
Database Collaboration Instead of Integration

Gunar Fiedler Thomas Raak Bernhard Thalheim

Kiel University
Computer Science and Applied Mathematics Institute

Olshausenstr. 40, 24098 Kiel, Germany
Email: {fiedler, traak,thalheim}@is.informatik.uni-kiel.de

Abstract

Database integration is currently solved only for the
case of simple structures. Semantics is mainly ne-
glected. It is known but often neglected that database
integration cannot be automated. System integration
is far more difficult. Both integrations can only be
performed if a number of assumptions can be made
for the integrated system. Instead of integrating sys-
tems entirely cooperation or collaboration of systems
can be developed and used. We propose in this pa-
per the extension of the view cooperation approach
to database collaboration.

Keywords: data integration, data warehouse, view co-
operation, database collaboration

1 Database Integration

Nowadays, a large number of very different informa-
tion systems are used in parallel. These systems co-
exist in several environments and may be understood
as a collection of distributed, redundant, partial, and
partially autonomous information systems. Each sys-
tem contains a specific set of data.

Database integration is an old (Spaccapietra &
Parent 1989), a never really solved (Lee & Ling 1995,
Lee & Ling 1997) and a very difficult problem. The
difficulty is caused by
the heterogeneity of data both at the intensional

and extensional level,
limitations to access the source data,
the decision which data should be materialized

and which should be left to local databases,
data extraction, cleansing and reconciliation

within the database set,
strategies for data modification processing,
strategies for quality management of querying,

especially statements on whether the data in the
query answer is complete and sound,

automatic transformation of queries posted to the
database set, and

expressiveness of modeling languages aiming
at representing the local databases and the
integrated databases.

A main problem to be solved in designing such
integrated systems lies in information integration,

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the Second Asia-Pacific Conference on Concep-
tual Modelling (APCCM2005), University of Newcastle, New-
castle, Australia. Conferences in Research and Practice in In-
formation Technology, Vol. 43. Sven Hartmann and Markus
Stumptner, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

i.e., the activity by which different input informa-
tion sources are merged into a global system de-
scribing the whole information set available for query
and functionality purposes. Abstraction amounts to
clustering types belonging to the schema (Beeri &
Milo 1999) into homogeneous subsets and producing
an abstracted schema obtained by substituting each
subset S with a single abstract type TS .

Already structural integration (e.g.,
(Christine Parent 1998, Bernstein &
Rahm 2001, Abiteboul, Cluet & Milo 1997, McCabe,
Chowdhury, Grossman & Frieder 1999, Conrad,
Saake & Sattler 1999)) may become a nightmare.
The designer has to clearly understand the seman-
tics of involved database types. In such system
re-engineering problems, the design emphasis is on
integration of pre-existing information components,
where a key problem is that of deriving associations
holding among types in the pre-existing schemas.
Most of research has been carried out to solve the
problem of detection and treatment of interscheme
properties that relate types belonging to different
schemas. The integration of structures and functions
(Theo Härder 2002) is far more difficult.

Structural integration problems (Thalheim 2000)
such as structural mismatches (key differences, ab-
straction grain, attribute domain, temporal basis,
missing parts) semantic mismatches (scope differ-
ence, value semantics, domain semantics), oper-
ational mismatches, and application domain mis-
matches may be either treated by full integration,
integration by merging, or integration by general-
ization. In the literature, many “manual” methods
(Thalheim 2000) for deriving interschema properties
have been proposed. A major limit of manual meth-
ods relies in the difficulty of carrying them out to
large applications since, in such contexts, it is needed
to face integration problems often involving hundreds
of types.

Since an automatic support to integration of sys-
tems cannot be developed, semi-automatic methods
and tools have been developed or proposed to face the
difficulties. Systems such as Autoplex, automatch,
Clio, COMA, Cupid, Delta, DIKE, EJX, GLUE,
LSD, MOMIS, ARTEMIS, SemInt, SKAT, Similarity
Flooding (SF), and TranScm mainly have emerged
from specific applications. A very few approaches
(Clio, COMA, Cupid, and SF) try to address the
schema matching problem in a generic way. All of
them are, however, only treating simple structural
concepts and none of them treats functionality.

Integration of several information resources re-
quires, however, knowledge describing their contents
in a logical formalism and using the same vocabu-
lary. This provides shared access to multiple infor-
mation sources and preserves at the same time the
autonomy of each source. This approach is known
as the mediator approach (Wiederhold 1995, Cluet,



Delobel, Siméon & Smaga 1998, Papakonstantinou &
Velikhov 1999, Ludäscher & Gupta 1999). Mediators
play the role of an interface between the user and the
sources and between the sources giving the illusion of
querying a central and homogeneous system.

Interoperability of database and information sys-
tems has been a major research area (e.g., (Sadri,
Subramanian & Lakshmanan 1996)) in the last
decade. After solving problems with scalability and
parallelism rich semantic models have been used for
developing federated and extensible database sys-
tems.

Potential database integration depends on early
modeling assumptions and is thus dependent on a
number of implicit assumptions made during the de-
velopment process:
• Database development is ruled by a number of

implicit points of view . Depending on what has
been the main target and scope, basic structures
and domains are chosen.

• Development of database structuring is often
ruled by the intentions for the utilization of the
database. These intentions are based on main
functionality of the database. Normalization and
later denormalization shows that functional re-
quirements may be conflicting.

• Discretization of data or conversion of continu-
ous data to discrete data will lead to different be-
havior and different query facilities of databases.
Discretization may be based on time, space and
other abstractions which may vary depending on
the point of view the specific application is con-
sidered at the time of the development.

• Database developers make their assumption on
the name space to be used. Name spaces depend
on the concepts used in the application area.

• The chosen modeling language imposes a num-
ber of restrictions to structuring of the database.
Some of these restrictions are unnatural, do not
apply to the implementation platform, and lead
to introduction of artificial types that do not have
a meaning in the application area.

• The scope of data representation is often concen-
trated on the scope of the user at the business
user level. This restriction leads to represen-
tation of macro-data which are comprehensions
of micro-data that must have been used in the
database.

• Data abstractions are often used instead of ba-
sic data. Since abstractions ease querying sys-
tems are faster. At the same time, modification
might be very complex. If abstractions are used
then the application must be remodeled to basic
data structuring supported by view processing
for computation of data abstractions.

• Optimization of structuring to performance and
tuning uses normalization techniques. Since the
same set of constraints may lead to different nor-
malized structures, optimization decisions must
be made explicit.

One kind of difficulties of the database integration
problem is caused by the development culture which
does not force these implicit assumptions to be acces-
sible.

2 Known Approaches to Structural Integra-
tion of Databases

Structural integration of databases can be defined by
the triple I = (G,S,M) consisting of a global
database schema G (over a language AG), a collection

S of local database schemata S (over a language AS),
and a mapping between G and S.

Database integration has been discussed over a
long period of time. A negative result that is often ne-
glected in research and applications is the following:

Proposition 1 (Convent 1986) The problem
whether databases can be integrated is undecidable.

It is, however, an observation often made in appli-
cations that these application databases can be inte-
grated. We find a heuristic assumption:

Heuristic assumption 1 Applications are inte-
gratable since there is no reason for non-integration.

This assumption is based on a rather simple
precondition of enterprises:
The application is already integrated in general. Some
parts of the application are separated and supported
by different information systems. Their collaboration
is explicitly supported or can be explicitly supported.

Also, it is often observed that existing database
systems can often be integrated. The typical ap-
proach is to find a common superschema that con-
tains the database structures. If such a schema exists
then database can be treated by the schema, i.e., a
part of the instance is made visible to the user as a
virtual schema. However, this advantage has several
drawbacks.

1. It may not be possible to update the databases
through the integrated database.

2. Second, the average user cannot use the whole
schema due to its size. Therefore, he/she cannot
understand the impact of his/her procedures.

Databases to be integrated can be considered to be
views of the integrated database. Therefore, the inte-
grated database may support the entire application.
In the past, three approaches (Calvanese, Giacomo,
Lenzerini, Nardi & Rosati 1998, Thalheim 2000) have
been worked out to treat integrated databases:

Global-as-view integration (GAV): The in-
tegrated database is virtual. In reality, the
local databases are still running on their own.
There are no common functions or queries.
GAV supports a client-driven integration and
bottom-up development and extension of local
source systems. The GAV approach reduces
query processing to view processing.

Local-as-view integration (LAV) : (Lenzerini
2002) The database integration allows us to build
a data warehouse containing all data of the local
application. The data of the local application
corresponds to virtual or materialized views of
the global database. Any change of the local data
is harmonized with the global data if the change
is going to be supported. LAV supports source-
driven integration of applications and top-down
design of applications by incremental addition of
new sources. The global integration of all local
databases supports consistency of all data and
rejects any wrong modification of the database
in a very early stage. The integration effort is,
however, rather high. LAV often forces a recon-
sideration of the local schema. Some of the local
applications must be redeveloped and reimple-
mented.

View cooperation: (Thalheim 2000) Database co-
operation is supported by exploiting the im-
port/export facilities of the local databases.
Each of the local database systems provides a



number of views to the other databases. These
views are either export views or import views of
the collaborating databases. The schema of an
importing view of the importing system contains
the schema of an exporting view of the exporting
system. View cooperation combines the local-
as-view and the global-as-view approaches while
maintaining their advantages. The mapping of
the databases is similar to LAV mappings.
The view cooperation approach is at the same
time the most general approach. We may imme-
diately derive the following corollary:

Proposition 2 Local-as-view integration and
global-as-view integration can be expressed
through view cooperation expressions.

Often full integration is not the aim. The aim is
to achieve consistency. In this case the views should
be (pair-wise) consistent via some translation mecha-
nism: databases cooperate. This database cooperation
mechanism is based on the construction of functions
mapping parts of the view instances on parts of the
other view instances. The next generalization step is
to build the interface mechanism as a whole through
scripts.

3 Towards Database Collaboration

3.1 Database Cooperation

The integration methods discussed above use inher-
itance of IsA-relationship types: all attributes and
operations of a metaclass are propagated to their sub-
classes unless overridden explicitly by a subclass. Ex-
plicit definition of the cooperation functions is more
general. We say that one view A dominates the view
B if a set of formulas exists such that the types of
the view A can be embedded into B . Thus the view
integration problem determines whether a minimal
schema exists for a collection of views such that the
schema dominates each of the views.

We say that the views A,B cooperate via the (par-
tial) functions fA, fB defined on SAT (A), SAT (B)

fA : SAT (A) −→o SAT (B)
fB : SAT (B) −→o SAT (A)

if for each vA ∈ SAT (A), vB ∈ SAT (B) the func-
tions fA(vA), fB(fA(vA)), fB(vB), fA(fB(vB)) are
defined and fB(fA(vA)) = vA , fA(fB(vB)) = vB .

The functions for view cooperation can be com-
posed of functions in different parts of the view. Gen-
erally speaking, views cannot be completely mapped
onto each other. Therefore, to decide whether two
views cooperate we need to complete the following
tasks:

1. Find parts of the two views which are candidates
for cooperation.
2. For these candidates find the corresponding coop-
eration functions.
3. Compose the view cooperation functions.

In order to establish whether parts of a view co-
operate with other parts we use semantic information
about the views.

The question as to whether views can be integrated
or can cooperate can be answered if semantics of the
views are well-defined. Integrity constraints can be
used for this purpose. If one of the subset relation-
ships is valid then the corresponding types can be em-
bedded into their supertypes. This approach can be
extended to view cooperation as displayed in Figure
1.

Assume schemata S1, S2 and selectors sel1, sel2
defined on S1, S2. The views V1, V2 can be de-
fined by the given selectors. Furthermore, take two
(S1, S2, sel1, sel2) functions

f1 : SAT (V1) −→o SAT (V2)
f2 : SAT (V2) −→o SAT (V1) .

We notice that SAT (Vi) = seli(SAT (Si)) for i = 1, 2.
For given databases db1, db2 on S1, S2, selectors
sel1, sel2 and the corresponding views, two functions
f1, f2 match if

f1(sel(db1)) ∪S2 db2 ∈ SAT (S2) and
f2(sel(db2)) ∪S1 db1 ∈ SAT (S1).
Two (S1, S2, sel1, sel2) functions f1, f2 are view coop-
eration functions if the functions match with regard to
all (db1, db2) ∈ (SAT (S1), SAT (S2)).

The problem concerning whether
(S1, S2, sel1, sel2) functions exist is a generaliza-
tion of the view updateability problem for S1 = S2
and sel1 = sel2. In this case, the function f1 is an
embedding function.

The global view cooperation problem determines
whether view cooperation (S1, S2, sel1, sel2) functions
exist. The restricted view cooperation problem de-
termines whether there exist restricted view cooper-
ation (S1, S2, sel1, sel2)-functions id, id, i.e. for all
(db1, db2) ∈ (SAT (S1), SAT (S2)) with seli(dbi) =
(selj(dbj)) and i, j ∈ {1, 2}, i 6= j.

Two views defined on S1, S2, sel1, sel2 are said to
be consistent if view cooperation functions exist.

View cooperation and integration can be based
on the construction of subtype/supertype hierarchies,
e.g., for the integration of conceptual graphs. This
approach is based on strong semantics for cardi-
nality constraints. The theory of extended entity-
relationship models can be used to derive conditions
for view cooperations. It is well known (Thalheim
2000) that the subtype/supertype hierarchy must be
consistent with the view cooperation schema.

3.2 Application of Cooperation to Multi
Database Systems and Database Farms

Distributed database systems are based on local
database systems and follow a certain integration
strategy. Integration is based on total integration of
the local conceptual schemata into a global distribu-
tion schema.

Open multi-database systems are a variant of dis-
tributed systems with a distribution schema that does
not integrate the local systems but supports an iden-
tification of the database systems and their data.
Database system integration has been tackled on the
basis of federated database systems. Their architec-
ture is similar to the one in Figure 2. The container
systems do not contain any additional programs. The
global communication and farming system is a simple
transfer system in this case. Federated database sys-
tems are distributed database systems which use local
database systems for support of global applications.
Federated database systems have not yet succeeded
in practical applications. The main reason is the
technical difficulty. Federated systems must be sup-
ported by sophisticated integrity maintenance, power-
ful communication and transaction protocols and by
systems for automatic decomposition and generation
of functionality.

Database farms (Yigitbasi, Thalheim, Seelig,
Radochla & Jurk 1999) are generalizing and extend-
ing these approaches. Their architecture is displayed
in Figure 2. Farms are based on the codesign ap-
proach (Thalheim 2003) and the information unit and
container paradigm:
Information units are generalized views. Views are

generated on the basis of the database. Units



db1 db2

v1

v2f2(v2)

f1(v1)-
f1

� f2

Figure 1: View Cooperation in Databases

are views extended by functionality necessary for
the utilization of view data. We distinguish be-
tween retrieval information units and modifica-
tion information units. The first are used for
data injection. The later allow to modify the lo-
cal database.

Containers support the export and the import of data
by bundling information units. Units are com-
posed to containers which can be loaded and un-
loaded in a specific way.

The global communication and farming system
provides the exchange protocols, has facilities
for loading and unloading containers and for
updates of modification information units.

We do not want to integrate entirely the local
databases but provide only cooperating views.

Database farms are more complex to design. The
computational support is entirely based on classical
database technology. Therefore, if we are able to de-
sign such integrated system farms the management is
feasible.

3.3 Application of Cooperation to Incremen-
tal Database Systems

Integration of systems can be based on hub points at
which systems may plug and have the same behavior.
Information-lossy integration may be based on ab-
straction if the information loss is restricted to those
data which are not of interest in the other application
or which may be computed by the other application.

The theory of hub types supports incremental evo-
lution of database systems (Raak 2001) which is a spe-
cific form of database system evolution. Facility man-
agement systems are typical application systems for
which incremental evolution could be the ultimate so-
lution. Typical for such applications is the long lifes-
pan of some of the objects. Those objects have a
long history of change. The architecture of facility
management is sketched in Figure 3. We use auxil-
iary databases for support of the facility management
system. Such data provide help information, informa-
tion on regulations, information on customers, infor-
mation on suppliers, etc.

Incremental evolution is thus supported by:
Injection forms enable to inject data into another

database. The forms are supported by views
and view cooperation approaches. Data injected
into another database cannot be changed by
the importing database system. The structur-
ing (Sinject,ΣS) of the views of the exporting
database system is entirely embedded into the
structuring (S ′

,ΣS′) of the importing database
system. The functionality (Oinject,ΣO) of the

views of the exporting database system is par-
tially embedded into the functionality (O′

,ΣO′)
of the importing database system by removing
all modification operations on the injected data.
These data can only be used for retrieval pur-
poses.

Insertion forms enable in insertion data from the ex-
porting database into the importing database.
These data can be modified. The structuring
(Sinsert,ΣS) and the functionality (Oinsert,ΣO)
of the views of the exporting database system are
entirely embedded into the structuring (S ′

,ΣS′)
and the functionality (O′

,ΣO′) of the importing
database system.

3.4 Database Collaboration in the Washer
Approach

The Cottbus database and information systems re-
search group developed in one of its industry projects
(Radochla & Thalheim 1999) a specific extension of
the view cooperation approach: The Washer1 ap-
proach is based on view cooperation and explicit
modeling of coordination among several databases.
The general architecture is depicted in figure 4. The
washer is a tool that manages the collaboration based
on the the coordination profile. The coordination pro-
file is specified by a coordination contract , a coordina-
tion workspace, synchronization profile, coordination
workflow , and task distribution.

Coordination is based on a coordination contract.
The contract consists of
• the coordination party characterization, their

roles, rights and relations,
• the organization frames of coordination specify-

ing the time and schema, the synchronization
frame, the coordination workflow frame, and the
task distribution frame,

• the context of coordination, and
• the quality requirements (ubiquity, security,

interpretability, consistency, view consistency,
scalability, durability, robustness, performance)
for coordination.

We distinguish between the frame for coordination
and the actual coordination. Any actual coordina-
tion is an instance of the frame. Additionally, it uses
an infrastructure. The contract specifies the general
properties of coordination. Several variants of coor-
dination may be proposed. The formation of a co-
ordination may be based on a specific infrastructure.
For instance, the washer may provide a workspace and
additional functionality to the collaborating partners.

1A washer is a ring of metal between a nut and a bolt, or be-
tween two pipes to make a better and tighter joint.



Local
DBS

Farm
container
system

Filter and
transfor-
mation
system

System A

Local
applications

User
interface

Local users of A

Global
communications

and farming
system

User
interface

Global users

Local
DBS

Farm
container
system

System B

Filter and
transfor-
mation
system

Local
applications

User
interface

Local user of B

Figure 2: Database Systems Farm

planning
phase DBS

construction
phase DBS

realization
phase DBS

maintenance
phase DBS

DBS
(Sp, ΣSp ,Op, ΣOp )

inject

insert

-

-
modifiable

injected

auxiliary

database

?
injected

DBS
(Sc, ΣSc ,Oc, ΣOc )

inject

insert

-

-
modifiable

injected

auxiliary

database

?
injected

DBS
(Sr, ΣSr ,Or, ΣOr )

inject

insert

-

-
modifiable

injected

auxiliary

database

?
injected

DBS
(Sm, ΣSm ,Om, ΣOm )

auxiliary

database

?
injected

Figure 3: The General Architecture of Incremental Evolution of Database Systems

db1 db2

v1

v2w(f2(v2))

w(f1(v1))-
f1

� f2 �

w(f1)

w(f2)

Washer -

Coordination
profile

Figure 4: The Washer Approach to Collaboration of Databases

Formation Parties Organization Infrastructure
Con-
tract

Life-
span

Con-
tract
vari-
ant

Proper-
ties

Roles Rights Re-
lat-
ions

Syn-
chro-
ni-
zat-
ion

Work-
flow

Task
dis-
tri-
bu-
tion

Work-
space

Sup-
port

... ... ... ... ... ... ... ... ... ... ... ...

Table 1: Coordination Profile



The coordination profile is specified by the frame
shown in table 1.

Collaboration is based on communication, coop-
eration, and coordination. Cooperation specification
follows a similar approach. It is restricted by the co-
operation contract that specifies
• the services provided, i.e., informational pro-

cesses consisting of views of the source databases,
the services manager supporting functionality
and quality of services, and the competence of
a service manifested in the set of tasks that may
be performed, and

• requirements for quality of service.

Communication contracts specify the collaboration
architecture and the style of exchange. Typical col-
laboration architectures are for example proxy col-
laboration, broker-customer, or publisher-subscriber
collaboration. The exchange frame generalizes proto-
cols and is defined by
• collaboration style specifying the supporting pro-

grams, the style of collaboration and the collab-
oration facilities, and

• collaboration pattern specifying the roles of the
partners, their responsibilities, their rights and
the protocols they may rely on.

In a similar fashion we may specify the communica-
tion profile and the cooperation profile. The project
has led to an integration of SAP R/3, of several Or-
acle databases and of OLAP functionality of SAS.

4 Derivation of Collaboration Strategies

Based on a number of projects and the results of the-
ory development we propose an approach that is both
based on
• separation of functionality for those parts of the

application that are developed or used in a sep-
arate fashion and

• integration of those parts of the application which
must be obligatory combined .

Based on this twofold approach, a data warehouse can
be developed that
• supports all tools in a separating fashion,
• supports versioning of development results, and
• supports stepwise enrichment of object sets

whenever they have been used by another tool
supported by the warehouse.

4.1 Derivation of Collaborating Sub-
Structures

Integration of structures can be based on a reposi-
tory, intensional knowledge from the application area
and by applying the following heuristic procedure
(Kalinichenko 1999):

1. Separation of the global schema by functional
aspects of the application in the case that full
schema integration is infeasible or impossible;

2. Transformation of schema specification by com-
piling the schema information of databases to be
integrated into an intermediate schema;

3. Enrichment of schema specification by reposi-
tory, metadata or concept information;

4. Development of data warehouse kernels consist-
ing of cooperating views;

5. Derivation of requirements for wrappers which
support import and export.

Each of these steps may fail. If the step does not lead
to a satisfying result then we may use a number of
heuristics in order to overcome the difficulties.

4.1.1 Separation of Source Schemata in the
Case of Partial Integrability

Full integration of a set of source schemata might be
not feasible, not achievable or not intended in the ap-
plication. Instead we might be interested in cooper-
ation or collaboration of several applications and try
to support a consistent exchange and maintenance of
commonly shared data. The first step concentrates
on elicitation of integration requirements.

Scope of separation.
Since we do not aim for the construction of an en-
tirely integrated global schema but also support co-
operation of source schemata we develop an approach
that supports partial integration. Partial integration
must cover at least all global features and exchange
of commonly shared data. If all features of the ap-
plication are local then only commonly shared data
are treated by an integration architecture. We con-
sider data exchange functions to be a part of the set
of global features.

The set of features of an application and the set of
exchange features for commonly shared data is now
collected and considered.

Steps of separation.
The separation step uses information on the function-
ality of the application. Each tool uses a collection of
functions. Each of these functions uses a number of
types of the schema, called the environment E(f) of
the function f . We distinguish between input, out-
put and modification types for each function. (EI(f),
EO(f), EM (f)). We may now consider the environ-
ment for collections of functions used in an applica-
tion feature. Given a feature F that uses the set of
functions F . The environment for the feature is de-
fined by the union of the environments of functions f
from F .

The separation into input, output and modifica-
tion types allows to develop a more sophisticated the-
ory of collaboration of source schemata. The view
cooperation approach nicely supports this separation.
In the sequel we do not use this separation. The sep-
aration adds some technical details that are not diffi-
cult to treat. The separation allows to develop a the-
ory of finer granularity. For our purposes, we develop
first the general approach without separation. The
general approach can be understood as a pessimistic
approach that detects all potential types for integra-
tion. The separation computes only those types that
are necessary for integration.

We find however commonly shared data of all or at
least two applications. The corresponding data types
are locally defined. They represent however the same
set of things in the application. Therefore, we may
now use such potential exchange types.

The separation step extracts obligations for inte-
gration. We may proceed using the following sub-
steps:
Scoping of sub-schemata for global features: We form

sub-schemata for each of the feature collections.
The sub-schemata may be defined through views
on the source schemata. Views are defined as
queries on types of the source schema.
The environment E(F ,S) of a global feature F
and a source schema S is the set of types used in
views supporting the functions in F within the
source schema S.

Extending the environment by enforcement context:
The environment of global functions E(F ,S)
forms a sub-schema in the source schema S.
Changes of data within the environment must



be locally consistent. Therefore, integrity con-
straints must be considered as well. Most of the
integrity constraints cannot be enforced locally
only for the class of data of a type T . For in-
stance, an inclusion constraint T1[X1] ⊆ T2[X2]
extends the integrity enforcement environment
of Ti by Tj for i, j ∈ {1, 2}.
Let EΣ(T ) be the integrity constraint environ-
ment of a type T for a set of integrity constraints
Σ. We extend now the environment E(F ,S) by
the integrity enforcement environment for each
type in E(F ,S). Let EΣ(F ,S) be this environ-
ment.

Developing a view suite for sub-schemata: The envi-
ronments EΣ(F ,S) are now used for deriving
the views necessary for the support of global
features.
If we prefer the pessimistic approach then we ob-
tain a sub-schema V(S) of a given source schema
S by considering all types of EΣ(F ,S) over the
set of global features. If we are interested in
a more sophisticated approach then we obtain
three sub-schemata VI(S), VO(S) and VM (S) of
the source schema S.

Collection of integration obligations: The sub-
schemata V(S) form now the integration
obligations for the set of global features.
We may interactively add to these sub-schemata
other types of the source schema. This prag-
matical extension allows us to consider potential
integration of other databases if the application
is going to be extended.

This step results in views on the source schemata
that are now to be integrated. Their cooperation is
tight, i.e., the collaboration of applications is based
on a full integration of the types or on development
of washers for cooperating schemata.

In the sequel we concentrate on the case that full
integration can be achieved. The case that collabora-
tion facilities must be used is similar.

4.1.2 Transformation

The transformation step is based on the extraction of
a logic theory supporting reasoning on name spaces
between the types of the schemata under considera-
tion. Name spaces of the schemata under considera-
tion may be compared by their “similarity” on the
basis of synonym and homonym equalities and in-
equalities. Equalities and inequalities are enriched by
plausibility coefficients that measure the confidence
of the actual equality or inequality. The confidence
measure obeys properties of t-norms used for Fuzzy
logics. Additionally we may use context for the con-
fidence measure. The logical theory uses a number of
comparison predicates:
Synonyms S ≈ T specify that two names in schemata

under consideration have the same meaning or
semantics.
Synonyms may also be based on identification
expressions. Identification of things may be dif-
ferent in different applications although objects
relate to the same thing of the reality, e.g., stu-
dent number and student identification data.
Synonym associations can also be developed for
query expressions defined on two schemata. Typ-
ically, such synonym expressions are semantic
conversions for domains, e.g., converting fuel
consumption data used in Germany to fuel con-
sumption data used in the US.

Synonym expressions may be generalized to data
integration mediators. These can be stored in a
database that extends the current database by
integrating mediators. We use a similar mecha-
nism on the basis of extended identification.
Synonym associations may be combined with a
preference rule stating which type name is going
to be used if the two synonyms are mapped to
one type in the integrated schema.

Homonyms S G T describe structural equivalence
combined at the same time with different mean-
ing and semantics. Homonyms may be simply
seen as the negation or inversion of synonymy.
Since the confidence level may be different we
prefer to use homonyms as well.

Hyponyms and hypernyms S 4 T hint on subtype
associations among types under consideration.
The type T can be considered to be a more gen-
eral type than S and the integration of the two
types leads to an explicit subtype association in
the integrated schema.

Overlappings and compatibilites S
∃
d T describe par-

tial similarities. These similarities can be treated
by introduction of generalizing supertypes.

Explicit representation conflicts supports the applica-
tion of conflict resolution strategies such as re-
naming, homogenizing representations, homoge-
nizing types, application of extended database
operations such as extended join and other ho-
mogenizing operations. Representation conflicts
may lead to integration obligations for interac-
tive resolution of those conflicts.

Abstraction similiarities S ≈ T support the develop-
ment of name space transformations. Sub-
schemata may be abstracted into abstract types.
Abstract types of different schemata may be
associated. We may explicitly use this meta-
similarity or meta-heterogeneity for association
or separation of sub-schemata.

Additionally, we may require that the equality logic is
invariant with the structuring given in the schemata.
The metrics can be structurally based. The deduction
system in (Thalheim 2000) for inclusion and exclusion
constraints may easily be generalized to a deduction
system for reasoning on synonyms, homonyms, hy-
ponyms and potential supertypes. Since the logical
system may be become too granular we may use a
threshold logic for more abstract reasoning on poten-
tial integrability.

Structural transformation also removes pragmatic
assumptions made during database development.
Typical such assumptions are the objectification and
the introduction of entity types, relationship types,
cluster types, and attribute types. In one application,
for instance, it might be useful to use entity types in-
stead of attribute types because of limitations of the
platform. If the modeling methodology uses the ‘di-
viding range’ then the objectification decision is ex-
plicit. Older methodologies do not use this concep-
tion and/or use only atomic attributes. In the latter
case, objectification must be based on the elicitation
of additional knowledge on the application area.

The structural and semantical information can be
used for preintegration and comparison of schemata.
Preintegration is based on a strategy of the order of
integration. The best order known so far is the induc-
tive order following the order of structural types, i.e.,
starting with domains, followed by attribute types,
followed by entity types and then finally by relation-
ship types depending on their order. During com-
parison, naming and structural affinities and conflicts
are derived, synonyms are unified to common names,



homonyms are separated based on name extensions
(e.g., prefixes), hyponyms are used to form hierar-
chies within the schema, and overlappings are used
for developing generalizations.

The result of the step is a mediating and separating
ontology of types used in the schemata under con-
sideration. This ontology is associated with queries
for extraction of the corresponding concepts of the
databases. It supports the derivation of mappings for
cooperating views.

This mediating ontology can be extended to gen-
eration of the global schema G for the triple I =
(G,S,M) , the collection S of local database
schemata S (over a language AS), and the mapping
between G and S. Given an equality and inequality
theory Γ

≈,G,4,
∃
d
. We can derive the weakest similar-

ity relation w expressing that two types are definitely
equal and the strongest similarity relation u express-
ing that two types are potentially equal, i.e., there is
no objection against their equality. These two simi-
larity relations may be used for automatic derivation
of the
• weakest global integration schema Gw =

(
⋃

S)|w and
• strongest global integration schema Gu =

(
⋃

S)|u .
The mappingsMw andMu are constructed in a sim-
ilar way if a preference relation for the choice of the
integration type is provided.

The intermediate global schema G is usually a
schema that is weaker than the strongest integra-
tion schema and stronger than the weakest integra-
tion schema. The decisions which strictness for in-
tegration is applied will be derived in the following
steps.

4.1.3 Enrichment

Necessity of enrichment due to forgetful
database development.
Since database applications often have been devel-
oped by applying a specific scope, by restricting to
a number of aspects, by using implicit assumptions
discussed above and by pragmatical decisions, inte-
gration of specifications might not be possible. The
integration conflicts are mainly based on the database
system development itself. Forgetfulness of database
system development can be reduced if the develop-
ment teams agree on a common repository and on
the same style of making design decisions. Moreover,
information systems have been developed following
different paradigms such as relational database tech-
nology, object-relational database technology, object-
oriented database technology and file storage technol-
ogy. Older tools use the latter technology. Applica-
tion systems may follow an event-based computation
style or a state-changing computation paradigm.

Therefore, beside intentional forgetfulness we ob-
serve also paradigm-based forgetfulness. If we face
the need of system integration then we need to know
the context of the system development and the style
of system computation. Forgetful development is not
only a part of the development culture but is also
caused by different treatment of the theory used. Dif-
ferent theories use also different name spaces. These
name spaces are based on a large variety of notions
used in the application area.

4.1.4 Development of the Data Warehouse
Kernel

The general architecture of the data warehouse uses
the separation of source schemata S into

• sub-schemata V(S) that must be integrated and
sub-schemata that coexist together with other
sub-schemata of other applications and

• sub-schemata S \ V(S) that are not under con-
sideration for integration.

Data warehouses integrating several applications
contain all data of the applications. The data is sep-
arated into data that belongs to one and only one
application and data that belongs to several applica-
tions. The relation among the commonly shared data
forms the skeleton of the application. This skeleton
may be rather complex. We may simplify the skele-
ton by developing a general integration kernel and
by associating the integration kernel with the data
that are commonly used. In the simplest case the
skeleton forms a star structured data warehouse as
pictured above. The kernel coincides with the data
structure of the integrated data structure of the data
warehouse. This simple structure is often not achiev-
able. We may, however, use a surrogate kernel by
introducing a number of artificial types that may not
have a meaning in the application but nicely support
integration and consistent management of data in the
data warehouse.

The development of the data warehouse kernel for
integrating n tools is based on a number of steps:
Development of abstractions within the schemata:

Since large schemata are hard to understand,
we simplify the schema by applying schema ab-
straction and clustering techniques. Clustering
is a recursive procedure that constructs shells
of main types. Depending on the adherence,
types of a shell may be clustered to one type for
external representation and collaboration issues.

Development of a hub meta-structure and simplifica-
tion of the skeleton: The skeleton of the inte-
grated schema is reconsidered for detection of
generalizable structures, for transfer of bilateral
associations to trilateral, then of trilateral associ-
ations to 4-lateral etc. and finally of (n-1)-lateral
associations to n-lateral. If the i-lateral associa-
tion of source schemata can be easily maintained
then we do not transfer them to higher laterality.
The transfer to higher associations is based on
the introduction of surrogate identifiers that can
be mapped to the identification of types. These
surrogate identifiers imply two surrogate func-
tional dependencies relating the surrogate with
the original identification.
The derivation of surrogates is recorded for auto-
matic derivation of integrity constraint manage-
ment of the surrogate functional dependencies.
This transformation of the data warehouse
schema forms a hub-like skeleton. This skele-
ton has the advantage that changes of data by
one tool can easily mapped to changes of data
for other tools.

Development of a surrogate generation facility:
Surrogate identifiers can be simpler handled
if the generation mechanism is well-specified.
The generation mechanism may be used for
derivation of indexes, for derivation of direct
search facilities, and for collection of data suites
for transfer of data from the warehouse to the
tools.

Development of version management: Version man-
agement becomes a major obstacle if the local
applications are intensively used from time to
time. We can integrate the version mechanism
into the surrogate value generation if versioning
is going to be hierarchical. In this case we use an
identifier suffix extension as the version number.



4.1.5 Derivation of requirements for wrap-
pers

Finally, requirements for wrappers that support in-
tegration, import and export of data are developed.
These wrappers support the following tasks:
Input/output/modification interfaces: Data in the

data warehouse and data used, modified, and
generated by local applications must be con-
stantly harmonized. The import/export of data
from the warehouse to the tools is based on tool
enactment. Whenever a tool is activated the
data suite necessary for support of the local tool
is either transferred from the warehouse or a new
data suite for the tool is automatically copied to
the warehouse. After the tool is deactivated a
new version is inserted into the warehouse.

Consistency control for data suites: Data suites are
kept together for all active local tools. Consis-
tency of kernel data common to all applications
is constantly maintained by triggers and moni-
tors observing the state of the database.

Consistent playout of data generated by some of the
tools: A challenge to the data warehouse that
can only be partially resolved is the consistent
playout of data suites by several tools. To sup-
port this challenge, special playout wrappers may
be developed that show the results of simulations
of several tools. An XML based interface might
support the consistent playout. This solution is
not a general one but works only under some re-
strictions applied to the local applications.

The wrappers thus support the hub-based inte-
gration within a data warehouse. At the same time
wrappers may be used to support consistency man-
agement. Consistency management and constraint
enforcement are one of the most difficult database
design and database development issues. Integrity
enforcement is usually supported by
decomposition (normalization) of structures to such

structures which allow a simple integrity enforce-
ment (mainly on the basis of keys, referential
integrity constraints, and domain constraints),
or by

extensions of database operations that maintain con-
sistency of the database while have the same ef-
fect as the operation that has been extended, or
by

special programs for integrity enforcement such as
triggers, assertions and stored procedures, or by

transaction management that rejects all those modifi-
cations of the database that leads to inconsistent
states, or by

application interfaces keeping consistency of those
data suites which may be falsified within a pro-
gram that uses insert, delete or update opera-
tions.

All five approaches have their disadvantages. Decom-
position approaches may fail due to the complexity of
the integrity constraint set. Extensions of operations
cannot be computed in all cases. Special programs
supporting integrity management must be combined
with control and scheduling facilities in order to avoid
avalanches. A solution for the last problem is not
known yet. Transaction management might be too
restrictive and too pessimistic. The last approach to
integrity management is feasible as long as the ap-
plication is modifying the database only through the
application interfaces and the interfaces are well de-
veloped.

In our case we can use the last approach. We can
extend the hub architecture in a way that it maintains
integrity constraints and versions of data suites.

4.2 Collaboration Warehouses

Objects may be developed by each application on
their own. Objects belonging together to one version
of the development process are called an object suite.
A suite consists of a set of elements, an integration or
association schema and obligations requiring mainte-
nance of the association. A suite will be accepted by
the collaborating database set
• by transforming the suite into a set of objects

within the data warehouse,
• by adding to the identification of objects their

object suite identification,
• by extracting the identification tree of the suite

identification, and
• by associating the object suite with the applica-

tion working so far with the suite.

The identification tree of an object suite is called hub
kernel . Through this hub kernel the object suite can
be reestablished.

An application may either call an existing object
suite or insert a new object suite into the data ware-
house. If an application calls an object suite and the
object suite has been developed by another applica-
tion then the object suite will be also associated with
the new application. Any application may directly
change those parts of the object suite which exclu-
sively belong to the structures and attributes of this
application. If data in an object suite are changed
that belong to several applications then an explicit
cooperation function must support the consistency of
the parts of the object suite.

The hub kernel may not be changed by any appli-
cation. It is only possible to delete the entire object
suite if none of the applications is using one the ob-
jects in the suite.

The collaborating database suite is based on an ex-
plicit specification of the cooperation pattern, of the
coordination pattern and of the communication pat-
tern of object suites. These patterns are composed to
a general collaboration contract. This contract spec-
ifies which application may perform which modifi-
cation of an object suite under which conditions at
which time.

5 Conclusion

Database integration is not achievable in general. In
most applications a full integration of database sys-
tems is not an aim of the development. We develop
a novel approach to database systems collaboration
that allows to develop a suite of database systems
which are collaborating. The collaboration is based
on explicit specification of cooperation, coordination
and communication. The specification has already
been applied in some of our projects and may thus
considered to be practical and applicable. At the
same time we know that our proposal will not pro-
vide the ultimate solution to all database integration
problems. It provides, however, a way to integrate
systems as much as possible.

References
Abiteboul, S., Cluet, S. & Milo, T. (1997), Correspondence and

translation for heterogeneous data, in F. N. Afrati & P. Ko-
laitis, eds, ‘Database Theory - ICDT ’97, 6th International
Conference, Delphi, Greece, January 8-10, 1997, Proceedings’,
Vol. 1186 of Lecture Notes in Computer Science, Springer,
pp. 351–363.

Anthony Hunter, B. N. (1998), ‘Managing inconsistent specifi-
cations: Reasoning, analysis, and action’, ACM Transac-
tions on Software Engineering and Methodology (TOSEM)
7(4), 335–367.



Beeri, C. & Milo, T. (1999), Schemas for integration and trans-
lation of structured and semi-structured data, in C. Beeri &
P. Buneman, eds, ‘Database Theory - ICDT ’99, 7th Inter-
national Conference, Jerusalem, Israel, January 10-12, 1999,
Proceedings’, Vol. 1540 of Lecture Notes in Computer Sci-
ence, Springer, pp. 296–313.

Bernstein, P. A. & Rahm, E. (2001), ‘A survey of approaches to
automatic schema matching’, VLDB Journal 10, 334–350.

Calvanese, D., Giacomo, G. D., Lenzerini, M., Nardi, D. & Rosati,
R. (1998), Information integration: Conceptual modeling and
reasoning support, in ‘Proceedings of the 3rd IFCIS Interna-
tional Conference on Cooperative Information Systems, New
York City, New York, USA, August 20-22, 1998, Sponsored
by IFCIS, The Intn’l Foundation on Cooperative Information
Systems’, IEEE-CS Press, pp. 280–291.

Christine Parent, S. S. (1998), ‘Issues and approaches of database
integration’, CACM 41(5), 166–178.

Cluet, S., Delobel, C., Siméon, J. & Smaga, K. (1998), Your me-
diators need data conversion!, in L. M. Haas & A. Tiwary,
eds, ‘SIGMOD 1998, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA’, ACM Press, pp. 177–188.

Conrad, S., Saake, G. & Sattler, K.-U. (1999), Informationfusion
- Herausforderung an die Datenbanktechnologie, in ‘Proc.
BTW’, Springer, pp. 307–316.

Convent, B. (1986), Unsolvable problems related to the view inte-
gration approach., in ‘ICDT’86’, Vol. 243 of Lecture Notes in
Computer Science, Springer, pp. 141–156.

Kalinichenko, L. A. (1999), Compositional specification calculus
for information systems development, in J. Eder, I. Rozman
& T. Welzer, eds, ‘Advances in Databases and Information
Systems, Third East European Conference, ADBIS’99, Mari-
bor, Slovenia, September 13-16, 1999, Proceedings’, Vol. 1691
of Lecture Notes in Computer Science, Springer, pp. 317–
331.

Lee, M.-L. & Ling, T. (1995), Resolving structural conflicts in the
integration of entity-relationship schemas., in ‘Proc. ER’95’,
Vol. 1021 of Lecture Notes in Computer Science, Springer,
pp. 424–433.

Lee, M.-L. & Ling, T. (1997), Resolving constraint conflicts in the
integration of entity-relationship schemas., in ‘Proc. ER’97’,
Vol. 1331 of Lecture Notes in Computer Science, Springer,
pp. 394–407.

Lenzerini, M. (2002), Data integration: a theoretical perspec-
tive, in ACM, ed., ‘Proceedings of the Twenty-First ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems: PODS 2002: Madison, Wisconsin, June
3–5, 2002’, ACM Press, New York, NY 10036, USA, pp. 233–
246.

Ludäscher, B. & Gupta, A. (1999), Modeling interactive web
sources for information mediation, in P. P. Chen, D. W. Em-
bley, J. Kouloumdjian, S. W. Liddle & J. F. Roddick, eds,
‘Advances in Conceptual Modeling: ER ’99 Workshops on
Evolution and Change in Data Management, Reverse Engi-
neering in Information Systems, and the World Wide Web and
Conceptual Modeling, Paris, France, November 15-18, 1999,
Proceedings’, Vol. 1727 of Lecture Notes in Computer Sci-
ence, Springer, pp. 225–238.

McCabe, M. C., Chowdhury, A., Grossman, D. A. & Frieder,
O. (1999), A unified environment for fusion of informa-
tion retrieval approaches, in ‘Proceedings of the 1999 ACM
CIKM International Conference on Information and Knowl-
edge Management, Kansas City, Missouri, USA, November
2-6, 1999’, ACM, pp. 330–334.

Papakonstantinou, Y. & Velikhov, P. (1999), Enhancing semistruc-
tured data mediators with document type definitions, in ‘Pro-
ceedings of the 15th International Conference on Data Engi-
neering, 23-26 March 1999, Sydney, Austrialia’, IEEE Com-
puter Society, pp. 136–145.

Raak, T. (2001), Database systems architecture for facility man-
agement systems, Master’s thesis, FHL, Civil Engineering
Dept., Cottbus.

Radochla, S. & Thalheim, B. (1999), Umstrukturierung eines Data-
Warehouse in ein effizientes Decision Support System, in
F. M. F. Hüsemann, K. Küspert, ed., ‘Jenauer Schriften
zur Mathematik und Informatik’, Vol. Math/Inf/99/16, Jena,
pp. 92 – 96.

Sadri, F., Subramanian, I. N. & Lakshmanan, L. V. S. (1996),
‘SchemaSQL - A language for interoperability in relational
multi-database systems’.

Spaccapietra, S. & Parent, C. (1989), View integration: A step
forward, reports, Lausanne University.

Thalheim, B. (2000), Entity-relationship modeling –
Foundations of database technology, Springer,
Berlin. See also http://www.informatik.tu-
cottbus.de/∼thalheim/HERM.htm.

Thalheim, B. (2003), Informationssystem-Entwicklung - Die in-
tegrierte Entwicklung der Strukturierung, Funktionalität,
Verteilung und Interaktivität von großen Informationssyste-
men, Preprint I-2003-15, Cottbus Tech, Computer Science In-
stitut, BTU Cottbus.

Theo Härder, K. H. (2002), ‘Ankopplung heterogener Anwen-
dungssysteme an Föderierte Datenbanksysteme durch Funk-
tionsintegration’, Informatik - Forschung und Entwicklung
17, 135–148.

Wiederhold, G. (1995), Modelling and system maintanance, in
M. P. Papazoglou, ed., ‘OOER’95: Object-Oriented and
Entity-Relationship Modelling, 14th International Confer-
ence, Gold Coast, Australia, December 12-15, 1995, Pro-
ceedings’, Vol. 1021 of Lecture Notes in Computer Science,
Springer, pp. 1–20.

Yigitbasi, S., Thalheim, B., Seelig, K., Radochla, S. & Jurk,
R. (1999), Entwicklung und Bereitstellung einer Forschungs-
und Umweltdatenbank für das BTUC Innovationskolleg, in
F. Hüttl, D. Klem & E. Weber, eds, ‘Rekultivierung von Berg-
baufolgelandschaften’, Walter de Gruyter, Berlin, pp. 269–
282.


	Database Integration
	Known Approaches to Structural Integration of Databases
	Towards Database Collaboration
	Database Cooperation
	Application of Cooperation to Multi Database Systems and Database Farms
	Application of Cooperation to Incremental Database Systems
	Database Collaboration in the Washer Approach

	Derivation of Collaboration Strategies
	Derivation of Collaborating Sub-Structures
	Separation of Source Schemata in the Case of Partial Integrability
	Transformation
	Enrichment
	Development of the Data Warehouse Kernel
	Derivation of requirements for wrappers

	Collaboration Warehouses

	Conclusion

