University of Southern Queensland

Faculty of Engineering & Surveying

Design and Implementation of a Network Adrress
Translator
A dissertation submitted by
K-J. Beasley
in fulfilment of the requirements of
ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems Engineering) / Bachelor
of Information Technology (Applied Computer Science)

Submitted: October, 2004

Abstract

A continuously increasing demand for Internet Protocol (IP) Addresses was something
that was not considered at the time when the Internet was first designed. The argu-
ment was actually quite the opposite and most experts pooh-poohed the idea of the
internet ever growing to beyond 100,000 networks. However, the 100,000th network
was connected to the internet in 1996 (Tanenbaum 2003). The Explosive growth of the
Internet has resulted in a shortage of the number of available IP Addresses. As this
growth continues the shortage will increase and a new form of Internet Addressing will
need to be established. The current form, IPv6 has been under development for some
time now and has not gathered wide industry support. Obviously a temporary solution
must be established to overcome the shortage of IP Addresses in the immediate future

until permanent solutions can be achieved.

On the other hand the TCP Protocol was established as an end-to-end connection for
reliable communication and makes use of its own 16-bit port number. This allows for
up to 65,535 unique port numbers for TCP communication. Most hosts never maintain
65,535 end-to-end connections and this allows for a technology called Network Address
Translation (NAT) to save on the number of IP Addresses required on the Internet by
multiplexing many IP Sources onto one or more IP Addresses using unique TCP port

numbers for each data stream.

The ultimate aim of this project is to produce a small prototype Network Address
Translator and discuss further improvements necessary for its use in a production

environment.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and
Surveying, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the
risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond
this exercise. The sole purpose of the course pair entitled “Research Project” is to
contribute to the overall education within the student’s chosen degree program. This
document, the associated hardware, software, drawings, and other material set out in
the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker
Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions
set out in this dissertation are entirely my own effort, except where otherwise indicated
and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

K-J. BEASLEY

00110217980

Signature

Date

Acknowledgments

I would like to thank all those who have supported my endeavors over the past five
years. Special thanks goes to all the staff from the Faculty of Engineering and Surveying
and the Department of Maths and Computing at the Faculty of Science. Students are

incredibly grateful for the time you take to pass on your knowledge and experience.

I would like to offer special thanks to my supervisor, Dr John Leis. After debugging a
single line of code for what seemed like a month, losing all motivation and wondering
why I ever suggested this project topic, it was often his support and desire to see the

project succeed that positioned me back on track.

Sincere appreciation to my family. I have no idea where I would be right now if it
were not for my Mum constantly looking over my shoulder checking if my project was
up to date and my assignments completed. It was Dad’s seemingly infinite technical
knowledge that convinced me to study Engineering. Sadly this knowledge is much
diminished due to a recent debilitating stroke. Lastly to my darling sister, she may
be public enemy number one for telling Mum that I worked on project/assignments
when indeed I played computer games, however her love and support during this time
is greatly appreciated. The completion of this project and my successful graduation is

testimony to your contributions and continued support.

Thankyou All.

K-J. BEASLEY

University of Southern Queensland

October 2004

Contents

[Abstractl i
|Acknowledgments| iv
|[List of Figures| xi
[List_of Tablesl xiii
|[Chapter 1 Introduction| 1
[L1 Overview of the Dissertationl 3
[Chapter 2 Network Reference Models| 4
2.1 Chapter Overview| i 4
2.2 Networking History|., 4
2.3 The Open Systems Interconnection Reterence Model 6
[2.3.1 The Physical Layer|. 7

[2.3.2 The Data Link Layer|. 7

[2.3.3 The Network Layer{. 7

CONTENTS vi
[2.3.4 The Transport Layer|. 8
[2.3.5 The Session Layer| 9
[2.3.6 The Presentation Layer| 9
[2.3.7 The Application Layer| 9

[2.4 The TCP/IP Reference Modell 9
[2.4.1 The Host-to-Network Layer| 10
[2.4.2 The Internet Layer| 11
[2.4.3 The Transport Layer|. 11
[2.4.4 The Application Layer|. 12

2.5 Chapter Summary| 13

|[Chapter 3 Design Specification| 14

3.1 Chapter Overview| e 14

[3.2 Design Methodology| 14
[3.2.1 Extreme Programming|. 14
B22 Scruml 15
[3.2.3 Feature Driven Development| 15
B2A " STEPWISEl . . .« « o oo v et e e e e e 16
[3.2.5 Rational Unified Processl. 16
B.2.6 Waterfall Modeld 17

3.3 Programming Language| L. 18

CONTENTS vii

3.3.1 Visual Basic NETlo 19
3.32 ASPNET] 19
B33 Q. . o 19
[3.34 C++/Visual C++.NET| 20
B35 Javal 21
B36 CENET. 21

[3.4 Chapter Summary| 23
[Chapter 4 Internet Protocol 24
[4.1 Chapter Overview| i 24
4.2 IP Functionality] 24
4.2.1 Looking at an IP Header| 25
4.2.2 Fragmentation| 0oL 29
423 TP Addresses 30
424 Subnetsl 31
|4.2.5 Classless InterDomain Routing| 31

4.3 Network Address Iranslationl, 32
4.3.1 Overview of NAPTII. 33
[4.3.2 Address Binding| oo oL 34
4.3.3 Address Unbinding| 34

4.3.4 Header Manipulation|. 34

CONTENTS viii
4.3.5 Incremental Checksum Adjustment|. 35

4.3.6 ICMP error packet modifications| 35

4.3.7 FTP Support| 35

[4.3.8 Using IP Options|. 36

14.3.9 Recommendations for Private IP Address Range| 36

[4.3.10 Privacy and Security|. L. 36

[4.3.11 Fragmented Packets| 37

4.4 IPvOl . . .o 37
4.5 Chapter Summary| 38
[Chapter 5 Transmission Control Protocol 39
5.1 Chapter Overview| e 39
p.2 TCP Functionality] 39
[5.2.1 Addressing] 42

0.2.2 Reliability|.o 42

5.2.3 Congestion Controll. 43

[.2.4 Connection Management| 44

B3 Data Connectionsl. 44
[5.3.1 Three Way Handshaking. 44

[5.3.2 Simultaneous Open|., 45

CONTENTS ix
(34 Passive Close Lo 46

[5.4 User Datagram Protocol / Real-Time Transport Protocoll 47
.5 Chapter Summary| 48
|[Chapter 6 Existing Network Address Translators| 49
6.1 Chapter Overview| i 49
6.2 Windowsl 50
B2T NAT3ZEl.o oo ot e 50

[6.2.2 BrowseGate 3 NAT /Proxy server and firewall 50

6.3 Linuxl 51
6.3.1 IP Masquerading| 51
632 TP Tabled oo 51

6.4 Chapter Summary| 53
[Chapter 7 Network Address Translator Implementation| 55
[7.1 Chapter Overview| 55
M2 _CENETBasiCH o oo 55
[7.3 Using Sockets| 59
[7.3.1 Application Programming Interfacef. 59

[r3.2 Windows Socketsl oo 59

[7.3.3 Advanced Socket Controll 60

CONTENTS X

7.4 Putting it all Together| oL 61
[[41 Pseudocodd oo 62

(4.2 A Windows Servicel. 62

[7.5 Chapter Summary| 65
|[Chapter 8 Conclusions and Further Work| 66
[8.1 Achievement of Project Objectives| 66
8.2 Further Workl 68
[References| 69
[Appendix A Project Specification| 71
|Appendix B Project Source Code) 73
B.1 NATService.csl o e e 74
B2 RawSocket.cd 81
B.3 BidirHashtablees/ o oo o 105
[B.4 Projectlnstaller.cs| oo 109

List of Figures

[2.1 (a) Structure of a Switching office. (b) Structure of the telephone system. (c) |
Baran’s proposal for a distributed switching system. (adapted from (Baran 1964)). 5

[2.2 The Open Systems Interconnection Reference Model. (adapted from (Day & |

[Zimmermann 1983)). Lo 6
[2.3 The TCP/IP reference model.| 10
4.1 The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003))|. . . 25
[4.2 An Example of connecting two networks with differing MTU values. (adapted |

| from (Feit 1998)).] L L 30
[5.1 The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003))|. . . 40
0.2 Combining TCP and IP to encapsulate data.| 40
5.3 TCP connection establishment]. 45
[5.4 TCP Simultaneous Open. (adapted from (Tanenbaum 2003))[. 46
[(.1 A simple C# NET form.|o 56

LIST OF FIGURES xii

7.3 The Visual Studio Development Environment.| 60

List of Tables

[4.1 Contents of a real IP packet.|

Chapter 1

Introduction

Explosive growth of computer networks, in particular the Internet has seen the Internet
become an integral part of everyday life. Many of the tasks traditionally left for the
Mail network are now being done via e-mail. Phone conversations are increasingly
being replaced by Internet Chat and slowly voice chat and webcams are entering the

market while available bandwidth is making this technology viable.

There is a significant trend towards internet connectivity for devices which previously
would never have been considered relevant to the Internet. For example Internet Refrig-
erators and Air Conditioners which can be activated from a remote device are becoming
popular. As development continues more and more devices will use an Internet con-

nection as part of their operation.

The Internet currently operates based on two important protocols collectively referred
to as TCP/IP. These two protocols are actually the Transmission Control Protocol
and Internet Protocol. Unfortunately the designers of IP overlooked the commercial
viability of the Internet and suspected it would never become anything more than
a research network connecting universities and a few other large companies such as

Military Research and Development.

This line of thought lead to the development of the Internet Protocol utilizing an

Addressing system consisting of 32 bit addresses. That is addresses consist of 32 binary

2

numbers each of which can only be on (1) or off (0). In an ideal world this offers
232 = 4,294,967,296 possible IP Addresses. Given that there are in excess of 6 billion
people in the world this number is never going to survive in the long term when a very
large proportion of the population will hopefully be online. In addition many people use
more than one IP Address, for example if they have more than one computer connected
directly to the internet or have a computer at work and at home which may both be
connected at the same time. Finally we do not live in the ideal world and IP addresses
are wasted both through requirements for divisions and wastage due to over-allocation

or private requirements.

The obvious solution to this would be to allow the IP Address to be larger, maybe
double or quadruple its current size. Such a protocol is being developed and has
already been implemented in some areas. Unfortunately there has not been a great
deal of industry support for the new protocol and some believe it may lose all levels
of support and be forgotten before it is implemented. However if this happens we will
still be left to face the problem of how to spread some four billion IP Addresses across
the globe in a fair and equal manner. In addition some companies and universities
who have purchased large ranges of the IP address space will not likely give up their
range unless presented with sufficient financial incentive to do so. As the remainder of
a particular resource decreases its value normally increases and this certainly could be

the case with IP Addresses.

Unfortunately the lack of IP Addresses is a real difficulty affecting people across the
Internet at this time. The problem is not going to wait for a solution to be developed,
implemented and tested. Therefore alternatives must be developed quickly, must re-
quire little testing and must be reliable. One such solution is called Network Address
Translation (NAT) and is already implemented in many forms. In Microsoft Windows
98 and above the solution is commonly known as Internet Connection Sharing (ICS).
However ICS is a poor solution to the problem which works in some cases but excludes
any sort of special protocols such as Video Conferencing (NetMeeting) and active File
Transfer Protocol (FTP). Due to the ICS code forming a integral part of the Operating
System it cannot be reverse engineered or modified and has very few security features

which has allowed other products to enter the market.

1.1 Overview of the Dissertation 3

The aim of this project is to develop the basics of a new type of Network Address
Translator. Ideally the NAT will undergo further development after the initial project
is complete and will contain security features and policies rigid enough to satisfy even
the most security conscious Network Administrator while having the flexibility to be
used by even the most application intensive home Internet user regardless of which

applications they may wish to use.

1.1 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 reviews the beginning of the Internet and some of the network models used

in designing the communications protocols used today.

Chapter 3 discusses the development of a Network Address Translator (NAT), the
programming methodology followed and the Programming Languages available

for Implementation.

Chapter 4 examines the Internet Protocol (IP) used in network communications. The
Internet Protocol forms part of the network hierarchy and is the first layer involved

in Network Address Translation.

Chapter 5 details the Transmission Control Protocol (TCP) which completes the
TCP/IP Protocol Suite used on the Internet. The use of Transmission Control

Protocol features in Network Address Translation are also discussed.

Chapter 6 critically examines existing Network Address Translators including pop-
ular features for Home and Business users and cost to purchase. New Network
Address Translator features which may be well received by Home and Business

users are also discussed.

Chapter 7 introduces the C#.NET programming language and development environ-
ment. The most important part of this project, communication sockets, are in-

troduced including advanced features required by this project.

Chapter 8 concludes the dissertation and suggests further work in the area of ‘z’.

Chapter 2

Network Reference Models

2.1 Chapter Overview

Looking at the history of Network Design, many networks were mainly hardware ori-
ented with the software as an afterthought. This strategy is no longer suitable for
today’s high speed networking interfaces. This chapter will examine the software struc-

turing in some detail.

2.2 Networking History

At the height of the Cold War in the late 1950’s one line of thought was the vulnerability
of the telephone network to Nuclear War. (Baran 1964) Referring to Figure [2.1|(b)
reveals that the destruction of a few key points could fragment the telephone network

into small isolated islands.

Around 1960, the Department of Defense (DoD) awarded a contract to RAND Corpo-
ration for the development of a solution to this vulnerability. Paul Baran, an employee
of RAND Corporation, developed a proposed solution depicted in Figure (c) Unfor-
tunately When the DoD took the idea to the U.S. national telephone provider AT&T the

idea was dismissed as a concept which could not be constructed. It is believed that AT&T

2.2 Networking History 5

Link

Station

CENTRALIZED DECENTRALIZED DISTRIBUTED
(a) (B} ic)

Figure 2.1: (a) Structure of a Switching office. (b) Structure of the telephone system.

(c) Baran’s proposal for a distributed switching system. (adapted from (Baran 1964)).

did not actually want to admit that Paul Baran had succeeded in developing a network

concept where AT&T had failed, effectively dooming the idea. (Tanenbaum 2003)

In 1967 the Advanced Research Projects Agency director, Larry Roberts, turned the
sights back onto networking. He worked with Wesley Clark who again suggested a
packet-switched subnet communicating via routers. Roberts presented a vague paper on
the packet-switching idea at the Symposium on Operating System Principles (SIGOPS)
in Gatlinburg. (Roberts 1967) A similar paper at the conference described a system
that had not only been designed, but actually implemented at the National Physics
Laboratory in England. In 1968 BBN, a consulting firm in Cambridge, Massachusetts
was awarded a contract to build what became known as the ARPANET (Tanenbaum

2003)

In the early 1980’s ARPANET protocols were eventually replaced by the Transmission
Control Protocol/Internet Protocol (TCP/IP) which will be discussed separately in
and Several contracts were also awarded to BBN and the University of California
at Berkeley forming the Berkeley UNIX company. Berkeley students wrote a program

interface for networking called Berkeley Sockets (or simply sockets) and developed

2.3 The Open Systems Interconnection Reference Model 6

Network architecture based on the 05§ mode!
Exchange
Layer Lnit

7| Application p------ Application Brotogol . Application | APDU
*

B |Presentation

Fresentation| PPDLU

5 Session Session SPDU

4 _______ Transpart Pratocal oo __ Transport. | TROU
3| Metwark |<- >| Metwark }1—->| Metwark |<- ->| Metwark |F'au:ket
2| DataLink |+ {»| Data Link [+-»| Data Link ||+ DataLink | Frame

H
>|F'h3fsic:a| }q—->| Physical |<- -—| FPhysical | Bit

Figure 2.2: The Open Systems Interconnection Reference Model. (adapted from (Day
& Zimmermann 1983)).

1| Fhysical |<-

many applications, utilities and management programs to ease the burden of Network

Administration. (Tanenbaum 2003)

2.3 The Open Systems Interconnection Reference Model

The Open Systems Interconnection (OSI) model is shown in Figure It was based
on a International Standards Organization (ISO) proposal aimed at international stan-

dardization of networking protocols.

The OSI Model was defined using five basic principles as follows:

1. A layer should add a level of abstraction to the communications architecture.
2. Each layer should provide well defined functionality.
3. The functionality of each layer should work towards an international standard.

4. Minimal information should flow across the boundaries between layers, particu-

larly control information.

2.3 The Open Systems Interconnection Reference Model 7

5. There should be sufficient layers that the distinct functionality of each layer is not

compromised however few enough layers that the architecture is not unwieldy.

2.3.1 The Physical Layer

This layer is concerned with transmitting raw bits over a communication channel. It
is concerned with issues such as timing, the standards of the physical interface, what
constitutes the correct receival of a on or off bit and generally anything to do with the

electrical or mechanical characteristics of the medium used for transmission.

In recent time the physical layer has undergone significant changes due to new tech-
nology in use for physically providing the data connection. Wireless Networking is an
example of one entirely new physical mediums now used in computer networks. (Day

& Zimmermann 1983)

2.3.2 The Data Link Layer

The data link layer is concerned with synchronization, reliability and framing which
refers to organizing each chunk of data into a packet. Frames are ordered to prevent
data from arriving in the wrong order and may be acknowledged in the case of a reliable
service. However this service is not concerned with ensuring reliable data streams and

frames may still be corrupted or not delivered.

In the data link layer on a broadcast based network an additional issue is addressed;
how to control access to the shared channel. A special sub-layer which does not form
part of the OSI Model deals with this issue and is called the medium access control

sub-layer. (Tanenbaum 2003)

2.3.3 The Network Layer

The main task of the network layer is to control operation of a subnet. The key design

issue is routing packets from source to destination. Routing can be based on various

2.3 The Open Systems Interconnection Reference Model 8

methods, ranging from static tables (which form a core part of the router and only
change if a major reconfiguration is detected) through dynamic session based (changing
when a connection is established or closed) to highly dynamic (determining different

routing information for each packet based on current network load).

The Network Layer is also responsible for congestion control on the local subnet, to
provide any Quality of Service controls (delay, transmit time, jitter, etc) required on
the subnet and to allow the interconnection of heterogeneous networks including packet

fragmentation.

Broadcast based networks often use a very small Network Layer or may not contain

this layer at all. (Tanenbaum 2003)

2.3.4 The Transport Layer

The transport layer accepts data from the upper layer services, splits the data into
smaller units, if necessary, and passes the chunks to the network layer. It is responsible
for error detection and overall sequencing to ensure the ordering of messages is not
changed in the transmission. The most important aspect of the Transport Layer is to

shield the upper layer services from inevitable changes to the networking hardware.

The transport layer offers multiple types of services to the session layer. The most
common service is an error-free point-to-point protocol. However other options such as
best-effort transmission or real time (approximately) transmission may also be available.
Obviously if the underlying layers offer broadcast and multicast services these will likely

also be offered to the session layer.

The transport layer is the first end-to-end layer. Lower layers operate between neigh-
boring machines or routers that form part of the network. The transport layer only
operates on the source and destination machines which carry on the conversation. (Day

& Zimmermann 1983)

2.4 The TCP/IP Reference Model 9
2.3.5 The Session Layer

The basic function of the network layer is to allow users on different machines to es-
tablish sessions between them. The sessions offer special functionality such as dialog
control (taking turns to transmit and receive), token management (preventing two ma-
chines from accessing the same area of memory or from updating the same information
at the same time) and download resume features (Internet Explorer resuming half-way

through a download even after a disconnection or crash). (Tanenbaum 2003)

2.3.6 The Presentation Layer

The presentation layer defines the syntax and semantics of information exchange. For
example transmitting plain text in American Standard Code for Information Inter-
change (ASCII) or Unicode format. This includes dealing with differing methods of
storing information and agreeing on a standard during transmission. A simple example
might be the different methods of storing a date between America (12/31/2004) or
Australia (31/12/2004). (Tanenbaum 2003)

2.3.7 The Application Layer

The application layer contains the range of higher-level protocols used by users of the
Internet. These protocols include features such as file transfer, electronic mail, news
servers and chat services. One of the most common protocols used for delivery of almost
all internet web pages is HyperText Transfer Protocol (HTTP) which defines how to
request and receive pages written in HyperText Markup Language (HTML). (Day &

Zimmermann 1983)

2.4 The TCP/IP Reference Model

The TCP/IP Reference Model was designed in response to the need for the seamless

interconnection of multiple networks. A common misconception is that the TCP/IP

2.4 The TCP/IP Reference Model 10

Qzl TCFE/AF
Application Application
Presentation < Dot present
/" in model
Session
Transport Transport
LNetwork Internet
Datalink Host to
Physical Network

Figure 2.3: The TCP/IP reference model.

Reference Model was designed to smooth over some issues found in the OSI Reference
Model. This is not true as the TCP/IP Reference Model was defined several years
before the introduction of the OSI Reference Model (Cerf & Kahn 1974). The TCP/IP
Reference Model, as shown in Figure [2.3] was designed mostly to satisfy Department
of Defense requirements that end-to-end connections remained intact as long as the
source and destination machines were functioning. This relied on the assumption that
a functioning route between the source and destination existed, however, the main idea
was that the actual path this connection followed could change in response to individual
transmission links being decommissioned. As a result the TCP/IP Reference Model

did not define anything below the Internet layer in detail. (Tanenbaum 2003)

2.4.1 The Host-to-Network Layer

The host-to-network layer is the great void left below the Internet layer. Most references
on the TCP/IP reference model do not discuss this layer, however, it is included here for
completeness. The main concept here is that each host must connect to the network
and this will involve some protocol to encapsulate the Internet Layer, however the

details of this protocol are not covered.

2.4 The TCP/IP Reference Model 11
2.4.2 The Internet Layer

The internet layer is a connectionless internetwork that forms the basis of the TCP/IP
Reference Model. Its function is to allow packets from any network to travel inde-
pendently to a destination which may be separated from the packet source by many
different networks. The ordering of packets may be altered during transit and each
packet may follow a completely different path to the destination. This concept of

following a pathway to the correct destination is known as routing.

The internet layer defines the protocol known as the Internet Protocol (IP) and asso-
ciated format for an IP Header. Obviously Routing and congestion avoidance are the
major issues at this level which leads to the association between the TCP/IP internet

layer and the OSI network layer. (Cerf & Kahn 1974)

2.4.3 The Transport Layer

The transport layer is designed to allow a source and destination entities to undertake
a conversation. The functionality here is virtually the same as in the OSI Model, the
difference being that the TCP/IP Reference Model actually defines two end-to-end
transport protocols. These protocols are called Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP).

TCP is a reliable, connection oriented protocol which means it requires an end-to-
end connection to be established and maintained. This is achieved by requiring an
acknowledgement for each data segment or packet. The source is limited in how many
packets can be transmitted before waiting for acknowledgements to be received. The
main concept is to allow a byte-stream to be delivered from source to destination
without error or corruption. TCP splits the byte-stream into fragments or discrete
messages, adds error checking, sequencing and flow control information and passes the

packet to the internet layer.

UDP is a unreliable, connectionless protocol meaning it does not require an end-to-

end connection and could continue sending a flood of packets to a destination even

2.4 The TCP/IP Reference Model 12

though the path may have become unavailable. Packets are not acknowledged and may
arrive corrupted or may not arrive at all. Packets may also not arrive in the same
order as they are sent. The purpose of providing this service is to allow application
developers to implement their own sequencing and checksum’s or if the application
warrants, to exclude such features completely. Some applications which generally do
not need sequencing or reliability through checksums are real-time voice and video

transmission. (Tanenbaum 2003)

2.4.4 The Application Layer

Another void is found between the transport and application layers. The OSI Models
session and presentation layers where not perceived as necessary by the developers of
the TCP/IP model and were not included. Fortunately experience with the OST Model
has shown that the session and presentation layers are practically of no use to many

applications.

The application layer contains all the higher-level protocols. The early internet proto-
cols included virtual terminal (TELNET), File Transfer Protocol (FTP), Simple Mail
Transfer Protocol (SMTP) and HyperText Transfer Protocol (HTTP). A number of
additional protocols have been developed for real-time chat and voice over IP. Contin-
uing protocol development is expected as system integrators find new and interesting

ways of using the internet to make life easier. (Cerf & Kahn 1974)

2.5 Chapter Summary 13

2.5 Chapter Summary

The internet came from fairly humble beginnings as a small connection of four com-
puters to form the first version of the ARPANET but not before major troubles were
overcome. Developing a packet-switched subnet was something that had not been at-
tempted and most telecommunications providers did not like the idea of some young
hot shot researcher telling them how to construct their networks. However once the
ARPANET began to grow, adopted more scalable protocols and became used by a large

range of people the concept of a internet became possible.

A large effort began to standardize how the Internet would work. Two models were
developed to address this issue. The OSI model is more generic and can be applied
to almost any form of network. Years of experience have shown that the number of
layers in the OSI model are slightly excessive and some layers are generally not used in
Internet applications. The TCP/IP model used less layers but is more specific to the
internet and can be fairly abstract when referring to lower level network features and
interface. As the concepts behind software development focus more on semantics and
syntaxes of the language or protocol the OSI model may gain popularity again, however,

at the moment the TCP/IP model is generally most relevant to internet development.

The constant development of new protocols is a constant challenge to developers fo-
cusing on TCP/IP as new protocols may not always let TCP and IP handel the issues
of routing, addressing and reliability themselves. An Early example of this was FTP
where the IP address and TCP Port was embedded in the FTP data stream. As ap-
plication developers develop new ways of using the Internet it is important to observe
the layering of the Internet and try to avoid breaching these layers when designing new
software and standards. This can particularly be a problem for applications such as
Network Address Translators where failure to correct a reference to the IP address or

TCP port in packet header or data can corrupt the entire process of translation.

Chapter 3

Design Specification

3.1 Chapter Overview

Many software development projects have been known to incur extensive and costly
design errors. The most expansive errors are often introduced early in the develop-
ment process. This underscores the need for better requirement definition and software
design methodology. Software design is an important activity as it determines how
the whole software development task would proceed including the system maintenance.
The design of software is essentially a skill, however, it usually requires a structure

which will provide a guide or a methodology for this task.

3.2 Design Methodology

3.2.1 Extreme Programming

Extreme Programming is a deliberate and disciplined approach to software Develop-
ment. It has been developed over a period of about 8 years and has proven successful

in companies of various sizes.

Extreme Programming is oriented towards customer satisfaction. It aims to deliver the

3.2 Design Methodology 15

required software on time even when changing requirements complicate the process.

Team work is central to the methodology in order to achieve this goal. (Wells 2003)

Despite these advantages, Extreme Programming is not a good choice in this project
because the customer who requires the product is also the programmer, therefore chang-
ing requirements are not likely to occur. There is also no development team involved

in this project so the use of GroupWise development would be a waste of effort.

3.2.2 Scrum

Scrum is an agile, lightweight process used in Product Development, particularly control
and management of software projects. Scrum focuses on traditional iterative, incremen-
tal programming methods while wrapping existing engineering methodologies such as
Extreme Programming and Rational Unified Process to allow agile development and

simple implementation.

Scrum significantly decreases development time and has faster benefit implementa-
tion while allowing adaptive, empirical system development. (Advanced Development

Methods Inc 2004)

Unfortunately Scrum is a highly commercialised development process which requires
employment of a certified ScrumMaster or participation in a two day course to become
a ScrumMaster. Most of these courses are only available in the United States and are

financially expensive. Scrum will not be implemented as part of this project.

3.2.3 Feature Driven Development

Feature Driven Development (FDD) is a process of software development aimed at
delivering requested or required features in the shortest possible time period. After the
overall project is identified and a feature list is created, each identified feature is fully

designed and then implemented into the system.

FDD allows a software development team to remain highly focused and greatly in-

3.2 Design Methodology 16

creases production and improves team spirit by delivering entire fully featured proto-

types throughout the development cycle.

Any software development suffers from exponential development times. As the project
nears completion, the amount of work completed decreases for the same amount of time
spent on development. FDD suffers greatly from this problem because each feature

suffers from exponential development times.

FDD is particularly common in projects which are in trouble and have deadlines and
milestones to be met. By focusing only on critical required features the project can
often be saved. FDD will only be used in this project if development falls behind

schedule.

3.2.4 STEPWISE

STEPWISE is a software development process designed to overcome limitations of the
ISO 10303-11 EXPRESS model by automating software development. EXPRESS is
used to represent product and process data in standard data stores, to increase data

value and decrease data management costs.

STEPWISE features an enhanced architecture to support automation of EXPRESS for
implementing high-level procedural interfaces, storage representations and interchange

formats. (Kahn 2000)

STEPWISE is designed for high-level applications and is probably more suited to 4th
and 5th level languages such as Structured Query Language. Despite its improvements

over C++, C#.NET is still a 3rd level language and is not particularly suited for
STEPWISE.

3.2.5 Rational Unified Process

The Rational Unified Process (RUP) was developed by the same people who originally
created Unified Modeling Language (UML). UML is a single complete notation for

3.2 Design Methodology 17

describing object models and is extensively used in Software Engineering. RUP is
a software development process providing a framework that can be used to describe

specific development processes.

The essence of RUP is iteration and RUP was developed with the goal that each
iteration ends in a deliverable (prototype, fully featured class, etc). RUP involves
extensive Risk Management, particularly of the risk that development will fall behind
schedule. RUP acknowledges that project plans do not define what will be produced,
but a statement of how to manage risk. A plan of action will inevitably fail while a

plan of contingencies will eventually succeed. (Sharon 1999)

However as a major part of the Engineering Program, this project cannot be allowed
to fail. Some aspects of the program development may be optional, provided that
the overall deliverables are provided. For this reason the contingencies are somewhat

limited and not particularly suited to RUP.

3.2.6 Waterfall Models

The waterfall model was originally developed as a series of discontinuous phases in-
volving Conception, Requirements, Architectural Design, Detailed Design, Coding and

Development and Testing and Implementation.

Several variations on this system interpose their own advantages and weaknesses into
the model. These variations include the Spiral Model, Modified Waterfall Model, Evo-

lutionary Prototyping, Code-and-Fix, Staged Delivery and Evolutionary Delivery.

e The Spiral Model breaks a software project up into mini-projects, each addressing
a major risk. This ensures that total project risk is inversely proportional to cost

at each step in the development process.

e The Modified Waterfall Model is potentially the same as the Waterfall Model,
however it is not done in Discontinuous steps. This enables the phases to overlap
where needed allowing requirements to be gathered while overall project progress

is still proceeding.

3.3 Programming Language 18

e Evolutionary Prototyping involves multiple iterations of requirements gathering.
Iterations produce individual prototypes to be presented to the customer to stim-

ulate further feedback and discussion of requirements.

e Code-and-Fix is the typical approach to avoiding the complexities of a devel-
opment methodology. It is only useful for small, throw away projects and is

dangerous because it offers no Quality Assurance or Risk Management.

e Staged Delivery involves breaking design, coding, testing and deployment into
separate stages which are useful to the customer. FEach stage must function

independently of other stages.

e Evolutionary Development straddles evolutionary prototyping and staged deliv-
ery. Initial development is on lower-level functions which will hopefully remain

independent of changing customer requirements. (Business ESolutions 2002)

The Modified Waterfall Model is prefered in the project and will be employed as long
as the project remains on schedule. Failsafe will be provided by Feature Driven Devel-

opment if the project schedule is not fulfilled.

3.3 Programming Language

Business today demands sophisticated computing capabilities. Even the software prod-
ucts used for office automation (word processors, spreadsheets, etc.) have become large
and complex in the process of meeting user needs. The issues involved in creating large,
complex software are many and varied. However one issue continues to cause contro-
versy and seldom results in agreement between programmers. This issue is the choice of
Programming Language. Some alternative programming languages are presented and

discussed in this section.

3.3 Programming Language 19
3.3.1 Visual Basic.NET

VB.NET was developed as part of Microsoft’s Visual Studio solution and represents the
next generation of language and tools for rapidly building Microsoft Windows and Web
applications. VB.NET has a very clean interface for designing a Graphical User Interface

(GUI) making it extremely popular when developing such applications.

Unfortunately VB.NET is not a common tool in most Computer Science and Engineering
applications. Some features are useful for special Computer Science applications, how-
ever it is more generally regarded as a business programming language. For this reason
VB.NET was disregarded despite supporting the necessary socket operations required for

this development project.

3.3.2 ASP.NET

ASP.NET is derived from the Active Server Pages language used to create dynamic
web pages. This is not exactly suitable for a Network Address Translator which nor-
mally works at a much lower layer than ASP.NET. However ASP.NET would serve
a useful function for this project as a web interface for management of the Network
Address Translator (NAT). A particularly useful aspect of ASP.NET would be that a
web interface could be used to allow an Application Layer Gateway (ALG) to report an
anticipated incoming port. This may not be useful in all cases because the requested
port may already be in use. However it may be used to attempt a repair of some

applications which do not normally work under NAT such as Active FTP.

ASP.NET will not form part of this project however because it is unlikely to reach the
application layer. The most important issue is to achieve a simple working NAT for

use in future development.

3.3.3 C

C evolved from a language called B, written by Ken Thompson. C is a simple and small

language, which can be translated with simple, small compilers. Today it is among the

3.3 Programming Language 20

languages most commonly used throughout the computer industry.

There is no particular reason why this project could not have been developed in C. It
has a clean interface, is easy to use and supports all the necessary sockets operations.
The only downside is the difficulty in generating a Graphical User Interface (GUI) using
appropriate libraries. Writing a windows service in C can be difficult as a number of
hooks need to be developed. These hooks are for use by the operating system in starting

and stopping the service.

Although C was not used in this project it was excluded only because of time consid-
erations in GUI development and some difficulties in writing a Windows Service. The

final product could be ported back to C as a future project.

3.3.4 C++4/Visual C4++.NET

C++ is a rewritten and improved version of C. The major focus in developing C++
was to enable the development of object oriented programs. C++ also showcases a
variety of other features not found in C while still maintaining the basic syntax and
semantics found in C. Visual C4++.NET is a particular implementation of C++ by
Microsoft. Visual C+4.NET includes integrated GUI development tools which make
developing a GUI type interface much easier than using standard libraries in C or other

C++ environments.

Again there is no specific reason why C++ could not be used to develop this project.
The added benefit of integrated GUI development tools in Visual C++.NET only adds
to the reasons for using C++. However Visual C++ still requires complex methods
to support running as a Windows Service. In addition the Microsoft Foundation Class

(MFC) is extremely difficult to master and takes a lot of time to set up properly.

Future work could involve porting the application back to Visual C4++ or developing

a user interface using standard C++ libraries.

3.3 Programming Language 21
3.3.5 Java

Java is an object oriented programming language which uses a Java Virtual Machine
(JVM) to run Java programs. The JVM is cross-platform capable having been ported
to many variants of Windows and Unix. The Java Application Programming Interfaces

are a set of pre-built classes that can be used in program development.

In C++, memory has to be explicitly requested when required. Likewise, when finished
with the memory, it has to be explicitly returned to the operating system. Although
this process sounds simple, it is easy to create a memory leak, which is when your ap-
plication requests memory and forgets to release the allocated memory. Over time, the
application grows in size, slows down the system greatly and eventually crashes. Java
implements a feature called Garbage Collection which automatically recovers memory
that can no longer be referenced by the program. The result is that memory leaks
cannot occur, to an inexperienced programmer it looks like every variable is causing a
memory leak, however, behind the scenes the garbage collector is searching for any piece
of memory which is no longer required and reclaiming it to be reassigned to another

variable or even another program. (Campione, Walrath & Huml 2000)

Despite the feature of garbage collection in Java it was not used in this project. Java
only supports two types of sockets, Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). A NAT requires a lower level socket known as a RAW
socket which receives an entire packet with the TCP and Internet Protocol (IP) headers
intact. Despite some later references to using a lower level protocol to inject packets at
the data link layer the decision to reject Java as a programming language had already

been made.

3.3.6 C#.NET

C#.NET, a Java-like programming language, was developed by Microsoft and submitted
to the ECMA standards group for approval. Although the language is Java-like its
syntax and semantics are remarkably similar to C/C++. The likeness to Java comes

from many features which are implemented in Java such as garbage collection and the

3.3 Programming Language 22

implementation of a hashing-table in standard functions for almost every variable type.

C#.NET had several other advantages over most other languages. It supported creating
a Windows Service using its own implementation. The only feature left for development
was code to start and stop the service. All the necessary hooks were linked to the devel-
opers functions. In addition C#.NET supports a very wide range of sockets including
RAW sockets which can send and receive packets including the full IP header. The
GUI development platform used in VB.NET is reproduced almost perfectly in C#.NET
enabling the simple development of a simple management interface for the project in

the same language in which the service was developed.

C#.NET was my final language of choice for this project. Although there have been
critics of C#.NET my decision was to use it in a kernel level project. The language is
quickly becoming popular and has successfully been used in a large number of commer-

cial projects.

3.4 Chapter Summary 23

3.4 Chapter Summary

This project followed the Evolutionary Development Model. By developing prototypes
commencing at low-level functionality and increasing this functionality until the overall
requirements are met, project progress can be measured through the attainment of

milestones and project research can be broken into individual concepts.

C#.NET is not the most common language for low level networking applications. How-
ever it was the programming language with the most features that were of practical use
in this project. Any other language would have required significantly longer periods of
time for development however C#.NET was similar enough in syntax to C/C++ that

the learning curve of the language was very short.

Chapter 4

Internet Protocol

4.1 Chapter Overview

No Network Address Translator (NAT) could be developed without a full understanding
of the Internet Protocol (IP). Already IP has been mentioned in several sections of this
book. It has been largely undefined, except to say it is a protocol developed and used
in the Internet. However, the use of IP is not limited to the Internet, many smaller
networks also use IP as an underlying communication protocol. This is testimony to the
robustness of IP, it can be used to deliver packets to the next cubical in the office, across
the street, across the country or around the world. This chapter examines the reasons
for developing the Internet Protocol, why it is so useful in computer communications
and the reason such a protocol would need added functionality in the form of a NAT.
Finally, the report shall breifly discuss what is currently being developed to remove the

need for a NAT and return IP to a completely independent protocol.

4.2 IP Functionality

The Internet Protocol is the glue that holds the Internet together. It was designed
explicitly for the task of internetworking or connecting many different types of network.

Its primary function is to provide a best-effort attempt to deliver segments of data

4.2 TP Functionality 25

32 Bits
R TS N ST N T T TS Y N WO
version IHL type of service 16-bit total length (in bytes) ¥
16-bit identification ‘E‘r\;‘ 13-bit fragment offset
8-bit time to live ‘ 8-bit protocol 1B-bit header checksum Egtes

32-bit source IP address

F2-bit destination IP address

options (if any)

data

Figure 4.1: The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003)).

called datagrams from source to destination with no regard for where the source and
destination are, be it on the same corporate Local Area Network, different Local Area
Networks that are interconnected by a router or on two completely different networks
separated by a multitude of other networks which are connected by many different

paths, commonly called a route. (Tanenbaum 2003)

4.2.1 Looking at an IP Header

Each datagram being sent via IP has a special IP Header added. The header is used to
identify the packet, set some control information, record the length of the datagram,
record error checking information (error checking is only for the header itself, not
for any data the header may contain) and indicate the source and destination of the
datagram. The header consists of a 20-byte fixed part an a variable length optional
part. There are two ways of looking at an IP Header. The first method is to review
the theoretical contents of the header and learn what each part indicates. The second
method is to examine a real IP packet to observe the practical application of the theory.
This is important in the design and implementation of a NAT because the header will
not label its contents adequately to assist the user in determining what the numbers

actually mean. The structure of a IP Header is shown in Figure [4.1

Quickly Summarizing the meaning of the individual fields in an IP Header:

e The Version field indicates which version of the protocol the datagram belongs

4.2 TP Functionality 26

to allowing transitions to new versions to roll-out over many years.

e The [HL or Internet Header Length is provided to define how long the header is
in 32 bit words. The default and minimum value is 5 indicating a header with
no options. The maximum value is 15 indicating a header containing 40 bytes of

options.

e The Type of Service field distinguishes between different classes of service. For
example real-time voice requires fast delivery, however, this is not concerned with
reliability. In fact for most voice applications reliability and error checking cause
more problems than they solve. For data downloads however reliability is more
important than throughput (despite what some users would suggest). The actual
use of this field will not be explained here as in practice most routers ignore its

contents anyway.

e The Total Length indicates the length of the entire datagram which may consist
of a IP header, options and data. The absolute maximum Total Length is 65,535
bytes which is currently suitable for 1500 byte maximum ethernet frames, however

this is not ideal for new multi-gigabit ethernet connections.

e The Identification field allows the destination to determine which datagram a IP
fragment belongs to. All IP fragments that originate from the same IP packet

have the same Identification Number.

e DF is a single bit which stands for ”Don’t Fragment” and is an instruction that
the packet must not be fragmented (normally because the destination does not
have a full IP Stack loaded and cannot reassemble packets). IP requires that

every participating network accepts frames of 576 bytes or less.

e MF means "more fragments”. If an IP packet is fragmented all pieces except for

the last will have this bit set.

e The Fragment offset indicates the relative position of the current fragment in the
fully assembled packet. The offset is given as a number of 8-byte fields which
offset the current fragment. As 13-bits is being used, 8192 fragments can occur.
This allows complete fragmentation of a 65,536 byte packet (one byte larger than
allowed by the IP protocol).

4.2 TP Functionality 27

e Time to live is a counter of packet hops. It is decremented once by each router
the packet passes through. If the value reaches zero the packet is discarded
and the host warned. This system prevents a routing loop from buggy router
configurations from crashing several backbone routers as packets flood into the

loop but never leave.

e RFC1700 was the first global definition of transport level protocols. The globally
accepted list is kept at http://www.iana.org/assignments/protocol-numbers.
The Protocol field may contain any number from this web page. It is used at the
destination and in some other circumstances such as Network Address Translators

to determine what data to expect following the IP Header and Options.

e As stated earlier IP is a best effort protocol which will attempt to deliver data-
grams, however makes no guarantee that individual datagrams will not become
corrupted or not reach their destination. The Header checksum is used to verify
that the data contained in the IP header is not corrupt. Higher level protocols
often also use a checksum that verifies the entire packet, including the data, has
not been corrupted. The IP checksum guards against routers with bad memory
modules and ensures that when IP reports the source to a higher layer the address

is correct.
e The Source Address is a 32 bit field used to identify the sending host.

e The Destination Address is a 32 bit field identifying the receiving host. More

information on IP Addresses will be provided in a following section.

e A large range of special features have been defined for use in the IP header
through the use of the Options field. The current list is kept current at http:
//www.iana.org/assignments/ip-parameters. The use of this field will not be
discussed and has become depreciated due to the limited size of the field and the

size of the global internet. (Tanenbaum 2003)

Table shows the output of the debugger which has captured an IP packet. It
demonstrates how IP Headers are practically used, however it would be a dunting
task to actually decode the meaning of a packet without the details provided by the

explanation.

http://www.iana.org/assignments/protocol- numbers
http://www.iana.org/assignments/ip-parameters
http://www.iana.org/assignments/ip-parameters

4.2 TP Functionality

28

Table 4.1: Contents of a real IP packet.

Buffer Position

Byte Contents

Explanation

[0] 69 Version = 4, THL = 5

[1] 0 Type of service = 0 = Normal
2] 0

[3] 45 Total length = 45

4] 159

[5] 52 ID = 40756

(6] 64

[7] 0 Don’t Fragment

8] 128 TTL = 128

[9] 6 Protocol = 6

[10] 0

[11] 15 Checksum = 15

[12] 192

[13] 168

[14] 0

[15] 3 Source = 192.168.0.3 (My Computer)
[16] 207

[17] 46

[18] 106

[19] 173 Destination = 207.46.106.173
[20] 7 The rest of the packet can just be considered as data.
[21] 105

[22] 7

[23] 71

[24] 231

[25] 219

[26] 240

[27] 123

[28] 109

4.2 TP Functionality 29

Table 4.1: (continued)

[29] 112
[30] 168
[31] 186
32] 80
[33] 24
[34] 65
[35] 89
[36] 213
37) 88
[38] 0
[39] 0
[40] 80
[41] 78
[42] 71
[43] 13
[44] 10

4.2.2 Fragmentation

IP was designed to work over many different types of networks with various hardware
because it must accommodate for differences in the maximum frame sizes due to differ-
ent underlying networks. The maximum frame size of the underlying network topology

is called the maximum transmission unit (MTU).

Suppose in Figure that Host A wants to send a large amount of data to Host C,
hence the IP Protocol creates a packet which is 1500 bytes long (1480 bytes of data +
20 bytes for the IP Header). The router at Host B receives the packet and assuming
the Don’t Fragment bit is not set, it will create two packets both destined for Host
C. The first packet will contain 976 bytes of data (the maximum multiple of 8 bytes
+ 20 bytes for the IP Header that can fit on the second network), will have the More

4.2 TP Functionality 30

% Host C
Metwark 1

Metwork 1
Mk T MTU 1000

Figure 4.2: An Example of connecting two networks with differing MTU values.

(adapted from (Feit 1998)).

Fragments (MF) bit set and will have a fragment offset of zero. The second packet will
contain the remaining 504 bytes of data, will not have the More Fragments (MF) bit set
however will have a fragment offset of 976. Host C will then have sufficient information

to reassemble both fragments and receive the correct data. (Tanenbaum 2003)

4.2.3 IP Addresses

An TP Address is a 32 bit number used in the source and destination fields of an IP
header. Each IP address consists of a network number and host number. In principle no
two machines on the internet can have the same IP address (in practice this situation
could occur however one host will not receive the packets unless the routing tables
are configured incorrectly). It is worth mentioning that one of my home computers
is a router and therefore receives two globally unique IP addresses, one for each of
the external interface to the internet and internal interface for the intranet (internal
network). When these issues are considered, the diminishing number of unused IP

addresses is not surprising.

IP Addresses are usually written in dotted decimal notation. For example the 32-bit
Hexadecimal address COA80003 (or in decimal 3232235523) is written as 192.168.0.3.
Several IP addresses also have special meanings. For example the IP address 0.0.0.0
refers to the current host. In the above mentioned network the address 0.0.x.x refers to
the host with the given IP address on the local network. The address 255.255.255.255
indicates the broadcast address which means all hosts on the local network. The broad-
cast address on a remote network in the same class as above would be x.x.255.255

(though most administrators disable such addresses because they are a security risk).

4.2 TP Functionality 31

The IP address 127.x.x.x always refers to the loopback device. The loopback device is
a method of sending packets to the local machine without putting the packet onto the
physical wire. The loopback address is also valid for a device which may not have any

network interface installed to ease testing requirements. (Feit 1998)

4.2.4 Subnets

As mentioned earlier IP addresses encode the network and host number. For example
the 192.168.0.3 IP address given consists of the network address, 192.168 and the host
address, 0.3. Any computer in the same network must also have the same network
address with a different host address. Varying each part of the host address from
0 to 255 gives 65025 addresses. Even though some addresses are reserved for the
special purposes there are over 60000 usable IP addresses in the given address range.
Unfortunately Ethernet was designed with much stricter limits of only 1024 hosts per
network. The problem is that the networking authority will not give out two networks
of 65025 hosts each simply because the underlying network was not scalable (especially

when IP Addresses are already becoming scarce).

The solution was to allow networks to be split into several sub-networks or subnets
although still appear as a single large network to the wider Internet. In the above
example a subnet address would be specified to segregate the larger network into several
smaller networks. For example a subnet address of 255.255.255.0 would allow 256
subnetworks (in some cases subnet masks of all zeros or all ones in the address cannot
be used reducing this value to 254) each containing up to 254 hosts (0 and 255 are

reserved in each subnetwork as mentioned previously). (Feit 1998)

4.2.5 Classless InterDomain Routing

Classless InterDomain Routing (CIDR) is a solution analogous to scraping the very last
soup from the bottom of the pan. CIDR suggests allocating remaining IP addresses
in variable sized blocks. The blocks are not completely free from restrictions, they

still need to be allocated in blocks of 2% however this allows the last of the IP address

4.3 Network Address Translation 32

space to be allocated based on the current proven needs of an organization rather than
anticipated future needs. Research has shown that over 50% of all networks supporting
64K hosts actually have less than 50 hosts. Under the old method of IP Address
allocation these networks could have been given a network address supporting only 254

hosts and wasted IP Address space would have been avoided.

With CIDR each routing table entry has a 32-bit mask added. When a packet is
recieved by the router the destination address is extracted and each address in the
routing table is compared to the destination address which is masked by the correct
mask (one bits in the mask allow the equalivent bit in the destination address while
zero bits hide it) from the routing table. When a match is found the correct forwarding
interface is looked up in the table and the packet transmitted to the next hop. Because
multiple entries may match the destination address due to different masks the longest
masks are used first. A long mask (a large number of the 32 bits are ones) indicate a

very specific network whereas shorter masks indicate a more general case.

Fortunately the routing does get easier after the specific cases. Special cases are nor-
mally caused when the packet is very close to its destination. Consider the extreme
example when the next hop will be to the final host, the router must decide which of
several ports leads to the destination and will forward the packet on that port only.
Now consider the other case where the destination is a long way from the current loca-
tion (in terms of number of hops). When this occurs the routers may generalize specific
cases. For example imagine that all internet addresses starting with 203.2.x.x belong
to Australians. A router in Los Angeles does not need entries for 203.2.1.1 and then
203.2.1.2 when it can have a single entry for 203.2.0.0 with a mask of 255.255.0.0. All
packets matching this routing entry would likely be forwarded by a transpacific ocean

cable which might be called pacfOl by the router. (Tanenbaum 2003)

4.3 Network Address Translation

Despite the efforts to stop wasting IP Address space using solutions such as CIDR

and requiring organizations to prove the need for new IP Addresses there has been

4.3 Network Address Translation 33

little to no attempts to resolve the problem. New Internet designs with much larger
IP Addresses are being tested, however final commercial implementation will be years
away, if ever. A quick fix is required that can be implemented anywhere across the
Internet at any moment. This quick fix has been developed in the form of Network

Address Translation (NAT).

4.3.1 Overview of NAPT

Two types of NAT have been developed. The first version, Traditional NAT does not
save IP addresses for end users. It can however be implemented by an ISP to save
on the IP addresses wasted by allowing many small CIDR subnets (remember that a
subnet with 2 TP addresses actually consumes 4 TP Addresses). Traditional NAT simply
translates the users IP address to a globally unique IP address for packets destined for
the internet. Hence if a user needs 4 IP addresses they are allocated 4 private IP

addresses each being mapped to a global IP address by the service provider.

The second method of NAT is more accurately called Network Address Port Translation
(NAPT). NAPT is concerned with actually reducing the need for multiple IP addresses.
The idea is to multiplex a number of access requests to the external network onto a
single globally unique IP Address (although there is no rule stating that only one global
IP address could be used for NAPT). The incoming packets to the NAPT are then
demultiplexed back to the original source. Internally this is accomplished by mapping
tuples of the type (local IP addresses, local TU port number) to tuples of the type
(registered IP address, assigned TU port number) where TU is the transport layer unit.
Supported TUs are normally Transmission Control Protocol (see , User Datagram
Protocol and Internet Control Message Protocol query’s only. Limited inbound access
can be provided by statically mapping a known TU port service to a specific local IP

address. (Srisuresh & Egevang 2001)

4.3 Network Address Translation 34
4.3.2 Address Binding

In NAPT implementations, binding would take place between the tuple of (private
address, private TU port) and the tuple of (assigned address, assigned TU port). This

binding is created when the outgoing session commences.

4.3.3 Address Unbinding

NAPT may unbind the tuple of (assigned address, assigned TU port) when the last
connection closes. However because the situation of a host crashing must be handled a

timer is required to unbind addresses after a period of inactivity.

4.3.4 Header Manipulation

In the IP layer every packet header must be modified. These modifications are for the
source IP address for outbound packets and destination address for inbound packets.

The IP checksum must also be updated.

For TCP/UDP protocols the source port must be updated for outbound packets and
restored for the destination port of inbound packets. The checksum must also be
updated remembering that a pseudo header including the IP addresses forms part
of the checksum. As an exception UDP packets with zero checksum should not be

updated.

ICMP packets must also be specifically updated for the purposes of NAPT. The required
updates are to the ICMP Query ID and ICMP checksum. The Query ID must be
modifed from an internal ID to assigned ID for outbound packets and assigned ID to

internal ID for inbound packets. (Srisuresh & Egevang 2001)

Sometimes it may be necessary to add a specific protocol to a NAPT. The implemen-
tation details are not defined by the NAT standards and will vary depending on the
requirements of the protocol and the best practices for translating the protocol at the

time the supporting software is written.

4.3 Network Address Translation 35

4.3.5 Incremental Checksum Adjustment

1P, TCP, UDP and ICMP headers all use the same form of checksum. Unfortunately the
calculation of these checksums from scratch is computationally expensive. Fortunately
there is a better method of calculating an incremental checksum for an existing header.
There are two advantages of using this incremental checksum. First updating the
checksum based on modifications to the header is less computationally expensive than
recalculating from scratch. Second this form of update avoids the need to check for
packet corruption. If the received packet is corrupt and the checksum is recalculated
the next router or the destination machine will incorrectly believe the packet is correct
because the recalculated checksum will equal the true checksum of the now corrupt
packet. However incremental checksum on a corrupt packet will not correct for the
corruption so the next router or destination that attempts to verify the checksum will

fail and drop the packet. (Rijsinghani 1994)

4.3.6 ICMP error packet modifications

There is a slight difficulty in NAPT caused by ICMP error packets. The ICMP error
packet may contain an embedded IP packet (normally one which caused an error) and
this IP packet will contain source and destination addresses and possibly TCP/UDP
port numbers which need to be updated to ensure end-to-end transparency of the NAT
system. In addition the checksums of all embedded packets must also be updated to
reflect changes made by modification of the ICMP error packet. More details on ICMP

packets can be found at ftp://ftp.rfc-editor.org/in-notes/rfc792.txt.

4.3.7 FTP Support

NAPT requires special consideration when using File Transfer Protocol (FTP) in combi-
nation with NAPT. This is because FTP encodes several pieces of IP data into control
packets. This data can include IP Addresses and TCP Port numbers. Additionally
FTP can negotiate to open another port for the following file transfer. NAPT needs to

recognize this expected incoming port or packets will be lost as they are destined to a

ftp://ftp.rfc-editor.org/in-notes/rfc792.txt

4.3 Network Address Translation 36

(assigned address, assigned TU port) tuple that NAPT did not assign.

More details on the exact requirements of an Application Layer Gateway to overcome

this problem are provided in Srisuresh & Egevang (2001).

4.3.8 Using IP Options

Although IP Options are depreciated and seldom used there is a possibility that private
addresses contained in an IP Option would remain untranslated in a NAT packet tra-
versing the Internet. This problem is not addressed in many implementations of NAT
because routers using IP options should only consider the next-hop and the presence

of a private IP address would be overlooked.

4.3.9 Recommendations for Private IP Address Range

Organizations using NAT are recommended to make use of the three private IP Address
ranges provided by the Internet Assigned Numbers Authority (IANA). These Addresses
are 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16. If these numbers are not used one
possible problem that can occur is the local machine completes a DNS lookup and finds
a local IP address is the destination. However the NAPT will be unable to differentiate
between a request to the local IP address and one that should have been translated to

the Internet.

4.3.10 Privacy and Security

NAPT provides a privacy and security mechanism by shielding internal clients from
any unexpected inbound packets. Inbound packets are only possible if a port in use by
NAPT is selected for the attack and the attack source uses the same IP address as the
external machine. Launching such an attack is extremely difficult because both details
are normally stored on the NAPT servers memory and are not available to users or
external computers. Also because use of an invalid IP address is normally required by

the attacking machine two way communication cannot normally be established.

4.4 TPv6 37

However NAPT does have the undesirable impact on internal policing. If an internal
client uses NAPT to shield their attack on the Internet the owner of the NAPT server
will normally be blamed for the attack. Unless detailed logs are available the offending

person cannot usually be identified.

4.3.11 Fragmented Packets

NAPT will never be able to successfully translate outbound TCP/UDP fragments.
This failure results in the TCP/UDP header being contained in one of the fragments
and not in any other fragments. Normally the IP Fragment number would be used
in this situation however there is no guarantee that two client machines will not use
the same fragment identifiers and result in corruption. The only solution is to have
NAPT reassemble fragmented IP packets before allowing translation. This solution is
also recommended for the purposes of enabling Secure IP (IPSec) over NAT. (Srisuresh

& Egevang 2001)

4.4 IPv6

One of the newest major standards on the horizon is IPv6. Although IPv6 has not
officially become a standard, it is worth some overview, especially since the final in-
troduction of IPv6 will likely make the outcomes of this project worthless. It is very
possible that this information will change as IPv6 moves closer to standardization, so

this is a guide into IPv6, not definitive information. (Tanenbaum 2003)

Some of the benefits of IPv6 include greater addressing space, built-in Quality of Service
(QoS), and better routing performance and services. However, a number of barriers
must be overcome before the implementation of IPv6. The biggest will be what the
business need is for moving from current IPv4 to IPv6. The killer application for IPv4
has not appeared yet, it may not appear at all. However IPv6 will gain momentum
quickly if such an application is developed. The total lack of IP addresses may eventu-
ally force the role over without commercial support. Companies will follow more out

of need for compatibility than some great new web application.

4.5 Chapter Summary 38

4.5 Chapter Summary

In summary IP is a protocol developed for use in interconnected packet-switched net-
works. It provides the underlying structure necessary to obtain information from one
host to another while dealing with anything that might separate the source and desti-

nation hosts.

This chapter examined the IP Header and its data contents including some of the mean-
ing of the data. Also some of the special functions of IP to deal with common situations
with internetworking. An overview of some of the issues in distributing IP addresses to
various organizations was given. The issues of Network Address Translation were then
presented and reviewed in detail. This section is particularly complex and borrows some
details from the next chapter on the Transmission Control Protocol (TCP). Readers
who found this section difficult should not be disheartened as it requires a great deal
of technical knowledge. It is recommended that the chapter on TCP is reviewed before

returning to NAT.

Readers who have followed the contents of the current chapter will find the next two
chapters on the Transmission Control Protocol and some existing implementations of

NAT much lighter reading.

Chapter 5

Transmission Control Protocol

5.1 Chapter Overview

Transmission Control Protocol (TCP) builds on the IP layer to provide end-to-end con-
nectivity for packet-switched networks. TCP must compensate for the lack of reliability
in the IP layer and must operate in such a fashion as not to overload the underlying

protocols or core network routers.

This chapter will review the major features of TCP including the header structure.
The concepts of connections and establishing connections will be examined and a brief

overview of another Transport layer protocol called User Datagram Protocol.

5.2 TCP Functionality

TCP is a connection-oriented reliable service designed as part of the Transport layer.
TCP is connection oriented, with each application employing a TCP connection be-
tween itself and the opposing TCP end-point. This must occur before data may be
sent or recieved. The common term for this type of connection is a state based ser-
vice because the state of the connection is maintained and determines the ability of

applications to use the service.

5.2 TCP Functionality 40

32 Bits

F 3

1B-bit source port number 16-hit destination port number

32-bit sequence number

32-bit acknowledgerment number ED
ytes
misc. data including header length 16-bit windowr size
16-bit TCP checksum 16-bit urgent pointer ¥

options (if any)

data

Figure 5.1: The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003)).

Complete packet

F 3
L 4

IP header TCP header data fram application layer

20 bytes 20 bytes

Figure 5.2: Combining TCP and IP to encapsulate data.

Figure [5.1] shows the structure of a TCP header while Figure shows how a TCP
header is added to the data which is then passed to the IP layer where an IP header is
added.

Quickly Summarizing the meaning of the individual fields in an TCP Header:

e The Source Port identifies the end-point of the connection. The end-point must
be identified to enable the TCP layer to determine which upper layer service
requiring the data. Common port numbers are defined at http://www.iana.

org/assignments/port-numbers.

e The Destination Port identifies the target end-point. A host’s IP address and
TCP Port together form a 48-bit unique end-point. Together the unique source

and destination end-points identify the connection.

o The Sequence Number identifies the TCP segment to enable packets to be re-

assembled to form a reliable byte stream.

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

5.2 TCP Functionality 41

o Acknowledgement Number is used to specify the Sequence Number of the next

TCP segment expected (not the last segment that was correctly received).

e The misc data field starts off with a 4-bit TCP Header Length. This is followed
by 6-bits which are not used and must always be zero. Finally there are six
1-bit flags used to signal important events to the TCP receiver. In order these
are the Urgent flag (URG) which indicates that the Urgent Pointer is in use.
The Acknowledgement flag (ACK) is set if the Acknowledgment Number is valid
or cleared if the packet does not contain an Acknowledgement. The Push flag
(PSH) is used to push the packet through the TCP layer immediately even if this
means avoiding buffering. The Reset flag (RST) is used to reset a connection for
which state information is invalid. This may be due to a host crash, to reject
invalid segments or refuse a connection request. The Synchronize flag (SYN)
is used to establish a connection. If the SYN bit is set and the ACK bit is
cleared the request is to establish a connection. If both bits are set the packet
represents acceptance of the connection. Finally the Finish flag (FIN) terminates
a connection. However after sending a FIN packet the TCP port must remain

open to incoming data indefinitely (assuming data continues to arrive).

e The Window Size is used for flow control as an indicator of how many bytes may

be transmitted starting from the acknowledged segment.

e A TCP Checksum provides extra reliability. The TCP header, data and pseudo
header participate in the checksum calculation. The checksum must be calculated
with the checksum field set to zero. The pseudo header contains the IP source and
destination addresses, a byte of 0 bits, a byte containing the protocol number (for
TCP the protocol this is the binary representation of 6) and the TCP segment
length (the IP total length minus the IP header length). Using the pseudo header
violates the independence between the IP and TCP layers, however it offers ad-
ditional protection against misdelivery of packets. The same concept of a pseudo

header is used in the User Datagram Protocol (UDP).

e The Urgent Pointer indicates the byte offset from the current sequence number to
find what is marked as urgent data. Urgent data is similar to computer interrupts,

allowing the sender to send a type of interrupt signal to the receiver without TCP

5.2 TCP Functionality 42

being aware of the reason for the urgent data.

e The Options field in TCP offers similarity to the IP Options field which allowed
the implementation of a large range of special features. However unlike IP the
TCP Options field is extensively used by features that support newer modern

networking hardware and software. (Tanenbaum 2003)

5.2.1 Addressing

TCP provides its own addressing mechanism. Unlike IP however TCP addresses are
not normally used by intermediate routers and are only meaningful to the end-host.
Addressing is required to identify the application or service to which the data belongs.
(Day & Zimmermann 1983) Some applications have default destination addresses such
as HTTP. When requesting a web page we do not need to specify the use of port 80.
However http://www.google.com.au:80 is a valid reference to the Google website.
With 65025 possible port numbers an internet host would need to run several thousand
simultaneous web applications to use all possible ports. This knowledge allows the
implementation of a Network Address Port Translator which uses ports to identify

different hosts, a job normally left to the IP layer.

5.2.2 Reliability

TCP offers a reliable end-to-end byte stream which means each byte must be delivered
once, in order and without error. However the IP layer does not guarantee any of these
features. IP packets may be duplicated, lost, corrupted or delivered out of order. The
TCP protocol uses sequence numbers, checksums that include the data and acknowl-
edgement to ensure that received data is correct. Any TCP segment received with
an incorrect checksum is immediately discarded. Such segments cannot be requested
again at the time they are discarded as the checksum error could be due to corruption
of the port numbers or sequence number. Sequence Numbers are also used to ensure
correct ordering of the data and for the purposes of Acknowledgements. Acknowledge-
ments may only be sent for segments which have been successfully received in order,

TCP may internally buffer segments which are separated from the current sequence

http://www.google.com.au:80

5.2 TCP Functionality 43

by a gap however may not transmit acknowledgments until the gap has been correctly
filled. TCP may request that segments causing gaps in the stream are resent explicitly
or request that all segments following a specific sequence number are retransmitted.
However the sending host is responsible for retransmitting packets based on a timer.

Support of requests from the opposing TCP end-point is optional. (Tanenbaum 2003)

5.2.3 Congestion Control

Internally the TCP recognises two types of congestion. Network Capacity is a response
to an overflow of packets on the network which will cause routers to run out of buffer
space and internally discard packets before they are delivered to the destination. Re-
ceiver Capacity is the amount of data the opposing TCP end-point is prepared to
receive before it requires time to process the received data and pass it to the upper

layers.

Internally TCP maintains two windows. One is the amount of data the receiver is
prepared to accept, the second is the congestion window. TCP will never send more
data than is indicated by the minimum of these two windows. The receiver window is
controlled by the remote end-point. However controlling congestion on the network is

slightly more involved.

Congestion control uses the congestion window and a threshold to find an optimal
amount of data to fill the network without causing congestion. The threshold is initially
set at 64 KB and TCP is allowed to transmit 1 KB of data. The TCP retransmission
timer is started and TCP waits for acknowledgements or a timeout. Whenever the
amount of data sent is all acknowledged without an error or timeout, TCP is allowed
to transmit double the amount of data as on the previous attempt unless the amount
has reached the threshold. After the amount of data sent on the previous attempt is
equal to the threshold both grow linearly at a much slower rate (about 2 KB for each
successful transmission). It is important to note that the amount of data transmitted
may never exceed the threshold as the threshold grows at the same linear rate. When
a timeout occurs the threshold is halved and the process repeats with TCP being

allowed to send 1 KB which is doubled on every successful attempt until the threshold

5.3 Data Connections 44

is reached. The process repeats indefinitely ideally with an average of about the correct
amount of data the Internet can correctly handel at the time. At all times TCP may
never send a burst larger than the minimum of the congestion control size and the

receiver window size. (Tanenbaum 2003)

5.2.4 Connection Management

TCP needs to initialise and maintain some state based information including local
and remote end-point information, local and remote sequence numbers and window
sizes. Each TCP connection must be initiated and initialized by the transfer of state
information. For example TCP hosts must agree on window sizes and starting sequence
numbers when the connection is created. When the connection is closed the memory
used for this state information may be freed for other applications or connections. All
connection management data transfer is also checked and TCP must recover from any

error such as lost connection requests in a timely manner. (Robison 2002)

5.3 Data Connections

5.3.1 Three Way Handshaking

All TCP connections begin passively with one side waiting for a connection. This
involves a blocking call to the LISTEN or ACCEPT methods specifying a particular source
address or accepting connections from any source address. The call is named as blocking
because the application cannot proceed until a connection is made, the execution of

the code is blocked until a connection request is received.

The second step is for an application to execute the CONNECT method specifying the
end-point of the connection (IP Address and TCP Port), the window size and optionally
any user data to be used when establishing the connection (a username and password
for authentication perhaps). TCP then sends this information out in a packet with the
SYN flag set. The recieving machine checks that an application has executed a LISTEN

or ACCEPT method on the specified port. If this does not occur, the connection is

5.3 Data Connections 45

client| _Connection requess server

host Q=Cclient_isn) host
=1, seq=selvel isp,
connection granted ¥t ock = C\'\eﬂL\Sﬂ—PU

i

Figure 5.3: TCP connection establishment.

rejected by replying with a packet that has the RST flag set. Otherwise, the application
that executed the LISTEN or ACCEPT method receives the connection request. This is
accomplished by sending a reply packet with both the SYN and ACK flags set and the
acknowledgement number being the sequence number used in the connection request
plus one to indicate the next segment. Finally the session is fully opened by a reply with
the next sequence number and the ACK flag set for the response. (Tanenbaum 2003)
This process is depicted in Figure [5.3

5.3.2 Simultaneous Open

In TCP there is the possibility that two hosts will simultaneously attempt to establish a
connection. If this occurs only one connection must result. TCP handles this situation
by ordering the connection end-points. Hence both connections will result in the con-
nection (x,y) never (y,x) and TCP will only record one table entry for the connection.
Each host will reply by resending their initial SYN while including an ACK for the

opposite host’s request. This situation is shown in Figure [5.4

5.3.3 Active Close

TCP Connections may be closed by two methods. The first is an active close where
the client closes the TCP application causing a FIN segment to be sent. The client

may then receive a FIN only segment indicating a simultaneous close which is similar

5.3 Data Connections 46

{active SYN_SENT
e
SYN_RCVD e s

Smj:.&k*f oy by

ESTABLISHED

Figure 5.4: TCP Simultaneous Open. (adapted from (Tanenbaum 2003))

to a simultaneous open. Both applications then send ACK segments to finalize the
connection. Alternatively the client may receive a FIN packet also Acknowledging its
FIN. The client will send its final Acknowledgement and close the connection. Finally
the client may recieve an Acknowledgement to its FIN without a FIN from the opposing
end-point. This indicates that the opposite end-point may have more data or has kept
the connection open for some other reason. The client must keep to its promise that it
has completed sending data, however must continue to accept data until the opposite
end-point agrees that it is also Finished (FIN) at which point the connection may be
closed. In all cases a closed connection must be retained in memory in case any lingering

packets related to the connection arrive.

5.3.4 Passive Close

Passive Close is the alternative method of ending a connection. A Passive Close occurs
when the host receives a FIN before the application terminates. The host replies with
an ACK segment for the FIN, however it must then wait for the application to complete
its communications which may include sending more data before the return FIN can

be transmitted. Once this FIN is Acknowledged the connection may be released.

5.4 User Datagram Protocol / Real-Time Transport Protocol 47

5.4 User Datagram Protocol / Real-Time Transport Pro-

tocol

The User Datagram Protocol offers the benefits of IP communication without the strict
connection establishment, state and release requirements involved in TCP. The main
reason to offer this service is the addition of the port information found in the UDP
header. Without this port information the transport layer would not be able to deter-

mine the appropriate higher layer destination of the information.

UDP segments can choose to use a checksum to ensure reliability. This option can
also be disabled by setting the checksum to zero. Sometimes using the checksum is of
little use due to the fact that the data stream is real-time and although the processing

algorithms can deal with corrupt data it cannot wait for the data to be re-transmitted.

Another important feature of UDP is the lack of flow control, error control or retrans-
mission. Particularly the lack of flow control means data is pumped onto the network
as fast as the network layer can manage. This is particularly important for real-time

communication.

The advantages of UDP in real-time applications lead to the development of an addi-
tional underlying protocol called the Real-Time Transport Protocol (RTP). The basic
function of RTP is to multiplex several real-time data streams onto a single outgoing
stream. RTP works on top of UDP which does raise some questions regarding as to

which layer of the OSI or TCP/IP Reference Models it belongs.

RTP supports features such as time-stamping, encoding identification and sequencing.
Sequencing is only concerned with the correct order of packets and helps the target
applications account for lost data. For example if a video frame is lost it might be
better not to update the video feed until the next frame arrives as opposed to blanking
it. However, if the video is encoded, special consideration to prevent the corruption
spreading across future frames may be required. There is also a Real-Time Transport

Control Protocol which handles feedback from the RTP protocol. (Perkins 2002)

5.5 Chapter Summary 48

5.5 Chapter Summary

This chapter looked at Transport Layer protocols, an important link in computer com-
munication. TCP provides a full duplex, reliable, flow controlled service to higher
layers. TCP establishes and maintains connections on behalf of the higher layer service
and then allows the transfer of data with the remote end-point. The data is delivered
at the remote end-point and organized into correct order with any duplicates removed.
TCP also handles connection release when both applications have finished using the

communications channel.

TCP also plays a important role in the successful implementation of a Network Address
Translator (NAT). By recognizing that TCP port numbers can be used by the NAT to
represent internal end-points we can identify several different connections by varying the
port number used for communication and translating this port number to the correct

IP Address and Port Number at the NAT boarder.

It is important to recognize that several other transport protocols exist such as UDP. For
a complete Network Address Translator we need to make as many of these protocols
as possible function correctly under NAT. This is especially important for protocols
which are in common use over the Internet so that NAT can provide functionality

which approximates true IP Routing as closely as possible.

Chapter 6

Existing Network Address

Translators

6.1 Chapter Overview

Part of implementing a new and successful Network Address Translator (NAT) is to un-
derstand current NAT implementations, the reason they are sucessful, in what manner
they could be improved to become widely adopted and the purchase price. If a NAT
can be developed to include better features, not require additional improvement and /or
is cheap to customers, it will almost certainly gain a share of the market. If several of
these objectives can be acheived, the current market leaders sales’ would diminish as

the new product prospered.

Obviously it is not the objective of this project to create a NAT which is ready for
commercial distribution, however the issue of possible future commercialization of the
product must be addressed for the lifetime of the code to extend over several years.
If this issue is not considered the outcome of this project may not be suitable for
commercial production environments and the entire project will become a throw-away

prototype.

6.2 Windows 50
6.2 Windows

6.2.1 NAT32E

NAT32E is an enhanced IP Router allowing all private hosts on one or more Local
Area Networks (LAN) to access the internet. NAT32E supports a range of connection
interfaces including Dial Up Networking (DUN), Cable Modems, Asynchronous Digital
Subsciber Line (ADSL) interfaces or Remote Access Service (RAS) interfaces. Con-
figuration is automatic on most systems while manual web based configuration is also

supported.

NAT32E supports a new feature called Connection Aggregation. This allows the NAT
server to split data requests among two or more dial up modems. This feature may ap-
pear very useful, however it does not provide any level of competition to new Broadband
services which operate without exclusive use of a phone line and cost approximately

50% less for the same speed.

NAT32E has many of the features that make NAT software most popular with home
and small office users. It retails for US$50 for the more advanced version and US$25

for the single network only version.(NAT Software 2004)

6.2.2 BrowseGate 3 NAT /Proxy server and firewall

Browsegate 3 provides easy to use access to the Internet for all networked PC’s. This
includes all common services such as Web, Post Office Protocol (POP) and Simple
Network Mail Protocol (SNMP) e-mail, Network News Transfer Protocol (NNTP),
File Transfer Protocol (FTP) downloads or uploads and streaming video, audio and

chat programs.

Browsegate 3 includes an integrated Firewall to stealth selected inbound or outbound
access on specific ports. This type of technology is popular for larger organizations
because it provides a higher measure of security. By controlling which services clients

can access at a single point (the Firewall) the organization can make user-wide policy

6.3 Linux 51

changes through a single update to the settings.

BrowseGate 3 is more commonly associated with large business as is indicated by its
pricing schedule and enhanced security features. Pricing ranges from US$114.95 for
a 5 computer licence to US$1100 for a unlimited computer version.(NetcPlus Internet

Solutions 2004)

6.3 Linux

6.3.1 IP Masquerading

IP Masquerading is a form of Network Address Translation developed for Linux. The
goal of the package is to provide the features of high priced routers and NAT servers
without the high cost. IP Masquerading maps packets from the company intranet to

the Internet and maps the responses from the Internet to the company intranet.

IP Masquerading has been developed over several years and is fairly secure and stable.
It is currently being used with excellent results and any new bugs are quickly fixed by

the Linux development community.

Because IP Masquerading forms part of the Linux kernel it is distributed in a number
of flavors of Linux which can be downloaded freely from the Internet or purchased at

minimal cost in a boxed set.

6.3.2 IP Tables

IP Tables is really just a newer version of IP Masquerading used in Linux Kernels 2.4.x
and above. The purpose was to create an integrated NAT and Firewall environment
including the ability to forward inbound services on static ports all as part of one large
system configuration. In pervious versions of IP Masquerading the NAT was generally

independent from the Firewall which was independent from Port Forwarding.

IP Tables used a large part of the stable and secure IP Masquerading system which

6.3 Linux 52

has resulted in few bugs or errors. It is more popular among high-end System Admin-
istrators who find the integrated Firewall, NAT and Port Forwarding an advantage in

easing System Administration burdens.

Again this system forms part of the newer Linux kernels and is distributed freely across

the Internet.

6.4 Chapter Summary 53

6.4 Chapter Summary

Although there are a number of free, well developed NAT Servers available, a large
majority of these support only Linux based Operating Systems. Most NAT Servers
developed for Windows have a financial cost associated which may vary depending on

the number of machines requiring simultaneous access to the Internet through the NAT.

Most NAT Servers for windows have some features in common. They are easy to set
up with few user configured options. This can be achieved in most cases by guessing
which interface is to a private network and which interface is to the Internet Provider.
Most feature automatic setup of clients through the use of Dynamic Host Configura-
tion Protocol (DHCP) to assign private IP addresses to internal clients and provide
information to help clients access the NAT and other services such as Domain Name

Service (DNS).

The key to success of a new NAT is to ask the question, “What services could be
provided by NAT which are not currently supported by existing clients?” Most NAT
Servers offer a wide range of services, so what more features can the user desire? The
answer to this question is largely subjective and can be broken down into two sections.

Features that Business Users seek and features that Home Users desire.

Security is the most important feature to Business Users. They require internal clients
to be secure from the dangers of the Internet without constant monitoring of every
computer. Business Users are therefore interested in services such as Authentication
(Client with IP address X cannot use the NAT until user of client X identifies himself
as a valid member of the business or organization). Sometimes this leads to the sec-
ond requirement of exclusion. (If user of client X has made extensive use of Internet
resources then prevent user of client X from accessing the Internet for the remainder

of the day.)

Home Users favour ease of use and wide application support. Application Layer Gate-
ways for non-NAT compatible applications and special modules, to identify specific
modifications required to make packets compatible with NAT, are popular among such

users. Any attempts to automatically configure the NAT to support a specific appli-

6.4 Chapter Summary 54

cation will be well regarded by home users. High autonomy of security features and

configuration will also be a popular program feature.

Obviously the requirements of Home and Business Users are very different. They
may appreciate separate applications or at least different configurations based on a
selection during installation. However, by tailoring the features of a NAT to more
groups, increased sales and market share can be achieved. This will allow for lower cost

software to compete with alternative NAT’s to be viable.

Chapter 7

Network Address Translator

Implementation

7.1 Chapter Overview

Implementation of the Network Address Translator (NAT) required knowledge of the
C#.NET programming language and a knowledge of the Windows Socket Application
Programming Interface (API) including special RAW Sockets to enable to inclusion of
TCP/IP headers in the packets being sent and received. Additionally, knowledge of
the function of a Network Address Translator in relation to the IP and TCP protocols

is also necessary. This information concerning NAT was covered in Chapter

This chapter will cover other aspects of implementation such as using the C#.NET

language and Windows API Sockets.

7.2 C#.NET Basics

The C#.NET programming language is similar to an amalgamation of the C/C++
Programming Language and the Java programming language. The main difference in

C#.NET is the input/output. In most C/C++ programs input/output is from the

7.2 C#.NET Basics 56

@ Form1

labell

Figure 7.1: A simple C#.NET form.

console. In normal C#NET programs there is a Graphical User Interface (GUI) and
as such most input/output is from/to GUI controls. For example suppose a C#.NET
Form is created as in Figure [7.I] Buttonl is a input control which may be linked to
some code. If we linked this button to the code in Listing the result shown in
Figure [7.2] will be displayed.

Listing 7.1: Hello World Code

-
| using System ;

| using System .Drawing ;

| using System. Collections;

| using System .ComponentModel;
| using System .Windows. Forms;
‘using System . Data;

| namespace Dissertation

/// <summary>

/ Summary description for Forml.

\
\
\ // </summary>

| fublic class Forml : System.Windows.Forms.Form
\

\

\

private System.Windows.Forms. Label labell;
private System.Windows.Forms.Button buttonl;

-

7.2 C#.NET Basics

}

/ Required designer wvariable.
/ </summary>
private System.ComponentModel. Container
components = null;

public Forml ()

/// <summary>
/

/
/ Required for Windows Form Designer
support

InitializeComponent () ;

/
/ TODO: Add any constructor code
y after InitializeComponent call

}

/// <summary>

/ Clean up any resources being used.

// </summary>

protected override void Dispose(bool
disposing)

if (disposing)
if (components != null)

components . Dispose () ;

}

base.Dispose(disposing);
}

#region Windows Form Designer generated code

/// <summary>

/ The main entry point for the application.
/ </summary>

[STAThread |

static void Main ()

Application.Run(new Forml());

}

private void buttonl_Click (object sender,
System . EventArgs e)

labell . Text = ”Hello_.World” ;

Although this is a simple example it does demonstrate some of the most basic features
of C#.NET and should be easily understood by those who have previously developed
in C++.

7.2 C#.NET Basics

58

@ Form1

Hello Wwarld

button

Figure 7.2: The result of Hello World Code execution on the C#.NET form.

7.3 Using Sockets 59
7.3 Using Sockets

Understanding the most basic use of C#.NET is only the first step in developing a
complex internet application. The next step is to understand the use of Windows
Socket. Traditionally a socket was the end-point of a transport layer protocol such as
TCP. However a socket became known as the end point for any protocol and the term
RAW Socket was coined to describe a socket working below the IP Protocol, that is
receiving or transmitting packets with the IP header intact and no IP error checking.

(Robison 2002)

7.3.1 Application Programming Interface

In order for a third party application to use a core part of the Operating System it
must follow a standard for calling system functions. In windows this standard is called
the Application Programming Interface (API). The API controls all sockets as a part
of the Operating System function. The socket may be controlled through a number of
functions available to the programmer. By calling these functions correctly a program

can create a socket connection and send or receive data.

7.3.2 Windows Sockets

The first step in using the API to creating a working socket is to create a socket descrip-
tor. The descriptor is similar to unix files and is usually stored simply as an integer
which has special meaning to the operating system. A socket descriptor is created
by the code Socket nameofsocket = null; . Next, the socket descriptor is linked to a
real socket. This is achieved by the code nameofsocket = new Socket(AddressFamily.

InterNetwork, Socket Type.Raw, ProtocolType.IP);. Obviously this socket is for Inter-
Networks and is a RAW socket from the TP Protocol.

Once a socket is obtained the C#.NET development studio makes it easier by showing
the methods implemented for the socket. This interface is shown in Figure If the

socket command to be accessed is known, then it is only necessary to type the first few

7.3 Using Sockets 60

sucket.l

S0CE finccept T
S0CK &l addressFarnily
/=0 g pvailable
if | =% Beginfccept
= BeginConnect
=@ BeginReceive
11ic w =% BeginReceiveFram
=@ BeqginSend
i = =@ BeginSendTo

; =@ Bind ﬂ

Figure 7.3: The Visual Studio Development Environment.

letters of the name and push the tab key, the Development Studio addresses the rest.
It also provides dynamic help based on which command is being used and supports

automatic selection for complex or well known choices.

7.3.3 Advanced Socket Control

There are a few special features of sockets required in this project. First there is the
requirement to send packets including the IP Header without allowing the system to
generate its own IP Header. Secondly, the NAT needs to check all packets as they are
received, to ensure that the packets should be sent onto the internet. These packets
will not be explicitly sent to the NAT Server because they will contain the address of
the remote end-point. This type of receiving is called promiscuous mode and is not

supported under all hardware and software configurations.

7.4 Putting it all Together 61

The solution to the first problem is fairly simple. C#.NET allows an option to be set
on each socket to include the IP Header as in the code nameofsocket.SetSocketOption

(SocketOptionLevel.IP, SocketOptionName.HeaderIncluded, 1);. Setting up Promis-
cuous mode however, requires a small block of code which requests the appropriate
settings and checks the response to ensure the operation completed successfully indi-
cating that the software can support this operation. Listing [7.2] shows the required
code segment.

Listing 7.2: Promiscous Mode Sockets

\/private bool SetSocketOption () \\
{ |
| bool ret_value = true; |
| try //.NET Exception handeling |
| { |
\ byte []IN = new byte[4]{1, 0, 0, 0}; \
| byte [|]OUT = new byte[4]; |
\ int SIO.RCVALL = unchecked ((int)0x98000001); \
| // Control code for SIO.RCVALL documented |
\ on MSDN. \
\ // See http://msdn. microsoft.com/library/ \
| default.asp?url=/library/en—us/winsock/ |
\ winsock/wsaioctl_2.asp for details. |
| int ret_code = socket.IOControl (SIO.RCVALL, IN
| , OUT); //receive all IP packets on the |
| network . |
\ ret_code = OUT[0] + OUT[1] 4 OUT[2] + OUT[3]; |
| //Check that operation suceeded. |
\ if(ret_code != 0) ret_value = false; //If not |
\ return error. \
\ \
| catch(SocketException) |
\ \
| ret_value = false; //If any of the above |
\) caused an exception , return an error. \
\ \
| return ret_value; |
J)

Using these advanced features and standard socket operations all the features required

for this project were implemented.

7.4 Putting it all Together

Once the Fundamental aspects of working with the RAW Sockets API were understood
the final program could be written. This included development of an overview of the

solution and finally implementation as a Windows Service.

7.4 Putting it all Together 62

7.4.1 Pseudocode

Listing shows the functioning of the NAT. Obviously this is made very simple in
C#.NET by the functionality of Hashing Tables and the RAW Sockets class I wrote

which managed all of the IP header and checksum details internally.

Listing 7.3: PseudoCode for Main NAT Function

ForEach Packet
if Packet Source = Internal Network & Packet
Destination = External Network
Packet Source = Global Internet Address of NAT
if Hash Table Result = Port Number
Packet Source Port = Hash Table Result
else
Packet Source Port = New Hash Table Result
if Packet Destination = Global Internet Address of NAT
& Destination Port = Reverse Hash Table Result
Packet Destination = Reverse Hash Table Result

Packet Destination Port = Original Port Number

7.4.2 A Windows Service

Listing shows the core code required for an implementation of a Windows Service
in C#.NET. It is obvious from this code that the main points are to declare the re-
quired variables, set up some constantly looping decision making functions and clean
up any variables and persistent code when stopping the service. Attention is drawn
to the TODO: labels indicating areas where the user needs to add code. This code is
completely generated by C#.NET without any user input except to request the creation

of a Windows Service.

Listing 7.4: Implementing a Windows Service

p
| using System;

| using System. Collections;

| using System .ComponentModel;
| using System .Data;

| using System.Diagnostics;

-

7.4 Putting it all Together

63

‘ using System. ServiceProcess;

| namespace WindowsServicel

public class Servicel : System.ServiceProcess.
ServiceBase

/// <summary>
/ Required designer wvariable.
// </summary>
private System.ComponentModel. Container
components = null;

public Servicel ()

// This call is required by the
Windows . Forms Component Designer.
InitializeComponent () ;

// TODO: Add any initialization after
the InitComponent call

}

// The main entry point for the process
static void Main ()
{
System. ServiceProcess. ServiceBase []
ServicesToRun;

// More than one user Service may run
within the same process. To add

// another service to this process,
change the following line to

// create a second service object. For
example ,

/

/ ServicesToRun = New System.
ServiceProcess. ServiceBase [] {new
Servicel (), new
MySecondUserService () };

ServicesToRun = new System.
ServiceProcess.ServiceBase [| { new
Servicel () };

System. ServiceProcess. ServiceBase .Run(
ServicesToRun) ;

}

/// <summary>

// Required method for Designer support — do
not modif

/// the contents of this method with the code
editor.

/// </summary>
private void InitializeComponent ()

components = new System .ComponentModel
.Container () ;
this.ServiceName = ” Servicel”;

—

/// <summary>

/
%/ Clean up any resources being used.
//

</summary>

7.4 Putting it all Together 64

protected override void Dispose(bool
disposing

if(disposing)

{

if (components != null)

{
}

base.Dispose(disposing);

components . Dispose () ;

}

<summary>

Set things in motion so your service can
// g y

do its work.

/// </summary>
protected override void OnStart(string[] args)

// TODO: Add code here to start your

service .

}
/// <summary>
// Stop this service.

// </summary>
protected override void OnStop ()
{
// TODO: Add code here to perform any

tear—down necessary to stop your
service .

}

\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
. J

7.5 Chapter Summary 65

7.5 Chapter Summary

This chapter reviewed some of the significant features of C#.NET that were important
in development of the Network Address Translator. By understanding these important
concepts the development of the RAW IP Receiver and Sender could be completed.
Once this was achieved the main task was to provide an interface for accessing the
TCP/IP Header fields for updates and maintaining important information such as the

Checksum’s updated without involving the user.

The final code implementation is included in Appendix Bl There are a few features of
this code that have not been discussed here. However the main outcome of this project
was a fully features packet class which can be used to receive packets completely, make
modifications and send the packet. This class has several other uses in products such
as usage meters, network bridges and routers. One important feature of this device
is that a router could exist on a network without consuming an IP address while still

offering all necessary routing features.

Chapter 8

Conclusions and Further Work

8.1

Achievement of Project Objectives

The following objectives have been addressed:

History of the Internet and Network Reference Models Understanding the mo-

tivation behind creating the Internet and the considerations made before its in-
ception, is the first step in developing any type of Internet enabled application.
The major focus was on the TCP /IP Protocol suite which is used for most Inter-
net communications. The networking hierarchy was studied in detail to determine
the contribution each layer made to the overall communication structure. Two
networking hierarchy models were presented, the TCP/IP Reference Model and
the Open Systems Interconnect (OSI) Reference Model. These models also dis-
cussed common network problems and how they can be overcome. Chapter

presented these important details.

Design and System Specification In Chapter [3| the reasons for key design choices

were addressed. This project was not intended to be simply thrown away at
completion and therefore, needed to adhere to strict communications standards.
It was necessary for a design methodology to be chosen to maintain the project
time line. Additionally the choice of programming language was discussed and

chosen. Although the use of C#NET was controversial for this type of project

8.1 Achievement of Project Objectives 67

its selection was justified for the special coding features it contained.

The Internet Protocol Chapter 4| expands on a concept raised in the TCP/IP Ref-
erence Model from Chapter The idea being to have the layer use a mesh of
interconnecting networks to attempt transmission of a packet from a source host
through the mesh onto another destination host. At this point Network Address
Translator (NAT) implementation begins, however Transport layers also form

part of the NAT service delivery and are discussed in Chapter

The Transmission Control Protocol Chapter [5| offers greater detail on the Trans-
port Layer which defines an end-to-end connection between two hosts. The layer
provides the error control, retransmission and packet ordering expected by higher

level services.

Existing Technology Current implementations of Network Address Translators were
discussed in Chapter[6] The importance of utilizing popular features while imple-
menting new ones was also detailed. The costs associated with purchasing some

of these existing NATSs were also addressed.

Implementation The concepts of C#.NET required in the implementation of a Net-
work Address Translator and other low-level Network applications were addressed
in Chapter[7] The topics ranged from a simple greeting program to complex socket

operations. Full implementation code is provided in Appendix [B]

Although the overall Network Address Translator is incomplete, the major objectives
of the project have been achieved. A large amount of research was completed to un-
derstand core concepts of Internet communication protocols. Knowledge was gathered
concerning features of a chosen programming language appropriate for NAT implemen-
tation. The concepts of NAT implementation were comprehensively researched. The
code to deal with low level networking interfaces was implemented and the ability to

develop NAT in the selected language was proven.

It is anticipated that future project development could use this research and devel-
opment to implement a fully featured Network Address Translator with security and

compatibility features aspired by consumers.

8.2 Further Work 68
8.2 Further Work

The immediate future of this project requires research into problems experienced with
connection stability. The existing code supports full TCP three way handshaking how-
ever the connection then resets resulting in client and host confusion. It is suspected
that the RAW Socket code may allow the packet to also be passed to higher level layers

on the NAT Server which then rejects the connection as unestablished.

In the longer term it would be recommended to implement security and authentication
features to ensure only registered users are accessing the NAT server. This could be
coupled with packet shaping (slowing the maximum throughput of a client) or connec-
tion severing (disconnect clients with no remaining quota). Home users would prefer
features that detected expected incoming connections and attempt to compensate at
the NAT Server. If such functionality is important sequence numbers could be used to
further de-multiplex connections however this could quickly become computationally

expensive to the NAT Server and is not a guaranteed method of delivery.

Other features that would integrate well with a NAT project are Firewalls to block
unexpected or distrusted inbound connections, Proxy servers to cache web page requests
and replies and dynamic port forwarding that open NAT ports when a service such as

a Web Server starts and close the ports when the service is stopped.

Testing needs to be undertaken to determine if the NAT and other featured applications
would require a multi-threaded approach to ensure maximum user throughput. At the
time of development it was considered the development of multiple threads of control
within the application were unnecessary. Under heavy load however, a multi-threaded

applications may support more clients than a single-threaded application could handle.

References

Advanced Development Methods Inc (2004), Scrum Development Process, World Wide
Web, United States of America.
http://www.controlchaos.com/entry.htm

current May 2004.

Baran, P. (1964), Distributed Commaunications, RAND Corporation.
http://www.rand.org/publications/RM/RM3420/RM3420.chapterl.html
current October 2004.

Business ESolutions (2002), Project Lifecycle Models: How they differ and when to use
them, World Wide Web, Caifornia.
http://www.business-esolutions.com/islm.htm

current May 2004.

Campione, M., Walrath, K. & Huml, A. (2000), The Java Tutorial: A Short Course
on the Basics, third edn, Addison-Wesley.

Cerf, V. & Kahn, R. (1974), A Protocol for Packet Network Interconnection, Vol. COM-
22, IEEE Trans. on Commun., pp. 637-648.

Day, J. & Zimmermann, H. (1983), The OSI Reference Model, Vol. 71, The Institute

of Electrical and Electronics Engineers, pp. 1334-1340.

Feit, D. S. (1998), TCP/IP Architecture, Protocols and Implementation with IPv6 and
1P Security, second edn, McGraw-Hill.

Kahn, H. (2000), STEPWISE Project, World Wide Web, Manchester.

http://www.controlchaos.com/entry.htm
http://www.rand.org/publications/RM/RM3420/RM3420.chapter1.html
http://www.business-esolutions.com/islm.htm

REFERENCES 70

http://wuw.stepwise.org
current May 2004.

NAT Software (2004), NAT32 Home Page, NAT Software Germany.
http://www.nat32.com/

current October 2004.

NetcPlus Internet Solutions (2004), BrowseGate 3 NAT/Proxy server and firewall,
NetcPlus Internet Solutions.
http://www.netcplus.com/browsegate.html

current October 2004.
Perkins, C. E. (2002), RTP: Audio and Video for the Internet, Addison-Wesley, Boston.

Rijsinghani, A. (1994), Computation of the Internet Checksum via Incremental Update,
Network Working Group.
ftp://ftp.rfc-editor.org/in-notes/rfc1624.txt

current October 2004.

Roberts, L. G. (1967), Multiple Computer Networks and Intercomputer Communica-
tion, Proc. First Symp. on Operating Systems Prin., ACM.

Robison, W. (2002), Pure C#: A Code-Intensive Premium Reference, Sams Publishing.

Sharon, Y. (1999), (ootips) The Rational Unified Process, World Wide Web, United
States of America.
http://ootips.org/rup.html
current May 2004.

Srisuresh, P. & Egevang, K. (2001), Traditional IP Network Address Translator (Tra-
ditional NAT), Network Working Group.
ftp://ftp.rfc-editor.org/in-notes/rfc3022.txt

current October 2004.
Tanenbaum, A. S. (2003), Computer Networks, fourth edn, Prentice Hall PTR.

Wells, D. (2003), Eztreme Programming, World Wide Web, Utah.
http://www.extremeprogramming.org/index.html

current May 2004.

http://www.stepwise.org
http://www.nat32.com/
http://www.netcplus.com/browsegate.html
ftp://ftp.rfc-editor.org/in-notes/rfc1624.txt
http://ootips.org/rup.html
ftp://ftp.rfc-editor.org/in-notes/rfc3022.txt
http://www.extremeprogramming.org/index.html

Appendix A

Project Specification

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111/4112 Resear ch Project
PROJECT SPECIFICATION

FOR: Kevin-John BEASLEY

TOPIC: Design and Implementation of a Network Addessislator
SUPERVISORS: Dr. John Leis

PROJECT AIM: The project aims to investigate the cam@eats of computer

networking and TCP/IP Sockets so an efficient and sealabl
Network Address Translator (NAT) can be designed and
implemented for both home and business use.

PROGRAMME: Issue B, 1 October 2004
1. Research information on computer networking including histaryd
development.
2. Investigate the TCP/IP Reference Model and TCP/IP Rutstdo understand
how computer networking relates to the Internet
3. Utilise RFC’s relating to NAT Functionality and Implematibn.
4. Research appropriate Programming languages for Implenoentsta NAT

Server, especially the availability of Sockets Programgm

5. Design appropriate sockets interfaces to enable incomimjIP@ackets to be
captured, translated and sent. This includes updating the T@PIRan
checksums where necessary.

6. Design a simple NAT server based on the above sadiezface to prove the
ability to implement NAT in the chosen language.

As time permits:

7. Improve on the NAT implementation to include more feasuand greater
scalability. Support more types of Transport Layer {edits.

AGREED: (student) (Supervisor)

/1 /| (date)

Appendix B

Project Source Code

B.1 NATService.cs

74

B.1

NATService.cs

f .
1| using
2| using
3 using
4 using
5l using
6 using
71 using
s using
o] using
10| using
1] using
12‘ using
13

System

)

System .
System .
.Data;
System .
System .
System .
System . ServiceProcess;
N},icrosoft . Win32;

System. Security ;

System .10

System . Extended . Collections;

System

Collections;
ComponentModel ;

Diagnostics;
Net ;
Net . Sockets;

14 namespace NAT _Service

15|
16|

|
17|
18|
19|

|
20|
21|

|
22|
23|
24|
25|
26|
27|
28|
29|
30]
31|

32
33

34|
35|
36|

\

37|
38|

39|
\

40|
41

42|
43|
44|
45|

46
47|
\
48|
\
49|
\
50|
51|
\
\

52|

public class Servicel : System.ServiceProcess.
ServiceBase

%/ <summary>

{

/ Required designer wvariable and Raw Socket
class.

/// </summary>
private System.ComponentModel.Container components

= null;

RawSender m7yRawSend;

RawSender myIntRawSend;

RawSender [| RawSenders = new RawSender[100];
RawSocket ExternalRawSock;

RawSocket InternalRawSock;

ushort [| ReservedPorts = new ushort[100];
bool[] PortinUse = new bool[100];
BidirHashtable twowayhash = new BidirHashtable () ;
string ReversedGloballP ;

string ReversedLocallP;

int numberofports;

public Servicel ()

}

// This call is required by the Windows.
Forms Component Designer.
InitializeComponent () ;

// TODO: Add any initialization after the

InitComponent call

// The main entry point for the process
static void Main ()

{

System . ServiceProcess . ServiceBase []
ServicesToRun;

// More than one user Service may run within
the same process. To add

// another service to this process, change
the following line to

// create a second service object. For
example

/ ServicesToRun = New System.
ServiceProcess. ServiceBase [] {new
Servicel (), new MySecondUserService()};

//

53]

54|
55

56|
57|

58
59

60|

61]
62|
63|
64|

65|

66|
67|

68|
69
70|
71|
72|
73]
74|
75|
76|
77|
78|
79]
80|

81|
82|

83|
84

85|
86|
87|
88|

89
90|
91
92|
93]
94|
95|
96|
97|

98|
99|
100]

101|

102|
103|

104

B.1 NATService.cs

75

ServicesToRun = new System.ServiceProcess.
ServiceBase [|] { new Servicel () };

System. ServiceProcess . ServiceBase.Run(
ServicesToRun) ;

// <summary>

// Requwed method for Designer support — do not

moz

/// the contents of this method with the code

editor.

/// </summary>
private void InitializeComponent ()

}

components = new System .ComponentModel.
Container () ;
this.ServiceName = ” Servicel”;

/ <summary>

/ Clean up any resources being used.
// </summary>
protected override void Dispose(bool disposing)

}

if (disposing)
if (components != null)

components . Dispose () ;

}

base.Dispose(disposing);

%/ <summary>

/ Set things in motion so your service can do

its work.

/// </summary>
protected override void OnStart(string[| args)

{

// TODO: Add code here to start your service

for(int i=0; i<100; i++)
{
ReservedPorts[i] =
PortinUse[i] = false

zl}%eglstryKey key ;
try

RegistryKey softwareKey = Registry.
LocalMachine . OpenSubKey(” Software
2) ;

if(softwareKey = null)

EventLog. WriteEntry (” Unable_to.
open._the_registry._Software.
key._for. USQ.NAT_.Project ’”)

)
return;

2

key = softwareKey .OpenSubKey (
NATUSQProj”) ;

105|
106]
107|

108|
109
110|
111]
112]
113|

114]
115]
116
117|
118|

119|
120
121
122]
123|

124
125
126|
127
128|

129|
130]
131|
132|
133|
134|
135|
136]

137|

138]
139|

140

141
142

143|

144|
145|
146|
147|
148|
149|
150]
151|
152|

B.1 NATService.cs

76

if(key = null)

EventLog. WriteEntry (” Unable_to.
open._the._registry .NATUSQProj

~for .’USQ.NAT_Project ’”);
return;

}

catch(ArgumentNullException argNullExp)

EventLog. WriteEntry (7 Argument._null .
exception._thrown.” + argNullExp.
Message) ;

return;

catch(ArgumentException argExp)

{

EventLog. WriteEntry (” Argument ..

exception._thrown.” + argExp.
Message) ;
return;

catch(IOException ioExp)

{

EventLog. WriteEntry ("IO_.Exception.
thrown.” + ioExp.Message);
return;
catch(SecurityException secExp)

EventLog. WriteEntry (” Security .

exception._thrown.” + secExp.
Message) ;
return;

}

string LocallP;

string GloballP ;

int temp = O0;

ushort testport = 9000;

LocallP = key. GetValue("LocallP”).ToString

()

GloballP = key.GetValue(”GloballP”).
ToString () ;

string [] templP;

)

tempIP = GloballP.Split (”.”.ToCharArray () ,4
ReversedGloballP = tempIP [3] + 7.7 + templP
[2] + 7.7 + tempIP[1] 4+ 7.7 + tempIP [0];
tempIP = LocallP . Split(”.”.ToCharArray () ,4);
ReversedLocallP = templP [3] + 7.7 + tempIP
[2] + 7.7 + tempIP[1] + 7.7 + tempIP [0];

9

numberofports = (int)key.GetValue(
InitialPorts”);
do

{

bool exception;

do
{

exception = false;
try

myRawSend=new RawSender () ;

153

154|
155]
156|
157|
158]
159
160]
161|
162|
163|

164
165]

166|
167|
168|
169
170|
171
172|
173]

174|
175|
176]
177|
178]

179|
180|
181]
182|

183
184|
185]

186
187|
188

189|
190]

191|
192

193]

194|
195]
196|

197|
198]
199|
200|

201

B.1 NATService.cs

77

myRawSend . StartSender (
GloballP , testport);

catch (SocketException ex)

{

if (ex.ErrorCode = 10048)

{
}

exception = true;

testport = testport+4+;

}twhile (exception || myRawSend.WasError

RawSenders [temp] = myRawSend;
ReservedPorts [temp] = (ushort) (
testport — 1);
} while(numberofports > temp);
myRawSend=new RawSender () ;
myRawSend. StartSender (GloballP, 9258);
myIntRawSend=new RawSender () ;
myIntRawSend. StartSender (LocallP, 0);
if (myRawSend.WasError)

EventLog. WriteEntry (” Critical _Error: .

Socket _Failed.”);
return;

}
if (myIntRawSend.WasError)

EventLog. WriteEntry (” Critical _Error: .

Socket _Failed.”);
return;

itring IPString="10.10.10.10";
IPHostEntry HosyEntry = Dns. Resolve (Duns.
GetHostName ()) ;
%f(HosyEntry .AddressList.Length > 0)
foreach (IPAddress ip in HosyEntry.
AddressList)

IPString=ip . ToString () ;
}
}

ExternalRawSock=new RawSocket () ;

ExternalRawSock. StartSocket (LocallP, 0,
true) ;

ExternalPanSock.PacketArrival += new
RawSocket . PacketArrivedEventHandler (
ExternalDataArrival);

if (ExternalRawSock.ErrorOccurred)

EventLog. WriteEntry (” Critical .Error: .

Socket Failed.”);
return;

InternalRawSock=new RawSocket () ;

InternalRawSock . StartSocket (GloballP, 0,
true) ;

InternalRawSock.PacketArrival 4= new
RawSocket . PacketArrivedEventHandler (

202|
203|
204|

205|
206|
207|

208
209
210

211|
212|

213|

214|
215|
216|
217|
218|

219|
220
221|

222|

223|

224|
225|
226|
227|

228|
229
230|
231

232|
233|

234|
235
236

237|
238|
239
240|
241|

242
243
244|
245|
246|

B.1 NATService.cs

InternalDataArrival);
if (InternalRawSock.ErrorOccurred)

EventLog. WriteEntry (” Critical _Error: .
Socket _Failed.”);

return;

I
ExternalRawSock . KeepRunning = true; //Want
to recieve all incomming packets.

ExternalRawSock.Run ()

9

InternalRawSock . KeepRunning = true;
InternalRawSock .Run() ;

}

private void InternalDataArrival (Object sender,

PacketArgs e)
{

IPAddress test, test2;
test = new IPAddress((e.source));
test2 = new IPAddress(e.destination);

if ((e.destination =

uint) ((System . Net.

IPAddress.Parse(ReversedGloballP) .
Address))) && (e.tcpdestination == 9258)
)

ulong returnaddr;

returnaddr =

(ulong)twowayhash .

ReverseLookup ((ulong) ((e.
destination << 16) + e.
tcpdestination));

e.destination = (uint)(returnaddr >>
16) & OxFFFFFFFF;

e.tcpdestination = (ushort) (returnaddr
& OxFFFF);

myIntRawSend . send (e) ;

if (!myIntRawSend.WasError)

// If adding a debuging mode
report that all went well.

else

EventLog. WriteEntry (” Error: .
Return_Packet _Failed.”);

}
}

private void ExternalDataArrival (Object sender,

PacketArgs e)

IPAddress test, test2;
test = new IPAddress((e.source));
test2 = new IPAddress(e.destination);

if(e.source = (uint)

(System.Net.IPAddress.

Parse (ReversedLocallP). Address)))

if (e.tcpdestination = 80)
int selectport = —1;
for (int i = 0; i<numberofports —
L; i4++4)

B.1 NATService.cs

if (PortinUse[i] =
selectport =

\ break;

if ((selectport = —1) && (
PortinUse [selectport] —
true))

EventLog. WriteEntry (7
Insufficient _Ports.
Allocated.”);

//Replace this line with
code to dynamically
allocate more ports in

future.
return;

else

PortinUse [selectport] =
true;

//Eventually need timers
to reclaim closed
ports.

//Only working with one
host at this time so

automatic reuse will
occure .

twowayhash [((e.source << 16) + e
.tcpsource)| = (ulong) (((
uint) (System . Net.IPAddress.
Parse (ReversedGloballP) .
Address) << 16) +
ReservedPortsgselectport]) ;

e.source = (uint) ((System.Net.
IPAddress. Parse(
ReversedGloballP). Address)) ;

e.tcpsource = ReservedPorts]|
selectport |;

myRawSend . send (e) ;

if (!myRawSend.WasError)

//Debug mode will report
sucessful translation
here.

else
EventLog. WriteEntry (” Error

: oCannot_Transmit .
Packet.”);

/ Stop this service.

}
/// <summary>
//

/ </summary>

protected override void OnStop ()

285

286|
287|

B.1 NATService.cs 80
// TODO: Add code here to perform any tear— |

down necessary to stop your service. \

ExternalRawSock . KeepRunning = false; |

) InternalRawSock . KeepRunning = false; |

288| \
250 } |
J

290| }
\

B.2 RawSocket.cs 81
B.2 RawSocket.cs

1\(// RawSocket Class
2

3
4 namespace NAT _Service
5

6| using System;

7] using System . Net;

8| using System.Net.Sockets;

9 using System.Runtime. InteropServices;

10

11

12| [StructLayout (LayoutKind. Explicit)]

13| public struct IPHeader

14]

15| [FieldOffset (0)] public byte ip_verIHL; //IP

\ Version (4 bits) + IHL (Header Length) (4 bits
\

16| //IHL of 5 indicates no options. IHL of 15

| indicates 40 bytes of options.

17] [FieldOffset (1)] public byte ip_tos; //Type of
| Service + Empty (2 bits)

18] [FieldOffset (2)] public ushort ip_totallength; //
| Total Packet Length

19] [FieldOffset (4)] public ushort ip_id; //Unique IP
| 1D

20| [FieldOffset (6)] public ushort ip_.DFMFoffset; //

\ Empty (1 bit) + Don’t Fragment (1 bit) + More
| Fragments (1 bit) Flags + Offset (13 bits)

21 [FielLdOffset (8)] public byte ip_ttl; //Time To
\ ive

22| [FieldOffset (9)] public byte ip_protocol; //

| Protocol (TCP, UDP, ICMP, Etc.)

| Header Checksum

24| [FieldOffset (12)] public uint ip_srcaddr; //

| Source IP Address

25| [FieldOffset (16)] public uint ip_destaddr; //

| Destination [P Address

26| // IP Options go here but since we don’t know if

\ \ any exist we won’t include them here.

27|

28|

29| [StructLayout (LayoutKind. Explicit) |

30| E)ublic struct TCPHeader

31|

32 [FieldOffset (0)] public ushort tcp_srcport

\ //Source TCP Port Number.

33| [FieldOffset (2)] public ushort tcp_destport;
\ //Destination TCP Port Number.

34] [FieldOffset (4)] public uint tcp_sequence; //TCP
| Sequence Number

35| [FieldOffset (8)] public uint tcp_acknowledgement;
\ //TCP Acknowledgement Number;

36| [FieldOffset (12)] public byte tcp_headerlength; //
\ TCP Header Length (4 bits) + Empty (4 bits)

37| [FieldOffset (13)] public byte tcp-_flags; //Empty
\ (2 bits) + URG (1 bit) + ACK (1 bit) + PSH (1
\ bit) + RST (1 bit) + SYN (1 bit) + FIN (1 bit)
38| [FieldOffset (14)] public ushort tcp-windowsize
\ ;. //TCP Window Size

39| [FieldOffset (16)] public ushort tcp_checksum; //

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
23| [FieldOffset (10)] public ushort ip_checksum; //IP |
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

\ TCP Checksum

40|

41

B.2 RawSocket.cs

82

[FieldOffset (18)] public ushort tcp_urgentpointer;

//TCP Urgent Pointer

// TCP Options go here but since we don’t know if

any exist we won’t include them

public class PacketArgs : EventArgs

here.

public PacketArgs(byte [|] buf) //Initialise.

{

int messagelength;
int IHL:
//IPHeader x head = (IPHeader

x) fized_buf;

// Assign IP Header from recieve buffer.
//this.prottype = head—>ip_protocol;
this.MainHeader = new IPHeader () ;

//Array. Copy(buf, 0, this.MainHeader, 0, 20)

this . MainHeader.ip_verIHL = buf [0];
this.MainHeader.ip_tos = buf[1];
this.MainHeader.ip_totallength = (ushort) ((

buf[2] << 8) + buf[3]);

this.MainHeader.ip_id = (ushort) ((buf[4] <<

8) + buf[5]);
this.MainHeader.ip_DFMFoffset
buf [6] << 8) + buf[7]);

= (ushort) ((

this.MainHeader.ip_ttl = buf[8];

this.MainHeader.ip_protocol =
this.MainHeader.ip_checksum =
[10] << 8) + buf[11]);

this.MainHeader.ip_srcaddr = (

<< 24) + (buf[13] << 16)
8) + buf[15]);

this. MainHeader.ip_destaddr =
[16] << 24) + (buf[17] <<
<< 8) + buf[19]);

buf[9];
(ushort) ((buf

uin buf
eSS

(uint) E(buf
16) + (buf[18]

IHL = (this.MainHeader.ip_verIHL & 0x0F);

if (THL > 5)

this.IPOptions = new byte[(IHL — 5) x

4];

Array.éopy(buf, 20, this.IPOptions, 0,

(IHL = 5) % 4);

switch (this.MainHeader.ip_protocol)

case 6:

this . TCPHead = new TCPHeader() ;
this . TCPHead. tcp_srcport = (
ushort) ((buf [THL * 4] << 8)

+ buf[IHL * 4

+ 1]);

this . TCPHead. tcp_destport = (
ushort) ((buf [IHL % 4 + 2] <<

8) + buf[IHL

x 4 + 3]);

this . TCPHead. tcp_sequence = (

uint) ((buf
24) + (buf
16) + (buf

= (uint)
<< 24) +
<< 16) +

buf
buf

IHL * 4 + 4
IHL * 4 + 5
IHL * 4 + 6
8) + buf[IHL * 4 + 7]3;
this . TCPHead. tcp_acknowle

(buf [IHL * 4 + 8]

<<
<<
<<

gement

IHL + 4 + 9]
IHL * 4 + 10]

92|
93]

04|

95|
96|

97|
98]

99|

100
101

102

103|
104
105|
106|
107|

B.2 RawSocket.cs

83

}

<< 8) + buf[IHL % 4 4+ 11]);

this . TCPHead. tcp_headerlength =
buf [ITHL * 4 + 12];

this . TCPHead. tcp_flags = buf[IHL
x 4 + 13];

this . TCPHead. tcp_windowsize = (
ushort) ((buf [THL x 4 + 14]
<< 8) + buf[IHL * 4 4+ 15]);

this . TCPHead. tcp_checksum =
ushort) ((buf[IHL % 4 + 16]
<< 8) + buf[IHL % 4 + 17]);

this . TCPHead. tcp_urgentpointer =
(ushort) ((buf[IHL = 4 + 18
<< 8) + buf[IHL * 4 4+ 19])

if (this.tcpheaderlength > 5)

this. TCPOptions = new byte
[(TCPHead .
tcpjheaderlength - 5)
x 4]

Array . Copy (buf, (IHL x 4)
+ 20, this.TCPOptions,
0, (TCPHead.
tcp_headerlength — 5)
* 4);

%nessagelength = this.MainHeader.
ip-totallength — (IHL % 4) —
(this.tcpheaderlength % 4);

this.RemainingData = new byte|
messagelength |;

Array.Copy (buf, (IHL % 4) 4+ (
this.tcpheaderlength x 4),
this.RemainingData, 0,
messagelength) ;

break ;

default: //For any other packets (if
implmented) copy everything after
the IP Header as data.
messagelength = this.MainHeader.
ip_totallength — (IHL % 4);
this.RemainingData = new byte|
messagelength |;

Array.Copy(buf, THL % 4, this.
RemainingData, O,
messagelength) ;

break ;

}

private Ulntl6 incrementalchecksum (UIntl6 original

{

, UIntl6 updated)

Int32 cksum = Convert.Tolnt32 (((~(Ulntl6)
this.checksum) & OxFFFF));

cksum += Convert.ToInt32 (((~(UIntl6)original
) & OxFFFF));

cksum += Convert.Tolnt32 (updated) ;

cksum = (cksum >> 16) + (cksum & Oxffff);

cksum += (cksum >> 16);

return (Ulntl16) ((~cksum));

B.2 RawSocket.cs 84

private Ulntl6 incremental TCPchecksum (Ulnt16
original , Ulntl6 updated)
Int32 cksum = Convert.Tolnt32 (((~(Ulntl6)
this.tcpchecksum) & OxFFFF)) ;
cksum += Convert.ToInt32 (((~(UIntl6)original
) & OxFFFF));
cksum += Convert.ToInt32 (updated);
cksum = (cksum >> 16) + (cksum & Oxffff);
cksum += (cksum >> 16);
return (Ulnt16) ((~cksum));

}

/*public static Ulntl16 calcchecksum (Byte[] buffer
, int size)
{

Int82 cksum = 0;
int counter
counter = 0

while (size > 0)

UInt16 wval = (ushort)((buffer[counter]
<< 8) + buffer[counter+1]);
cksum += Convert. ToInt32(wval);

counter += 2;
size —= 2;

}

cksum = (cksum >> 16) + (cksum & 0xffff);
cksum += (cksum >> 16);

return (Ulnt16)(cksum);

px/

public byte version

his.MainHeader.

get {return (byte)}é(()? St

ip_.verlHL &
set

ushort temp = (ushort) ((this.
MainHeader.ip_verIHL << 8) + this.
MainHeader.ip_tos);

this.MainHeader.ip_verIHL = (byte) ((
this.MainHeader.ip_verIHL & 0xO0F)
+ ((value & 0x0F) << 4));

this.checksum = incrementalchecksum (
temp, (ushort) ((this.MainHeader.
ip_.verlHL << 8) 4+ this.MainHeader.
ip-tos));

}
}
?ublic byte THL

get {return (byte) (this.MainHeader.ip_verIHL
& 0x0F) ;}

set

ushort temp = (ushort) ((this.
MainHeader.ip_verIHL << 8) + this.
MainHeader.ip_tos);

ushort tcplength = (ushort) (this.
totallength — (this.IHL % 4));

B.2 RawSocket.cs 85

this.MainHeader.ip_verIHL = (byte) ((
this.MainHeader.ip_verIHL & 0xFO0)
+ (value & 0x0F));

this.checksum = incrementalchecksum (
temp, (ushort) ((this.MainHeader.
ip_.verlHL << 8) 4 this.MainHeader.
ip-tos));

this.tcpchecksum =
incremental TCPchecksum (tcplength |
(ushort) (this. totallength — (this.
THL * 4))):

¥
}
?ublic byte TOS

get {return (byte) ((this.MainHeader.ip_tos)
>> 2) 5}
set

ushort temp = (ushort) ((this.
MainHeader . ip_verIHL << 8) + this.
MainHeader.ip_tos);

this.MainHeader.ip_tos = (byte) ((value
& 0xFF) << 2);

this.checksum = incrementalchecksum (
temp, (ushort) ((this.MainHeader.
ip_verIHL << 8) 4 this.MainHeader.

\ ip-tos));
}

?ublic ushort totallength

get {return this.MainHeader.ip_totallength;}
?et
ushort temp = this.MainHeader.
ip_totallength ;
ushort tcplength = (ushort) (this.
MainHeader.ip_totallength — (this.
IHL * 4));
this.MainHeader.ip_totallength = value

this.checksum = incrementalchecksum (
temp, this.MainHeader.
ip_totallength);

this.tcpchecksum =
incremental TCPchecksum (tcplength |
(ushort) (this.MainHeader .
ip-totallength — (this.IHL % 4)));

}
}

?ublic ushort ID

get {return this.MainHeader.ip_id;}
set
{ : . o
ushort temp = this.MainHeader.ip_id;
this . MainHeader.ip_id = value;
this.checksum = incrementalchecksum (
temp, this.MainHeader.ip_id);

B.2 RawSocket.cs 86

}
ublic bool DF

get {if ((this.MainHeader.ip_.DFMFoffset & 0
x4000) = 0) return false; else return
true; }

set

{

ushort temp = this.MainHeader.
ip_.DFMFoffset ;
if (value)
this . MainHeader.ip_DFMFoffset =
(ushort) (this.MainHeader.
ip_.DFMFoffset | 0x4000);

this.MainHeader.ip_ DFMFoffset =
(ushort) (this.MainHeader.
ip_DFMFoffset & 0x3FFF);
this.checksum = incrementalchecksum (

temp, this.MainHeader.
ip_DFMFoffset) ;

else

¥
}
public bool MF

get {if ((this.MainHeader.ip_.DFMFoffset & 0
x2000) = 0) return false; else return
true; }

set

{

ip_.DFMFoffset ;
if (value)
this.MainHeader.ip_DFMFoffset =
(ushort) (this. MainHeader.
ip_ DFMFoffset | 0x2000);

this.MainHeader.ip_DFMFoffset =
(ushort) (this.MainHeader.
ip_DFMFoffset & 0x5FFF);
this.checksum = incrementalchecksum (

temp, this.MainHeader.
ip_DFMFoffset) ;

else

}
}

?ublic ushort Offset

get {return (ushort)(this.MainHeader.
ip_DFMFoffset & 0x1FF):}

set

ushort temp = this.MainHeader.
ip_DFMFoffset ;

this. MainHeader.ip . DFMFoffset = (
ushort) ((this.MainHeader.
ip.DFMFoffset & 0x7E00) + (value &
0x1FFF));

this.checksum = incrementalchecksum (
temp, this.MainHeader.

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
ushort temp = this.MainHeader. |
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
ip_DFMFoffset) ; \
\

B.2 RawSocket.cs 87

}
?ublic byte TTL

gett; {return this.MainHeader.ip_ttl;}
se
{ :
ushort temp = (ushort) ((this.
MainHeader.ip_ttl << 8) + this.
MainHeader.ip_protocol);
this . MainHeader.ip_ttl = value;
this.checksum = incrementalchecksum (
temp, (ushort) ((this.MainHeader.
ip_-ttl << 8) + this.MainHeader.
ip_-protocol));

}
}

?ublic byte Protocol

get {return this.MainHeader.ip_protocol;}
set
{

ushort temp = (ushort) ((this.
MainHeader.ip_ttl << 8) + this.
MainHeader.ip_protocol);

this.MainHeader.ip_protocol = value;

this.checksum = incrementalchecksum (
temp, (ushort) ((this.MainHeader.
ip_ttl << 8) + this.MainHeader.
ip_protocol));

//Could muck around updating the TCP
checksum here but why bother since
protocol = 6 doesn’t have a TCP
header anyway.

}
}

private ushort checksum

get {return this.MainHeader.ip_checksum;}
set {this.MainHeader.ip_checksum = value;}

}

?ublic uint source

get {return this.MainHeader.ip_srcaddr;}
set

ushort temp = (ushort) ((this.
MainHeader . ip_srcaddr & OxFFFF0000
) >> 16);

ushort temp2 = (ushort) (this.
MainHeader.ip_srcaddr & 0x0000FFFF

this . MainHeader.ip_srcaddr = value;
this.checksum = incrementalchecksum (
temp, (ushort) ((this.MainHeader.
ip_srcaddr & OxFFFF0000) >> 16));
this.checksum = incrementalchecksum (
temp2, (ushort)(this.MainHeader.
ip_srcaddr & 0x0000FFFF));
this.tcpchecksum =
incremental TCPchecksum (temp, (

B.2 RawSocket.cs 88

ushort) ((this.MainHeader.

ip_srcaddr & O0xFFFF0000) >> 16));
this.tcpchecksum =

incremental TCPchecksum (temp2, (

ushort) (this.MainHeader.ip_srcaddr

& 0x0000FFFF)) ;

}
}

?ublic uint destination

geg {return this.MainHeader.ip_destaddr;}
se
{ :
ushort temp = (ushort) ((this.
MainHeader.ip_destaddr & 0
xFFFF0000) >> 16);
ushort temp2 = (ushort) (this.
MainHeader.ip_destaddr & 0

x0000FFFF) ;
this.MainHeader.ip_destaddr = value;
this.checksum = incrementalchecksum (

temp, (ushort) ((this.MainHeader.
ip_destaddr & OxFFFF0000) >> 16));
this.checksum = incrementalchecksum (
temp2, (ushort)(this.MainHeader.
ip_destaddr & 0x0000FFFF)) ;
this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this.MainHeader .
ip_destaddr & OxFFFF0000) >> 16));
this.tcpchecksum =
incremental TCPchecksum (temp2, (
ushort) (this . MainHeader .
ip_destaddr & 0x0000FFFF)) ;

}
}

public ushort tcpsource

get {return this.TCPHead. tcp_srcport;}
set

{

ushort temp = this.TCPHead. tcp_srcport

this . TCPHead . tecp_srcport = value;

this .tcpchecksum =
incremental TCPchecksum (temp, this.
TCPHead. tcp_srcport) ;

}
}

?ublic ushort tcpdestination

get {return this.TCPHead. tcp_destport;}
?et
ushort temp = this.TCPHead.
tcp_destport;
this . TCPHead. tcp_destport = value;
this.tcpchecksum =
incremental TCPchecksum (temp, this.
TCPHead . tcp_destport) ;

B.2 RawSocket.cs 89

}

?ublic uint tcpsequence

get {return this.TCPHead.tcp_sequence;}
fet
ushort temp = (ushort) ((this.TCPHead.
tcp_sequence & OxFFFF0000) >> 16);
ushort temp2 = (ushort) (this.TCPHead.
tcp_sequence & 0x0000FFFF) ;
this . TCPHead. tcp_sequence = value;
this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this . TCPHead. tcp_sequence
& 0xFFFF0000) >> 16));
this.tcpchecksum =
incremental TCPchecksum (temp2, (
ushort) (this . TCPHead. tcp_sequence
& 0x0000FFFF)) ;

}
}

?ublic uint tcpacknowledgement

get {return this.TCPHead.tcp_acknowledgement

)

set

ushort temp = (ushort) ((this.TCPHead.
tcp_acknowledgement & OxFFFF0000)
>> 16) ;

ushort temp2 = (ushort) (this.TCPHead.
tcp_acknowledgement & 0x0000FFFF) ;

this . TCPHead. tcp_acknowledgement =
value;

this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this . TCPHead.
tcp_acknowledgement & OxFFFF0000)
>> 16));

this.tcpchecksum =
incremental TCPchecksum (temp2, (
ushort) (this . TCPHead.
tcp_acknowledgement & O0x0000FFFF))

I

}
}

public byte tcpheaderlength

get {return (byte) ((this.TCPHead.

tcp_headerlength & 0xF0) >> 4);}
set

ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead. tcp_flags);

this . TCPHead. tcp_headerlength = (byte)
((value & 0x0F) << 4);

this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this . TCPHead.
tcp_headerlength << 8) + this.

B.2 RawSocket.cs 920

TCPHead . tcp_flags));
}
}
ublic bool tcpUGR

get {if ((this.TCPHead. tcp_flags & 0x20) =

0) return false; else return true; }
set

ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead. tcp _flags);
if (value)
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags | 0
x20) ;

this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags & 0
x1F) ;
this.tcpchecksum =

incremental TCPchecksum (temp, (

ushort) ((this . TCPHead.

tcp_headerlength << 8) + this.

TCPHead. tcp_flags));

else

}
}
public bool tcpACK
get {if ((this.TCPHead. tcp_flags & 0x10) =

0) return false; else return true; }
set

ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead . tcp_flags);
if (value)
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags | 0
x10) ;
else
this . TCPHead. tcp_-flags = (byte) (
this . TCPHead. tcp_flags & 0
x2F) ;
this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead . tcp_flags));

}
}
ublic bool tcpPSH

get {if ((this.TCPHead. tcp_flags & 0x08) =—

0) return false; else return true; }
set

{

ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead. tcp _flags);

B.2 RawSocket.cs

91

}

if (value)
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags | 0
x08) ;

this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags & 0
x37);
this.tcpchecksum =

incremental TCPchecksum (temp, (

ushort) ((this . TCPHead.

tcp_headerlength << 8) + this.

TCPHead . tcp_flags));

else

}

ublic bool tcpRST

}

get {if ((this.TCPHead. tcp_flags & 0x04) =

0) return false; else return true; }
set

t ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead. tcp_flags);
if (value)
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags | 0
x04) ;

this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags & 0
x3B) ;
this.tcpchecksum =

incremental TCPchecksum (temp, (

ushort) ((this . TCPHead.

tcp_headerlength << 8) + this.

TCPHead. tcp_flags));

else

}

public bool tcpSYN

get {if ((this.TCPHead. tcp_flags & 0x02) =
0) return false; else return true; }
?et
ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead . tcp_flags);
if (value)
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags | 0
x02);
else
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags & 0
x3D) ;
this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead . tcp_flags));

B.2 RawSocket.cs

}
}
public bool tcpFIN
get {if ((this.TCPHead. tcp_flags & 0x01) =

0) return false; else return true; }
?et
ushort temp = (ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead. tcp_flags);
if (value)
this . TCPHead. tcp_flags = (byte) (
this . TCPHead. tcp_flags | 0
x01);
else
this . TCPHead. tcp_-flags = (byte) (
this . TCPHead. tcp_flags & 0
x3E) ;
this.tcpchecksum =
incremental TCPchecksum (temp, (
ushort) ((this.TCPHead.
tcp_headerlength << 8) + this.
TCPHead . tcp_flags));

}
}

?ublic ushort tcpwindow

get {return this.TCPHead.tcp_windowsize;}
set

{

ushort temp = this.TCPHead.
tcp_windowsize

this . TCPHead. tcp_windowsize = value;

this.tcpchecksum =
incremental TCPchecksum (temp, this.
TCPHead . tcp-windowsize) ;

}
}

rivate ushort tcpchecksum

get {return this.TCPHead. tcp_checksum;}
set {this.TCPHead.tcp_checksum = value;}

}

?ublic ushort tcpurgent

get {return this.TCPHead.tcp_urgentpointer;}
set

ushort temp = this.TCPHead.
tcp_urgentpointer;
this . TCPHead. tcp_urgentpointer = value

this . tcpchecksum =
incremental TCPchecksum (temp, this.
TCPHead. tcp_urgentpointer) ;

}
}

//private byte prottype;

B.2 RawSocket.cs 93

public IPHeader MainHeader; //Since I wrote methds
for accessing this it should really be
private .

// But I don’t have time to deal with the changes
t}flLis requires or to write similar methods for
the

//TCP header.

public TCPHeader TCPHead;

public byte IPOptions;
public byte TCPOptions;
public byte RemainingData;

//public int acalculatedchecksum ;
public Ulnt32 testl;
public Ulnt32 test2;

}
?ublic class RawSender

private bool error_in_send;

private static int len_send_buf; //Maz packet size
for send.

byte [] send_buf_bytes; //Data to send.

private Socket sender = null; //Socket to send via

public ushort truecheck;
public ushort reportedcheck;

public RawSender () //Constructor

error_in_send=false

len_send_buf = 65535; //Can’t send a larger
packet. Windows would crash out.

send_buf_bytes = new byte[len_send_buf|;

}

public void StartSender(string IP, int port)

sender = new Socket (AddressFamily.
InterNetwork , SocketType.Raw,
ProtocolType.IP);

sender . Blocking = false ;

sender . Bind (new IPEndPomt(IPAddress .Parse(
IP), port));

if (SetSenderOption()=—false) error_in_send=
true;

}

public void ShutdownSender ()

{

if (sender != null)

{
sender . Shutdown (SocketShutdown . Both) ;
sender . Close () ;

}
}

private bool SetSenderOption ()
{
bool ret_value = true;
try //.NET Exzception handeling

sender . SetSocketOption (
SocketOptionLevel .1P |
SocketOptionName . HeaderIncluded ,

1);

B.2 RawSocket.cs

94

sender . SetSocketOptiong
SocketOptionLevel.Socket , System.
Net . Sockets.SocketOptionName.
ReuseAddress, 1);

//sender.SetSocketOption (
SocketOptionLevel.IP,
SocketOptionName . SendBuffer

100000);

//int FIONBIO = unchecked ((int)0
20004CB3]) ;

//int FIONBIO = unchecked ((int)
2147772030) ;

//byte [JIN = new byte[4]{1, 0, 0, 0};

byte [JOUT = new byte [4];
/ See http://msdn.microsoft.com/

library/default.asp?url=/library/

en—us/winsock/winsock/wsaioctl_2.
asp for details.
//int ret_code = sender.IOControl(

FIONBIO, IN, OUT); //receive all
IP packets on the mnetwork.

//ret_code = OUT[0] + OUT[1] + OUT[2]

+ OUT[8]; //Check that operation

suceeded .

J/if(ret_code = 0) ret_value = false;

/If not return error.

catch(SocketException)

{

}

ret_value = false; //If any of the

above caused an exception , return

an error.

return ret_value;

}

public bool WasError

get // Let main program check for errors.

}
}

return error_in_send;

public static Ulntl6 calcchecksum(Byte[] buffer,
int size)

Int32 cksum = 0;
int counter;
counter = 0;

while (size > 0)

{

Ulntl6 val = (ushort) ((buffer Hcounter}

<< 8) + buffer [counter+1]);
cksum += Convert.TolInt32(val);
counter += 2;
size —= 2;

}

cksum = (cksum >> 16) + (cksum & Oxffff);
cksum += (cksum >> 16);

return (Ulntl6) (" cksum);

560

561|
562|
563|
564|
565|
566|
567|
568|
569|
570|
571]
572|
573|
574|
575|

576

577]

578|
579|
580|
581|
582|
583|

584|
585
586
587
588
589
590

591
592

593|
594|
595|
596|
597|
598|
599|

600

601|
602|

603|

604

605|

606|

607|

B.2 RawSocket.cs

95

public Ulntl6 TCPChecksum(Byte[] buffer, int size

{

}

9

int IHL)

byte[] biggerbuffer;

int length = size — (IHL % 4) 4+ 12;
//this.error_occurred = false;

if (length%2 = 1)

//this.error_occurred = true;
length++;

biggerbuffer = new byte[length |;

//biggerbuffer [0] = buffer[12];
Array.Copy(buffer , 12, biggerbuffer, 0, 8);

biggerbuffer [8] = 0
biggerbuffer |[9] = 6;
biggerbuffer [10] = (byte) (((size — (IHL * 4)

o

biggerbuffer [11] =
& 0x00FF) ;

Array.Copy(buffer , THLx4, biggerbuffer , 12,
size — (IHL * 4));

Int32 cksum = 0;

int counter;

) & 0xFF00) >> 2(3
(byte) ((size — (IHL x 4))
I

counter = 0;
while (length > 0)
{

Ulntl6 val = (ushort) ((biggerbuffer |
counter] << 8) + biggerbuffer|
counter +1]);

cksum += Convert.Tolnt32(val);

counter += 2;
length —= 2;

}

cksum = (cksum >> 16) + (cksum & Oxffff);
cksum += (cksum >> 16);

return (Ulntl16) (" cksum) ;

public void send(PacketArgs args)

{

//(IPHeader MainHeader)

int messagelength;

ushort mychecksum;

7int test = MainHeader. ip_verlHL ;
/

listBoxl1.Items.Add(source + 7 \ ¢
7 + destination);
send_buf_bytes [0] = args.MainHeader.
ip_verIHL ;
send_buf_bytes[1] = args.MainHeader.ip_tos;
send_buf_bytes [2] = (byte) ((args.MainHeader.

ip_totallength & O0xFF00) >> 8);
send_buf_bytes [3] (byte) (args.MainHeader .
ip_totallength & 0x00FF) ;
send_buf_bytes [4] = (byte) ((args.MainHeader.
ip_id & 0xFF00) >> 8);
send_buf_bytes [5] = (byte)
ip-id & 0x00FF);
send_buf_bytes [6] = (byte)
ip_DFMFoffset & 0xFF00
send_buf_bytes [7] = (byte)
ip_DFMFoffset & 0x00FF

~—

args . MainHeader.

(
((args.MainHeader .
) >> 8);
(args.MainHeader .

)

?

B.2 RawSocket.cs

96

args . MainHeader.ip_ttl;

send_buf_bytes [8
args . MainHeader.

send_buf_bytes |9
ip_protocol;
// Don’t calculate checksum yet. We want to
check both ways until we are certain it
works .

send_buf_bytes[10] = 0;
send_buf_bytes|[11] = 0;
send_buf_bytes[12] = (byte) ((args.MainHeader
.ip_srcaddr & 0xFF000000) >> 24);
send_buf_bytes [13] = (byte) ((args.MainHeader
.ip_srcaddr & 0x00FF0000) >> 16);
send_buf_bytes[14] = (byte) ((args.MainHeader
.ip_srcaddr & OXOOOOFFOO) >> 8);
send_buf_bytes[15] = (byte) (args.MainHeader.
ip_srcaddr & 0x OOOOOOFF),
send_buf_bytes[16] = (byte) ((args MainHeader
.ip_destaddr & 0x FFOOOOOO) > 24);
send_buf_bytes[17] = (byte) ((args MainHeader
Jip_destaddr & 0x00FF0000) >> 16);
send_buf_bytes[18] = (byte)((args MainHeader
Jip_destaddr & 0x0000FF00) >> 8):
send_buf_bytes[19] = (byte) (args. MainHeader .

ip_destaddr & 0x000000FF) ;

//this. MainHeader. ip_srcaddr = (wint)((buf
[12] << 24) + (buf[13] << 16) + (buf[14]
<< 8) + buf[15]);

int IHL = (args.MainHeader.ip_verIHL & 0x0F)

if (IHL > 5)

Array.Copy(args.IPOptions, 0,
send_buf_bytes, 20, (IHL — 5) x 4)

9

mychecksum = calcchecksum (send_buf_bytes , (
send_buf_bytes [0] & 0x0F)=x4);

send_buf_bytes[10] = (byte) ((args.MainHeader
.ip_checksum & 0xFF00) >> 8);

send_buf_bytes[11] = (byte)(args.MainHeader.
ip_checksum & 0x00FF) ;
if (args.Protocol = 6)

send_buf_bytes[args.IHL x 4] = (byte)
((args.TCPHead. tcp_srcport & 0
xFF00) >> 8);

send_buf_bytes[args.IHL % 4 + 1] = (
byte) (args . TCPHead. tcp_srcport & 0

x00FF) ;
send,buf,bytes[args IHL * 4 + 2] = (
byte) ((args.TCPHead. tcp_destport &

0xFF00) >> 8);

send,buf,bytes[args.IHL x 4+ 3] = (
byte) (args . TCPHead. tcp_destport &
0x00FF) ;

send_buf_bytes[args.IHL % 4 + 4] = (
byte) ((args . TCPHead. tcp_sequence &
0xFF000000) >> 24) ;

send_buf_bytes[args.IHL % 4 + 5] = (
byte) ((args . TCPHead. tcp_sequence &
0x00FF0000) >> 16)

B.2 RawSocket.cs

97

else

send_buf_bytes[args.IHL

* 4 + 6]

(

byte) ((args . TCPHead. tcp_sequence &

0x0000FF00) >> 8);
send_buf_bytes[args.IHL

« 4+ 7]

(

byte) (args .TCPHead. tcp_sequence &

0x000000FF) ;
send_buf_bytes [args.IHL
byte) ((args.TCPHead

* 4 + 8]

(

tcp_acknowledgement & 0xFF000000)

>> 24);
send_buf_bytes [args.IHL
byte) ((args.TCPHead

* 4 + 9]

(

tcp_acknowledgement & 0x00FF0000)

>> 16);
send_buf_bytes[args.IHL
byte) ((args.TCPHead

tcp_acknowledgement & 0x0000FF00

>> 8);
send_buf_bytes[args.ITHL

byte) (args . TCPHead.

tcp_acknowledgement
send_buf_bytes[args.IHL

* 4 + 10]

* 4 + 11]

& 0x000000FF

* 4 4+ 12]

args . TCPHead. tcp_headerlength ;

send_buf_bytes[args.IHL

* 4 4 13]

args . TCPHead. tcp_flags;

send_buf_bytes[args.THL

x 4 4 14)]

)
(
) .

)

(

byte) ((args .TCPHead. tcp_windowsize

& 0xFF00) >> 8);

send_buf_bytes[args.IHL % 4 + 15] = (
byte) (args . TCPHead. tcp_-windowsize

& 0x00FF) ;
send_buf_bytes|args.IHL
send_buf_bytes|args.IHL
send_buf_bytes|args.IHL

byte) ((args . TCPHead.

tecp-urgentpointer & 0xFF00) >> 8);

* 4 + 16
* 4 4+ 17
* 4 + 18

send_buf_bytes[args.IHL *x 4 + 19] =

byte) (args . TCPHead.
tcp_urgentpointer &

0x00FF) ;

if (args.tcpheaderlength > 5)

Array .Copy(args.TCPOptions, 0,
, (args.IHL =«
4) 4+ 20, (args.
tcpheaderlength — 5) % 4);

send_buf_bytes

messagelength = args.totallength — (
args . IHL % 4) — (args.

tcpheaderlength x 4)

Array.Copy(args.RemainingData, 0,

Y

send_buf_bytes, (args.IHL % 4) + (
args.tcpheaderlength x 4),

messagelength) ;

messagelength = args.totallength — (

args . IHL x 4);

Array.Copy(args.RemainingData, 0,

send_buf_bytes, (args.IHL % 4),

messagelength) ;

B.2 RawSocket.cs 98

¥

//sender.SendTo(send_buf_bytes, args.
totallength , System.Net.Sockets.
SocketFlags.None, new IPEndPoint(args.
destination , 0));

if (mychecksum args . MainHeader .

; ip_checksum)

if (args.Protocol = 6)
{
mychecksum = TCPChecksum (
send_buf_bytes, args.
totallength , args.IHL);
error_in_send = false;
send _buf_bytes[args.IHL * 4 +
16] = (byte) ((args.TCPHead.
tcp_checksum & O0xFF00) >> 8)

send _buf_bytes[args.IHL * 4 +
17] = (byte) (args.TCPHead.
tcp-checksum & O0x00FF) ;

this.truecheck = mychecksum;

this.reportedcheck = args.
TCPHead. tcp_checksum ;
sender . Blocking = false;

//sender.BeginSendTo

sender . Connect (new IPEndPoint ((
long)args.destination , args.
tcpdestination));

while (!sender.Connected)

¥
/*while (sender. Blocking)

*

sender .Send (send_buf_bytes, 0,
args.totallength , System.Net
.Sockets.SocketFlags.None);

//sender.SendTo(send_buf_bytes ,
args.totallength , System.Net
.Sockets. SocketFlags. None,
new IPEndPoint(args.
destination , args.
tcpdestination)g;

this.truecheck = 0;

——)~

error_in_send = true;

—~ 0

}
?ublic class RawSocket

private bool error_occurred;

public bool KeepRunning; //Keep recieving packets?

private static int len_receive_buf; //Size of
recieve buffer.

B.2 RawSocket.cs 99

byte [] receive_buf_bytes; //Buffer for packets.

private Socket socket = null; //Socket for
recieving .

public Ulntl6 checksuml;

public Ulntl6 checksum?2;

public RawSocket () //Constructor
{

error_occurred=false;

len_receive_buf = 65535; // Absolute mazimum
IP packet size.

// Be careful of Buffer Overruns. WlIndows
won’t recieve a packet that wviolates
this number.

receive_buf_bytes = new byte[len_receive_buf

}
public void StartSocket(string IP, int port, bool
promiscuous)

socket = new Socket (AddressFamily.
InterNetwork , SocketType.Raw,
ProtocolType.IP);

socket . Blocking = false ;

socket . Bind (new IPEndPomt(IPAddress .Parse(
IP), port));

//socket.Bind(new IPEndPoint(IPAddress. Parse
(7202.173.149.327), 0));

if (SetSocketOptlon(prom1scuous)—false)
error_occurred=true;

}

public void ShutdownSocket ()

{

if (socket != null)

{
socket . Shutdown (SocketShutdown . Both) ;
socket . Close () ;

}
}

private bool SetSocketOption(bool promiscuous)

bool ret_value = true;
try //.NET Ezxception handeling
{

socket . SetSocketOptlon](
SocketOptionLevel . 1P
S())cketOptlonName HeaderIncluded
1);

if (promiscuous)

byte []IN = new byte[4]{1, 0, O,

byte [JOUT = new byte[4];

int SIORCVALL = unchecked ((int)
0x98000001 // Control code
for SIO_R VALL documented
on MSDN.

// See http://msdn. microsoft.com
Jlibrary/default.asp?url=/
library /en—us/winsock/
winsock/wsaioctl_2.asp for

B.2 RawSocket.cs 100

details . |

int ret_code = socket.IOControl(|
SIORCVALL, IN, OUT); // \
receive all IP packets on \

the network. |
ret_code = OUT[0] + OUT[1] + OUT |
[2] + OUT[3]; //Check that \
operation suceeded. \
if(ret_code != 0) ret_value = \
false; //If not return error }

\

\

\

\

\

}

catch(SocketException)

ret_value = false; //If any of the

above caused an exception , return
an_ error.

return ret_value;

}

ublic bool ErrorOccurred
get // Let main program check for errors.

return error_occurred ;

¥
}

public static Ulntl6 calcchecksum(Byte[] buffer,
int size)

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\
Int32 cksum = 0; |
int counter; |
counter = 0; |
while (size > 0) \
{ |
Ulntl6 val = (ushort) ((buffer [counter] |

<< 8) 4 buffer [counter+1]); \

cksum += Convert.Tolnt32(val); \
counter 4= 2; \

\ size —= 2; |
\

cksum = (cksum >> 16) + (cksum & Oxffff); \
cksum += (cksum >> 16); \
return (Ulnt16) (" cksum) ; \
\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

}

public Ulntl6 TCPChecksum(Byte[] buffer , int size
, int IHL)
{

byte[] biggerbuffer;

int length = size — (IHL % 4) + 12;
//this.error_occurred = false;

if (length%2 = 1)

//this.error_occurred = true;
length++;

biggerbuffer = new byte[length |;
//biggerbuffer [0] = buffer[12];
Array.Copy(buffer , 12, biggerbuffer, 0, 8);
biggerbuffer [8] = 0;

799|
800|

801

802|

803
804|
805
806
807|
808

809|
810|
811
812|
813|
814|
815|

816
817]

818
819
820
821
822
823
824|
825

826|
827

828|
829
830

831|
832
833|
834|
835|

836|
837|
838|
839|
840|

841|
842
843|
844|

845

846|
847

848|

B.2 RawSocket.cs

101

biggerbuffer [9] = 6;

biggerbuffer [10]

biggerbuffer [11]
& 0xO0FF) ;
Array . Copy (buffer

9

o

HL %

size — (IHL % 4));

Int32 cksum = 0;
int counter;

counter = 0;
while (length >
{

0)

4, biggerbuffer |

(byte) (((size — (IHL # 4)
) & 0xFF00) >> 8):

(byte) ((size — (IHL x 4))

I

12,

Ulntl6 val = (ushort) ((biggerbuffer |

counter| << 8) + biggerbuffer |

counter+1]);
cksum += Convert.ToInt32(val);

counter +=

2;

length —= 2;

}

cksum = (cksum >> 16) + (cksum & Oxffff);
cksum += (cksum >> 16);
return (Ulntl16) (" cksum);

}

private void Receive(byte []

//byte temp_protocol=0;

uint temp_version=0;
/uint temp_ip_srcaddr=0;

short temp_srcport=0;

buf, int len)

/uint temp_ip_destaddr=0;

short temp_dstport=0;
/IPAddress temp_ip;

Ulnt16 RecievedChecksum ;

byte templ, temp2

?

RecievedChecksum = (ushort) ((buf[10] << 8) +

buf[11]);
templ = buf|[10];
temp2 = buf|11];
buf[10] = 0;
buf|11] = 0
if

RecievedChecksum)

{
buf|10
buf|11
int THL

templ;
temp?2;
(buf [0] & 0xO0F);

calcchec’ksum(buf, (buf[0] & 0xOF)x4)

if (buf[9] = 6) //This causes us to

only recieve TCP packets which

fine for mnow.

templ = buf[IHL * 4 + 16];
temp2 = buf|[IHL * 4 + 17];
RecievedChecksum = (ushort

templ << 8) +
IHL * 4 + 16| = 0;
IHL * 4 + 17] = 0;
TCPChecksum (buf ,

buf
buf
if

buf[2] << 8) + buf[3
= RecievedChecksum

temp2) ;

(ushort

%),

)
I

18

i)

849|
850|
851|
852|
853|
854
855|

856|
857|

858
859

860|
861|
862|

863|
864|

865|
866|

867
868|

869|
870|
871|

872|
873|
874|

875

876
877|
878

879

880|
881

882|

883|

\
884
885|

886

B.2 RawSocket.cs 102
buf [IHL % 4 + 16] = templ;
buf [IHL % 4 + 17] = temp2;

Pac

etArgs e;

e=new PacketArgs(buf);
OnPacketArrival(e);

}
checksum1=TCPChecksum (buf ,

ushort

) ((buf[2] << 8) + buf

[3]) . IHL);
checksum?2 = RecievedChecksum ;

1
//PacketArgs e;

//fized (byte xfized_buf = buf)

/IPHeader * head = (IPHeader x)
fized_buf; // Assign IP Header

from recieve

Ve—new PacketAr
/

buffer
QS?bUf)

head—>ip_protocol , ((uint)(head—>

ip_verlHL &
//Array. Copy(buf

20) ;
//e.MainHeader =
/e.SubHeader =

OxOF) << 2) x 4
, 0, e.MainHeader, 0,

head ;
fized_buf[((uwint)(head

—>ip_verlHL & 0zx0F) << 2) % 4];

/xe.HeaderLength=
ip_verlHL &

(uint)(head—>
0z0F) << 2; //Header

Length from IHL (bits 5-8).

temp_proto
1p_pro

col = head—>
tocol;

switch (temp_protocol)

{

case

case

case
case

defa

1: e.Protocol="ICMP
27 break ;

2 e.Protocol="IGMP
27 break; //Don’t

need IGMP in NAT

6: e.Protocol="TCP:”;
break ;
17 e.Protocol="UDP
: break ;

ult e.Protocol= "

UNKNOWN” ; break;

// 8

b/ Use t
b

ee http://wuww.iana. org
assignments/protocol—
numbers for details.
his in future version
perly decode TCP or
eaders .

temp_version =(uint)(head—>
ip-verlHL & 0xF0) >> 4; //
Version from wverlHL (bits

1—4)

e.IPVersion = temp_version .
ToString () ;

temp_ip_srcaddr = head—>
ip_srcaddr; //Decode IP

addres
temp_ip_de

ses to strings.
staddr = head—>

ip_destaddr;

B.2 RawSocket.cs

103

}

temp_ip = new IPAddress(
temp_ip_srcaddr);

e. OriginationAddress =temp_ip .
ToString () ;

temp_ip = new IPAddress(
temp_ip_destaddr);

e.DestinationAddress = temp_ip.
ToString () ;

// This is a very bad idea as it
defeats the purpose of
seperate IP and TCP layers.

// Will reprogram it later when
support is added for total
recognition of T header.

// Would cause problems if IP
Options were used. (Could
use e.HeaderLength to fiz)

temp_srcport = x(short *)&
fized_buf[e. HeaderLength];

temp_dstport = x(short *)&
fized_buf[e. HeaderLength+2];

e.OriginationPort=IPAddress.
NetworkToHostOrder (
temp_srcport). ToString () ;

e.DestinationPort=IPAddress.
NetworkToHostOrder (
temp_dstport). ToString () ;

e.PacketLength =(uint)len;
e.MessageLength =(uint)len — e.
HeaderLength ;

e. ReceiveBuffer=buf;

Array. Copy(buf,0,e.
IPHeaderBuffer,0,(int)e.
HeaderLength) ;

Array. Copy(buf,(int)e.
HeaderLength ,e. MessageBuffer
,0,(int)e. MessageLength); //
Copy remaining data to
message buffers.x/

//}
//OnPacketArrival(e); //Call

processing functions.

}

public void Run()

{

}

TAsyncResult ar = socket.BeginReceive(b
receive_buf_bytes, 0, len_receive_buf ,
SocketFlags.None, new AsyncCallback (
CallReceive), this);

private void CallReceive (IAsyncResult ar)

{

int received_bytes;

received_bytes = socket.EndReceive(ar);

Receive(receive_buf_bytes , received_bytes);

if (KeepRunning) Run(); //Keep recieving
more packets.

B.2 RawSocket.cs 104

924
925

926| public delegate void PacketArrivedEventHandler (
927| Object sender, PacketArgs args);

928

929 public event PacketArrivedEventHandler

930‘ PacketArrival;

931] protected virtual void OnPacketArrival (PacketArgs

932

933| if (PacketArrival != null)

934| %
}

o)
‘ {

PacketArrival (this, e);

935|
936|

937| }
938| }

939 }
N

Ne—

B.3 BidirHashtable.cs

105

B.3 BidirHashtable.cs

1(using System ;

2;using System. Collections;

3| //using System.Runtime. Serialization ;
4

s namespace System .Extended. Collections

%? <summary>

o {

7
8
|
ol

|
10|
11|
|
12|
13|
|
14|
|
15|

16|
17|

18|
19|

20
21|
22|

23
24

25|
26|
27|
28|
29|
30|
31|
32|
33|
34|
35|
36|
37
38|
39|

40|
41|

42|
43|
44|
45|
46|
47]
48|
49

50]
51

52|

/1
)
)
/1

)
/1

BidirHashtable is a simple, bidirectional data
structure

designed around Hashtables and accessed like a more
robust Hashtable.

Internally it just contains two hashtables:

one maps from key to wvalue, the other maps from
value to key.

Lookup in either direction is quick;

changes take twice as long since two Hashtables are
accessed .

Forward lookup is just through the [] as in
Hashtable .

Reverse lookup is through ReverseLookup ().

Adding and setting elements is done with forward
syntax identical to

in Hashtable , but both internal Hashtables are

affected .
// /) </summary>
public class BidirHashtable : IDictionary, ICollection ,

IEnumerable ,
ICloneable

private Hashtable m_htFwd = null;
private Hashtable m_htBkwd = nuli;

/// <summary>
/ Just create a Two—Way Hash Table.
// </summary>
?ublic BidirHashtable ()
m_htFwd = new Hashtable () ;
m_htBkwd = new Hashtable () ;

/ <summary>

/ Somewhat similar to a Copy Constructor in Ct++
/ </summary>

ublic BidirHashtable (IDictionary dict)

NN

—g

m_htFwd = new Hashtable () ;
m_htBkwd = new Hashtable () ;

foreach(object key in dict.Keys)

{
}

}

/// <summary>

// Use an existing Hash Table and map the reverse
lookups.

/// </summary>

private BidirHashtable (Hashtable ht, byte
bytDummyIndicatesAttach)

this [key] = dict [key];

53]

54
55|

56|
57|
58|
59
60|
61]
62|
63|

64|

65|
66|
67|
68|
69
70

71|
72|

73|
74|
75|
76|
77|
78|

79|
80|

81|
82|
83|
84]

85|
86|

87
88|
89|
90|
01|

92|
93]

94|
95|
96|
97|

98]
99|

100|
101]
102|
103|
104|
105]
106|
107|
108|
109
110|
111]
112|
113|
114|

B.3 BidirHashtable.cs 106
m_htFwd = ht;
m_htBkwd = new Hashtable () ;
foreach(object key in ht.Keys)
m_htBkwd [ht [key]| = key;

}

}

public int Count {get { return m_htFwd.Count; } }

public bool IsSynchronized {get { return m_htFwd.
IsSynchronized;

public object SyncRoot {get { return m_htFwd.
SyncRoot; } }

public void CopyTo(

}

Array

array ,

int index

)

m_htFwd.CopyTo(array, index);

public void CopyValuesTo (
rray array ,
int index

~—~g -

}

)

m_htBkwd.CopyTo(array, index);

ublic void Add(object key, object val)

m_htFwd.Add(key, val);
m_htBkwd.Add(val, key);

public void Remove(object key)

{

}

object val = m_htFwd[key];
m_htFwd.Remove(key);
m_htBkwd .Remove(val);

public void Clear ()

NN

—g

m_htFwd. Clear () ;
m_htBkwd. Clear () ;

/ <summary>
/ Forward lookup or set.
/ </summary>

ublic object this|[object key |

get
set {

return m_htFwd|[key]; }

if (m_htFwd.ContainsKey (key))

{
m_htBkwd . Remove (m_htFwd[key]

m_htFwd[key| = value;
m_htBkwd [value] = key;

B.3 BidirHashtable.cs 107

115
116]

}
117] %/ <summary>

118] / Reverse Lookup works at normal hashtable

\ speeds .

119] /// </summary>

120] public object ReverseLookup(object val)

121] {

122] return m_htBkwd[val];

123 }

124‘

125| ?ublic bool IsFixedSize

126‘

127] get { return m htFwd.IsFixedSize; }

130

130] ublic bool IsReadOnly

131]

132 get { return m htFwd.IsReadOnly; }

o]

135| /// <summary>

136| // Do Not Use this, should be made private in
\ future.

137] /// </summary>

138 public ICollection Keys

139

140| get { return m_htFwd.Keys; }

141|
142|

}
143| %/ <summary>

\
\
\
\
\
\
\
\
\
\
|
\
\
\
\
|
\
\
\
\
|
\
\
\
\
\
\
\
\
\
\
144 / Do Not Use this, should be made private in \
| future. \
\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

145| /// </summary>

146] public ICollection Values

147|

148| get { return m_htFwd.Values; }

149|
150

151
152
153

154]
155|

156]
157|
158|

159|
160|

161
162
163

ublic bool Contains(object key)

return m_htFwd. Contains(key);

ublic bool ContainsValue(object val)

return m_htBkwd. Contains(val);

— e ey e e

Enumerator IEnumerable.GetEnumerator ()

return m_htFwd.GetEnumerator () ;

164
165]

166|
167|
168|

169|
170|

171
172

—_— ~—

DictionaryEnumerator IDictionary.GetEnumerator ()

return m_htFwd.GetEnumerator () ;

ublic object Clone ()

_~—~g -

173] BidirHashtable bh = new BidirHashtable () ;
174] bh.m_htFwd = (Hashtable) m_htFwd. Clone () ;
175] bh.m_htBkwd = (Hashtable) m_htBkwd.Clone();

176] return bh;

B.3 BidirHashtable.cs

177
178

179]
180|

181]
182

183|
184]

185]

186
187|
188

189
190

191|
192|
193]
194|
195|
196]
197|

198|
199

200|
201|
202|
203|
204|
205|

206
207

208|
209|

210
211|
212|
213|
214|

215|

216
217

218|
219|
220|

221|
222|
223|
224|
225|
226

227|
228|

229
230|
231|
232|
233|
234|

235 }
N

}

#region Explicit conversion to/from Hashtable

public static explicit operator BidirHashtable (
Hashtable ht)

{

}

public static explicit operator Hashtable(
BidirHashtable bd)

return new BidirHashtable(ht);

return (Hashtable) bd.m_htFwd. Clone () ;

#endregion

#region Access to private Hashtables
/// <summary>
/ Gives direct access for debugging only.
// </summary>
public Hashtable ForwardHashtable

get { return m htFwd; }

/ <summary>
/ Gives direct access for debugging only.
// </summary>

?ublic Hashtable BackwardHashtable

get { return m htBkwd; }

// <summary>

// Mak:e a copy to change without causing bugs in

/// two way hash table.
// </summary>

?ubllc Hashtable BackwardHashtableClone
get {} return (Hashtable) m_htBkwd. Clone () ;

#endregion

#region Attach and ReverseDirection

/// <summary>

// Reverse the hash table. Lookups are in
opposite directions.

/// </summary>
public void ReverseDirection ()

Hashtable htTemp = m_htFwd;
m_htFwd = m_htBkwd;
m_htBkwd = htTemp;

}

public static BidirHashtable Attach(Hashtable ht)
return new BidirHashtable(ht, (byte) 0);

#endregion

B.4 ProjectInstaller.cs

109

B.4

ProjectInstaller.cs

B
1] using
2| using
3 using
4 using
5] using
6 using
7l using
s using
o] using
10‘ using
11

System ;

System. Collections;

System . ComponentModel ;

System . ConIf)iguration .Install;
icrosoft . Win32;

System. Security ;

System .10 ;

System . Windows . Forms ;

System . ServiceProcess;

System . Diagnostics ;

12 namespace NAT _Service

13|
14|
15|
16|
17|
18|

|
19|
20|

|

|

21

22
23|
24|
25|
26|

27
28

29|
30|
31|
32|
33|
34
35|

\

36
37]

38|
39|
\
40|
\
1]
\
42|
43|
44|
\
45|
46|

47|
48|

49

50
51|

52|

/// <summary>
/ Summary description for ProjectInstaller.
// </summary>

[Runlnstaller (true) |

public class ProjectInstaller : System.Configuration.
(Install.Installer

private System.ServiceProcess.
ServiceProcesslInstaller
serviceProcessInstallerl ;

private System.ServiceProcess. Servicelnstaller
servicelnstallerl ;

/// <summary>
// Required designer variable.
/ </summary>
/private System.ComponentModel. Container
components = null;
private EventLog eventLog;

public ProjectInstaller ()

// This call is required by the Designer.
InitializeComponent () ;
eventLog = new EventLog() ;

// TODO: Add any initialization after the
InitComponent call

}
%/ <summary>

/ override the install method to set up the
information .

/// all thats create here is a registry key. It
should be noted that this function

/// can’t be debugged so catch all possible
erceptions

/// </summary>

// <param name="ilnstallData”></param>

public override void Install(IDictionary
ilnstallData)

try

/// must call base class install first

base.Install(ilnstallData);

/// just create the key the gui part

of the code will set it

B.4 ProjectInstaller.cs 110

53] RegistryKey reg = Registry.
\ LocalMachine . OpenSubKey(” Software
| 7 true);

54| if(reg = null)

55|

56 eventLog.WriteEntryS "Error.
| trying._to.install . USQ.NAT.
| Project ’”);

57| return;

58|

59

60| RegistryKey scheduleKey = reg.
| CreateSubKey ("NATUSQProj”) ;

61

62| if (scheduleKey == null)

63| {

64| eventLog.WriteEntryS "Error .
| trying._.to_install_ USQ.NAT.
| Project’”);

65| return;

66| }

67|

o8| reg . Close () ;

69|

70| ?atch(ArgumentNullException argNullExp)

71

72| eventLog. WriteEntry (”Error_with_the.
\ argument._subkey.” + argNullExp.
| Message) ;

73|

74| catch(SecurityException secExp)

76| eventLog. WriteEntry (” Error_the_user.

| does_not_have_access_permission.”
| + secExp.Message);

el }

78| catch(IOException ioExp)

79 {

80| eventLog. WriteEntry (” Error_the.

| registry _key_is._closed.” + ioExp.
| Message) ;

81|

82| catch(UnauthorizedAccessException unExp)
83|

84| eventLog. WriteEntry (”Error_the._user.

\ does.not._have_access._permission.”
| + unExp.Message) ;

85|

86| catch(ArgumentException argExp)

sl {

88| eventLog. WriteEntry (”Error_in._the.
\ install _.data_format.” 4+ argExp.
\ Message) ;

89|

90| catch(Exception exp)

o1] {

92| eventLog. WriteEntry (”A_problem .
| occured _.with_the_install_.” + exp.
| Message) ;

93| }

94|
95| return;

96| }

97

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
1
\
75| { \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

98]
99|

100]
101|
102|

103|
104|
105]
106|
107|
108|

109
110
111

112|
113

114

115]
116|
117
118|
119|
120]

121
122
123
124

125
126

127
128

129|
130

131
132
133

134

135]
136|
137|
138]

139

140|
141
142|
143|

B.4 ProjectInstaller.cs 111

///
//

///
//

<summary>

override the wumninstall method and remove the
registry key

< /summary>

<param name="iInstallData”></param>

public override void Uninstall(IDictionary

}

ilnstallData)
try
if (iInstallData = null)

{
eventLog. WriteEntry(”Error.

unable_.to_uninstall _the.
app)llcatlonu’USQ NAT_Project

by
I

else

base. Uninstall(ilnstallData);

Registry . LocalMachine . OpenSubKey
”Software” , true
DeleteSubKeyTree(”
NATUSQProj”) ;

}

catch(ArgumentException argExp)

{

MessageBox .Show(”Error.in_the_install
~data_format.” + argExp.Message);

catch(InstallException instExp)

{

MessageBox .Show("A_problem._occurred.
with_.the_install.” 4+ instExp.
Message) ;

}

return;

#reglon Component Designer generated code

//
/17
/1]

<summary>

Requzred method for Designer support — do not
modif

the contents of this method with the code
editor.

</summary>

private void InitializeComponent ()

{

this.serviceProcesslInstallerl = new System.
ServiceProcess. ServiceProcessInstaller ()

this.servicelnstaller] = new System .
ServiceProcess. Servicelnstaller ();

/
serviceProcessInstallerl

this.serviceProcessInstallerl.Account =
System ServiceProcess . ServiceAccount .
LocalSystem

B.4 ProjectInstaller.cs

112

157
158]
159]
160|

161 }
N

this.selliviceProcessInstaller1 .Password =

null;

this.selliviceProcessInstaller1 .Username =
null;

/,
servicelnstallerl

this.servicelnstallerl.ServiceName = 7

SchedulerService” ;

this.servicelnstaller? . StartType = System.

ServiceProcess. ServiceStartMode.
Automatic;

/,
ProjectInstaller

this.Installers.AddRange(new System .
Configuration.Install.Installer [| {

#endregion

B.5 NATControl.cs

113

B.5

NATControl.cs

f .

1| using
2| using
3 using
4 using
5l using
6 using
71 using
s‘ using
9

System
System
System
System

.Drawing;

. Collections;

. ComponentModel ;
. Windows . Forms ;

System
Nflicrosoft . Win32;

System
System

.Data;
.Net ;

1oy namespace NAT _Settings_Application

1) {
12|
13|
14|
15|
16|
17|
18|
19|
20|
21|
\
22|
\
23|
|
24|
\
25|
26|
27|
28|
29|
30]
31|
32|
\
33|
34

35
36|
37|
38|

39
40|
41
42|
43|

\
44|
45|
46|
47|
48]

\
49|

50
51

52|
53]
54|
55|

/// <summary>
/ Summary description for Forml.
// </summary>

public class NATSetup

{

System

private
System

private
private System
private System
private System

InternalSubnet4 ;

private System.Windows.

InternalSubnet3;

private System.Windows.

InternalSubnet2;

private System.Windows.

InternalSubnetl ;
private System
private System
private System
private System
private System
private System
private System
private System

NATCancelButton ;

private System.Windows.
private System.Windows.

/// < summary>

. Windows.
. Windows.
. Windows .
. Windows.
. Windows .

. Windows .
. Windows.
. Windows .
. Windows.
. Windows.
. Windows .
. Windows.
. Windows .

Forms.
Forms.
Forms.
Forms.
Forms.

Forms.
Forms.
Forms.

Forms.
Forms.
Forms.
Forms.
Forms.
Forms.
Forms.
Forms.

Forms.
Forms.

System . Windows . Forms . Form

Label Internal;
Label label7;
Label label8;
Label label9;
TextBox

TextBox
TextBox
TextBox

Label labellO;

Label labelll;
GroupBox groupBox1 ;
GroupBox groupBox2:
ComboBox ExternallP ;
ComboBox InternallP ;
Button NATOkButton;
Button

Label labell;
TextBox NumberofPorts

/ Required designer wvariable.

// </summary>

private System.ComponentModel.Container components

= null;
public NATSetup ()

{

/,
/ Required for Windows Form Designer

support

InitializeComponent () ;

/
/ TODO: Add any constructor code after
InitializeComponent call

}

/ <summary>

/
// Clean up any resources being used.
/

/ </summary>

protected override void Dispose(bool disposing)

56|
57|
58|
59|
60|
61|
62|
63|
64
65|

66|
67
68|
69
70|
71|
72|
73|
74|
75|
76|
77|
78|
79|
80|
81|
82|
83|
84|
85|
86|
87|
88|
89|
90|
o1]
92|
93|
94|
95|

96|
97|

B.5 NATControl.

CS

114

{

}

if (disposing)

if (components != null)

{
}

base.Dispose(disposing);

components. Dispose () ;

#region Windows Form Designer generated code

)

/ <summary>

/ Required method for Designer support — do not

modif

Ty
/// the contents of this method with the code

//
pr

{

editor.
/ </summary>
ivate void InitializeComponent ()

this.Internal = new System.Windows.Forms.

Label () ;

this.label7 = new System.Windows.Forms. Label

this.label8 = new System . Windows . Forms. Label

()
this.label9 = new System.Windows.Forms. Label

this.InternalSubnet4 = new System
Forms. TextBox () ;

this.InternalSubnet3 = new System
Forms. TextBox () ;

this.InternalSubnet2 = new System
Forms. TextBox () ;

this.InternalSubnetl = new System

Forms . TextBox () ;

this.labell0 = new System.Windows.

Label () ;

this.labelll = new System.Windows.

Label () ;

this.groupBoxl = new System.Windows.Forms.

GroupBox () ;

. Windows.
. Windows.
. Windows.
. Windows.

Forms.

Forms.

this.InternallP = new System.Windows.Forms.

ComboBox () ;

this.groupBox2 = new System.Windows. Forms.

GroupBox () ;

this. ExternallP = new System.Windows.Forms.

ComboBox () ;

this . NATOkButton = new System .Windows.Forms.

Button () ;
this.NATCancelButton = new System
Forms. Button () ;

. Windows.

this.labell = new System.Windows.Forms. Label

this . NumberofPorts = new System . Windows .

Forms. TextBox () ;
this.groupBox1.SuspendLayout () ;
this . groupBox2.SuspendLayout
this.SuspendLayout () ;

% Internal

98|

99|
100]

101
102
103

104
105]
106|
107|

108|
109

110|
111
112]
113|
114
115]

116|
117|

118|
119|
120]
121
122]
123|

124|
125

126]
127
128|
129|
130|
131]

132
133

134|

135]
136
137|
138|
139
140|

141
142|

143|

144|
145|
146|
147|

B.5 NATControl.cs

115

this.Internal.Location = new System.Drawing.
Point (32, 32);
this.Internal . Name
this.Internal. Size
(64, 16);
this.Internal . Tablndex = 14;
this.Internal.Text = "IP_Address”
this.Internal . TextAlign = System. Drawmg
ContentAlignment . 1dd1e§1ght

Z label7

this.label7.Location = new System.Drawing.
Point (192, 72);

this.label7 .Name = ”label7”;

this.(label?).Size = new System.Drawing. Size
8, 16);

this.label7.Tablndex = 21;

this.label7.Text = 7.7,

% label8

this.label8 . Location = new System.Drawing.
Point (160, 72);
this.label8 .Name = ”label8”;
this .(labeI% .Size = new System.Drawing. Size
8, 16);
this.label&8.Tablndex = 20;
this.label8 .Text = 7.7,

Z label9

this.label9.Location = new System.Drawing.
Point (128, 72);
this.label9 .Name = ”label9”;
this .(label‘% .Size = new System.Drawing. Size
8, 16);
this.label9.Tablndex = 19;
this.label9.Text = 7.7;

/
InternalSubnet/

"Internal”;
new System.Drawing. Size

this.InternalSubnet4.Location = new System.
Drawing. Point (200, 72);

this.InternalSubnet4 .MaxLen th = 3;

this,.’InternaISubnetél .Name = % InternalSubnetd

this.InternalSubnet4.Size = new System.
Drawing. Size (24, 20);

this.InternalSubnet4 . TabIndex — 18;

this.InternalSubnet4.Text = 77 ;

/,
InternalSubnets

this.InternalSubnet3.Location = new System.
Drawing.Point (168, 72);

this.InternalSubnet3 .MaxLen th = 3;

this,.’InternalSubnet3 .Name = & InternalSubnet3

this.InternalSubnet3.Size = new System .
Drawing. Size (24, 20);

this.InternalSubnet3 . Tablndex = 17,

this.InternalSubnet3 . Text = 77 ;

/,
/ InternalSubnet?2

148|
149|

150
151

152|

153]
154|
155|
156]
157|
158]

159
160|

161

162|
163]
164|
165|
166|
167|

168|
169

170]
171
172|

173]
174|
175]
176]

177
178]

179]
180|
181|

182
183
184|
185

186
187|
188
189
190|
191|
192|
193]
194|
195]
196]

197|

B.5 NATControl.cs

this.InternalSubnet2.Location = new System.
Drawing. Point (136, 72);

this.InternalSubnetQ.MaxLen th = 3;

this,.’ InternalSubnet2 .Name = & InternalSubnet?2

this.InternalSubnet2.Size = new System.
Drawing. Size (24, 20);

this. InternalSubnet? . Tablndex = 16;

this.InternalSubnet2.Text = 77 ;

/,
InternalSubnetl

this.InternalSubnetl.Location = new System.
Drawing. Point (104, 72);

this.InternalSubnetl . MaXLen th = 3;

this,.’InternalSubnetl Name = ”InternalSubnetl

this.InternalSubnetl.Size = new System .
Drawing. Size (24, 20);

this.InternalSubnetl. TabIndex — 15;

this.InternalSubnetl.Text = 77 ;

% labell0

this.labell0.Location = new System.Drawing.
Point (24, 72);

this.labell0.Name = ”labell0”;

this.labell0.Size = new System Drawing. Size
(72, 16);

this.labell0 . Tablndex = 22;

this.labell0.Text = ”Subneft. Mask” ;

this.labell0. TextAhgn = System. Drawmg
ContentAhgnment MiddleRight ;

% labelll

this.labelll.Location = new System.Drawing.
Point (32, 32);

this.labelll. Name = "labelll”;

this.labelll.Size = new System Drawing. Size
(64, 16);

this.labelll . TabIndex = 23;

this.labelll.Text = "IP_Address”

this.labelll.TextAlign = System. Drawmg
ContentAhgnment Mlddlenght

% groupBox1

this.groupBox1l. Controls.AddRange (new System .
Windows . Forms. Control [] {
this.InternallP |
this.label7 ,
this.label8 ,
this.label9 ,
this.InternalSubnet3 ,
this.InternalSubnet2 ,
this.InternalSubnet4 ,
this.labell0
this. InternalSubnetl
this.Internal});
this.groupBox1. Location = new System . Drawing
.Point (56, 24);
this. groupBoxl .Name = ” groupBox1” ;

198|

199
200|
201|
202|
203|
204|
205|

206|
207|

208|
209
210|
211|
212|

213
214|
215

216
217

218|
219
220|
221|
222|
223|
224|

225|
226|

227|
228|
229
230|
231|

232|
233|
234|
235|

236|
237|
238|
239|

240|

241|
242|
243|

244
245|
246

B.5 NATControl.cs

this.groupBox1l.Size = new System.Drawing.
Size (264, 104);

this.groupBox1.Tablndex = 32;

this.groupBox1.TabStop = false:

this.groupBox1.Text = 7 Internal_Interface” ;

Internall P

this.InternallP . Location = new System.
Drawing. Point (104, 32);

this.InternallP .Name = ”InternallP”;

this.InternallP . Size = new System.Drawing.
Size (120, 21);

this.InternallP . TabIndex = 23;

% groupBozx2

this.groupBox2. Controls.AddRange (new System .
Windows . Forms. Control [] {
this. ExternallP ,
this.labelll});
this.groupBox2. Location = new System.Drawing
.Point (56, 152);
this.groupBox2.Name
this.groupBox2. Size
Size (264, 104);
this.groupBox2.Tablndex = 33;
this.groupBox2.TabStop = false;
this.groupBox2.Text = 7 External_Interface” ;

”groupBox2” ;
new System.Drawing.

FEzxternallP

this.ExternallP . Location = new System.
Drawing.Point (104, 32);

this. ExternallP .Name = ” ExternallP”;

this. ExternallP . Size = new System.Drawing.
Size (120, 21);

this. ExternallP . Tablndex = 31;

NATOkButton

this . NATOkButton. Location = new System.
Drawing.Point (64, 328);

this . NATOkButton.Name = ”NATOkButton” ;

this . NATOkButton. TabIndex = 34;

this . NATOkButton. Text = "Ok” ;

this . NATOkButton. Click += new System.
EventHandler (this . NATOkButton_Click) ;

/
NATCancelButton

this . NATCancelButton. Location = new System.
Drawing.Point (216, 328);
this ; NATCancelButton.Name = " NATCancelButton

this . NATCancelButton. TabIndex = 35;

this.NATCancelButton. Text = ” Cancel” ;

this.NATCancelButton. Click += new System.
EventHandler (this. NATCancelButton_Click)

)

% labell

247|

248
249|

250]
251|

252

253
254|
255
256

257|
258|

259
260
261|
262|
263)|
264|

265|
266|

267|
268|
269|
270
271]
272|
273|
274|
275|

276|
277|

278|
279)|

280|

281
282

283|
284|
285|
286|
287|
288|
289)|

290|
291|

292|

293|
294|

295|
296|
297|

B.5 NATControl.cs

118

this.labell.Location = new System.Drawing.
Point (64, 280);

this.labell .Name ”labell”;

this.labell . Size new System .Drawing. Size
(128, 24);

this.labell . Tablndex = 39;

this.}’abell .Text = ”"Number_of_Ports_to_Use

this.labell .TextAlign = System.Drawing.
ContentAlignment . MiddleRight ;

% NumberofPorts

this. NumberofPorts. Location = new System.
Drawing . Point (200, 280);

this. NumberofPorts.Name = " NumberofPorts” ;

this. NumberofPorts. Size = new System.Drawi
.Size (112, 20);

this.NumberofPorts. Tablndex = 38;

this.NumberofPorts. Text = 7107 ;

/,
NATSetup

-

ng

this. AutoScaleBaseSize = new System.Drawing.

Size (5, 13);
this. ClientSize = new System.Drawing. Size
(376, 382);
this. Controls.AddRange(new System.Windows.
Forms. Control [] {
this.labell ,
this. NumberofPorts,
this. NATCancelButton ,
this . NATOkButton,
this.groupBox2 ,
this.groupBoxl1});
this .Name "NATSetup” ;
this.Text = "NAT_Setup.and._.Control”;
this.Load += new System.EventHandler(this.
NATSetup_Load) ;
this.groupBox1.ResumeLayout (false
this.groupBox2.ResumelLayout (false
this.ResumeLayout (false) ;

Y

)

#endregion

/// <summary>
/ The main entry point for the application .
// </summary>
[STAThread |
static void Main ()

}

Application .Run(new NATSetup());

private void NATSetup_Load(object sender, System.

{

EventArgs e)

IPHostEntry HosyEntry = Dns. Resolve (Dns.
GetHostName ()) ;
if (HosyEntry. AddressList.Length > 0)

foreach (IPAddress ip in HosyEntry.
AddressList)

B.5 NATControl.cs

298|
299|

300

301
302

303
304

305

306|
307|

308|
309]

310

311|
312|
313|

314|
315|

316
317|
318|

319|
320

321|
322|
323|
324|

325|
326|
327|

328|
329
330|
331|
332|

333
334|
335|
336|

337) }
=

ExternallP .Items.Add(ip.ToString

());
InternallP .Items.Add(ip.ToString

());

}
}

private void NATCancelButton_Click(object sender ,
System . EventArgs e)

Application . Exit () ;

private void NATOkButton_Click(object sender ,
System . EventArgs e)

/// saftety checking code
if(InternallP.SelectedIndex

ExternallP . SelectedIndex
{

-1 &
_1)

MessageBox . Show(”You.must.select._an._
Internal_and_External .IP_address”

)
return;

}

if (!((System.Convert.ToInt32(NumberofPorts.
Text) >= 1) && (System.Convert.Tolnt32(
NumberofPorts. Text) <= 60000)))

MessageBox .Show(”You.must_enter._a.
number._of_ports_.to_use._.Currently.
Min.=_1_and -Max_.=_60000") ;

return;

¥

/// Edit the Registry.

RegistryKey reg = Registry.LocalMachine.
OpenSubKey(”Software”, true).
OpenSubKey ("NATUSQProj” , true);

if(reg = null

{

MessageBox .Show(”Error._unable_to.
create_the_registry _key. USQ.NAT.
Project ’”);
| return;
reg.SetValue
reg.SetValue
reg.SetValue
.Text));

Application. Exit () ;

"LocallP” |, InternallP .Text);
7" GloballP” , ExternallP.Text);
"InitialPorts”, (NumberofPorts

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Overview of the Dissertation

	Chapter Network Reference Models
	Chapter Overview
	Networking History
	The Open Systems Interconnection Reference Model
	The Physical Layer
	The Data Link Layer
	The Network Layer
	The Transport Layer
	The Session Layer
	The Presentation Layer
	The Application Layer

	The TCP/IP Reference Model
	The Host-to-Network Layer
	The Internet Layer
	The Transport Layer
	The Application Layer

	Chapter Summary

	Chapter Design Specification
	Chapter Overview
	Design Methodology
	Extreme Programming
	Scrum
	Feature Driven Development
	STEPWISE
	Rational Unified Process
	Waterfall Models

	Programming Language
	Visual Basic.NET
	ASP.NET
	C
	C++/Visual C++.NET
	Java
	C'43.NET

	Chapter Summary

	Chapter Internet Protocol
	Chapter Overview
	IP Functionality
	Looking at an IP Header
	Fragmentation
	IP Addresses
	Subnets
	Classless InterDomain Routing

	Network Address Translation
	Overview of NAPT
	Address Binding
	Address Unbinding
	Header Manipulation
	Incremental Checksum Adjustment
	ICMP error packet modifications
	FTP Support
	Using IP Options
	Recommendations for Private IP Address Range
	Privacy and Security
	Fragmented Packets

	IPv6
	Chapter Summary

	Chapter Transmission Control Protocol
	Chapter Overview
	TCP Functionality
	Addressing
	Reliability
	Congestion Control
	Connection Management

	Data Connections
	Three Way Handshaking
	Simultaneous Open
	Active Close
	Passive Close

	User Datagram Protocol / Real-Time Transport Protocol
	Chapter Summary

	Chapter Existing Network Address Translators
	Chapter Overview
	Windows
	NAT32E
	BrowseGate 3 NAT/Proxy server and firewall

	Linux
	IP Masquerading
	IP Tables

	Chapter Summary

	Chapter Network Address Translator Implementation
	Chapter Overview
	C'43.NET Basics
	Using Sockets
	Application Programming Interface
	Windows Sockets
	Advanced Socket Control

	Putting it all Together
	Pseudocode
	A Windows Service

	Chapter Summary

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Further Work

	References
	Appendix Project Specification
	Appendix Project Source Code
	NATService.cs
	RawSocket.cs
	BidirHashtable.cs
	ProjectInstaller.cs
	NATControl.cs

