W
T

P
C

C

W
C

H
11

W
C

H
01

MIN & MAX SUM & AVG CNT Runtime Use

Figure 3: Access Pattern Workload Characteristics, based on Total Runtime

essential and intensively used in analytic queries. Our
analysis showed that groupings happen largely on
enumerated domain types. Although groupings hap-
pen on name or other qualified domains in WCH11 and
WCH01, we would expect them to be implemented
as enumerated domains in productive applications,
as names are typically not enforced to be unique.
E.g. instead of using the customer.name attribute
the customer.id attribute would be used for group-
ing. The analysis of accessed domain types revealed
that in WTrans, 82% of all APGrp are conducted on
DE columns. Besides, there are 17% DQ−DT columns
used to group selected data sets, based on their date-
time attribute.

Data Selection on Domain Columns
Data selection is the most used AP in all analyzed
workloads. There is almost no query without data se-
lection operation(s) as shown in Figure 3. The APSel
has an additional variable, called “predicate-type”.

In Figure 4a, we use three predicate-groups: RANGE
(<,<=,>,>=,between), LIKE and EQUI (=,!=,IN),
to concentrate similar predicates in groups. The bars
in the chart represent the overall fraction of APSel
predicate-groups within each W based on the runtime
of their SQL statements.

In the purely transactional workloads WTrans
and WTPC−C the EQUI-predicate is predominant.
RANGE and LIKE predicates play an important role
in the workloads WCH11 and WCH01 that also con-
sist of analytical queries. Looking at the domain-
type distribution of EQUI predicated, most selec-
tions operate on DE columns: From left, WTrans
to right, WCH11, 77%, 98%, 89% and 57% operate
on DE and especially on DE−Cust columns. Analo-
gously, most RANGE predicates operate on qualified
domains: 89% in WTrans, 89% in WCH11, and 99%
in WCH01. Only a small fraction of 11% of RANGE-
APSel operate on DE−Trans columns.

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

45



WTrans WTPCC WCH11 WCH01

0.00%
5.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

R
A

N
G

E

E
Q

U
I

LI
K

E

E
Q

U
I

R
A

N
G

E

E
Q

U
I

LI
K

E

R
A

N
G

E

E
Q

U
I

LI
K

E

R
un

tim
e

(a) Select operation

WTrans WCH11 WCH01

0.00%
5.00%
10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

= = =

R
un
tim

e

DQ−DT

DQ−C

DQ−N

DE

(b) Join operation

Figure 4: Operation / domain group dependencies based on runtime

Join Operations on Domain Columns
The access pattern APJoin is mapped to the join
conditions of SQL statements. One APJoin always
reflects one join attribute. Thus, a standard join-
condition on one attribute, over two tables yields two
APJoin. This way, we can compare the domain-types
of join-couples and see that they always relate to the
same domain. It shows that while attribute names
can be different, their legal set of possible values is
always the same.

Figure 4b shows the domain-types used in APJoin
based on the SQL runtime. The presented analy-
sis only considers equi-joins, as other join types have
been negligible in runtime and execution time in the
analyzed workloads. In WTrans we see that 79% of
all join attributes are DE columns. In WCH11 and
WCH01 all join attributes are DE columns. Convinced
that only DE columns are appropriate to join rela-
tions we further investigated the 21% of DQ columns
used for join operations in WTrans. It shows that
these columns are also key attributes, having a pri-
mary table column. However, they are not defined
as an DE domain type in the schema definition. This
might be due to historic reasons or simply suboptimal
schema design.

Domain-Type Distribution and
Characteristics in Data Schema
In this section we analyze the distribution of domain
groups D in the schema of WTrans, as well as the
characteristics of the data that is stored in those
groups. We only show WTrans, as the data schema
of the benchmarks WTPC−C , and similarly WCH01
and WCH11, are too simplified to be representative
for productive enterprise systems. While DE domains
have a shared, well-defined set of distinct values for
all columns of the same domain, DQ columns do not
have such a list of domain values. Every column de-
fines its own distinct values.

The y-facet “Distinct Domain Items (%)” of Fig-
ure 5 shows the sum of all distinct values for each
domain group. It points out that DQ domains make

up 90% of all distinct values stored in the analyzed
WTrans. Especially DQ−C and DQ−N have a consid-
erably high number of distinct values. DE columns
contribute only 10% of the distinct values. However,
the share of “Data Items (%)” is almost equally dis-
tributed between DE and DQ. While not shown in
the figure, the same spreading between DE and DQ
can be seen for the number of columns, respectively
domains in the data schema of WTrans. In detail
there are ≈ 17% DE−Fix, ≈ 28% DE−Cust, ≈ 3%
DE−Trans and ≈ 7% DE−Master columns in the pro-
ductive data schema. Additionally, there are ≈ 7%
DQ−DT , ≈ 15% DQ−N and ≈ 23% DQ−C columns.

The low share of distinct values per domain, ac-
companied by the high share of data items in DE
columns results in a very low uniqueness (share of
distinct values among all data items).

As generally shown in (Huebner et al. 2011),
the distinct values of a domain are not equally dis-
tributed. Our analysis confirms this and reveals a
significant share of default values among DE columns.
On average 84% of all DE−Fix and 73% of all
DE−Cust data items contain the column’s default
value. As these are just average numbers across all
domain group columns a default-value aware com-
pression algorithm can be very effective for certain
relational attributes.

6 Discussion of Results

This section summarizes the main findings from the
results of our DAC analysis presented in Section 5.

Our major insights of the DAC Analysis are:

• Enterprise workloads are read heavy; interest-
ingly, we see a much higher percentage of read
queries compared to the industry benchmark
TPC-C.

• Specific database operators predominantly oper-
ate on attributes with a specific domain type.

• Data characteristics differ depending on the do-
main type.

CRPIT Volume 147 - Computer Science 2014

46



DE DQ

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

D
ata Item

s (%
)

D
istinct D

om
ain Item

s (%
)

DE−Fix DE−Cust DE−Trans DE−Master DQ−DT DQ−C DQ−N

Figure 5: Data Characteristics of WTrans

• We expect a trend towards more complex queries
and operators with the introduction of modern
enterprise applications.

We will briefly explain each of the insights and discuss
implications.

Based on the analysis presented in Section 5.1, we
see that more than 90% executed statements which
account for around 90% execution time in the pro-
ductive transactional workload are read-only state-
ments. In contrast, the TPC-C workload shows an al-
most equal distribution of read and write statements.
This is in line with the findings in a previous anal-
ysis of data access patterns (Krueger, Grund, Zeier
& Plattner 2010), which derive the adequacy of read-
optimized column stores based on this insight. This
confirms that the system we have analyzed does not
show an exceptional behavior and gives us confidence
that we can generalize our findings.

When analyzing the domain types of attributes
and the operators that access these attributes, as
shown in Section 5.3, we see a clear correlation be-
tween domain types and operators across all work-
loads. Equi-selects, being the most important oper-
ation in all workloads, used in all query-classes (ex-
cept QINS), strongly depend on enumerated domain
columns, whereas DQ−N and DQ−DT columns make
up more than 90% of all range-selects in all work-
loads. The importance of enumerated domains is also
shown for join and grouping operations, that primar-
ily depend on DE domain-types. Character columns
are only used in like-selection and data projections.
These findings are valuable for optimizing operator
implementations for domain types they mostly oper-
ate on. We think that a domain based optimization
of data structures is a promising approach for highly
normalized relational databases. Each group of do-
main types holds specific characteristics that can be
leveraged by a different data structure. What we have

seen is that while DQ columns contain any possible,
user-defined data, DE columns are determined and
controlled by the application, only. As a consequence
DE columns are essential to enforce data consistency
as well as join, select and group data. As they are
deterministic they are preferred, if not required for
many database operations. On the other hand range-
selections, aggregate functions and like-selection are
irrelevant or even illegal on these DE columns, be-
cause their domain values are always of nominal scale.

A closer look at the value distributions of the data
set of the productive ERP system shows that the
number of distinct values in all columns with a quali-
fied domain is roughly ten times higher than the dis-
tinct values in all columns with enumerated domains
which share values among columns (See Section 5.3).

Domain type information are available during de-
sign time. Compared to approaches that analyze
workloads and data characteristics during runtime,
it does not pose any overhead. We see that the ef-
fectiveness of different compression techniques such
as sorted, unsorted as well as shared and attribute-
wise dictionary compressions depends on the specific
domain context. A shared or global dictionary for
example seems reasonable for DE attributes, in order
to leverage a common dictionary encoding during join
processing. Besides, our result show that it is ques-
tionable if DQ−C columns profit from column-wise
data structures as there are almost no operations on
single DQ−C columns. Therefore, we plan to leverage
these insights by designing specific encoding and com-
pression techniques depending on the domain type of
attributes.

Based on our identified trends in Section 2.2, we
see more complex data operations in future enterprise
workloads. Ad hoc aggregations as well as more ana-
lytical style queries will lead to a mix of shorter run-
ning transactions, as well as potentially longer run-
ning queries that read, join and process large amounts
of data. In line with the analysis of WCH11 shown
in Figure 2, we expect a higher absolute number of
transactional queries, but a larger share of the total
execution time accounted by analytical queries. This
will be further intensified by a trend to push logic into
the database instead of only reading data from the
database in bulk and process it in the application. As
a potential implication, short running transactional
queries, as well as the more complex queries, might
compete for resources. In the worst case, complex
queries can occupy all database resources and block
short transactional queries from executing. Hence, a
direction for future work is to design workload man-
agement systems for mixed workloads.

7 Related Work

We have identified related work in two fields: char-
acterization of database workloads, as well as the un-
derlying data. Our work extends prior work in work-
load characterization by analyzing the correlation of
database queries of a workload as well as accessed
data. Furthermore, we present results that have been
obtained from analyzing the workload of a large scale,
productive enterprise application system.

7.1 Workload Characterization
Workload analysis and characterization is the require-
ment for many performance studies and a foundation
for various benchmarks, built as the synthesized, con-
trolled workload, which can be used to measure and
compare the performance of different environments.
(Elnaffar & Martin 2002) summarize and compare

Proceedings of the Thirty-Seventh Australasian Computer Science Conference (ACSC 2014), Auckland, New Zealand

47



workload analysis conducted in different application
fields. They basically classify and characterize anal-
ysis techniques into two categories: static and dy-
namic. Static techniques, such as descriptive statis-
tics, histogram, component analysis and clustering
are used to characterize static workloads components.
Dynamic techniques are used to describe the proba-
bility of system transitions. Knowing a certain per-
formance figure at a certain point in time is not suf-
ficient. Instead the workload components must be
captured periodically to show dependencies between
different parameters. Based on our motivation, the
analysis conducted in this paper is of static nature.

7.2 Data Characterization
In general, data characteristics of enterprise sys-
tems have been investigated in (Krueger et al. 2011),
(Krueger, Grund, Zeier & Plattner 2010) and (Hueb-
ner et al. 2011). They show that many columns in
standard enterprise systems have a low number of
distinct values. A share of 35% of all analyzed ta-
ble columns is even unused, due to the wide table
schema needed in standard software to support var-
ious industries and customer requirements. Besides,
Huebner et al. analyze the value distribution of FI
table columns in an SAP ERP system. They found
that half of all columns are best approximated by a
uniform distribution, while the other part adheres to
a zipf pdf distribution. Based on that information
they built a merge strategy that is optimized for pdf
zipf distributed columns.

8 Conclusion and Future Work

In this paper, we have presented Database Applica-
tion Context (DAC) Analysis, a framework used to
extract and classify queries, used database operations,
and data access patterns, as well as execution times
from SQL workloads. With DAC, we have analyzed
a productive enterprise resource planning system, as
well as established database benchmarks. Based on
an analysis in trends in modern enterprise applica-
tions, we have derived expected changes to the work-
loads of enterprise applications in the future. We are
confident that our results can be a valuable input for
optimization data structures of the data management
layer of enterprise applications. We plan to lever-
age these findings in two dimensions: (i) develop effi-
cient database operations and compression techniques
for enumerated domains that are shared among at-
tributes, and (ii) implement effective query schedulers
to handle a mixed workload of different query classes.

References

Bello, R. G., Dias, K., Downing, A., Feenan, Jr.,
J. J., Finnerty, J. L., Norcott, W. D., Sun, H.,
Witkowski, A. & Ziauddin, M. (1998), Materialized
views in oracle, in ‘VLDB’.

Chaudhuri, S. & Dayal, U. (1997), ‘An overview of
data warehousing and olap technology’, SIGMOD
.

Cole, R., Funke, F., Giakoumakis, L., Guy, W., Kem-
per, A., Krompass, S., Kuno, H., Nambiar, R.,
Neumann, T., Poess, M. & Others (2011), The
mixed workload CH-benCHmark, in ‘DBTest’.

Elnaffar, S. & Martin, P. (2002), Characterizing com-
puter systems’ workloads, Technical report, School
of Computing, Queens University.

Gillin, P. (2007), ‘Bi @ the speed of business’, Com-
puter World Technology .

Golfarelli, M., Rizzi, S. & Cella, I. (2004), ‘Beyond
data warehousing: what’s next in business intelli-
gence?’, DOLAP .

Halevy, A. Y. (2001), ‘Answering queries using views:
A survey’, VLDB .

Huebner, F., Boese, J.-H., Krger, J., Renkes, F., To-
sun, C., Zeier, A. & Plattner, H. (2011), A cost-
aware strategy for merging differential stores in
column-oriented in-memory dbms, in ‘BIRTE’.

Kemper, A. & Neumann, T. (2010), Hyper hy-
brid oltp&olap high performance database sys-
tem, Technical Report May, Technische Universi-
taet Muenchen.

Krueger, J., Grund, M., Zeier, A. & Plattner, H.
(2010), Enterprise application-specific data man-
agement, in ‘EDOC 2010’.

Krueger, J., Kim, C., Grund, M., Satish, N., Schwalb,
D., Chhugani, J., Dubey, P., Plattner, H. &
Zeier, A. (2011), ‘Fast updates on read-optimized
databases using multi-core cpus’, VLDB .

Krueger, J., Tinnefeld, C., Grund, M., Zeier, A. &
Plattner, H. (2010), A case for online mixed work-
load processing, in ‘DBTest’.

Kuno, H. A., Dayal, U., Wiener, J. L., Wilkinson, K.,
Ganapathi, A. & Krompass, S. (2010), Managing
dynamic mixed workloads for operational business
intelligence, DNIS.

P. Larson and H. Z. Yang (1985), ‘Computing Queries
from Derived Relations’, VLDB .

Plattner, H. (2009), A common database approach for
oltp and olap using an in-memory column database,
SIGMOD.

Plattner, H. (2011), Sanssoucidb: An in-memory
database for processing enterprise workloads, in
‘BTW’, pp. 2–21.

SAP (2013), ‘Sap erp’,
http://www54.sap.com/solutions/bp/erp.html.
[Online; accessed 22-August-2013].

Tinnefeld, C., Mueller, S., Zeier, A. & Plattner, H.
(2011), Available-to-promise on an in-memory col-
umn store, in ‘BTW’.

TPC (2010), Tpc benchmark c (standard specifica-
tion) - revision 5.11, Technical report, Transaction
Processing Performance Council.

TPC (2013), Tpc benchmark h (standard specifica-
tion) - revision 2.16.0, Technical report, Transac-
tion Processing Performance Council.

White, C. (2005), ‘The next generation of business
intelligence:operational bi’, DM Review Magazine .

Wust, J., Boese, J.-H., Renkes, F., Blessing, S.,
Krueger, J. & Plattner, H. (2012), Efficient log-
ging for enterprise workloads on column-oriented
in-memory databases, in ‘CIKM’.

Wust, J., Krueger, J., Blessing, S., Tosun, C., Zeier,
A. & Plattner, H. (2011), xsellerate: Supporting
sales representatives with real-time information in
customer dialogs, in ‘In-Memory Data Manage-
ment’.

Yang, H. Z. & Larson, P.-A. (1987), Query transfor-
mation for psj-queries, in ‘VLDB’.

CRPIT Volume 147 - Computer Science 2014

48




