Database Support for Multiresolution Terrain Visualization

Kai Xu

School of Information Technology and Electrical Engineering
The University of Queensland
Brisbane, Queensland 4072, Australia

kai xu@'t ee. ug. edu. au

Abstract

Using Multiresolution Terrain Model (MTM) is a common
approach to improve the performance of visualizing large terrain
data. With the constant increase in the size of terrain data, it is
becoming less feasible to have all the data in main memory
during visualization. The data exchange between main memory
and secondary storage becomes a bottle-neck of terrain
visualization, especially for operations like selective refinement.
However, this problem has received little attention so far in the
context of multiresolution terrain visualization. The need to
access the terrain database at multiple levels of detail (LOD) is a
fundamental requirement to support secondary-storage
multiresolution terrain visualization. However, conventional
spatial database access methods are typically based on single
resolution only. A new indexing structure, LOD-quadtree, is
proposed to support selective refinement on tree-structured
MTMs. The new indexing method manages the terrain data in an
x-y-error three-dimensional space. In this way, it incorporates the
LOD information into the spatial index and at the same time
provides efficient locality support. The new indexing method
improves visualization performance by accessing the terrain
database efficiently at different levels of detail and restricting the
data retrieval within specified area. As the LOD-quadtree has no
specific requirements for MTM hierarchy structure, it can be used
to support different types of tree-structured MTM without
modifying them.'

Keywords: ~ Multiresolution, terrain visualization, secondary
storage, spatial index.

1 Introduction

Terrain data, with its characteristic large size, is always a
challenge for visualization. A dataset with millions of
polygons is not wunusual. Even state-of-the-art
workstations cannot handle it comfortably if a large terrain
is visualized at full resolution. This may not be necessary
due to limited resolution of the display device. A
Multiresolution Terrain Model (MTM) is proposed to
capture a wide range of terrain approximations (meshes)
from an original terrain data set (Garland 1999). Each
approximation represents the data at a different resolution
and can be used to reconstruct the terrain for different
viewing requirements.

Generally, there are three types of MTM (De Floriani,
Puppo and Magillo 1999): pyramidal (layered),

1Copyright © 2003, Australian Computer Society, Inc. This
paper appeared at the Fourteenth Australasian Database
Conference (ADC2003), Adelaide, Australia. Conferences in
Research and Practice in Information Technology, Vol. 17.
Xiaofang Zhou and Klaus-Dieter Schewe, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

incremental (evolutionary, historical) and tree-structured
models. Pyramidal models consist of a small number of
pre-computed approximation meshes with different LOD.
Incremental models code each step of MTM construction,
either the insertion of a refinement method or the inverted
removal step of a decimation method. Approximation
mesh is reconstructed during the visualization. A much
larger number of possible approximations can be obtained
from incremental models. An incremental model can be
turned into a tree-structured model by the identification of
hierarchical independencies in the single incremental steps.
While the first two types of MTMs allow only
reconstruction of approximation meshes cover the entire
domain, tree-structured models also enable approximation
meshes covering part of the domain. Tree-structured
models are best suited for terrain visualization applications
since often only a small subset of the whole dataset is
required by users.

Once an MTM is constructed, the operation to extract an
approximation mesh for user-specified view conditions is
known as selective refinement. The user specifies the area
he/she is interested in (Region Of Interest, or ROI) and the
resolution (Level Of Detail or LOD) required. The
selective refinement algorithm reconstructs a terrain
approximation (mesh) from the MTM according to these
parameters.

Many selective refinement algorithms have been proposed
for tree-structured MTMs when datasets are small enough
to fit into the main memory (De Floriani, Magillo and
Puppo 1998). A typical selective refinement algorithm
starts with a coarse approximation and then refines it
gradually. In each step, a small part of the mesh is refined.
If the part is within the ROI and its LOD is not sufficient, it
is replaced by more detailed data. If the part is not within
ROI or it is within ROI but its LOD is sufficient, it is not
further refined. This process repeats until LOD of all parts
of mesh within the ROI is equal to or greater than the level
specified by the user.

As the size of terrain data increases, it is increasingly
difficult to hold all the data in main memory during
visualization. The data exchange between main memory
and secondary storage becomes a bottle-neck of selective
refinement. However, this problem has received little
attention so far in the context of multiresolution terrain
visualization. Selective refinement algorithms for main
memory will cause a large number of disk 1/O operations if
applied directly to secondary storage data. When the
main-memory selective refinement algorithm is performed
on secondary-storage data, one disk I/O operation is
needed every time a small part of the mesh is refined. The
ROI is made up of many small parts. In most cases, each

point within ROI is checked individually, i.e. each point is
a “part”. Besides, each part may require a number of
updates, thus the total number of the disk I/O operations
performed during selective refinement is very large (a
more detailed example is provided in Section 3). So the
need to access a terrain database at multiple levels of detail
(LOD) becomes a fundamental requirement to support
efficient selective refinement in secondary-storage
multiresolution terrain visualization (LOD support). While
there exist many spatial data access methods (Gaede and
Gunther 1998), most conventional spatial database access
methods are typically based on single resolution only. In
addition, the need to reduce the data exchange requires
locality support of the spatial index. Thus the data
exchange can be further reduced by restricting data
retrieval within the ROI (ROI support).

In this paper, we propose a new spatial indexing method,
the LOD-quadtree, to support selective refinement on
tree-structured MTMs. The new indexing method
manages the terrain data in an x-y-error three-dimensional
space. In this way, it incorporates the LOD information
into the spatial index and at the same time provides
efficient locality support. The new indexing method
improves visualization performance by accessing the
terrain database efficiently at different levels of detail and
restricting the data retrieval within specified area. In other
words, both ROI and LOD are supported in this new
spatial data access method. The LOD-quadtree can be used
for various types of existing tree-structured MTM without
modification. The remainder of this paper is organized as
follows. In Section 2, related work is reviewed. Selective
refinement using tree-structured MTM is briefly reviewed
in Section 3. A new three-dimensional space, x-y-error

space, is introduced in Section 4 to manage the terrain data.

The new spatial index, LOD-quadtree, is described in
Section 5. In Section 6, visualization performance of the
new indexing method is compared with other spatial
indexing methods currently available. Section 7 concludes
the paper.

2 Related work

According to the data structures used, there are two types
of tree-structured MTMs: MTM based on Regular Square
Grid (RSG) and MTM based on Triangulated Irregular
Network (TIN) (Xu and Zhou 2002). RSG-based MTMs
have been adopted for terrain visualization for quite some
time. However, there is relatively less work for TIN-based
MTM (Xu and Zhou 2002). The methods discussed in this
paper focus on TIN-based tree-structured MTM.

There are mainly two types of spatial indexing methods
available now to support selective refinement for
TIN-based tree-structured MTM visualization. In the first
type, the spatial index is created during the process of
MTM construction (Magillo and Bertocci 2000) (Hoppe
1998). As the construction (simplification) algorithms of
MTM are quite different from each other, the index
structures they create are also quite different. In Magillo
and Bertocci’s work (2000), the simplification algorithm
divides the whole dataset into smaller parts so that each
part can fit into main memory and be simplified separately.
As a result, the MTM is made up of a number of smaller

MTMs that can be displayed independently or together.
The selective refinement algorithm then retrieves only the
parts that intersect with the ROI from secondary storage.
This indexing method provides some support for ROI, but
it has no support for accessing the data at different LOD.
In Hoppe’s work (1998), a quadtree index is built into a
MTM called progressive meshes (Hoppe 1996). The
method starts with partitioning the data in the original
model into grids. Then simplification is performed within
each grid. Next, every four adjacent grids are merged into
one larger grid and then simplified. This process repeats
until there is only one grid left or other condition is met. To
guarantee that grids of different LOD can match each other
when reconstructing the approximation mesh, the
simplification performed inside each node is forced to
preserve the boundary points. The build-in quadtree index
provides good support for ROI. However, the quadtree
index used here provides very limited support to accessing
data at different LOD.

The second type of method adds a spatial index designed
specifically for visualization purposes after the MTM
construction. Hardly any work has been done so far in this
area. In one of them (Kidner, Ware, Sparkes and Jones
2000), the terrain data is indexed with a quadtree similar to
the PMR-quadtree (Nelson and Samet 1986) after the
MTM construction. However, this method only works
with the pyramidal (layered) terrain model (De Floriani,
Puppo and Magillo 1999) and cannot be extended easily to
support tree-structured MTMs.

Adding new indexing structure after the MTM is
constructed is considered to be a more promising approach.
Building the index during the MTM construction will
always affect the simplification. As in the work by Hoppe
(1998), extra constrains are added to ensure that all the
boundary points of every grid have to be preserved, which
results in a larger size of MTM. Additionally, these
methods are MTM specific. One indexing method can
only work with MTM created by certain type of
construction method. Adding new indexing structure after
the MTM is constructed avoids these problems.

3 Selective refinement using tree-structured
MTM

As mentioned before, a typical main-memory selective
refinement algorithm starts with a coarse approximation
and then refines it gradually. In each step, a small part of
the mesh is refined according to two conditions: the ROI
condition and the LOD condition.

e The ROI condition defines a portion of terrain to be
visualized. It is a Boolean function defined on each
point of an MTM that returns TRUE if and only if at
least one triangle having this point or any of its
descendant point as one of the three vertices intersects
with the ROI specified by the user.

e The LOD condition defines the level of detail of the
mesh to be extracted. It is a Boolean function defined
on each point of an MTM that returns TRUE if and
only if its level of detail is considered sufficient for
user-specified visualization.

Therefore, a selective refinement on secondary-storage
terrain data can be regarded as a query with a conjunction
of a LOD condition and a ROI condition. The ROI
condition is typically a spatial window query (i.e., to find
all points within a given polygon). The LOD condition is
equal to a query to find all the points whose LOD is within
certain interval. The LOD of points in MTM is usually
measured by their approximation error. The
approximation error metric used in our test datasets is the
vertical distance between a point in the approximation
mesh and its corresponding point in the original model.
This is one of the most widely used error metrics for
terrain visualization (Lindstrom and Pascucci 2001).

The detail of a typical selective refinement process is
given in Figure 1 with a simple example.

VlS

Vi V. Vi V4 Vs VgV, Vg
(@

V15 VlS
N []
Vis
Vig
A \ v
Vig Vs
Vis Vi3
Vig v
8
Vs
Vio
Vio Vis
Vis
Vi \Y%
Vi
Vi Vi
Vis
Vio v
10
Vi \Y
(b)

Vv, V, V; V4 Vs Ve \% Vg

Figure 1: Selective refinement

Suppose there is a simple tree-structured MTM whose
hierarchy structure is shown in Figure 1(a). V; to Vjg are
the points from original terrain model (i.e., with no
approximation error). All other points are derived from
them using some simplification algorithms, such as the
quadric error metrics (Garland and Heckbert 1997) used in
our test datasets, to minimize step-wise approximation

error. A user issues a request to display part of this terrain
represented at certain LOD. Figure 1(b) shows every step
of selective refinement. The left column shows part of the
MTM used to reconstruct the approximation mesh; the
right column shows the resulting approximation mesh. The
approximation mesh starts with only one point, Vs, which
is the root of the MTM hierarchy. Assuming that the LOD
of V5 is not sufficient (i.e., the approximation error of Vs
is greater than the user-specified error), Vs is refined and
replaced by two points: V4 and Vg According to the
refinement, the approximation mesh is now a line. Assume
that the LOD of Vjy is sufficient, but not V4. V4is further
refined and replaced by Vi, and Vi3, after which the
approximation mesh turns into a triangle. Suppose Vy, is
outside the ROI, so it is not refined any further; Vi3 is
within ROI and its LOD is still not sufficient. V3 replaced
by Vi, and V;. The final approximation mesh is made up
of two triangles.

The selective refinement could potentially cause a large
number of I/O operations as each point refinement needs
to retrieve the data of its two child points. In this example,
four retrievals (one for each step) are performed to retrieve
seven points, which is not efficient. To improve the
performance, one alternative is to pre-retrieve the data that
is necessary for selective refinement. Figure 1(c) shows
the part of MTM that is used for selective refinement. If
this part of the MTM can be pre-retrieved, it can save a
number of disk I/O operations and improve the selective
refinement performance. To achieve this, the indexing
method needs to provide both ROI and LOD support.
While ROI based selection can be supported by existing
spatial data access methods such as quadtree or R-tree
indexes(Xu and Zhou 2002), there is no information in
such spatial indexing mechanisms to care for LOD at the
same time. Therefore there is a need for a new indexing
structure that contains both ROI and LOD information.
Such an indexing method requires a space that
incorporates spatial and level of detail information.

4 X-Y-Error space

Terrain data is two-and-half-dimensional data and a terrain
model can be defined as a set of points (x, y, f(X,y)) where
x and y are the point coordinates (De Floriani, Marzano
and Puppo 1996). Based on this, terrain data is typically
managed in x-y two-dimension space. However, only the
spatial information (for ROI support) is included in such a
space, but not the level of detail information for LOD
support. A new three-dimensional space, X-Y-Error space,
is introduced to incorporate both ROI and LOD
information. The X and Y dimensions have the ROI
information; the Error dimension, which represents the
approximation error in MTM, has the LOD information.
An example of X-Y-Error space is given in Figure 2.

Error

Query cube

Maximum Errof L

~
[]

[]

[] [] ! o] o o
. f 7
User specified errorf{. o °
o]

Figure 2: X-Y-Error space and query cube

In the previous example, the points necessary for selective
refinement (need to be pre-retrieved) are within the part of
MTM indicated by the dashed line in Figure 1(c).
Obviously, most of these points are within the ROI. Since
selective refinement always starts from the root, which has
the maximum approximation error, and stops where the
approximation error of points is no greater than the user
specified error, we can use the error range between the
user-specified error and the maximum error to
approximate the error range of data for selective
refinement.

Based on this observation, a three-dimensional rectangle,
query cube, is introduced in X-Y-Error space to
pre-retrieve the data for selective refinement. The query
cube is defined by the ROI and LOD of selective
refinement, as shown in Figure 2. If the points within the
query cube are pre-retrieved (indicated as white dots),
there is a high probability that these points will be used in
selective refinement.

Generally, there are two types of indexing methods to
manage point data in multiple-dimension space: one is
space-centric, the other is data-centric. One of the most
common space-centric indexes is the region quadtree
(Samet 1984). However, a three-dimensional region
quadtree does not work well in this case (see Section 6 for
test results). The reason for this is that the points in the
MTM do not distribute evenly in the x-y-error space. Table
1 shows the distribution of the points in the error
dimension in our test dataset which has approximately
110,000 points in total. The error metric used here is the
vertical-distance error metric, as mentioned in Section 3,
given in metres.

Error range Point number | Percentage
0 55859 50.9365%
0-1 51564 47.0200%
1-2 1546 1.4098%
2-3 358 0.3265%
3-4 170 0.1550%
4-5 62 0.0565%
5-6 47 0.0429%
6-7 28 0.0255%
7-8 10 0.0091%
8-9 2 0.0018%

9-10 5 0.0046%
10-11 0 0.0000%
11-12 2 0.0018%
12-13 2 0.0018%
13-14 1 0.0009%
14-15 4 0.0036%
15-16 2 0.0018%
16-17 0 0.0000%
17-18 0 0.0000%
18-19 0 0.0000%
19-20 0 0.0000%
20-21 0 0.0000%
21-22 0 0.0000%
22-23 0 0.0000%
23-24 0 0.0000%
24-25 0 0.0000%
25-26 2 0.0018%

Table 1: Point distribution in error dimension

As we can see from Table 1, the points in the MTM are
highly skewed within the 0 to 1 error range (97.9565%).
The reason is: about half of all the points in the MTM are
from the original terrain model and the approximation
errors of these points are zero; the simplification algorithm
that creates the MTM tries to minimize the approximation
error introduced at each step; the approximation errors of
points in the MTM only increase quickly as the
simplification is done to higher than a certain level and
there are few points left at that stage. Finally the original
terrain model is simplified to a single point, which is the
root point of the MTM and has the maximum
approximation error. So the data is highly skewed in the
error dimension.

The quadtree, as a space-oriented indexing method,
doesn’t perform well in this highly-skewed case.
Data-centric indexing methods, such as the R*-tree
(Stonebraker, Sellis and Hanson 1986) and the K-D-B-tree
(Robinson 1981), are designed to adapt skewed data
distribution. However, these indexing methods need to
actually store and maintain an index structure, whereas the
quadtree-based index methods can use Z-ordering
(Orenstein and Merrett 1984) without explicitly storing the
index structure.

5 LOD-quadtree

5.1

Now we propose a new indexing structure, LOD-quadtree,
that adapts to the highly skewed data distribution in MTM
and still can employ the compact structure of Z-ordering. It
can provide support for both ROI and LOD because it is
based on the X-Y-Error space. Intuitively, the
LOD-quadtree is a combination of a two-dimensional
region quadtree and a one-dimensional adaptive K-D-tree
(Bentley and Friedman 1979) and works similarly to a
three-dimensional region quadtree. In the x-y dimensions,
as the data is not skewed for terrain data, the
LOD-quadtree partitions space as a two-dimensional

Description

region quadtree. In the error dimension, as the data is
highly skewed, the LOD-quadtree uses a splitting method
similar to the one-dimensional adaptive K-D-tree: the data
is split in such a way that each half has the same number of
points. A three-dimensional region quadtree decomposes a
space into eight equal-sized subspaces recursively (Figure
3 (a)). In part of the universe where the data is skewed, the
decomposition stops at very deep level; whereas for the
part of the universe where the data is sparse, the
decomposition stops at much higher level. The resulting
index tree is highly unbalanced and this will cause poor
performance when retrieving the data for selective
refinement. The LOD-quadtree decomposes the universe
according to the data distribution in the error dimension
(Figure 3(b)) and this gives it a more balanced index tree.

Error
4
t °
| A 2 1T
/la_._/A___/
| L J
| °
Ry v

Figure 3(a): Three-dimensional region quadtree

Error
4
t °
:.
vl KN
el
.__/._-_ Y

Figure 3(b): LOD-quadtree

The following is the formal description of the
LOD-quadtree. In the LOD-quadtree, all data is stored in
the leaf nodes. A leaf node is of the form:

(Bid)

where Bid is the pointer referring to the database block
where the actual data points belonging to this node are
stored.

Each internal node is of the form:
(Err_plane, Child_list)

Where the Err plane is the position of a plane in the
X-Y-Error plane, called error plane. Error plane is
perpendicular to the error axis and partitions the space into
two subspaces in such a way that each subspace contains
the same amount of points. The Child list is a list of
pointers to the child nodes of this node. Each internal node

has eight child nodes because each internal space is
divided into eight subspaces.

The implementation of the LOD-quadtree uses Z-ordering.
Each data point in MTM has an associated Z-value similar
to the one used for three-dimensional region quadtree. The
positions of error planes are stored separately. The number
of error planes is equal to the number of internal nodes of a
LOD-quadtree, which could be very large. Searching such
a large dataset will obviously slow down the retrieval for
selective refinement.

In the effort to reduce the number of error planes, it is
found that the positions of error planes at the same level
are actually very similar. Based on this observation, a
global error plane is introduced to reduce the number of
error planes. So the subspaces at the same level can share
one error plane instead of having a different error plane for
each. Figure 4 illustrates this.

Error
d c
/: /Errorplane2
I
al 1= rT
/I//—k—’7 _;A/Errorplanel
/:___ g —
A 47 v

Figure 4: Global error plane

In Figure 4, the data space is first partitioned with Error
plane 1, which is a normal error plane. Then, the four
subspaces in the upper half of the data space (subspace a, b,
c, and d) are further partitioned using the same error plane
— Error plane 2 (global error plane). Using a global error
plane can reduce the number of error planes greatly: there
are 4" subspaces at level n; these 4" subspaces can share
one global error plane instead of having 4" error planes.

Similar to region quadtree, the LOD-quadtree is not a
balanced tree. It would be highly unbalanced only if the
data is skewed in the x-y dimensions, which is not a usual
case for MTM data. One feature of LOD-quadtree is that it
has no specific requirement for the MTM hierarchy. So it
can support different types of existing tree-structured
MTMs without any modification.

5.2 Searching

The searching algorithm for the LOD-quadtree is the same
as the one for the region quadtree except for the way it
partitions the space. In the region quadtree, each space is
partitioned equally. In the LOD-quadtree, each space is
partitioned equally in the x-y dimensions. However, the
space is partitioned according to the position of the error
plane stored at each node.

For selective refinement, the pre-retrieval algorithm uses
LOD-quadtree to find an approximation space of the query
cube of selective refinement and retrieves the points within
this space.

5.3 Construction

The construction algorithm for the LOD-quadtree is again
the same as the one for the region quadtree except for the
way it partitions the space. In the region quadtree, each
space is partitioned equally into subspaces. In the
LOD-quadtree, each space is partitioned equally in x-y
dimensions. In the error dimension, the space is partitioned
according to the distribution of data points such that either
side of the error plane contains the same number of points.
The construction algorithm partitions the data space
recursively until the number of points in a subspace is no
more than the number of points that can be stored in one
database block.

6 Experimental results

For performance testing, we benchmarked the retrieval
time needed to display a part of the terrain. Four different
indexing methods are compared in the tests:

e Three-dimensional region quadtree
e Three-dimensional R*-tree

e Three-dimensional K-D-B tree

e The LOD-quadtree

Z-ordering is used for both the region quadtree and the
LOD-quadtree. The implementation of the Z-ordering for
the region quadtree is straightforward: each point in MTM
has a three-dimensional Z-value associated with it, without
actually maintaining an index structure. The
implementation of Z-ordering for the LOD-quadtree is the
same as described in Section 4. Eight Z-values, the total
space represented by which are minimal but still enclose
the query cube, are used to approximate the query cube in
both implementations. The implementation of K-D-B tree
and R*-tree are both standard. As there is little update of
the index after it is created, there is no storage space
reserved at each node for data insertion. This results in a
more compact structure and hence better performance.

The hardware used comprises of a Pentium III 700 with
256MB memory. The software packages used are Oracle
Enterprise Edition Release 9.0.1, Java SDK 1.3, and
Java3D SDK (openGL) 1.2. The terrain data used (shown
in Figure 5) is a real dataset from Mincom Corp. The
dataset covers an area of 6.4 km x 3.2 km and has 109,664
points in the MTM (constructed using quadric error
metrics (Garland and Heckbert 1997)). Although this is
not a very large dataset, test results show significant
improvement. Greater improvement can be expected as the
volume of the dataset increases.

Figure 5: Test data (from Mincom Corp.)

Figure 6 shows the “Retrieval time” of different indexing
methods when displaying the same terrain part at various
LOD. For this set of tests, the size of data (ROI) used is
400mx400m.

Retrieval time

N
o

bp
5 00—,

Retrieval time (second)
>

0 T T T T
0 02 04 0.6 0.8 1
Error (m)

—o— Region quadtree —o— R*-tree —— K-D-B-tree ——LOD quadtree

Figure 6: Retrieval time — constant ROI

The “Retrieval time” here includes the time of both
pre-retrieval and retrievals occurring during selective
refinement. The time of pre-retrieval has two parts: the
time for searching the index and the time for retrieving
data from secondary storage. However, pre-retrieval can
not guarantee that all the data necessary for selective
refinement is retrieved. A point can be outside the ROI, but
belongs to a triangle that intersects with ROI. In this case,
this point is necessary for selective refinement but outside
the query cube. These points may not be pre-retrieved. If
during selective refinement, the algorithm finds some data
needed is not available in main memory, i.e. is not
retrieved in the pre-retrieval, it then retrieves that data
from the terrain database. The time taken by these
retrievals is also included in the retrieval time.

The x-axis in Figure 6 is the maximum approximation
error allowed in the mesh reconstructed by the selective
refinement algorithm. As the error decreases, the LOD of
the approximation mesh increases, which means a more
detailed mesh with a larger number of points. As shown in
Table 1, the data is skewed with error from O to 1. There is
little data outside this error range (about 2% of total data).
So a mesh with maximum approximation error greater
than one would have only a few points. It is difficult to
compare the performance of various indexing methods
with such a small quantity of data. So only a part of the test
results, where maximum error is between 0 and 1, is shown
here.

As shown in Figure 6, the LOD-quadtree has a clear
performance advantage. There is little difference in
retrieval time during the selective refinement because
every indexing method retrieves all data points within the
query cube. It is the time of pre-retrieval that differs. There
are two main factors that affect the performance of
pre-retrieval. One is reading the index table and searching
for the nodes that should be pre-retrieved. The
LOD-quadtree only needs to read the index table storing
the position of error plane. This index table is usually very
small (the LOD-quadtree index table used for these tests
only has 127 records). Then, the pre-retrieval algorithm
needs to find eight Z-values to approximate the query cube,

which is also very fast. However, the index tables of the
R*-tree and the K-D-B tree are much larger (both have
more than 10,000 records).

The other factor to be considered is the size of data that
needs to be pre-retrieved. Figure 7 shows the pre-retrieval
size of different indexing methods in the tests shown in
Figure 6.

Pre-retrieval size

Points retrieved

Error (m)

—o— Region quadtree —o— R*-tree —— K-D-B-tree —e—LOD quadtree

Figure 7: Pre-retrieval size

The y-axis in Figure 7 is the number of data points
retrieved in the pre-retrieval. The pre-retrieval size of the
LOD-quadtree is very similar to that of the R*-tree and the
K-D-B tree, which means that the LOD-quadtree can use
only eight Z-values to form a good approximation of the
query cube. However, the pre-retrieval size of the region
quadtree is much larger, which is the result of inaccurate
approximation of the query cube. Eight Z-values are not
enough for an accurate approximation using region
quadtree. This is the main reason for the poor performance
of the region quadtree. As the region quadtree decomposes
the space regularly, it is difficult for it to approximate the
small but critical changes in the error dimension. As
shown in Figure 7, the region quadtree uses the same
approximation as the error changes from 1 to 0 because the
numbers of points pre-retrieved are always the same.
However, the size of actual data necessary for selective
refinement changes significantly within this error range
(this can be seen from the pre-retrieval size of R*-tree and
K-D-B tree). One possible solution to this problem is to
increase the number of z-regions used for approximation.
As a side effect, it will increase the time for searching and
pre-retrieving. Besides, the appropriate number of
Z-values could vary as the ROI and/or the LOD changes.

The set of tests whose results are shown in Figure 6 have a
constant ROI size and a changing LOD. Figure 8 shows
the results of another set of tests with a changing ROI and
a constant LOD. The maximum approximation error is set
to 0.1 to allow for a reasonable number of points in the
approximation mesh. Figure 8 shows that the
LOD-quadtree still has clear advantages in this
comparison.

Retrieval time

)
é 12 W
& 10
FRrg 4
£ PLalalin
s , |] s
% 2 ’JA’J 7 “e— 40— 0—¢=¢ =
g o e | ‘
0 100 200 300 400 500
ROI (m)

—o— 3D Quadtree —o— 3D R*-tree —— K-D-B-tree —e—LOD quadtree

Figure 8: Retrieval time — constant LOD

7 Conclusions

In this paper, X-Y-Error space is introduced to
incorporation spatial and level of detail information, both
of which are critical to terrain visualization. Based on that,
a new indexing method, the LOD-quadtree, is proposed to
support selective refinement using tree-structured MTM
stored in terrain database. Combining the advantage of
region quadtree and adaptive K-D-tree, the LOD-quadtree
adapts to the skewed data distribution in MTM and still
has a compact structure by using Z-ordering. A Global
error plane is introduced to further reduce the size of the
index structure. The LOD-quadtree improves the
performance considerably by its ability to support both
ROI and LOD. This is demonstrated by the test results,
which show its clear performance advantage when
compared with other available indexing methods. A
further benefit is that the LOD-quadtree can support
existing MTMs created by various construction methods
without modification.

References

BENTLEY, J.L. and FRIEDMAN, J.H. (1979): Data
structures for range searching. ACM Computing Surveys
11(4):397-409.

DE FLORIANI, L., MAGILLO, P. and PUPPO, E. (1998):
Efficient implementation of multi-triangulations. Proc.
IEEE Visualization '98, Research Triangle Park, NC,
USA, 43-50, Genoa Univ. Italy.

DE FLORIANI, L., MARZANO, P. and PUPPO, E.
(1996): Multiresolution models for topographic surface
description. Visual Computer 12(7):317-345.

DE FLORIANI, L., PUPPO, E. and MAGILLO, P. (1999):
Geometric Structures and Algorithms for Geographic
Information System. In Handbook of Computational
Geometry. 333-388. SACK, J.R. and URRUTIA, J. (eds).
Elsevier Science Publishers B.V.

GAEDE, V. and GUNTHER, O. (1998):
Multidimensional access methods. ACM Computing
Surveys 30(2):170-231.

GARLAND, M. (1999): Multiresolution Modeling:
Survey & Future Opportunities. Proc. Eurographics '99
-- State of the Art Reports, 111--131, Aire-la-Ville (CH).

GARLAND, M. and HECKBERT, P.S. (1997): Surface
simplification using quadric error metrics. Proc. 24th
International Conference on Computer Graphics and

Interactive Techniques, Los Angeles, CA, USA,
209--216, Carnegie Mellon Univ. Pittsburgh PA USA.

HOPPE, H. (1996): Progressive meshes. Proc. 23rd
International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH'96), New Orleans,
LA, USA, 99--108, Microsoft Corp. Redmond WA
USA.

HOPPE, H. (1998): Smooth view-dependent
level-of-detail control and its application to terrain
rendering. Proc. IEEE Visualization '98, Research
Triangle Park, NC, USA, 35--42, IEEE Piscataway NJ
USA.

KIDNER, D.B., WARE, J.M., SPARKES, A.J. and

JONES, C.B. (2000): Multiscale terrain and
Topographic Modelling with the Implicit TIN.
Transactions in GIS 4(4):379 - 408.

LINDSTROM, P. and PASCUCCI, V. (2001):

Visualization of Large Terrains Made Easy. Proc. IEEE
Visualization, San Diego, California, 363--370.

MAGILLO, P. and BERTOCCI, V. (2000): Managing
large terrain data sets with a multiresolution structure.
Proc. 11th International Workshop on Database and
Expert Systems Applications., xxvii+1164, Dept. of
Comput. Sci. Genova Univ. Italy.

NELSON, R.C. and SAMET, H. (1986): A consistent
hierarchical representation for vector data. Computer
Graphics 20(4):197-206.

ORENSTEIN, J. and MERRETT, T.H. (1984): A class of
data structures for associative searching. Proc. 3rd ACM
SIGACT-SIGMOD Symp. on Principles of Database
Systems, 181-190, ACM Press.

ROBINSON, J.T. (1981): The K-D-B tree: A search
structure for large multidimensional dynamic indexes.
Proc. ACM SIGMOD Int. Conf- on Management of Data,
10-18, ACM Press.

SAMET, H. (1984): The quadtree and related hierarchical
data structure. ACM Computing Surveys 16(2):187-260.

STONEBRAKER, M., SELLIS, T. and HANSON, E.
(1986): An analysis of rule indexing implementations in
data base system. Proc. Ist Int. Conf. on Expert Data
Base Systems, Charleston, South Carolina, 465-476,
Benjamin Cummings 1987.

XU, K. and ZHOU, X. (2002): Secondary Storage Terrain
Visualization in a client-server environment: A Survey.
Proc. Networks, Parallel and Distributed Processing,
and Applications (NPDPA 2002), Tsukuba Japan,
206-210.

