
Defining the Paperless Workplace with the Paper Metaphor -
Not a Contradiction in Terms

Gerald Weber

Department of Computer Science
The University of Auckland

38 Princes Street, Auckland, New Zealand
Email: gerald@cs.auckland.ac.nz

Abstract

The transition from a paper-based work environment
to a largely paperless environment is still in full swing,
in healthcare as well as in other domains. Analysts
predict a further decade of efforts is necessary at least.
In reality, paperless IT-based workflows offer both
advantages and disadvantages over paper-based so-
lutions. This is in contrast to the näıve expectation
that a paperless solution should be a strict improve-
ment over paper-based processes. We identify a set
of generic requirements that address common draw-
backs of IT solutions, and we propose a system model
that helps to create IT systems which preserve the ad-
vantages of paper-based processing. The main tenet
is that the paperless solution should be based on a
naturalistic paper metaphor. Our system model sup-
ports auditability of IT systems by direct reference
to the paper metaphor and ensures that information
is faithfully presented to the practitioner. The sys-
tem model is intended for mission critical applications
such as health record management.

1 Introduction

The transition from paper-based systems to largely
paperless systems is a process that might still con-
tinue for many years. More conservative predictions
for the healthcare sector (Ford et al. 2006) have come
up with dates around 2024 for a thorough rollout of
paperless solutions. The healthcare sector is well po-
sitioned in comparison to many other areas, not least
because of a strong interest on the part of policy mak-
ers. New substantial stimulus packages have been cre-
ated to achieve that goal, but at the same time they
bear witness that we are not there yet.

As with other areas in IT, a plethora of reasons
can cause the implementation of a paperless work-
flow to be riddled with problems. As a consequence,
in some cases this means that the workflow becomes
worse than with the paper predecessor. Immature
or faulty underlying software packages, problems in
process management or administration are possible
reasons, although the impact of such problems is dis-
puted (Glass 2006). However these are beyond the
scope of our work. Our focus is on aspects of the
system architecture that can either help or hinder the
system to be better than the old style paper office. We
want to capture these aspects of architecture not pri-
marily as technical blueprints but by naming impor-
tant concepts that the architecture must inherently

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Workshop on Health Infor-
matics and Knowledge Management (HIKM 2011), Perth, Aus-
tralia, January 2011. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 120, Kerryn Butler-
Henderson and Tony Sahama, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

support.
It should be noted that one aspect making the

transition harder is the fact that the translation from
paper to IT-based work paradigms is not uniquely
defined. We propose that careful observation of the
needs of important domains can lead to stricter re-
quirements for paperless workplace solutions. The
central tenet will be that the system should incorpo-
rate aspects of the pre-IT workflows with a natural-
istic and well-defined paper metaphor. The physical
paper is turned into a virtual successor, initially with
as few changes as possible. Ideally, the virtual paper
should maintain all advantages of the physical paper,
while offering the possibility to get rid of all draw-
backs of physical paper. However, it is not always
straightforward to decide if a property of paper is an
advantage or a drawback. These considerations also
help us in identifying aspects where current IT-based
systems fall behind paper-based systems.

The paper is structured as follows. In Section 2
we highlight maintainability and auditability risks in
current multitier applications that will be addressed
throughout the paper. We present alternative system
models that contain a naturalistic paper metaphor
in Section 3. In Section 4 we present a model in
which the naturalistic paper metaphor can be com-
bined with traditional form-based interfaces. In Sec-
tion 5 we review how this approach relates to other
domains of IT use.

2 Advantages and Challenges of Paperless
Systems

Our work is related to earlier work on Hippocratic
databases (Agrawal et al. 2002), a type of advanced
database applicable to privacy-intensive applications
including healthcare applications. These systems cre-
ate the possibility of auditing which data has been
accessed at which point in time and in principle by
whom. On the one hand Hippocratic databases sup-
port enforcement of privacy policies; on the other
hand they support audits of compliance. This means
that they have to reconstruct faithfully what actually
happened. The compliance audit is based on an audit
trail that stores database accesses. This enables some
detailed analysis using access statistics that are avail-
able to the database. If we want to interpret these
database accesses, however, we have to make some as-
sumptions on the information system that processes
the data before the presentation to the user. In partic-
ular we have to know the user’s identity. If a database
is used as a backend in a classical multi-tier architec-
ture, the database has no reliable access to the actual
user identity. The database access happens through
artificial system user accounts that do not correspond
to a single natural person. More generally, as soon
as an architecture has a classical application server
tier, this tier has unrestricted ability to transform

the data. It is not directly possible to infer from the
database accesses what the users have actually seen
and entered. In contrast, we present here a frame-
work based on a naturalistic paper metaphor. The
audit happens much higher up in the tier architec-
ture, as close to the user interface as possible. The
system keeps an audit trail of exactly what has been
presented to the user and what the user has entered in
which context. Still this can only be achieved under
certain assumptions of correctness of the implemen-
tation of the framework. If the framework records
the input incorrectly, this assumption is broken. This
again highlights that the transition to an electronic
system remains to some extent precarious. A fur-
ther assumption must be made that all information
rendered by the GUI is actually presented visually to
the user and not, for example, occluded by other win-
dows. Occlusion-free user interface technologies can
help here (Lutteroth 2006).

Paperless systems allow the storage of informa-
tion in presentation-independent form. The classi-
cal current implementation of this feature is the stor-
age of data from paper-like input forms in databases.
This feature will be a central topic of our subsequent
discussion, where we will shed a critical light on it.
This presentation-independent storage requires what
is known as the shredding of information. The input
forms are taken apart and the user-provided infor-
mation is stored in a presentation-independent form.
The unity of the information that was presented on
one input screen is not only broken occasionally,
in certain prevailing database design methodologies
the data is preferrably taken apart. Such shredding
is also well known in XML processing (Amer-Yahia
et al. 2004). Database normalization also asks for
the decomposition of tables, if they are not in nor-
mal form (Codd 1971). However, following best prac-
tices (Brodie & Schmidt 1982), the data is then pre-
sented to higher layers in application specific virtual
views. In a plain multitier architecture, there is no
inherent guarantee from the system architecture that
a value entered under, for example, the label ”Age”
is also presented under the same label in the system
output. However, in our system model, this will be
guaranteed. Such guarantees are also helpful in sce-
narios where more customized user interfaces could
be used, for example in tele-health applications that
are directed towards the end user (Singh et al. 2010).

This shredding of data, common in systems with
relational database backends, immediately reinforces
the aforementioned problem of long term data stor-
age, since the shredding can amount to an obfuscation
of the context and provenance of the data (Buneman
& Tan 2007). Moreover the shredding creates prob-
lems for usability and auditability.

3 System Models with a Naturalistic Paper
Metaphor

In contrast to system models that are based on a uni-
versal middle tier, we want to discuss models that
present a naturalistic paper metaphor. As indicated
in the introduction, we begin with a system that turns
the physical paper into a virtual succcessor with as
few changes in properties as possible. from that we
move on to system models that include more and
more of the additional features of an electronic sys-
tem.

3.1 The Single Copy Model

Figure 1 shows a conceptual diagram of a paperless
system that is one of the most direct translations of a
paper-based system and that we call the singleCopy

The singleCopy model

Advanced HCI Gerald Weber's slide set 6 3

Figure 1: In the singleCopy model, each paper record
is translated one-to-one into an electronic record. The
user on the right hand side is taking out a record and
putting it back into the old place within the reposi-
tory.

model. Each paper record is translated one-to-one
into an electronic record. The records can be de-
posited in the central repository and taken out on
demand. In this system model we assume that the
electronic records still inherit a fundamental property
of paper-based records, namely the fact that copy-
ing requires an explicit operation. In this model, a
record can only be taken out by one practitioner at
a time. The immediate improvement that we obtain
over paper-based records is the instantaneous com-
munication with the repository, and possibly quick
search functions. The fact that only one person at
a time can have the record is on the first glance a
disadvantage for, e.g., reading, but it can have sev-
eral natural positive consequences. First of all this
paradigm prevents write conflicts. People with write
access will work strictly sequentially on the record.
In addition, the paradigm can also naturally limit any
prolific and inflationary access to personal data. If we
assume that the record is kept with each practitioner
only while actually needed, then this minimizes situ-
ations where concurrent access is needed. This kind
of system functionality can be useful in several do-
mains. In health care it might support the logic that
the record travels with the client. In human resources
it supports the concept that personal records are only
accessed if needed. In general, the singleCopy model
has the advantage that it assigns a clear responsibility
at each point in time.

The singleCopy model is a concurrency model, in
that several collaborators could have interleaving ac-
cess to the document, each one returning it as soon
as possible. Such a concurrency model is often called
a check in/check out model. It can be seen as a pes-
simistic model in that it prevents conflicts rather than
trusting that conflicts would be rare. The singleCopy
model is distinct from typical check in/check out mod-
els, in that the latter treat the process as a locking of
a central resource, and therefore do not directly use
the paper metaphor, i.e. a document that literally
travels between workers.

3.2 Concurrent Read Access

Technically, the singleCopy model can of course be
extended easily to include a concurrent read, on top
of the exclusive write, since concurrent reads in them-
selves do not create write conflicts. This bends the
naturalistic paper metaphor, and can best be ex-
plained with a copy on demand process that we will
elaborate below. At this stage, the idea is that con-
current readers would get an explicitly immutable
copy of the document. It is noteworthy that this ex-
tension immediately raises a well known concurrency
issue, namely the question of which version the con-
current readers should see. For many applications it
might be best if the concurrent readers always see
the most recent version, in the interest of early in-
formation dissemination. However in other applica-
tions it might be appropriate that only finalized and
authorized versions are seen by concurrent readers.

a) Input: b) Output, change in affordances only:

PatientData
Name John Doe

PatientData
Name John Doe

Age
NextOfKin Jane Doe

41 Age
NextOfKin Jane Doe

41

submit submit

PatientData
c) Output, change in representation:

Patient : John Doe (age: 41)
Next of Kin : Jane Doe

Advanced HCI Gerald Weber's slide set 4

Figure 2: An input form and two different represen-
tations of the saved, immutable content.

We captured this requirement in an earlier discussion
as the Signed User Memo Viewpoint, which requires
that only signed and therefore final memos are dis-
tributed (Weber 2008). This approach then might
require the possibility that one user can finalize and
sign intermediate units of work without releasing con-
trol of the document.

We summarize the singleCopy model by compar-
ing it against the goals of preserving the advantages
of paper and reducing the disadvantages. The single-
Copy model keeps the inherent advantage of physi-
cal paper with regard to conflict free writing. This
advantage will become clearer when the alternative
is discussed in the following copyOnDemand model.
We have pointed out that in principle it is possible to
introduce concurrent read access. One disadvantage
of the physical paper is the possibility of loss through
misplacement or destruction. This can of course be
mitigated with an electronic system. An archiving
component that keeps duplicates can be added.

3.3 Unity of Input and Output Representa-
tion

The strict application of the naturalistic paper
metaphor requires that there is no difference between
the form as it is presented while it is being filled out
and the way it is represented when the entered data
is recalled at a later stage. In this view, filling out
a form should be directly equivalent to writing on a
paper form. Hence, if this form needs to be accessed
it should be represented in the same state as it was
submitted. Most current form-based systems deviate
rather strongly from this view, and this is typically di-
rectly coincidental with the process of shredding that
we mentioned earlier.

However, we can also identify some motivation for
changing the presentation. One plausible and justi-
fied reason to change the presentation relates to what
is called a change of affordances. Before submission,
the data is editable, and after submission it might
be immutable. This is a change in affordance and
justifies a change in representation. A faithful rep-
resentation of entered data would use the same form
layout, still presenting the data in the form fields, but
having them represented non-editable. In Figure 2,
the editable form is shown in a) and the immutable
form is shown in b). The only change is a graying
out of the form fields and submit button to indicate
the change of affordance. The particular visual repre-
sentation as grayed text is not our main concern and
the illustration might show that graying is not an op-
timally readable solution, but the important part is
that the change of affordance has just the character
of an annotation.

In an electronic form, the text field is more than a
reserved preferred space for information input; rather
it is the only space where information can be entered.
This is in contrast to paper forms, where technically
every area of the form can be written to. It is ap-
propriate to apply the notion of interface modes that
refers to distinct changes in the reactivity of the inter-
face. The notion of interface modes refers to temporal
distinctions of interface behavior, such as when num
lock is activated on the keyboard. But in an interface
with a pointing device, cursor and focus, this tem-
poral distinction is coupled with spatiality, namely
with the position of the cursor. In this sense phys-
ical paper forms are modeless, i.e. they depend on
the discipline of the writer to fill out the form neatly.
In electronic forms the divide between editable fields
and non-editable form area is much more fundamen-
tal; often these two areas are realized with strongly
diverging technologies. In many form technologies,
such as classical HTML forms as well as the more re-
cent XForms, the labels of the form fields are indeed
not a logical part of the form, but just peripheral text
that is accidentally placed next to a form field.

This technological divide may well be in itself a
contributing factor to the frequent change of repre-
sentation between editable forms and the later repre-
sentation of the entered data. Data will be entered
in electronic forms, but presented in tables that no
longer have the visual appearance of text boxes any
longer. A possible such representation is shown in
Figure 2 c). Just from the standpoint of a natural-
istic paper metaphor, Version b) should be preferred
over Version c). The change of affordance itself can be
sometimes problematic in that it prevents practition-
ers to do important changes immediately. In princi-
ple, if a version control system is available, then one
should present the form always in an editable mode,
since earlier versions can be recalled. This discussion
will be taken up again in Section 5 in particular with
respect to wikis.

A natural consequence of this consideration is to
base a paperless system on an underlying system that
is closely based on the system model proposed in Fig-
ures 1 and 4, where the documents, including forms,
on one level do not change appearance between differ-
ent retrievals. With regard to our goal of preserving
the advantages of paper and adding all possible sup-
port that an IT system can offer, we achieve the fol-
lowing. The representation of the form is still faithful
to the way it was entered. However the system can be
configured to prevent further editing of data, if this
is wanted.

3.4 Historic Shift of Fundamental Form Se-
mantics

It should be noted that the shift between the different
form paradigms in paper forms and electronic forms
also coincides with a shift in the apparent form se-
mantics. One historic origin of paper forms, and a
presumed root of the word ”form”, can be found in
early legal documents, where standardized formulaic
clauses were used with fill-in gaps for, e.g., the name
of the person they apply to. Such a form might be
a standardised contract. An example is a promissory
note, an earlier and more perilous kind of an IOU.
The interesting part here is that the semantics of the
form must be completely expressed on the completed
form. This means that after filling in the gaps, the
completed form turns into a clause in natural lan-
guage, although perhaps using some legal or other
jargon. The effective power of the form, its semantics,
is completely explainable from the resulting natural
language clause without any recourse to its genesis as
a fill-in-the-blanks text.

CopyOnDemand

Cc?

Advanced HCI Gerald Weber's slide set 6 2

Figure 3: In the copyOnDemand model, if data is
requested as indicated by the question mark, a new
copy is created.

In contrast, even before the advent of IT, many
modern forms are designed, intended and presented as
mere editable key/value pairs without any pretence to
be self explanatory in their effect. The enterprise sys-
tem behind the scene is the dominating element. The
human readable elements of the form are merely mak-
ing the required fields digestible to the untrained user
and are semantically individual requests to divulge
information: ”Enter your name, enter your date of
birth.” This again coincides with the process of shred-
ding the form data, and the fact that in a modern mul-
titier information system only the filled-in fields are
stored. Hence in a multi-tier application, even if the
form fields were embedded in a fill-in-the-blanks text,
this text would not have been recorded, and there
would have been no tracking of the context in which
the data was entered. From a human-computer in-
teraction point of view this evolution is certainly not
unproblematic.

It is worth noting that in certain critical appli-
cations such as bank cheques, which are incidentally
closely related to promissory notes, the old style is
still used and the filled in cheque contains a natu-
ral language clause. The aforementioned Signed User
Memo Viewpoint is much closer to the earlier view of
a form as a clause in natural language (Weber 2008).
Under this viewpoint the form submission is sepa-
rated into two distinct phases: first the form is pre-
pared, this phase concluding with a pre-submit op-
eration, and then the system presents the resulting
memo that the user is about to authorise. This memo
is not editable and it is made clear that the submis-
sion process is equivalent to the signature process. As
a consequence the memo must be self-explanatory.

The modern key/value pair view is justified in cir-
cumstances where the form semantics is essentially
data capture. Many healthcare applications fall into
this category, for example if a vital parameter is regu-
larly checked. However, the aforementioned problem
remains: a multi-tier architecture offers no inherent
guarantee that the data is presented under the same
heading as it was entered. The shredding of informa-
tion has another motivation in the recently increased
interest in data integration. There is an interest to
integrate data from different forms that might use
slightly different field labels, into a single database.
This requires a matching of equivalent fields. How-
ever, we recommend using a table style proposed in
an earlier work (Lutteroth & Weber 2006) that keeps
the original label with each data entry as seen in the
following example:

last name: first name: phone:
Johnson Kelly 0987654
family name: given name: phone:

Gray Pat 0123456
surame: first name: ph:

Smith Bo 3456789

3.5 Copy on Demand

We have gained the first system model, the single-
Copy model, by a direct translation of paper proper-

The Memo Model

Cc
2

Cc
1 Cc

22 2

Advanced HCI Gerald Weber's slide set 6 1

Figure 4: The copyOnDemand model allows parallel
access to the same data, but can lead to conflicting
updates.

ties to the IT world. We will now move away from
that model in order to capture more of the possibili-
ties of electronic media. However it should be noted
upfront that the result of our considerations will be a
model that is much closer to this initial model than to
some of the more flexible general-purpose IT systems.

Many superficially exciting features of IT systems
come with a price for serious, critical business pro-
cesses. The first such property that turns out to be a
mixed blessing for reasons already outlined is that pa-
perless systems allow the parallel access to the same
data. In Figure 3 we present a modified system model
that we call the copyOnDemand model. Here records
are obtained by copying information. This system
model is a natural consequence of digital information
processing, where it is simple to copy data, but it
would require a deliberate effort to implement a re-
stricted model such as the singleCopy model. Ac-
cordingly, the copyOnDemand model can have the
problem of unrestricted proliferation of copies of the
data with unclear semantics. In particular, version
conflicts can arise if several people access the data
at the same time, as shown in Figure 4. Sometimes
such conflicts can be solved with automatic merge.
Sometimes they require manual merge, however. This
is hard enough for experienced software engineers; it
would be näıve to assume that non-IT professionals
can solve such problems, not because of a lack of un-
derstanding but because the necessary merge tools
have a complex interface that an occasional user is
not familiar with.

4 The Form-Oriented System Model

We will now introduce and apply the form-oriented
system model (Draheim & Weber 2004), which is a
simple yet powerful model for IT systems in the pa-
perless office. This model will allow us to naturally
address a number of the aforementioned issues and
will ensure that at least the common drawbacks of
paperless systems are mitigated. The model is easy to
apply to all platforms and we plan to further explore
its application to systems based on standardization
efforts such as openEHR.

In the form-oriented system model, all possible in-
put and output screens are defined by explicit screen
prototypes that show the structure of information
presented, as shown in Figure 5. The form-oriented
methodology is designed for so-called submit-response
style systems, a system class which includes classical
Web interfaces, but also most proprietary enterprise
application frameworks from individual vendors. The
form-oriented system model is therefore suitable for
a whole range of systems and can be used to im-
prove the architecture of such systems. The model
can, for example, be applied to systems based on
Java EE. The model is, however, equally applicable
to other technologies such as commercial of-the-shelf
enterprise software and can be used to provide better
system documentation, for example in the context of
a comprehensive quality management.

In the past, a focus of form-oriented system models

User Account as abstract parameter
Patient List

Name Age Patient ID

delet

Patient Data
Name

chang

Name Age Patient ID

Alex 23 98765421
Kelly 34 45674567

te

Age
Patient ID
C t

ge

Kelly 34 45674567
Pat 45 292929292
Bo 56 123454321

Comments
admin pwd

resetsubmit

d l t Delete Record
name: Kelly
Admin pwdd !

delete

Admin pwd

submit

passwd error !

incorrect passwordincorrect password

Figure 5: A form-oriented screen diagram, showing
prototypes of the actual system screens and state
transitions between them.

was on defining the flow of dialogues, and the neces-
sary state machine defining the dialogue. One such
state machine is represented in Figure 5 by the rect-
angular elbow arrows connecting the screens. The
diagram in Figure 5 is called a screen diagram. It is
a largely self-explanatory type of diagram that can
be refined in this methodologyto more formal mod-
els such as bipartite formcharts. In our discussion
here we will leave the flow of dialogue screens aside
and focus on the individual dialogue screens and their
mutual consistency.

The form-oriented model provides a synthesis of
the singleCopy model and the copyOnDemand model
in that it adds structure to the version space of Fig-
ure 3 yet matches well the natural structure of IT
systems. The form-oriented model takes into account
that in critical applications, data updates have to be
done consciously and carefully. For that purpose the
system interaction is modeled with traditional input
forms as they are encountered on paper as well as,
for example, in web forms. The filling out of the
form is viewed as a preliminary activity that has no
durable semantics in itself and only serves the purpose
of preparing the actual submission of the data. The
submission of the data happens through an atomic
operation, typically hitting a button, which should
only happen after carefully reviewing the data.

This model delivers a two-stage interaction
paradigm, the preliminary preparation of the data
and the atomic, heavyweight submission of the data.
This matches a traditional paper-based work pattern,
where people prepare and submit forms. In an IT sys-
tem context it is, however, natural that after the sub-
mission the system continues in a specific state. The
dialogue with the system is a continuous alternation
of screens offered by the system and user interactions
with the screen. Therefore the submission process in
our model is called a page change, and after submis-
sion the user finds the next set of choices. For simplic-
ity’s sake, browsing actions of the user are modeled
in the same paradigm as memo preparation. Hence
in the form-based model, filling in a search screen is
modeled as the same type of form as the submission
of a professional assessment.

All these forms will be handled and archived in
the same way. The form-oriented system model en-
ables a system architecture, where all the important
information is archived in the shape in which it was
exchanged between user and system. This gives max-
imum flexibility for dealing with the system in a uni-
form way, yet still offers a very easy way to ignore
unimportant data, such as all search forms, should
they be irrelevant for the task at hand. The storage

Simple reuse of input in output

Input

Output

InputInput
PatientData

Name

Input
PatientData

NameName
Age
NextOfKin

Name
Age
NextOfKin

submit submit

Advanced HCI Gerald Weber's slide set 4

Figure 6: The form oriented system model allows the
simple literal reuse of input data in subsequent out-
put.

of all input forms in an audit trail still allows the on-
demand blackening of sensitive data, thus enabling
limited disclosure (LeFevre et al. 2004).

4.1 Usability Problems of Shredded Data and
Solutions

In our research we are interested in crosscutting as-
pects of usability in IT systems (Weber 2008). One fo-
cus is on usability problems that create what is known
as a gulf of evaluation (Norman & Draper 1986). A
typical functional requirement of an e-health system
would be, for example, that lab data for a client is
captured and stored. This however does not guaran-
tee availability of the data. A sensible requirement
would be that all lab data that is created at a single
point in time can also be viewed as a unit in the fu-
ture. We call this a faithfully reporting system. This
would be a direct consequence of the paper metaphor;
the lab report is preferably always presented in the
same, complete version. This avoids a possible gulf
of evaluation, namely that the practitioner sees one
lab value, but cannot necessarily see other lab data
or even ascertain which tests were done at the same
time. This example is a more complicated require-
ment than the aforementioned requirement that one
lab value should be always presented with the same
label. We will now discuss how far this requirement
is addressed in a plain multi-tier architecture, and
whether it is addressed in the form-oriented architec-
ture.

Plain multi-tier systems store data in a database
backend that can be used by a variety of applica-
tions. These applications in turn present themselves
to the user through input and output screens which
can be designed completely independently (Brodie &
Schmidt 1982). With the flexibility comes a risk. In
the fundamental system model of multi-tier applica-
tions there is no guarantee that data that was entered
at the same time is also presented in the output at the
same time. This is a direct consequence of shredding,
as defined above. Hence in the plain multi-tier archi-
tecture a system design can easily be created where
this gulf of evaluation arises. Since the presentation of
the data is completely configurable, selected data can
be presented, which might seem sensible to the devel-
oper, but leads to problems for the practitioner who
uses the system. Avoiding the aforementioned gulf of
evaluation requires an effort, namely active and ad-
equate checking by the developers that the right in-
formation is provided at every place. Hence in plain
multi-tier architectures it is harder to create a faith-
fully reporting model which will follow the terminol-
ogy used before.

In the form-oriented system model, as opposed to
the multi-tier model, faithful representation of the
data as it was entered is always available. This is
shown in Figure 6, where on the left side an input
screen for client data is shown. The figure shows an
example of a form-oriented model of the screens in a

very minimal system. This model, however, already
captures one feature of a realistic system, namely cor-
responding input and output. In this model the out-
put screen is shown on the right-hand side. As we see,
we can define this output screen in the form oriented
methodology by reusing the input screen one-to-one
in the output. If, as shown in this example, only a
single input screen is quoted, we would not need this
representation, but could use the representation used
in Figure 2 b), but this example serves as a demon-
stration for the more complex reuse examples that
will be discussed in due course. The submit button
of the input screen is disabled, but the content is rep-
resented faithfully. This model has a rigorous formal
underpinning in the semantic model of form-oriented
analysis (Draheim & Weber 2004) but it is also in-
tuitively understandable. The arrows denoting reuse
are always shown as straight arrows that are neither
horizontal nor vertical, to distinguish them from the
rectangular elbow arrows indicating state transitions.

This system model addresses the problem of shred-
ding. It is now simpler to create a faithfully report-
ing model than a different, shredded model, using the
terminology from before. Further questions arise now
with respect to the long-term consistency of the model
over time, and we will address them in the following
by proposing suitable modeling solutions. In that way
the reuse concept that we have applied in Figure 6
can be extended to a system design methodology that
allows flexible creation of rich and interesting user
interfaces, yet mitigates the problem of shredding.
Shredding will not be completely prevented, since this
would mean that the modeling method would cease
to be universal. We deem it sufficient that a shredded
model would be more complex than a non-shredded
model in a metric that counts modeling elements.

4.2 Reuse of Screens in rich User interfaces

The reuse of input screens in output screens is the
most basic and most fundamental example of a sys-
tem that relies on the faithful representation of data.
The form-oriented models are suitable as models to
be developed in a standard graphical editor. Assum-
ing that Figure 6 was created in a standard graphical
editor, the question arises as to what keeps the model
consistent if the definitions of the input forms are
changed. We therefore use a different graphical rep-
resentation in form-oriented models that makes the
reuse explicit by avoiding the duplication of model el-
ements. This is shown in Figure 7. The part of the in-
put screen that is reused is called a snippet. The snip-
pet is not repeated at the place where it is applied,
but a placeholder is entered that is connected with
the original snippet. The figure also shows that the
definition of snippets can be nested. The semantics
of this notation is that changes to the original snippet
apply immediately and consistently to all other appli-
cations of the snippet. In this way we have achieved
the long-term guarantee of a faithfully reporting sys-
tem.

From the perspective of a naturalistic paper
metaphor the snippet character should be visibly re-
tained so that the end user can see that the snippet
is part of a possibly wider input form. A more com-
prehensive solution could be found by applying the
technology of transclusion in a document-oriented ap-
proach that we explored earlier (Lee et al. 2010). The
notation in Figure 7 uses a special notation for selec-
tions. In order to change or delete a record the user of
the system as shown in Figure 5 could click a button
next to the person. In principle this can be supported
also with our new approach. We choose here to use
a slightly different but interesting approach. Every
patient record has a small handle indicated with a

Drawing alternative: Ad hoc reuse of snippets
New List

PatientDataPatientData
PersonalData
Name

change

Name
Age
NextOfKin

PatientID

change

delete

submit
Really Delete?

submit

Advanced HCI Gerald Weber's slide set 4 20

Figure 7: Non-redundant reuse ensures that there is
a single place of maintenance for snippets.

New List
PersonalData…PatientData

PersonalData PersonalData…

change

Name
Age
NextOfKin

PersonalData…

PatientID

change

delete

NextOfKin

submit

Really Delete?

P ti tD tsubmit

submit

PatientData…

Figure 8: The semantics of the snippet reuse is sym-
bolic, and a symbolic notation can scale up to large,
multipage system models. The sympolic notation is
used here within a screen diagram.

hexagonal shape. This small handle is a symbolic
representation of the id of this record. In the system
represented in Figure 7 the user can drag and drop
this handle into a form field of the same shape, akin
to a simple jigsaw puzzle. The two forms for change
and delete have such a matching form field each.
The small handles that enable drag-and-drop we call
opaque references in form-oriented analysis (Draheim
& Weber 2004, Draheim et al. 2005).

It is important to note that the reuse is not a
purely graphical notation. In large systems, graphical
models are often not scalable. The semantics under-
lying this reuse model is symbolic and this is shown in
Figure 8. The snippets are addressed with symbolic
names, and in the spirit of semantic faithfulness, by
default this is the screen title of a snippet. Hence
the Snippet ”PersonalData” is invoked by using that
name in a placeholder element, followed by the elision
operator ”...”.

The symbolic notation makes it particularly easy
to combine the model with the form oriented model
of page change. This is also shown in Figure 8.
The screen diagram also highlights the semantics of
opaque references: on the right side, we see that af-
ter submitting the delete form on the list page we are
taken to the delete page.

The reuse of snippets already used in other places
is an intuitive first step to more maintainability. In
large projects, the reuse model as shown in Figure 8
would, however, still exhibit an asymmetry. The
maintenance of the snippet is tied to the first page
where it is used, or at least the current page where it
is placed at a given point in time. In a large-scale sys-
tem development it is worth-while to use the snippet
approach to perform a separation of concerns. The

Visualization of reuse in a web application
PersonalData
Name

New List
Name
Age
NextOfKinrepeat pwd

submit

PatientData change

Change PatientID

change

delete

Change
Really Delete?

dashed boxes:

PatientID

submit
submit

dashed boxes:
Shared model elements –
should be specified only
once reuse!

Advanced HCI Gerald Weber's slide set 4 18

once, reuse!

Figure 9: A reuse model that distinguishes between
the shared model elements and the actual input and
output.

snippets that are reused are maintained in a common
shared model, and are kept separate from the pages
where they appear. All placements on actual input
and output screens use placeholders and hence are
treated equally. This is shown in Figure 9.

4.3 Risks in Bulk Storage of Sensitive Data

Paperless systems allow easier duplication through
archiving for disaster recovery. As a consequence,
however, paperless systems harbour the danger that
complete copies of sensitive data can be lost or mis-
used. Sensitive health records for a whole population
fit onto a memory stick of the size available at cor-
ner newsagents. Several instances of accidental loss
of data on thousands of childcare claimants, social in-
surance holders, law enforcement officials, and other
cases have been documented (BBC 2008) and the pos-
sibility of deliberate misuse of personal data for finan-
cial gain looms large.

Although paperless systems allow disaster-safe
archiving of records, the long term storage is prob-
lematic. All currently available storage media are
exposed to several independent long term risks: the
accessibility of the data formats is not guaranteed,
since the access to the information is highly indirect
and depends in every case on a whole stack of for-
mats. Furthermore currently available physical dig-
ital high-density storage media have a much shorter
life expectancy than paper. Crucially for personal
healthcare records, the life expectancy of digital me-
dia is typically shorter than the average human lifes-
pan, while paper records have an established life ex-
pectancy longer than the average human lifespan. Ex-
perts in the field of digital data curation (Buneman
et al. 2008) feel compelled to recommend explicit oc-
casional paper copies of all sensitive data, e.g. print-
outs of XML data, a somewhat ironic state of affairs
in the transition to a paperless process. Microfilm
remains accepted as a higher density medium with
similar life expectancy to paper.

5 Relation to other Domains

There is increasing interest in Electronic Laboratory
Notebooks (ELN) which are likely to replace the tra-
ditional notebook, for example, in a research set-
ting (Kihln 2005). These ELN are intended to help
with IP disputes many years after the entries have
been made. It is a requirement that ELN records are
guaranteed authentic and tamper-proof, but also pre-
sented in a human-readable form (Drake 2007). This
matches closely our considerations for faithful repre-
sentation of the original entries, even if the main mo-

tivations might be slightly different. For a lab-book,
the singleCopy system model is a natural first model.
Two competing challenges are that, on the one hand,
instant notetaking should be supported and therefore
a modeless interface is intended. On the other hand
it might be desirable that data series can be stored,
and such data series are best represented in a tabular
form.

A system model that comes very close to our
goals can be found in Wikis. In particular the set
of functionality provided by the MediaWiki platform
is widely used now. Such a wiki supports on the one
hand a concept of pages with identities that is close
to the singleCopy model, in that there can be only
one current version of the page. On the other hand
it supports a copyOnDemand style approach to edit-
ing, since all the previous versions of a page are kept
discoverable in the page history. There is a certain
difference in that the singleCopy model has no check-
out, thus Wikis are clearly an optimistic model. This
model has some obvious advantages as well.

Another area which is concerned with reducing the
divide between paper based workflows and electronic
workflows is that of pen-based input. Pen-based sys-
tems approach the problem from the side of input
devices, in enabling a style of interaction that is very
close to working with paper, but is also enhanced by
the new possibilities of electronic processing, includ-
ing handwriting and drawing recognition (Plimmer &
Apperley 2007).

In general, the problems addressed here are com-
mon to form-based systems and are encountered for
example in more commercial applications. A classical
case study is Electronic Data Interchange (EDI) (Em-
melhainz 1992) that is widely used in the commer-
cial world even before the advent of web-based e-
commerce (Alonso et al. 2004).

This initiative has been valuable for retailers
and suppliers since it allows them the electronic
exchange of daily orders and business communica-
tion (Dowdeswell & Lutteroth 2005). The natural
inflexibility of the automated systems contributed to
a strong standardization of business communication.
Only a few rigorously defined business message types
are allowed (Kimberley 1991) in those systems, which
contributed to interoperability between internation-
ally distributed participants. In the healthcare area,
openEHR is an example of a similar evolution. In the
wake of the electronification of health records we ob-
serve a strong incentive to standardize health records
on a global scale (Eichelberg et al. 2005). In a some-
what daring generalization from these two example
observations we conjecture that there is a natural con-
nection between the electronification of a business do-
main and the creation of stricter standard interchange
formats.

6 Conclusion

The era of paper-dominated bureaucracy might well
be in decline. The IT systems that replace paper
are now a part of our everyday life. Once the ini-
tial excitement about the new tools has waned, users
will expect rigorous quality attributes from such sys-
tems. IT systems are not automatically superior to
paper-based solutions. Sometimes paper-based solu-
tions come with natural and intuitive semantics. If
push comes to shove, people are always able to per-
form at least basic functions with a stack of paper,
such as browsing through all pages and looking out
for headlines. In computer systems, even these basic
functions have to be learned, and differ on every one
of the competing systems at least.

In this work we have made a case that a natural-
istic paper metaphor should be part of mission criti-
cal IT systems. We have focused on advanced parts
of this approach, including dealing with snippets to
make the various screens in a system consistent. We
have discussed arguments why a system model that
is close to the paper metaphor can foster better us-
ability. A naturalistic paper metaphor can establish
a well-defined abstraction layer; the technology that
establishes the paper metaphor is separated from the
application that uses the metaphor. The aim is to
make the transition to a paperless system easy and
intuitive for the practitioner, and hence give every-
one working in important areas such as healthcare a
bit more time to focus on what is most important,
namely the professional service to the client.

References

Agrawal, R., Kiernan, J., Srikant, R. & Xu, Y. (2002),
Hippocratic databases, in ‘VLDB’, Morgan Kauf-
mann, pp. 143–154.

Alonso, G., Casati, F., Kuno, H. & Machiraju, V.
(2004), Web Services: Concepts, Architecture and
Applications, Springer Verlag.

Amer-Yahia, S., Du, F. & Freire, J. (2004), A compre-
hensive solution to the xml-to-relational mapping
problem, in ‘WIDM ’04: Proceedings of the 6th
annual ACM international workshop on Web infor-
mation and data management’, ACM, New York,
NY, USA, pp. 31–38.

BBC (2008), ‘Extent of data losses is revealed’, BBC
News - Politics, 21st August .

Brodie, M. L. & Schmidt, J. W. (1982), ‘Final report
of the ansi/x3/sparc dbs-sg relational database task
group’, SIGMOD Rec. 12(4), 1–62.

Buneman, P., Cheney, J., Tan, W.-C. & Vansum-
meren, S. (2008), Curated databases, in ‘PODS
’08: Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems’, ACM, New York, NY,
USA, pp. 1–12.

Buneman, P. & Tan, W.-C. (2007), Provenance in
databases, in ‘SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on
Management of data’, ACM, New York, NY, USA,
pp. 1171–1173.

Codd, E. F. (1971), ‘Further normalization of the
data base relational model’, IBM Research Report,
San Jose, California RJ909.

Dowdeswell, B. & Lutteroth, C. (2005), A message
exchange architecture for modern e-commerce., in
D. Draheim & G. Weber, eds, ‘TEAA’, Vol. 3888
of Lecture Notes in Computer Science, Springer,
pp. 56–70.

Draheim, D., Lutteroth, C. & Weber, G. (2005), Ro-
bust content creation with form-oriented user in-
terfaces, in ‘Proceedings of CHINZ 2005 - 6th In-
ternational Conference of the ACM’s Special Inter-
est Group on Computer-Human Interaction’, ACM
Press.

Draheim, D. & Weber, G. (2004), Form-Oriented
Analysis - A New Methodology to Model Form-
Based Applications, Springer.

Drake, D. J. (2007), ‘Eln implementation challenges’,
Drug Discovery Today 12(15-16), 647 – 649.

Eichelberg, M., Aden, T. & Riesmeier, J. (2005), ‘A
survey and analysis of electronic healthcare record
standards’, ACM Computing Surveys .

Emmelhainz, M. A. (1992), EDI: Total Management
Guide, John Wiley & Sons, Inc., New York, NY,
USA.

Ford, E. W., Menachemi, N. & Phillips, M. T.
(2006), ‘Predicting the Adoption of Electronic
Health Records by Physicians: When Will Health
Care be Paperless?’, Journal of the American Med-
ical Informatics Association 13(1), 106–112.

Glass, R. L. (2006), ‘The standish report: does it
really describe a software crisis?’, Commun. ACM
49(8), 15–16.

Kihln, M. (2005), ‘Electronic lab notebooks - do
they work in reality?’, Drug Discovery Today
10(18), 1205 – 1207.

Kimberley, P. (1991), Electronic Data Interchange,
McGraw Hill.

Lee, L.-C., Lutteroth, C. & Weber, G. (2010), Im-
proving end-user gui customization with transclu-
sion, in B. Mans & M. Reynolds, eds, ‘33rd
Australasian Computer Science Conference (ACSC
2010)’, Vol. 102 of CRPIT, ACS, Brisbane, Aus-
tralia, pp. 163–172.

LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrish-
nan, R., Xu, Y. & DeWitt, D. J. (2004), Limiting
disclosure in hippocratic databases, in M. A. Nasci-
mento, M. T. Özsu, D. Kossmann, R. J. Miller,
J. A. Blakeley & K. B. Schiefer, eds, ‘VLDB’, Mor-
gan Kaufmann, pp. 108–119.

Lutteroth, C. (2006), AP1: A platform for model-
based software engineering, in D. Draheim &
G. Weber, eds, ‘TEAA’, Vol. 4473 of Lecture Notes
in Computer Science, Springer, pp. 270–284.

Lutteroth, C. & Weber, G. (2006), User interface lay-
out with ordinal and linear constraints, in ‘AUIC
’06: Proceedings of the 7th Australasian User In-
terface Conference’, Australian Computer Society,
Darlinghurst, Australia, Australia, pp. 53–60.

Norman, D. A. & Draper, S. W. (1986), User cen-
tered system design: new perspectives on human-
computer interaction, Lawrence Erlbaum Asso-
ciates, Hillsdale.

Plimmer, B. & Apperley, M. (2007), Making pa-
perless work, in ‘Proceedings of the 7th ACM
SIGCHI New Zealand chapter’s international con-
ference on Computer-human interaction: design
centered HCI’, CHINZ ’07, ACM, New York, NY,
USA, pp. 1–8.

Singh, J., Wünsche, B. & Lutteroth, C. (2010),
Framework for Healthcare4Life: a ubiquitous
patient-centric telehealth system, in ‘Proceed-
ings of the 11th International Conference of the
NZ Chapter of the ACM Special Interest Group
on Human-Computer Interaction on ZZZ’, ACM,
pp. 41–48.

Weber, G. (2008), A platform-independent approach
for auditing information systems, in ‘HDKM ’08:
Proceedings of the second Australasian workshop
on Health data and knowledge management’, Aus-
tralian Computer Society, Inc., Darlinghurst, Aus-
tralia, Australia, pp. 65–73.

