
University of Southern Queensland

Faculty of Engineering & Surveying

Design and Implementation of a Network Adrress

Translator

A dissertation submitted by

K-J. Beasley

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer Systems Engineering) / Bachelor

of Information Technology (Applied Computer Science)

Submitted: October, 2004

Abstract

A continuously increasing demand for Internet Protocol (IP) Addresses was something

that was not considered at the time when the Internet was first designed. The argu-

ment was actually quite the opposite and most experts pooh-poohed the idea of the

internet ever growing to beyond 100,000 networks. However, the 100,000th network

was connected to the internet in 1996 (Tanenbaum 2003). The Explosive growth of the

Internet has resulted in a shortage of the number of available IP Addresses. As this

growth continues the shortage will increase and a new form of Internet Addressing will

need to be established. The current form, IPv6 has been under development for some

time now and has not gathered wide industry support. Obviously a temporary solution

must be established to overcome the shortage of IP Addresses in the immediate future

until permanent solutions can be achieved.

On the other hand the TCP Protocol was established as an end-to-end connection for

reliable communication and makes use of its own 16-bit port number. This allows for

up to 65,535 unique port numbers for TCP communication. Most hosts never maintain

65,535 end-to-end connections and this allows for a technology called Network Address

Translation (NAT) to save on the number of IP Addresses required on the Internet by

multiplexing many IP Sources onto one or more IP Addresses using unique TCP port

numbers for each data stream.

The ultimate aim of this project is to produce a small prototype Network Address

Translator and discuss further improvements necessary for its use in a production

environment.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

K-J. Beasley

00110217980

Signature

Date

Acknowledgments

I would like to thank all those who have supported my endeavors over the past five

years. Special thanks goes to all the staff from the Faculty of Engineering and Surveying

and the Department of Maths and Computing at the Faculty of Science. Students are

incredibly grateful for the time you take to pass on your knowledge and experience.

I would like to offer special thanks to my supervisor, Dr John Leis. After debugging a

single line of code for what seemed like a month, losing all motivation and wondering

why I ever suggested this project topic, it was often his support and desire to see the

project succeed that positioned me back on track.

Sincere appreciation to my family. I have no idea where I would be right now if it

were not for my Mum constantly looking over my shoulder checking if my project was

up to date and my assignments completed. It was Dad’s seemingly infinite technical

knowledge that convinced me to study Engineering. Sadly this knowledge is much

diminished due to a recent debilitating stroke. Lastly to my darling sister, she may

be public enemy number one for telling Mum that I worked on project/assignments

when indeed I played computer games, however her love and support during this time

is greatly appreciated. The completion of this project and my successful graduation is

testimony to your contributions and continued support.

Thankyou All.

K-J. Beasley

University of Southern Queensland

October 2004

Contents

Abstract i

Acknowledgments iv

List of Figures xi

List of Tables xiii

Chapter 1 Introduction 1

1.1 Overview of the Dissertation . 3

Chapter 2 Network Reference Models 4

2.1 Chapter Overview . 4

2.2 Networking History . 4

2.3 The Open Systems Interconnection Reference Model 6

2.3.1 The Physical Layer . 7

2.3.2 The Data Link Layer . 7

2.3.3 The Network Layer . 7

CONTENTS vi

2.3.4 The Transport Layer . 8

2.3.5 The Session Layer . 9

2.3.6 The Presentation Layer . 9

2.3.7 The Application Layer . 9

2.4 The TCP/IP Reference Model . 9

2.4.1 The Host-to-Network Layer . 10

2.4.2 The Internet Layer . 11

2.4.3 The Transport Layer . 11

2.4.4 The Application Layer . 12

2.5 Chapter Summary . 13

Chapter 3 Design Specification 14

3.1 Chapter Overview . 14

3.2 Design Methodology . 14

3.2.1 Extreme Programming . 14

3.2.2 Scrum . 15

3.2.3 Feature Driven Development . 15

3.2.4 STEPWISE . 16

3.2.5 Rational Unified Process . 16

3.2.6 Waterfall Models . 17

3.3 Programming Language . 18

CONTENTS vii

3.3.1 Visual Basic.NET . 19

3.3.2 ASP.NET . 19

3.3.3 C . 19

3.3.4 C++/Visual C++.NET . 20

3.3.5 Java . 21

3.3.6 C#.NET . 21

3.4 Chapter Summary . 23

Chapter 4 Internet Protocol 24

4.1 Chapter Overview . 24

4.2 IP Functionality . 24

4.2.1 Looking at an IP Header . 25

4.2.2 Fragmentation . 29

4.2.3 IP Addresses . 30

4.2.4 Subnets . 31

4.2.5 Classless InterDomain Routing 31

4.3 Network Address Translation . 32

4.3.1 Overview of NAPT . 33

4.3.2 Address Binding . 34

4.3.3 Address Unbinding . 34

4.3.4 Header Manipulation . 34

CONTENTS viii

4.3.5 Incremental Checksum Adjustment 35

4.3.6 ICMP error packet modifications 35

4.3.7 FTP Support . 35

4.3.8 Using IP Options . 36

4.3.9 Recommendations for Private IP Address Range 36

4.3.10 Privacy and Security . 36

4.3.11 Fragmented Packets . 37

4.4 IPv6 . 37

4.5 Chapter Summary . 38

Chapter 5 Transmission Control Protocol 39

5.1 Chapter Overview . 39

5.2 TCP Functionality . 39

5.2.1 Addressing . 42

5.2.2 Reliability . 42

5.2.3 Congestion Control . 43

5.2.4 Connection Management . 44

5.3 Data Connections . 44

5.3.1 Three Way Handshaking . 44

5.3.2 Simultaneous Open . 45

5.3.3 Active Close . 45

CONTENTS ix

5.3.4 Passive Close . 46

5.4 User Datagram Protocol / Real-Time Transport Protocol 47

5.5 Chapter Summary . 48

Chapter 6 Existing Network Address Translators 49

6.1 Chapter Overview . 49

6.2 Windows . 50

6.2.1 NAT32E . 50

6.2.2 BrowseGate 3 NAT/Proxy server and firewall 50

6.3 Linux . 51

6.3.1 IP Masquerading . 51

6.3.2 IP Tables . 51

6.4 Chapter Summary . 53

Chapter 7 Network Address Translator Implementation 55

7.1 Chapter Overview . 55

7.2 C#.NET Basics . 55

7.3 Using Sockets . 59

7.3.1 Application Programming Interface 59

7.3.2 Windows Sockets . 59

7.3.3 Advanced Socket Control . 60

CONTENTS x

7.4 Putting it all Together . 61

7.4.1 Pseudocode . 62

7.4.2 A Windows Service . 62

7.5 Chapter Summary . 65

Chapter 8 Conclusions and Further Work 66

8.1 Achievement of Project Objectives . 66

8.2 Further Work . 68

References 69

Appendix A Project Specification 71

Appendix B Project Source Code 73

B.1 NATService.cs . 74

B.2 RawSocket.cs . 81

B.3 BidirHashtable.cs . 105

B.4 ProjectInstaller.cs . 109

B.5 NATControl.cs . 113

List of Figures

2.1 (a) Structure of a Switching office. (b) Structure of the telephone system. (c)

Baran’s proposal for a distributed switching system. (adapted from (Baran 1964)). 5

2.2 The Open Systems Interconnection Reference Model. (adapted from (Day &

Zimmermann 1983)). 6

2.3 The TCP/IP reference model. 10

4.1 The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003)). . . . 25

4.2 An Example of connecting two networks with differing MTU values. (adapted

from (Feit 1998)). 30

5.1 The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003)). . . . 40

5.2 Combining TCP and IP to encapsulate data. 40

5.3 TCP connection establishment. 45

5.4 TCP Simultaneous Open. (adapted from (Tanenbaum 2003)) 46

7.1 A simple C#.NET form. 56

7.2 The result of Hello World Code execution on the C#.NET form. 58

LIST OF FIGURES xii

7.3 The Visual Studio Development Environment. 60

List of Tables

4.1 Contents of a real IP packet. 28

Chapter 1

Introduction

Explosive growth of computer networks, in particular the Internet has seen the Internet

become an integral part of everyday life. Many of the tasks traditionally left for the

Mail network are now being done via e-mail. Phone conversations are increasingly

being replaced by Internet Chat and slowly voice chat and webcams are entering the

market while available bandwidth is making this technology viable.

There is a significant trend towards internet connectivity for devices which previously

would never have been considered relevant to the Internet. For example Internet Refrig-

erators and Air Conditioners which can be activated from a remote device are becoming

popular. As development continues more and more devices will use an Internet con-

nection as part of their operation.

The Internet currently operates based on two important protocols collectively referred

to as TCP/IP. These two protocols are actually the Transmission Control Protocol

and Internet Protocol. Unfortunately the designers of IP overlooked the commercial

viability of the Internet and suspected it would never become anything more than

a research network connecting universities and a few other large companies such as

Military Research and Development.

This line of thought lead to the development of the Internet Protocol utilizing an

Addressing system consisting of 32 bit addresses. That is addresses consist of 32 binary

2

numbers each of which can only be on (1) or off (0). In an ideal world this offers

232 = 4, 294, 967, 296 possible IP Addresses. Given that there are in excess of 6 billion

people in the world this number is never going to survive in the long term when a very

large proportion of the population will hopefully be online. In addition many people use

more than one IP Address, for example if they have more than one computer connected

directly to the internet or have a computer at work and at home which may both be

connected at the same time. Finally we do not live in the ideal world and IP addresses

are wasted both through requirements for divisions and wastage due to over-allocation

or private requirements.

The obvious solution to this would be to allow the IP Address to be larger, maybe

double or quadruple its current size. Such a protocol is being developed and has

already been implemented in some areas. Unfortunately there has not been a great

deal of industry support for the new protocol and some believe it may lose all levels

of support and be forgotten before it is implemented. However if this happens we will

still be left to face the problem of how to spread some four billion IP Addresses across

the globe in a fair and equal manner. In addition some companies and universities

who have purchased large ranges of the IP address space will not likely give up their

range unless presented with sufficient financial incentive to do so. As the remainder of

a particular resource decreases its value normally increases and this certainly could be

the case with IP Addresses.

Unfortunately the lack of IP Addresses is a real difficulty affecting people across the

Internet at this time. The problem is not going to wait for a solution to be developed,

implemented and tested. Therefore alternatives must be developed quickly, must re-

quire little testing and must be reliable. One such solution is called Network Address

Translation (NAT) and is already implemented in many forms. In Microsoft Windows

98 and above the solution is commonly known as Internet Connection Sharing (ICS).

However ICS is a poor solution to the problem which works in some cases but excludes

any sort of special protocols such as Video Conferencing (NetMeeting) and active File

Transfer Protocol (FTP). Due to the ICS code forming a integral part of the Operating

System it cannot be reverse engineered or modified and has very few security features

which has allowed other products to enter the market.

1.1 Overview of the Dissertation 3

The aim of this project is to develop the basics of a new type of Network Address

Translator. Ideally the NAT will undergo further development after the initial project

is complete and will contain security features and policies rigid enough to satisfy even

the most security conscious Network Administrator while having the flexibility to be

used by even the most application intensive home Internet user regardless of which

applications they may wish to use.

1.1 Overview of the Dissertation

This dissertation is organized as follows:

Chapter 2 reviews the beginning of the Internet and some of the network models used

in designing the communications protocols used today.

Chapter 3 discusses the development of a Network Address Translator (NAT), the

programming methodology followed and the Programming Languages available

for Implementation.

Chapter 4 examines the Internet Protocol (IP) used in network communications. The

Internet Protocol forms part of the network hierarchy and is the first layer involved

in Network Address Translation.

Chapter 5 details the Transmission Control Protocol (TCP) which completes the

TCP/IP Protocol Suite used on the Internet. The use of Transmission Control

Protocol features in Network Address Translation are also discussed.

Chapter 6 critically examines existing Network Address Translators including pop-

ular features for Home and Business users and cost to purchase. New Network

Address Translator features which may be well received by Home and Business

users are also discussed.

Chapter 7 introduces the C#.NET programming language and development environ-

ment. The most important part of this project, communication sockets, are in-

troduced including advanced features required by this project.

Chapter 8 concludes the dissertation and suggests further work in the area of ‘z’.

Chapter 2

Network Reference Models

2.1 Chapter Overview

Looking at the history of Network Design, many networks were mainly hardware ori-

ented with the software as an afterthought. This strategy is no longer suitable for

today’s high speed networking interfaces. This chapter will examine the software struc-

turing in some detail.

2.2 Networking History

At the height of the Cold War in the late 1950’s one line of thought was the vulnerability

of the telephone network to Nuclear War. (Baran 1964) Referring to Figure 2.1(b)

reveals that the destruction of a few key points could fragment the telephone network

into small isolated islands.

Around 1960, the Department of Defense (DoD) awarded a contract to RAND Corpo-

ration for the development of a solution to this vulnerability. Paul Baran, an employee

of RAND Corporation, developed a proposed solution depicted in Figure 2.1(c). Unfor-

tunately When the DoD took the idea to the U.S. national telephone provider AT&T the

idea was dismissed as a concept which could not be constructed. It is believed that AT&T

2.2 Networking History 5

Figure 2.1: (a) Structure of a Switching office. (b) Structure of the telephone system.

(c) Baran’s proposal for a distributed switching system. (adapted from (Baran 1964)).

did not actually want to admit that Paul Baran had succeeded in developing a network

concept where AT&T had failed, effectively dooming the idea. (Tanenbaum 2003)

In 1967 the Advanced Research Projects Agency director, Larry Roberts, turned the

sights back onto networking. He worked with Wesley Clark who again suggested a

packet-switched subnet communicating via routers. Roberts presented a vague paper on

the packet-switching idea at the Symposium on Operating System Principles (SIGOPS)

in Gatlinburg. (Roberts 1967) A similar paper at the conference described a system

that had not only been designed, but actually implemented at the National Physics

Laboratory in England. In 1968 BBN, a consulting firm in Cambridge, Massachusetts

was awarded a contract to build what became known as the ARPANET (Tanenbaum

2003)

In the early 1980’s ARPANET protocols were eventually replaced by the Transmission

Control Protocol/Internet Protocol (TCP/IP) which will be discussed separately in 4

and 5. Several contracts were also awarded to BBN and the University of California

at Berkeley forming the Berkeley UNIX company. Berkeley students wrote a program

interface for networking called Berkeley Sockets (or simply sockets) and developed

2.3 The Open Systems Interconnection Reference Model 6

Figure 2.2: The Open Systems Interconnection Reference Model. (adapted from (Day

& Zimmermann 1983)).

many applications, utilities and management programs to ease the burden of Network

Administration. (Tanenbaum 2003)

2.3 The Open Systems Interconnection Reference Model

The Open Systems Interconnection (OSI) model is shown in Figure 2.2. It was based

on a International Standards Organization (ISO) proposal aimed at international stan-

dardization of networking protocols.

The OSI Model was defined using five basic principles as follows:

1. A layer should add a level of abstraction to the communications architecture.

2. Each layer should provide well defined functionality.

3. The functionality of each layer should work towards an international standard.

4. Minimal information should flow across the boundaries between layers, particu-

larly control information.

2.3 The Open Systems Interconnection Reference Model 7

5. There should be sufficient layers that the distinct functionality of each layer is not

compromised however few enough layers that the architecture is not unwieldy.

2.3.1 The Physical Layer

This layer is concerned with transmitting raw bits over a communication channel. It

is concerned with issues such as timing, the standards of the physical interface, what

constitutes the correct receival of a on or off bit and generally anything to do with the

electrical or mechanical characteristics of the medium used for transmission.

In recent time the physical layer has undergone significant changes due to new tech-

nology in use for physically providing the data connection. Wireless Networking is an

example of one entirely new physical mediums now used in computer networks. (Day

& Zimmermann 1983)

2.3.2 The Data Link Layer

The data link layer is concerned with synchronization, reliability and framing which

refers to organizing each chunk of data into a packet. Frames are ordered to prevent

data from arriving in the wrong order and may be acknowledged in the case of a reliable

service. However this service is not concerned with ensuring reliable data streams and

frames may still be corrupted or not delivered.

In the data link layer on a broadcast based network an additional issue is addressed;

how to control access to the shared channel. A special sub-layer which does not form

part of the OSI Model deals with this issue and is called the medium access control

sub-layer. (Tanenbaum 2003)

2.3.3 The Network Layer

The main task of the network layer is to control operation of a subnet. The key design

issue is routing packets from source to destination. Routing can be based on various

2.3 The Open Systems Interconnection Reference Model 8

methods, ranging from static tables (which form a core part of the router and only

change if a major reconfiguration is detected) through dynamic session based (changing

when a connection is established or closed) to highly dynamic (determining different

routing information for each packet based on current network load).

The Network Layer is also responsible for congestion control on the local subnet, to

provide any Quality of Service controls (delay, transmit time, jitter, etc) required on

the subnet and to allow the interconnection of heterogeneous networks including packet

fragmentation.

Broadcast based networks often use a very small Network Layer or may not contain

this layer at all. (Tanenbaum 2003)

2.3.4 The Transport Layer

The transport layer accepts data from the upper layer services, splits the data into

smaller units, if necessary, and passes the chunks to the network layer. It is responsible

for error detection and overall sequencing to ensure the ordering of messages is not

changed in the transmission. The most important aspect of the Transport Layer is to

shield the upper layer services from inevitable changes to the networking hardware.

The transport layer offers multiple types of services to the session layer. The most

common service is an error-free point-to-point protocol. However other options such as

best-effort transmission or real time (approximately) transmission may also be available.

Obviously if the underlying layers offer broadcast and multicast services these will likely

also be offered to the session layer.

The transport layer is the first end-to-end layer. Lower layers operate between neigh-

boring machines or routers that form part of the network. The transport layer only

operates on the source and destination machines which carry on the conversation. (Day

& Zimmermann 1983)

2.4 The TCP/IP Reference Model 9

2.3.5 The Session Layer

The basic function of the network layer is to allow users on different machines to es-

tablish sessions between them. The sessions offer special functionality such as dialog

control (taking turns to transmit and receive), token management (preventing two ma-

chines from accessing the same area of memory or from updating the same information

at the same time) and download resume features (Internet Explorer resuming half-way

through a download even after a disconnection or crash). (Tanenbaum 2003)

2.3.6 The Presentation Layer

The presentation layer defines the syntax and semantics of information exchange. For

example transmitting plain text in American Standard Code for Information Inter-

change (ASCII) or Unicode format. This includes dealing with differing methods of

storing information and agreeing on a standard during transmission. A simple example

might be the different methods of storing a date between America (12/31/2004) or

Australia (31/12/2004). (Tanenbaum 2003)

2.3.7 The Application Layer

The application layer contains the range of higher-level protocols used by users of the

Internet. These protocols include features such as file transfer, electronic mail, news

servers and chat services. One of the most common protocols used for delivery of almost

all internet web pages is HyperText Transfer Protocol (HTTP) which defines how to

request and receive pages written in HyperText Markup Language (HTML). (Day &

Zimmermann 1983)

2.4 The TCP/IP Reference Model

The TCP/IP Reference Model was designed in response to the need for the seamless

interconnection of multiple networks. A common misconception is that the TCP/IP

2.4 The TCP/IP Reference Model 10

Figure 2.3: The TCP/IP reference model.

Reference Model was designed to smooth over some issues found in the OSI Reference

Model. This is not true as the TCP/IP Reference Model was defined several years

before the introduction of the OSI Reference Model (Cerf & Kahn 1974). The TCP/IP

Reference Model, as shown in Figure 2.3, was designed mostly to satisfy Department

of Defense requirements that end-to-end connections remained intact as long as the

source and destination machines were functioning. This relied on the assumption that

a functioning route between the source and destination existed, however, the main idea

was that the actual path this connection followed could change in response to individual

transmission links being decommissioned. As a result the TCP/IP Reference Model

did not define anything below the Internet layer in detail. (Tanenbaum 2003)

2.4.1 The Host-to-Network Layer

The host-to-network layer is the great void left below the Internet layer. Most references

on the TCP/IP reference model do not discuss this layer, however, it is included here for

completeness. The main concept here is that each host must connect to the network

and this will involve some protocol to encapsulate the Internet Layer, however the

details of this protocol are not covered.

2.4 The TCP/IP Reference Model 11

2.4.2 The Internet Layer

The internet layer is a connectionless internetwork that forms the basis of the TCP/IP

Reference Model. Its function is to allow packets from any network to travel inde-

pendently to a destination which may be separated from the packet source by many

different networks. The ordering of packets may be altered during transit and each

packet may follow a completely different path to the destination. This concept of

following a pathway to the correct destination is known as routing.

The internet layer defines the protocol known as the Internet Protocol (IP) and asso-

ciated format for an IP Header. Obviously Routing and congestion avoidance are the

major issues at this level which leads to the association between the TCP/IP internet

layer and the OSI network layer. (Cerf & Kahn 1974)

2.4.3 The Transport Layer

The transport layer is designed to allow a source and destination entities to undertake

a conversation. The functionality here is virtually the same as in the OSI Model, the

difference being that the TCP/IP Reference Model actually defines two end-to-end

transport protocols. These protocols are called Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP).

TCP is a reliable, connection oriented protocol which means it requires an end-to-

end connection to be established and maintained. This is achieved by requiring an

acknowledgement for each data segment or packet. The source is limited in how many

packets can be transmitted before waiting for acknowledgements to be received. The

main concept is to allow a byte-stream to be delivered from source to destination

without error or corruption. TCP splits the byte-stream into fragments or discrete

messages, adds error checking, sequencing and flow control information and passes the

packet to the internet layer.

UDP is a unreliable, connectionless protocol meaning it does not require an end-to-

end connection and could continue sending a flood of packets to a destination even

2.4 The TCP/IP Reference Model 12

though the path may have become unavailable. Packets are not acknowledged and may

arrive corrupted or may not arrive at all. Packets may also not arrive in the same

order as they are sent. The purpose of providing this service is to allow application

developers to implement their own sequencing and checksum’s or if the application

warrants, to exclude such features completely. Some applications which generally do

not need sequencing or reliability through checksums are real-time voice and video

transmission. (Tanenbaum 2003)

2.4.4 The Application Layer

Another void is found between the transport and application layers. The OSI Models

session and presentation layers where not perceived as necessary by the developers of

the TCP/IP model and were not included. Fortunately experience with the OSI Model

has shown that the session and presentation layers are practically of no use to many

applications.

The application layer contains all the higher-level protocols. The early internet proto-

cols included virtual terminal (TELNET), File Transfer Protocol (FTP), Simple Mail

Transfer Protocol (SMTP) and HyperText Transfer Protocol (HTTP). A number of

additional protocols have been developed for real-time chat and voice over IP. Contin-

uing protocol development is expected as system integrators find new and interesting

ways of using the internet to make life easier. (Cerf & Kahn 1974)

2.5 Chapter Summary 13

2.5 Chapter Summary

The internet came from fairly humble beginnings as a small connection of four com-

puters to form the first version of the ARPANET but not before major troubles were

overcome. Developing a packet-switched subnet was something that had not been at-

tempted and most telecommunications providers did not like the idea of some young

hot shot researcher telling them how to construct their networks. However once the

ARPANET began to grow, adopted more scalable protocols and became used by a large

range of people the concept of a internet became possible.

A large effort began to standardize how the Internet would work. Two models were

developed to address this issue. The OSI model is more generic and can be applied

to almost any form of network. Years of experience have shown that the number of

layers in the OSI model are slightly excessive and some layers are generally not used in

Internet applications. The TCP/IP model used less layers but is more specific to the

internet and can be fairly abstract when referring to lower level network features and

interface. As the concepts behind software development focus more on semantics and

syntaxes of the language or protocol the OSI model may gain popularity again, however,

at the moment the TCP/IP model is generally most relevant to internet development.

The constant development of new protocols is a constant challenge to developers fo-

cusing on TCP/IP as new protocols may not always let TCP and IP handel the issues

of routing, addressing and reliability themselves. An Early example of this was FTP

where the IP address and TCP Port was embedded in the FTP data stream. As ap-

plication developers develop new ways of using the Internet it is important to observe

the layering of the Internet and try to avoid breaching these layers when designing new

software and standards. This can particularly be a problem for applications such as

Network Address Translators where failure to correct a reference to the IP address or

TCP port in packet header or data can corrupt the entire process of translation.

Chapter 3

Design Specification

3.1 Chapter Overview

Many software development projects have been known to incur extensive and costly

design errors. The most expansive errors are often introduced early in the develop-

ment process. This underscores the need for better requirement definition and software

design methodology. Software design is an important activity as it determines how

the whole software development task would proceed including the system maintenance.

The design of software is essentially a skill, however, it usually requires a structure

which will provide a guide or a methodology for this task.

3.2 Design Methodology

3.2.1 Extreme Programming

Extreme Programming is a deliberate and disciplined approach to software Develop-

ment. It has been developed over a period of about 8 years and has proven successful

in companies of various sizes.

Extreme Programming is oriented towards customer satisfaction. It aims to deliver the

3.2 Design Methodology 15

required software on time even when changing requirements complicate the process.

Team work is central to the methodology in order to achieve this goal. (Wells 2003)

Despite these advantages, Extreme Programming is not a good choice in this project

because the customer who requires the product is also the programmer, therefore chang-

ing requirements are not likely to occur. There is also no development team involved

in this project so the use of GroupWise development would be a waste of effort.

3.2.2 Scrum

Scrum is an agile, lightweight process used in Product Development, particularly control

and management of software projects. Scrum focuses on traditional iterative, incremen-

tal programming methods while wrapping existing engineering methodologies such as

Extreme Programming and Rational Unified Process to allow agile development and

simple implementation.

Scrum significantly decreases development time and has faster benefit implementa-

tion while allowing adaptive, empirical system development. (Advanced Development

Methods Inc 2004)

Unfortunately Scrum is a highly commercialised development process which requires

employment of a certified ScrumMaster or participation in a two day course to become

a ScrumMaster. Most of these courses are only available in the United States and are

financially expensive. Scrum will not be implemented as part of this project.

3.2.3 Feature Driven Development

Feature Driven Development (FDD) is a process of software development aimed at

delivering requested or required features in the shortest possible time period. After the

overall project is identified and a feature list is created, each identified feature is fully

designed and then implemented into the system.

FDD allows a software development team to remain highly focused and greatly in-

3.2 Design Methodology 16

creases production and improves team spirit by delivering entire fully featured proto-

types throughout the development cycle.

Any software development suffers from exponential development times. As the project

nears completion, the amount of work completed decreases for the same amount of time

spent on development. FDD suffers greatly from this problem because each feature

suffers from exponential development times.

FDD is particularly common in projects which are in trouble and have deadlines and

milestones to be met. By focusing only on critical required features the project can

often be saved. FDD will only be used in this project if development falls behind

schedule.

3.2.4 STEPWISE

STEPWISE is a software development process designed to overcome limitations of the

ISO 10303-11 EXPRESS model by automating software development. EXPRESS is

used to represent product and process data in standard data stores, to increase data

value and decrease data management costs.

STEPWISE features an enhanced architecture to support automation of EXPRESS for

implementing high-level procedural interfaces, storage representations and interchange

formats. (Kahn 2000)

STEPWISE is designed for high-level applications and is probably more suited to 4th

and 5th level languages such as Structured Query Language. Despite its improvements

over C++, C#.NET is still a 3rd level language and is not particularly suited for

STEPWISE.

3.2.5 Rational Unified Process

The Rational Unified Process (RUP) was developed by the same people who originally

created Unified Modeling Language (UML). UML is a single complete notation for

3.2 Design Methodology 17

describing object models and is extensively used in Software Engineering. RUP is

a software development process providing a framework that can be used to describe

specific development processes.

The essence of RUP is iteration and RUP was developed with the goal that each

iteration ends in a deliverable (prototype, fully featured class, etc). RUP involves

extensive Risk Management, particularly of the risk that development will fall behind

schedule. RUP acknowledges that project plans do not define what will be produced,

but a statement of how to manage risk. A plan of action will inevitably fail while a

plan of contingencies will eventually succeed. (Sharon 1999)

However as a major part of the Engineering Program, this project cannot be allowed

to fail. Some aspects of the program development may be optional, provided that

the overall deliverables are provided. For this reason the contingencies are somewhat

limited and not particularly suited to RUP.

3.2.6 Waterfall Models

The waterfall model was originally developed as a series of discontinuous phases in-

volving Conception, Requirements, Architectural Design, Detailed Design, Coding and

Development and Testing and Implementation.

Several variations on this system interpose their own advantages and weaknesses into

the model. These variations include the Spiral Model, Modified Waterfall Model, Evo-

lutionary Prototyping, Code-and-Fix, Staged Delivery and Evolutionary Delivery.

• The Spiral Model breaks a software project up into mini-projects, each addressing

a major risk. This ensures that total project risk is inversely proportional to cost

at each step in the development process.

• The Modified Waterfall Model is potentially the same as the Waterfall Model,

however it is not done in Discontinuous steps. This enables the phases to overlap

where needed allowing requirements to be gathered while overall project progress

is still proceeding.

3.3 Programming Language 18

• Evolutionary Prototyping involves multiple iterations of requirements gathering.

Iterations produce individual prototypes to be presented to the customer to stim-

ulate further feedback and discussion of requirements.

• Code-and-Fix is the typical approach to avoiding the complexities of a devel-

opment methodology. It is only useful for small, throw away projects and is

dangerous because it offers no Quality Assurance or Risk Management.

• Staged Delivery involves breaking design, coding, testing and deployment into

separate stages which are useful to the customer. Each stage must function

independently of other stages.

• Evolutionary Development straddles evolutionary prototyping and staged deliv-

ery. Initial development is on lower-level functions which will hopefully remain

independent of changing customer requirements. (Business ESolutions 2002)

The Modified Waterfall Model is prefered in the project and will be employed as long

as the project remains on schedule. Failsafe will be provided by Feature Driven Devel-

opment if the project schedule is not fulfilled.

3.3 Programming Language

Business today demands sophisticated computing capabilities. Even the software prod-

ucts used for office automation (word processors, spreadsheets, etc.) have become large

and complex in the process of meeting user needs. The issues involved in creating large,

complex software are many and varied. However one issue continues to cause contro-

versy and seldom results in agreement between programmers. This issue is the choice of

Programming Language. Some alternative programming languages are presented and

discussed in this section.

3.3 Programming Language 19

3.3.1 Visual Basic.NET

VB.NET was developed as part of Microsoft’s Visual Studio solution and represents the

next generation of language and tools for rapidly building Microsoft Windows and Web

applications. VB.NET has a very clean interface for designing a Graphical User Interface

(GUI) making it extremely popular when developing such applications.

Unfortunately VB.NET is not a common tool in most Computer Science and Engineering

applications. Some features are useful for special Computer Science applications, how-

ever it is more generally regarded as a business programming language. For this reason

VB.NET was disregarded despite supporting the necessary socket operations required for

this development project.

3.3.2 ASP.NET

ASP.NET is derived from the Active Server Pages language used to create dynamic

web pages. This is not exactly suitable for a Network Address Translator which nor-

mally works at a much lower layer than ASP.NET. However ASP.NET would serve

a useful function for this project as a web interface for management of the Network

Address Translator (NAT). A particularly useful aspect of ASP.NET would be that a

web interface could be used to allow an Application Layer Gateway (ALG) to report an

anticipated incoming port. This may not be useful in all cases because the requested

port may already be in use. However it may be used to attempt a repair of some

applications which do not normally work under NAT such as Active FTP.

ASP.NET will not form part of this project however because it is unlikely to reach the

application layer. The most important issue is to achieve a simple working NAT for

use in future development.

3.3.3 C

C evolved from a language called B, written by Ken Thompson. C is a simple and small

language, which can be translated with simple, small compilers. Today it is among the

3.3 Programming Language 20

languages most commonly used throughout the computer industry.

There is no particular reason why this project could not have been developed in C. It

has a clean interface, is easy to use and supports all the necessary sockets operations.

The only downside is the difficulty in generating a Graphical User Interface (GUI) using

appropriate libraries. Writing a windows service in C can be difficult as a number of

hooks need to be developed. These hooks are for use by the operating system in starting

and stopping the service.

Although C was not used in this project it was excluded only because of time consid-

erations in GUI development and some difficulties in writing a Windows Service. The

final product could be ported back to C as a future project.

3.3.4 C++/Visual C++.NET

C++ is a rewritten and improved version of C. The major focus in developing C++

was to enable the development of object oriented programs. C++ also showcases a

variety of other features not found in C while still maintaining the basic syntax and

semantics found in C. Visual C++.NET is a particular implementation of C++ by

Microsoft. Visual C++.NET includes integrated GUI development tools which make

developing a GUI type interface much easier than using standard libraries in C or other

C++ environments.

Again there is no specific reason why C++ could not be used to develop this project.

The added benefit of integrated GUI development tools in Visual C++.NET only adds

to the reasons for using C++. However Visual C++ still requires complex methods

to support running as a Windows Service. In addition the Microsoft Foundation Class

(MFC) is extremely difficult to master and takes a lot of time to set up properly.

Future work could involve porting the application back to Visual C++ or developing

a user interface using standard C++ libraries.

3.3 Programming Language 21

3.3.5 Java

Java is an object oriented programming language which uses a Java Virtual Machine

(JVM) to run Java programs. The JVM is cross-platform capable having been ported

to many variants of Windows and Unix. The Java Application Programming Interfaces

are a set of pre-built classes that can be used in program development.

In C++, memory has to be explicitly requested when required. Likewise, when finished

with the memory, it has to be explicitly returned to the operating system. Although

this process sounds simple, it is easy to create a memory leak, which is when your ap-

plication requests memory and forgets to release the allocated memory. Over time, the

application grows in size, slows down the system greatly and eventually crashes. Java

implements a feature called Garbage Collection which automatically recovers memory

that can no longer be referenced by the program. The result is that memory leaks

cannot occur, to an inexperienced programmer it looks like every variable is causing a

memory leak, however, behind the scenes the garbage collector is searching for any piece

of memory which is no longer required and reclaiming it to be reassigned to another

variable or even another program. (Campione, Walrath & Huml 2000)

Despite the feature of garbage collection in Java it was not used in this project. Java

only supports two types of sockets, Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). A NAT requires a lower level socket known as a RAW

socket which receives an entire packet with the TCP and Internet Protocol (IP) headers

intact. Despite some later references to using a lower level protocol to inject packets at

the data link layer the decision to reject Java as a programming language had already

been made.

3.3.6 C#.NET

C#.NET, a Java-like programming language, was developed by Microsoft and submitted

to the ECMA standards group for approval. Although the language is Java-like its

syntax and semantics are remarkably similar to C/C++. The likeness to Java comes

from many features which are implemented in Java such as garbage collection and the

3.3 Programming Language 22

implementation of a hashing-table in standard functions for almost every variable type.

C#.NET had several other advantages over most other languages. It supported creating

a Windows Service using its own implementation. The only feature left for development

was code to start and stop the service. All the necessary hooks were linked to the devel-

opers functions. In addition C#.NET supports a very wide range of sockets including

RAW sockets which can send and receive packets including the full IP header. The

GUI development platform used in VB.NET is reproduced almost perfectly in C#.NET

enabling the simple development of a simple management interface for the project in

the same language in which the service was developed.

C#.NET was my final language of choice for this project. Although there have been

critics of C#.NET my decision was to use it in a kernel level project. The language is

quickly becoming popular and has successfully been used in a large number of commer-

cial projects.

3.4 Chapter Summary 23

3.4 Chapter Summary

This project followed the Evolutionary Development Model. By developing prototypes

commencing at low-level functionality and increasing this functionality until the overall

requirements are met, project progress can be measured through the attainment of

milestones and project research can be broken into individual concepts.

C#.NET is not the most common language for low level networking applications. How-

ever it was the programming language with the most features that were of practical use

in this project. Any other language would have required significantly longer periods of

time for development however C#.NET was similar enough in syntax to C/C++ that

the learning curve of the language was very short.

Chapter 4

Internet Protocol

4.1 Chapter Overview

No Network Address Translator (NAT) could be developed without a full understanding

of the Internet Protocol (IP). Already IP has been mentioned in several sections of this

book. It has been largely undefined, except to say it is a protocol developed and used

in the Internet. However, the use of IP is not limited to the Internet, many smaller

networks also use IP as an underlying communication protocol. This is testimony to the

robustness of IP, it can be used to deliver packets to the next cubical in the office, across

the street, across the country or around the world. This chapter examines the reasons

for developing the Internet Protocol, why it is so useful in computer communications

and the reason such a protocol would need added functionality in the form of a NAT.

Finally, the report shall breifly discuss what is currently being developed to remove the

need for a NAT and return IP to a completely independent protocol.

4.2 IP Functionality

The Internet Protocol is the glue that holds the Internet together. It was designed

explicitly for the task of internetworking or connecting many different types of network.

Its primary function is to provide a best-effort attempt to deliver segments of data

4.2 IP Functionality 25

Figure 4.1: The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003)).

called datagrams from source to destination with no regard for where the source and

destination are, be it on the same corporate Local Area Network, different Local Area

Networks that are interconnected by a router or on two completely different networks

separated by a multitude of other networks which are connected by many different

paths, commonly called a route. (Tanenbaum 2003)

4.2.1 Looking at an IP Header

Each datagram being sent via IP has a special IP Header added. The header is used to

identify the packet, set some control information, record the length of the datagram,

record error checking information (error checking is only for the header itself, not

for any data the header may contain) and indicate the source and destination of the

datagram. The header consists of a 20-byte fixed part an a variable length optional

part. There are two ways of looking at an IP Header. The first method is to review

the theoretical contents of the header and learn what each part indicates. The second

method is to examine a real IP packet to observe the practical application of the theory.

This is important in the design and implementation of a NAT because the header will

not label its contents adequately to assist the user in determining what the numbers

actually mean. The structure of a IP Header is shown in Figure 4.1.

Quickly Summarizing the meaning of the individual fields in an IP Header:

• The Version field indicates which version of the protocol the datagram belongs

4.2 IP Functionality 26

to allowing transitions to new versions to roll-out over many years.

• The IHL or Internet Header Length is provided to define how long the header is

in 32 bit words. The default and minimum value is 5 indicating a header with

no options. The maximum value is 15 indicating a header containing 40 bytes of

options.

• The Type of Service field distinguishes between different classes of service. For

example real-time voice requires fast delivery, however, this is not concerned with

reliability. In fact for most voice applications reliability and error checking cause

more problems than they solve. For data downloads however reliability is more

important than throughput (despite what some users would suggest). The actual

use of this field will not be explained here as in practice most routers ignore its

contents anyway.

• The Total Length indicates the length of the entire datagram which may consist

of a IP header, options and data. The absolute maximum Total Length is 65,535

bytes which is currently suitable for 1500 byte maximum ethernet frames, however

this is not ideal for new multi-gigabit ethernet connections.

• The Identification field allows the destination to determine which datagram a IP

fragment belongs to. All IP fragments that originate from the same IP packet

have the same Identification Number.

• DF is a single bit which stands for ”Don’t Fragment” and is an instruction that

the packet must not be fragmented (normally because the destination does not

have a full IP Stack loaded and cannot reassemble packets). IP requires that

every participating network accepts frames of 576 bytes or less.

• MF means ”more fragments”. If an IP packet is fragmented all pieces except for

the last will have this bit set.

• The Fragment offset indicates the relative position of the current fragment in the

fully assembled packet. The offset is given as a number of 8-byte fields which

offset the current fragment. As 13-bits is being used, 8192 fragments can occur.

This allows complete fragmentation of a 65,536 byte packet (one byte larger than

allowed by the IP protocol).

4.2 IP Functionality 27

• Time to live is a counter of packet hops. It is decremented once by each router

the packet passes through. If the value reaches zero the packet is discarded

and the host warned. This system prevents a routing loop from buggy router

configurations from crashing several backbone routers as packets flood into the

loop but never leave.

• RFC1700 was the first global definition of transport level protocols. The globally

accepted list is kept at http://www.iana.org/assignments/protocol-numbers.

The Protocol field may contain any number from this web page. It is used at the

destination and in some other circumstances such as Network Address Translators

to determine what data to expect following the IP Header and Options.

• As stated earlier IP is a best effort protocol which will attempt to deliver data-

grams, however makes no guarantee that individual datagrams will not become

corrupted or not reach their destination. The Header checksum is used to verify

that the data contained in the IP header is not corrupt. Higher level protocols

often also use a checksum that verifies the entire packet, including the data, has

not been corrupted. The IP checksum guards against routers with bad memory

modules and ensures that when IP reports the source to a higher layer the address

is correct.

• The Source Address is a 32 bit field used to identify the sending host.

• The Destination Address is a 32 bit field identifying the receiving host. More

information on IP Addresses will be provided in a following section.

• A large range of special features have been defined for use in the IP header

through the use of the Options field. The current list is kept current at http:

//www.iana.org/assignments/ip-parameters. The use of this field will not be

discussed and has become depreciated due to the limited size of the field and the

size of the global internet. (Tanenbaum 2003)

Table 4.1 shows the output of the debugger which has captured an IP packet. It

demonstrates how IP Headers are practically used, however it would be a dunting

task to actually decode the meaning of a packet without the details provided by the

explanation.

http://www.iana.org/assignments/protocol- numbers
http://www.iana.org/assignments/ip-parameters
http://www.iana.org/assignments/ip-parameters

4.2 IP Functionality 28

Table 4.1: Contents of a real IP packet.

Buffer Position Byte Contents Explanation

[0] 69 Version = 4, IHL = 5

[1] 0 Type of service = 0 = Normal

[2] 0

[3] 45 Total length = 45

[4] 159

[5] 52 ID = 40756

[6] 64

[7] 0 Don’t Fragment

[8] 128 TTL = 128

[9] 6 Protocol = 6

[10] 0

[11] 15 Checksum = 15

[12] 192

[13] 168

[14] 0

[15] 3 Source = 192.168.0.3 (My Computer)

[16] 207

[17] 46

[18] 106

[19] 173 Destination = 207.46.106.173

[20] 7 The rest of the packet can just be considered as data.

[21] 105

[22] 7

[23] 71

[24] 231

[25] 219

[26] 240

[27] 123

[28] 109

4.2 IP Functionality 29

Table 4.1: (continued)

[29] 112

[30] 168

[31] 186

[32] 80

[33] 24

[34] 65

[35] 89

[36] 213

[37] 88

[38] 0

[39] 0

[40] 80

[41] 78

[42] 71

[43] 13

[44] 10

4.2.2 Fragmentation

IP was designed to work over many different types of networks with various hardware

because it must accommodate for differences in the maximum frame sizes due to differ-

ent underlying networks. The maximum frame size of the underlying network topology

is called the maximum transmission unit (MTU).

Suppose in Figure 4.2 that Host A wants to send a large amount of data to Host C,

hence the IP Protocol creates a packet which is 1500 bytes long (1480 bytes of data +

20 bytes for the IP Header). The router at Host B receives the packet and assuming

the Don’t Fragment bit is not set, it will create two packets both destined for Host

C. The first packet will contain 976 bytes of data (the maximum multiple of 8 bytes

+ 20 bytes for the IP Header that can fit on the second network), will have the More

4.2 IP Functionality 30

Figure 4.2: An Example of connecting two networks with differing MTU values.

(adapted from (Feit 1998)).

Fragments (MF) bit set and will have a fragment offset of zero. The second packet will

contain the remaining 504 bytes of data, will not have the More Fragments (MF) bit set

however will have a fragment offset of 976. Host C will then have sufficient information

to reassemble both fragments and receive the correct data. (Tanenbaum 2003)

4.2.3 IP Addresses

An IP Address is a 32 bit number used in the source and destination fields of an IP

header. Each IP address consists of a network number and host number. In principle no

two machines on the internet can have the same IP address (in practice this situation

could occur however one host will not receive the packets unless the routing tables

are configured incorrectly). It is worth mentioning that one of my home computers

is a router and therefore receives two globally unique IP addresses, one for each of

the external interface to the internet and internal interface for the intranet (internal

network). When these issues are considered, the diminishing number of unused IP

addresses is not surprising.

IP Addresses are usually written in dotted decimal notation. For example the 32-bit

Hexadecimal address C0A80003 (or in decimal 3232235523) is written as 192.168.0.3.

Several IP addresses also have special meanings. For example the IP address 0.0.0.0

refers to the current host. In the above mentioned network the address 0.0.x.x refers to

the host with the given IP address on the local network. The address 255.255.255.255

indicates the broadcast address which means all hosts on the local network. The broad-

cast address on a remote network in the same class as above would be x.x.255.255

(though most administrators disable such addresses because they are a security risk).

4.2 IP Functionality 31

The IP address 127.x.x.x always refers to the loopback device. The loopback device is

a method of sending packets to the local machine without putting the packet onto the

physical wire. The loopback address is also valid for a device which may not have any

network interface installed to ease testing requirements. (Feit 1998)

4.2.4 Subnets

As mentioned earlier IP addresses encode the network and host number. For example

the 192.168.0.3 IP address given consists of the network address, 192.168 and the host

address, 0.3. Any computer in the same network must also have the same network

address with a different host address. Varying each part of the host address from

0 to 255 gives 65025 addresses. Even though some addresses are reserved for the

special purposes there are over 60000 usable IP addresses in the given address range.

Unfortunately Ethernet was designed with much stricter limits of only 1024 hosts per

network. The problem is that the networking authority will not give out two networks

of 65025 hosts each simply because the underlying network was not scalable (especially

when IP Addresses are already becoming scarce).

The solution was to allow networks to be split into several sub-networks or subnets

although still appear as a single large network to the wider Internet. In the above

example a subnet address would be specified to segregate the larger network into several

smaller networks. For example a subnet address of 255.255.255.0 would allow 256

subnetworks (in some cases subnet masks of all zeros or all ones in the address cannot

be used reducing this value to 254) each containing up to 254 hosts (0 and 255 are

reserved in each subnetwork as mentioned previously). (Feit 1998)

4.2.5 Classless InterDomain Routing

Classless InterDomain Routing (CIDR) is a solution analogous to scraping the very last

soup from the bottom of the pan. CIDR suggests allocating remaining IP addresses

in variable sized blocks. The blocks are not completely free from restrictions, they

still need to be allocated in blocks of 2x however this allows the last of the IP address

4.3 Network Address Translation 32

space to be allocated based on the current proven needs of an organization rather than

anticipated future needs. Research has shown that over 50% of all networks supporting

64K hosts actually have less than 50 hosts. Under the old method of IP Address

allocation these networks could have been given a network address supporting only 254

hosts and wasted IP Address space would have been avoided.

With CIDR each routing table entry has a 32-bit mask added. When a packet is

recieved by the router the destination address is extracted and each address in the

routing table is compared to the destination address which is masked by the correct

mask (one bits in the mask allow the equalivent bit in the destination address while

zero bits hide it) from the routing table. When a match is found the correct forwarding

interface is looked up in the table and the packet transmitted to the next hop. Because

multiple entries may match the destination address due to different masks the longest

masks are used first. A long mask (a large number of the 32 bits are ones) indicate a

very specific network whereas shorter masks indicate a more general case.

Fortunately the routing does get easier after the specific cases. Special cases are nor-

mally caused when the packet is very close to its destination. Consider the extreme

example when the next hop will be to the final host, the router must decide which of

several ports leads to the destination and will forward the packet on that port only.

Now consider the other case where the destination is a long way from the current loca-

tion (in terms of number of hops). When this occurs the routers may generalize specific

cases. For example imagine that all internet addresses starting with 203.2.x.x belong

to Australians. A router in Los Angeles does not need entries for 203.2.1.1 and then

203.2.1.2 when it can have a single entry for 203.2.0.0 with a mask of 255.255.0.0. All

packets matching this routing entry would likely be forwarded by a transpacific ocean

cable which might be called pacf01 by the router. (Tanenbaum 2003)

4.3 Network Address Translation

Despite the efforts to stop wasting IP Address space using solutions such as CIDR

and requiring organizations to prove the need for new IP Addresses there has been

4.3 Network Address Translation 33

little to no attempts to resolve the problem. New Internet designs with much larger

IP Addresses are being tested, however final commercial implementation will be years

away, if ever. A quick fix is required that can be implemented anywhere across the

Internet at any moment. This quick fix has been developed in the form of Network

Address Translation (NAT).

4.3.1 Overview of NAPT

Two types of NAT have been developed. The first version, Traditional NAT does not

save IP addresses for end users. It can however be implemented by an ISP to save

on the IP addresses wasted by allowing many small CIDR subnets (remember that a

subnet with 2 IP addresses actually consumes 4 IP Addresses). Traditional NAT simply

translates the users IP address to a globally unique IP address for packets destined for

the internet. Hence if a user needs 4 IP addresses they are allocated 4 private IP

addresses each being mapped to a global IP address by the service provider.

The second method of NAT is more accurately called Network Address Port Translation

(NAPT). NAPT is concerned with actually reducing the need for multiple IP addresses.

The idea is to multiplex a number of access requests to the external network onto a

single globally unique IP Address (although there is no rule stating that only one global

IP address could be used for NAPT). The incoming packets to the NAPT are then

demultiplexed back to the original source. Internally this is accomplished by mapping

tuples of the type (local IP addresses, local TU port number) to tuples of the type

(registered IP address, assigned TU port number) where TU is the transport layer unit.

Supported TUs are normally Transmission Control Protocol (see 5), User Datagram

Protocol and Internet Control Message Protocol query’s only. Limited inbound access

can be provided by statically mapping a known TU port service to a specific local IP

address. (Srisuresh & Egevang 2001)

4.3 Network Address Translation 34

4.3.2 Address Binding

In NAPT implementations, binding would take place between the tuple of (private

address, private TU port) and the tuple of (assigned address, assigned TU port). This

binding is created when the outgoing session commences.

4.3.3 Address Unbinding

NAPT may unbind the tuple of (assigned address, assigned TU port) when the last

connection closes. However because the situation of a host crashing must be handled a

timer is required to unbind addresses after a period of inactivity.

4.3.4 Header Manipulation

In the IP layer every packet header must be modified. These modifications are for the

source IP address for outbound packets and destination address for inbound packets.

The IP checksum must also be updated.

For TCP/UDP protocols the source port must be updated for outbound packets and

restored for the destination port of inbound packets. The checksum must also be

updated remembering that a pseudo header including the IP addresses forms part

of the checksum. As an exception UDP packets with zero checksum should not be

updated.

ICMP packets must also be specifically updated for the purposes of NAPT. The required

updates are to the ICMP Query ID and ICMP checksum. The Query ID must be

modifed from an internal ID to assigned ID for outbound packets and assigned ID to

internal ID for inbound packets. (Srisuresh & Egevang 2001)

Sometimes it may be necessary to add a specific protocol to a NAPT. The implemen-

tation details are not defined by the NAT standards and will vary depending on the

requirements of the protocol and the best practices for translating the protocol at the

time the supporting software is written.

4.3 Network Address Translation 35

4.3.5 Incremental Checksum Adjustment

IP, TCP, UDP and ICMP headers all use the same form of checksum. Unfortunately the

calculation of these checksums from scratch is computationally expensive. Fortunately

there is a better method of calculating an incremental checksum for an existing header.

There are two advantages of using this incremental checksum. First updating the

checksum based on modifications to the header is less computationally expensive than

recalculating from scratch. Second this form of update avoids the need to check for

packet corruption. If the received packet is corrupt and the checksum is recalculated

the next router or the destination machine will incorrectly believe the packet is correct

because the recalculated checksum will equal the true checksum of the now corrupt

packet. However incremental checksum on a corrupt packet will not correct for the

corruption so the next router or destination that attempts to verify the checksum will

fail and drop the packet. (Rijsinghani 1994)

4.3.6 ICMP error packet modifications

There is a slight difficulty in NAPT caused by ICMP error packets. The ICMP error

packet may contain an embedded IP packet (normally one which caused an error) and

this IP packet will contain source and destination addresses and possibly TCP/UDP

port numbers which need to be updated to ensure end-to-end transparency of the NAT

system. In addition the checksums of all embedded packets must also be updated to

reflect changes made by modification of the ICMP error packet. More details on ICMP

packets can be found at ftp://ftp.rfc-editor.org/in-notes/rfc792.txt.

4.3.7 FTP Support

NAPT requires special consideration when using File Transfer Protocol (FTP) in combi-

nation with NAPT. This is because FTP encodes several pieces of IP data into control

packets. This data can include IP Addresses and TCP Port numbers. Additionally

FTP can negotiate to open another port for the following file transfer. NAPT needs to

recognize this expected incoming port or packets will be lost as they are destined to a

ftp://ftp.rfc-editor.org/in-notes/rfc792.txt

4.3 Network Address Translation 36

(assigned address, assigned TU port) tuple that NAPT did not assign.

More details on the exact requirements of an Application Layer Gateway to overcome

this problem are provided in Srisuresh & Egevang (2001).

4.3.8 Using IP Options

Although IP Options are depreciated and seldom used there is a possibility that private

addresses contained in an IP Option would remain untranslated in a NAT packet tra-

versing the Internet. This problem is not addressed in many implementations of NAT

because routers using IP options should only consider the next-hop and the presence

of a private IP address would be overlooked.

4.3.9 Recommendations for Private IP Address Range

Organizations using NAT are recommended to make use of the three private IP Address

ranges provided by the Internet Assigned Numbers Authority (IANA). These Addresses

are 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16. If these numbers are not used one

possible problem that can occur is the local machine completes a DNS lookup and finds

a local IP address is the destination. However the NAPT will be unable to differentiate

between a request to the local IP address and one that should have been translated to

the Internet.

4.3.10 Privacy and Security

NAPT provides a privacy and security mechanism by shielding internal clients from

any unexpected inbound packets. Inbound packets are only possible if a port in use by

NAPT is selected for the attack and the attack source uses the same IP address as the

external machine. Launching such an attack is extremely difficult because both details

are normally stored on the NAPT servers memory and are not available to users or

external computers. Also because use of an invalid IP address is normally required by

the attacking machine two way communication cannot normally be established.

4.4 IPv6 37

However NAPT does have the undesirable impact on internal policing. If an internal

client uses NAPT to shield their attack on the Internet the owner of the NAPT server

will normally be blamed for the attack. Unless detailed logs are available the offending

person cannot usually be identified.

4.3.11 Fragmented Packets

NAPT will never be able to successfully translate outbound TCP/UDP fragments.

This failure results in the TCP/UDP header being contained in one of the fragments

and not in any other fragments. Normally the IP Fragment number would be used

in this situation however there is no guarantee that two client machines will not use

the same fragment identifiers and result in corruption. The only solution is to have

NAPT reassemble fragmented IP packets before allowing translation. This solution is

also recommended for the purposes of enabling Secure IP (IPSec) over NAT. (Srisuresh

& Egevang 2001)

4.4 IPv6

One of the newest major standards on the horizon is IPv6. Although IPv6 has not

officially become a standard, it is worth some overview, especially since the final in-

troduction of IPv6 will likely make the outcomes of this project worthless. It is very

possible that this information will change as IPv6 moves closer to standardization, so

this is a guide into IPv6, not definitive information. (Tanenbaum 2003)

Some of the benefits of IPv6 include greater addressing space, built-in Quality of Service

(QoS), and better routing performance and services. However, a number of barriers

must be overcome before the implementation of IPv6. The biggest will be what the

business need is for moving from current IPv4 to IPv6. The killer application for IPv4

has not appeared yet, it may not appear at all. However IPv6 will gain momentum

quickly if such an application is developed. The total lack of IP addresses may eventu-

ally force the role over without commercial support. Companies will follow more out

of need for compatibility than some great new web application.

4.5 Chapter Summary 38

4.5 Chapter Summary

In summary IP is a protocol developed for use in interconnected packet-switched net-

works. It provides the underlying structure necessary to obtain information from one

host to another while dealing with anything that might separate the source and desti-

nation hosts.

This chapter examined the IP Header and its data contents including some of the mean-

ing of the data. Also some of the special functions of IP to deal with common situations

with internetworking. An overview of some of the issues in distributing IP addresses to

various organizations was given. The issues of Network Address Translation were then

presented and reviewed in detail. This section is particularly complex and borrows some

details from the next chapter on the Transmission Control Protocol (TCP). Readers

who found this section difficult should not be disheartened as it requires a great deal

of technical knowledge. It is recommended that the chapter on TCP is reviewed before

returning to NAT.

Readers who have followed the contents of the current chapter will find the next two

chapters on the Transmission Control Protocol and some existing implementations of

NAT much lighter reading.

Chapter 5

Transmission Control Protocol

5.1 Chapter Overview

Transmission Control Protocol (TCP) builds on the IP layer to provide end-to-end con-

nectivity for packet-switched networks. TCP must compensate for the lack of reliability

in the IP layer and must operate in such a fashion as not to overload the underlying

protocols or core network routers.

This chapter will review the major features of TCP including the header structure.

The concepts of connections and establishing connections will be examined and a brief

overview of another Transport layer protocol called User Datagram Protocol.

5.2 TCP Functionality

TCP is a connection-oriented reliable service designed as part of the Transport layer.

TCP is connection oriented, with each application employing a TCP connection be-

tween itself and the opposing TCP end-point. This must occur before data may be

sent or recieved. The common term for this type of connection is a state based ser-

vice because the state of the connection is maintained and determines the ability of

applications to use the service.

5.2 TCP Functionality 40

Figure 5.1: The IPv4 (Internet Protocol) header. (adapted from (Tanenbaum 2003)).

Figure 5.2: Combining TCP and IP to encapsulate data.

Figure 5.1 shows the structure of a TCP header while Figure 5.2 shows how a TCP

header is added to the data which is then passed to the IP layer where an IP header is

added.

Quickly Summarizing the meaning of the individual fields in an TCP Header:

• The Source Port identifies the end-point of the connection. The end-point must

be identified to enable the TCP layer to determine which upper layer service

requiring the data. Common port numbers are defined at http://www.iana.

org/assignments/port-numbers.

• The Destination Port identifies the target end-point. A host’s IP address and

TCP Port together form a 48-bit unique end-point. Together the unique source

and destination end-points identify the connection.

• The Sequence Number identifies the TCP segment to enable packets to be re-

assembled to form a reliable byte stream.

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

5.2 TCP Functionality 41

• Acknowledgement Number is used to specify the Sequence Number of the next

TCP segment expected (not the last segment that was correctly received).

• The misc data field starts off with a 4-bit TCP Header Length. This is followed

by 6-bits which are not used and must always be zero. Finally there are six

1-bit flags used to signal important events to the TCP receiver. In order these

are the Urgent flag (URG) which indicates that the Urgent Pointer is in use.

The Acknowledgement flag (ACK) is set if the Acknowledgment Number is valid

or cleared if the packet does not contain an Acknowledgement. The Push flag

(PSH) is used to push the packet through the TCP layer immediately even if this

means avoiding buffering. The Reset flag (RST) is used to reset a connection for

which state information is invalid. This may be due to a host crash, to reject

invalid segments or refuse a connection request. The Synchronize flag (SYN)

is used to establish a connection. If the SYN bit is set and the ACK bit is

cleared the request is to establish a connection. If both bits are set the packet

represents acceptance of the connection. Finally the Finish flag (FIN) terminates

a connection. However after sending a FIN packet the TCP port must remain

open to incoming data indefinitely (assuming data continues to arrive).

• The Window Size is used for flow control as an indicator of how many bytes may

be transmitted starting from the acknowledged segment.

• A TCP Checksum provides extra reliability. The TCP header, data and pseudo

header participate in the checksum calculation. The checksum must be calculated

with the checksum field set to zero. The pseudo header contains the IP source and

destination addresses, a byte of 0 bits, a byte containing the protocol number (for

TCP the protocol this is the binary representation of 6) and the TCP segment

length (the IP total length minus the IP header length). Using the pseudo header

violates the independence between the IP and TCP layers, however it offers ad-

ditional protection against misdelivery of packets. The same concept of a pseudo

header is used in the User Datagram Protocol (UDP).

• The Urgent Pointer indicates the byte offset from the current sequence number to

find what is marked as urgent data. Urgent data is similar to computer interrupts,

allowing the sender to send a type of interrupt signal to the receiver without TCP

5.2 TCP Functionality 42

being aware of the reason for the urgent data.

• The Options field in TCP offers similarity to the IP Options field which allowed

the implementation of a large range of special features. However unlike IP the

TCP Options field is extensively used by features that support newer modern

networking hardware and software. (Tanenbaum 2003)

5.2.1 Addressing

TCP provides its own addressing mechanism. Unlike IP however TCP addresses are

not normally used by intermediate routers and are only meaningful to the end-host.

Addressing is required to identify the application or service to which the data belongs.

(Day & Zimmermann 1983) Some applications have default destination addresses such

as HTTP. When requesting a web page we do not need to specify the use of port 80.

However http://www.google.com.au:80 is a valid reference to the Google website.

With 65025 possible port numbers an internet host would need to run several thousand

simultaneous web applications to use all possible ports. This knowledge allows the

implementation of a Network Address Port Translator which uses ports to identify

different hosts, a job normally left to the IP layer.

5.2.2 Reliability

TCP offers a reliable end-to-end byte stream which means each byte must be delivered

once, in order and without error. However the IP layer does not guarantee any of these

features. IP packets may be duplicated, lost, corrupted or delivered out of order. The

TCP protocol uses sequence numbers, checksums that include the data and acknowl-

edgement to ensure that received data is correct. Any TCP segment received with

an incorrect checksum is immediately discarded. Such segments cannot be requested

again at the time they are discarded as the checksum error could be due to corruption

of the port numbers or sequence number. Sequence Numbers are also used to ensure

correct ordering of the data and for the purposes of Acknowledgements. Acknowledge-

ments may only be sent for segments which have been successfully received in order,

TCP may internally buffer segments which are separated from the current sequence

http://www.google.com.au:80

5.2 TCP Functionality 43

by a gap however may not transmit acknowledgments until the gap has been correctly

filled. TCP may request that segments causing gaps in the stream are resent explicitly

or request that all segments following a specific sequence number are retransmitted.

However the sending host is responsible for retransmitting packets based on a timer.

Support of requests from the opposing TCP end-point is optional. (Tanenbaum 2003)

5.2.3 Congestion Control

Internally the TCP recognises two types of congestion. Network Capacity is a response

to an overflow of packets on the network which will cause routers to run out of buffer

space and internally discard packets before they are delivered to the destination. Re-

ceiver Capacity is the amount of data the opposing TCP end-point is prepared to

receive before it requires time to process the received data and pass it to the upper

layers.

Internally TCP maintains two windows. One is the amount of data the receiver is

prepared to accept, the second is the congestion window. TCP will never send more

data than is indicated by the minimum of these two windows. The receiver window is

controlled by the remote end-point. However controlling congestion on the network is

slightly more involved.

Congestion control uses the congestion window and a threshold to find an optimal

amount of data to fill the network without causing congestion. The threshold is initially

set at 64 KB and TCP is allowed to transmit 1 KB of data. The TCP retransmission

timer is started and TCP waits for acknowledgements or a timeout. Whenever the

amount of data sent is all acknowledged without an error or timeout, TCP is allowed

to transmit double the amount of data as on the previous attempt unless the amount

has reached the threshold. After the amount of data sent on the previous attempt is

equal to the threshold both grow linearly at a much slower rate (about 2 KB for each

successful transmission). It is important to note that the amount of data transmitted

may never exceed the threshold as the threshold grows at the same linear rate. When

a timeout occurs the threshold is halved and the process repeats with TCP being

allowed to send 1 KB which is doubled on every successful attempt until the threshold

5.3 Data Connections 44

is reached. The process repeats indefinitely ideally with an average of about the correct

amount of data the Internet can correctly handel at the time. At all times TCP may

never send a burst larger than the minimum of the congestion control size and the

receiver window size. (Tanenbaum 2003)

5.2.4 Connection Management

TCP needs to initialise and maintain some state based information including local

and remote end-point information, local and remote sequence numbers and window

sizes. Each TCP connection must be initiated and initialized by the transfer of state

information. For example TCP hosts must agree on window sizes and starting sequence

numbers when the connection is created. When the connection is closed the memory

used for this state information may be freed for other applications or connections. All

connection management data transfer is also checked and TCP must recover from any

error such as lost connection requests in a timely manner. (Robison 2002)

5.3 Data Connections

5.3.1 Three Way Handshaking

All TCP connections begin passively with one side waiting for a connection. This

involves a blocking call to the listen or accept methods specifying a particular source

address or accepting connections from any source address. The call is named as blocking

because the application cannot proceed until a connection is made, the execution of

the code is blocked until a connection request is received.

The second step is for an application to execute the connect method specifying the

end-point of the connection (IP Address and TCP Port), the window size and optionally

any user data to be used when establishing the connection (a username and password

for authentication perhaps). TCP then sends this information out in a packet with the

SYN flag set. The recieving machine checks that an application has executed a listen

or accept method on the specified port. If this does not occur, the connection is

5.3 Data Connections 45

Figure 5.3: TCP connection establishment.

rejected by replying with a packet that has the RST flag set. Otherwise, the application

that executed the listen or accept method receives the connection request. This is

accomplished by sending a reply packet with both the SYN and ACK flags set and the

acknowledgement number being the sequence number used in the connection request

plus one to indicate the next segment. Finally the session is fully opened by a reply with

the next sequence number and the ACK flag set for the response. (Tanenbaum 2003)

This process is depicted in Figure 5.3.

5.3.2 Simultaneous Open

In TCP there is the possibility that two hosts will simultaneously attempt to establish a

connection. If this occurs only one connection must result. TCP handles this situation

by ordering the connection end-points. Hence both connections will result in the con-

nection (x,y) never (y,x) and TCP will only record one table entry for the connection.

Each host will reply by resending their initial SYN while including an ACK for the

opposite host’s request. This situation is shown in Figure 5.4.

5.3.3 Active Close

TCP Connections may be closed by two methods. The first is an active close where

the client closes the TCP application causing a FIN segment to be sent. The client

may then receive a FIN only segment indicating a simultaneous close which is similar

5.3 Data Connections 46

Figure 5.4: TCP Simultaneous Open. (adapted from (Tanenbaum 2003))

to a simultaneous open. Both applications then send ACK segments to finalize the

connection. Alternatively the client may receive a FIN packet also Acknowledging its

FIN. The client will send its final Acknowledgement and close the connection. Finally

the client may recieve an Acknowledgement to its FIN without a FIN from the opposing

end-point. This indicates that the opposite end-point may have more data or has kept

the connection open for some other reason. The client must keep to its promise that it

has completed sending data, however must continue to accept data until the opposite

end-point agrees that it is also Finished (FIN) at which point the connection may be

closed. In all cases a closed connection must be retained in memory in case any lingering

packets related to the connection arrive.

5.3.4 Passive Close

Passive Close is the alternative method of ending a connection. A Passive Close occurs

when the host receives a FIN before the application terminates. The host replies with

an ACK segment for the FIN, however it must then wait for the application to complete

its communications which may include sending more data before the return FIN can

be transmitted. Once this FIN is Acknowledged the connection may be released.

5.4 User Datagram Protocol / Real-Time Transport Protocol 47

5.4 User Datagram Protocol / Real-Time Transport Pro-

tocol

The User Datagram Protocol offers the benefits of IP communication without the strict

connection establishment, state and release requirements involved in TCP. The main

reason to offer this service is the addition of the port information found in the UDP

header. Without this port information the transport layer would not be able to deter-

mine the appropriate higher layer destination of the information.

UDP segments can choose to use a checksum to ensure reliability. This option can

also be disabled by setting the checksum to zero. Sometimes using the checksum is of

little use due to the fact that the data stream is real-time and although the processing

algorithms can deal with corrupt data it cannot wait for the data to be re-transmitted.

Another important feature of UDP is the lack of flow control, error control or retrans-

mission. Particularly the lack of flow control means data is pumped onto the network

as fast as the network layer can manage. This is particularly important for real-time

communication.

The advantages of UDP in real-time applications lead to the development of an addi-

tional underlying protocol called the Real-Time Transport Protocol (RTP). The basic

function of RTP is to multiplex several real-time data streams onto a single outgoing

stream. RTP works on top of UDP which does raise some questions regarding as to

which layer of the OSI or TCP/IP Reference Models it belongs.

RTP supports features such as time-stamping, encoding identification and sequencing.

Sequencing is only concerned with the correct order of packets and helps the target

applications account for lost data. For example if a video frame is lost it might be

better not to update the video feed until the next frame arrives as opposed to blanking

it. However, if the video is encoded, special consideration to prevent the corruption

spreading across future frames may be required. There is also a Real-Time Transport

Control Protocol which handles feedback from the RTP protocol. (Perkins 2002)

5.5 Chapter Summary 48

5.5 Chapter Summary

This chapter looked at Transport Layer protocols, an important link in computer com-

munication. TCP provides a full duplex, reliable, flow controlled service to higher

layers. TCP establishes and maintains connections on behalf of the higher layer service

and then allows the transfer of data with the remote end-point. The data is delivered

at the remote end-point and organized into correct order with any duplicates removed.

TCP also handles connection release when both applications have finished using the

communications channel.

TCP also plays a important role in the successful implementation of a Network Address

Translator (NAT). By recognizing that TCP port numbers can be used by the NAT to

represent internal end-points we can identify several different connections by varying the

port number used for communication and translating this port number to the correct

IP Address and Port Number at the NAT boarder.

It is important to recognize that several other transport protocols exist such as UDP. For

a complete Network Address Translator we need to make as many of these protocols

as possible function correctly under NAT. This is especially important for protocols

which are in common use over the Internet so that NAT can provide functionality

which approximates true IP Routing as closely as possible.

Chapter 6

Existing Network Address

Translators

6.1 Chapter Overview

Part of implementing a new and successful Network Address Translator (NAT) is to un-

derstand current NAT implementations, the reason they are sucessful, in what manner

they could be improved to become widely adopted and the purchase price. If a NAT

can be developed to include better features, not require additional improvement and/or

is cheap to customers, it will almost certainly gain a share of the market. If several of

these objectives can be acheived, the current market leaders sales’ would diminish as

the new product prospered.

Obviously it is not the objective of this project to create a NAT which is ready for

commercial distribution, however the issue of possible future commercialization of the

product must be addressed for the lifetime of the code to extend over several years.

If this issue is not considered the outcome of this project may not be suitable for

commercial production environments and the entire project will become a throw-away

prototype.

6.2 Windows 50

6.2 Windows

6.2.1 NAT32E

NAT32E is an enhanced IP Router allowing all private hosts on one or more Local

Area Networks (LAN) to access the internet. NAT32E supports a range of connection

interfaces including Dial Up Networking (DUN), Cable Modems, Asynchronous Digital

Subsciber Line (ADSL) interfaces or Remote Access Service (RAS) interfaces. Con-

figuration is automatic on most systems while manual web based configuration is also

supported.

NAT32E supports a new feature called Connection Aggregation. This allows the NAT

server to split data requests among two or more dial up modems. This feature may ap-

pear very useful, however it does not provide any level of competition to new Broadband

services which operate without exclusive use of a phone line and cost approximately

50% less for the same speed.

NAT32E has many of the features that make NAT software most popular with home

and small office users. It retails for US$50 for the more advanced version and US$25

for the single network only version.(NAT Software 2004)

6.2.2 BrowseGate 3 NAT/Proxy server and firewall

Browsegate 3 provides easy to use access to the Internet for all networked PC’s. This

includes all common services such as Web, Post Office Protocol (POP) and Simple

Network Mail Protocol (SNMP) e-mail, Network News Transfer Protocol (NNTP),

File Transfer Protocol (FTP) downloads or uploads and streaming video, audio and

chat programs.

Browsegate 3 includes an integrated Firewall to stealth selected inbound or outbound

access on specific ports. This type of technology is popular for larger organizations

because it provides a higher measure of security. By controlling which services clients

can access at a single point (the Firewall) the organization can make user-wide policy

6.3 Linux 51

changes through a single update to the settings.

BrowseGate 3 is more commonly associated with large business as is indicated by its

pricing schedule and enhanced security features. Pricing ranges from US$114.95 for

a 5 computer licence to US$1100 for a unlimited computer version.(NetcPlus Internet

Solutions 2004)

6.3 Linux

6.3.1 IP Masquerading

IP Masquerading is a form of Network Address Translation developed for Linux. The

goal of the package is to provide the features of high priced routers and NAT servers

without the high cost. IP Masquerading maps packets from the company intranet to

the Internet and maps the responses from the Internet to the company intranet.

IP Masquerading has been developed over several years and is fairly secure and stable.

It is currently being used with excellent results and any new bugs are quickly fixed by

the Linux development community.

Because IP Masquerading forms part of the Linux kernel it is distributed in a number

of flavors of Linux which can be downloaded freely from the Internet or purchased at

minimal cost in a boxed set.

6.3.2 IP Tables

IP Tables is really just a newer version of IP Masquerading used in Linux Kernels 2.4.x

and above. The purpose was to create an integrated NAT and Firewall environment

including the ability to forward inbound services on static ports all as part of one large

system configuration. In pervious versions of IP Masquerading the NAT was generally

independent from the Firewall which was independent from Port Forwarding.

IP Tables used a large part of the stable and secure IP Masquerading system which

6.3 Linux 52

has resulted in few bugs or errors. It is more popular among high-end System Admin-

istrators who find the integrated Firewall, NAT and Port Forwarding an advantage in

easing System Administration burdens.

Again this system forms part of the newer Linux kernels and is distributed freely across

the Internet.

6.4 Chapter Summary 53

6.4 Chapter Summary

Although there are a number of free, well developed NAT Servers available, a large

majority of these support only Linux based Operating Systems. Most NAT Servers

developed for Windows have a financial cost associated which may vary depending on

the number of machines requiring simultaneous access to the Internet through the NAT.

Most NAT Servers for windows have some features in common. They are easy to set

up with few user configured options. This can be achieved in most cases by guessing

which interface is to a private network and which interface is to the Internet Provider.

Most feature automatic setup of clients through the use of Dynamic Host Configura-

tion Protocol (DHCP) to assign private IP addresses to internal clients and provide

information to help clients access the NAT and other services such as Domain Name

Service (DNS).

The key to success of a new NAT is to ask the question, “What services could be

provided by NAT which are not currently supported by existing clients?” Most NAT

Servers offer a wide range of services, so what more features can the user desire? The

answer to this question is largely subjective and can be broken down into two sections.

Features that Business Users seek and features that Home Users desire.

Security is the most important feature to Business Users. They require internal clients

to be secure from the dangers of the Internet without constant monitoring of every

computer. Business Users are therefore interested in services such as Authentication

(Client with IP address X cannot use the NAT until user of client X identifies himself

as a valid member of the business or organization). Sometimes this leads to the sec-

ond requirement of exclusion. (If user of client X has made extensive use of Internet

resources then prevent user of client X from accessing the Internet for the remainder

of the day.)

Home Users favour ease of use and wide application support. Application Layer Gate-

ways for non-NAT compatible applications and special modules, to identify specific

modifications required to make packets compatible with NAT, are popular among such

users. Any attempts to automatically configure the NAT to support a specific appli-

6.4 Chapter Summary 54

cation will be well regarded by home users. High autonomy of security features and

configuration will also be a popular program feature.

Obviously the requirements of Home and Business Users are very different. They

may appreciate separate applications or at least different configurations based on a

selection during installation. However, by tailoring the features of a NAT to more

groups, increased sales and market share can be achieved. This will allow for lower cost

software to compete with alternative NAT’s to be viable.

Chapter 7

Network Address Translator

Implementation

7.1 Chapter Overview

Implementation of the Network Address Translator (NAT) required knowledge of the

C#.NET programming language and a knowledge of the Windows Socket Application

Programming Interface (API) including special RAW Sockets to enable to inclusion of

TCP/IP headers in the packets being sent and received. Additionally, knowledge of

the function of a Network Address Translator in relation to the IP and TCP protocols

is also necessary. This information concerning NAT was covered in Chapter 4.

This chapter will cover other aspects of implementation such as using the C#.NET

language and Windows API Sockets.

7.2 C#.NET Basics

The C#.NET programming language is similar to an amalgamation of the C/C++

Programming Language and the Java programming language. The main difference in

C#.NET is the input/output. In most C/C++ programs input/output is from the

7.2 C#.NET Basics 56

Figure 7.1: A simple C#.NET form.

console. In normal C#.NET programs there is a Graphical User Interface (GUI) and

as such most input/output is from/to GUI controls. For example suppose a C#.NET

Form is created as in Figure 7.1. Button1 is a input control which may be linked to

some code. If we linked this button to the code in Listing 7.1 the result shown in

Figure 7.2 will be displayed.

Listing 7.1: Hello World Code� �
using System ;
using System . Drawing ;
using System . Co l l e c t i o n s ;
using System . ComponentModel ;
using System . Windows . Forms ;
using System . Data ;
namespace Di s s e r t a t i o n
{

/// <summary>
/// Summary d e s c r i p t i o n f o r Form1 .
/// </summary>
public class Form1 : System . Windows . Forms . Form
{

private System . Windows . Forms . Label l a b e l 1 ;
private System . Windows . Forms . Button button1 ;

7.2 C#.NET Basics 57

/// <summary>
/// Required de s i gne r v a r i a b l e .
/// </summary>
private System . ComponentModel . Container

components = null ;

public Form1 ()
{

//
// Required f o r Windows Form Designer

suppor t
//
In i t i a l i z eComponent () ;

//
// TODO: Add any cons t ruc t o r code

a f t e r In i t i a l i z eComponent c a l l
//

}
/// <summary>
/// Clean up any re source s be ing used .
/// </summary>
protected override void Dispose (bool

d i spo s i ng)
{

i f (d i spo s i ng)
{

i f (components != null)
{

components . Dispose () ;
}

}
base . Dispose (d i spo s i ng) ;

}
#reg ion Windows Form Des igner generated code

/// <summary>
/// The main entry po in t f o r the a p p l i c a t i o n .
/// </summary>
[STAThread]
stat ic void Main ()
{

Appl i ca t ion .Run(new Form1 ()) ;
}
private void button1 Cl i ck (object sender ,

System . EventArgs e)
{

l a b e l 1 . Text = ” He l lo World” ;
}

}
}� �
Although this is a simple example it does demonstrate some of the most basic features

of C#.NET and should be easily understood by those who have previously developed

in C++.

7.2 C#.NET Basics 58

Figure 7.2: The result of Hello World Code execution on the C#.NET form.

7.3 Using Sockets 59

7.3 Using Sockets

Understanding the most basic use of C#.NET is only the first step in developing a

complex internet application. The next step is to understand the use of Windows

Socket. Traditionally a socket was the end-point of a transport layer protocol such as

TCP. However a socket became known as the end point for any protocol and the term

RAW Socket was coined to describe a socket working below the IP Protocol, that is

receiving or transmitting packets with the IP header intact and no IP error checking.

(Robison 2002)

7.3.1 Application Programming Interface

In order for a third party application to use a core part of the Operating System it

must follow a standard for calling system functions. In windows this standard is called

the Application Programming Interface (API). The API controls all sockets as a part

of the Operating System function. The socket may be controlled through a number of

functions available to the programmer. By calling these functions correctly a program

can create a socket connection and send or receive data.

7.3.2 Windows Sockets

The first step in using the API to creating a working socket is to create a socket descrip-

tor. The descriptor is similar to unix files and is usually stored simply as an integer

which has special meaning to the operating system. A socket descriptor is created

by the code Socket nameofsocket = null; . Next, the socket descriptor is linked to a

real socket. This is achieved by the code nameofsocket = new Socket(AddressFamily.

InterNetwork, SocketType.Raw, ProtocolType.IP);. Obviously this socket is for Inter-

Networks and is a RAW socket from the IP Protocol.

Once a socket is obtained the C#.NET development studio makes it easier by showing

the methods implemented for the socket. This interface is shown in Figure 7.3. If the

socket command to be accessed is known, then it is only necessary to type the first few

7.3 Using Sockets 60

Figure 7.3: The Visual Studio Development Environment.

letters of the name and push the tab key, the Development Studio addresses the rest.

It also provides dynamic help based on which command is being used and supports

automatic selection for complex or well known choices.

7.3.3 Advanced Socket Control

There are a few special features of sockets required in this project. First there is the

requirement to send packets including the IP Header without allowing the system to

generate its own IP Header. Secondly, the NAT needs to check all packets as they are

received, to ensure that the packets should be sent onto the internet. These packets

will not be explicitly sent to the NAT Server because they will contain the address of

the remote end-point. This type of receiving is called promiscuous mode and is not

supported under all hardware and software configurations.

7.4 Putting it all Together 61

The solution to the first problem is fairly simple. C#.NET allows an option to be set

on each socket to include the IP Header as in the code nameofsocket.SetSocketOption

(SocketOptionLevel.IP, SocketOptionName.HeaderIncluded, 1);. Setting up Promis-

cuous mode however, requires a small block of code which requests the appropriate

settings and checks the response to ensure the operation completed successfully indi-

cating that the software can support this operation. Listing 7.2 shows the required

code segment.

Listing 7.2: Promiscous Mode Sockets� �
private bool SetSocketOption ()
{

bool r e t v a l u e = true ;
try // .NET Except ion hande l ing
{

byte [] IN = new byte [4] { 1 , 0 , 0 , 0} ;
byte []OUT = new byte [4] ;
int SIO RCVALL = unchecked ((int) 0x98000001) ;

// Contro l code f o r SIO RCVALL documented
on MSDN.

// See h t t p ://msdn . micro so f t . com/ l i b r a r y /
d e f a u l t . asp? u r l=/ l i b r a r y /en−us/winsock /
winsock / w s a i o c t l 2 . asp f o r d e t a i l s .

int r e t c ode = socket . IOControl (SIO RCVALL, IN
, OUT) ; // r e c e i v e a l l IP packe t s on the
network .

r e t c ode = OUT[0] + OUT[1] + OUT[2] + OUT[3] ;
//Check t ha t opera t ion suceeded .

i f (r e t c ode != 0) r e t v a l u e = fa l se ; // I f not
re turn error .

}
catch (SocketExcept ion)
{

r e t v a l u e = fa l se ; // I f any o f the above
caused an except ion , re turn an error .

}
return r e t v a l u e ;

}� �
Using these advanced features and standard socket operations all the features required

for this project were implemented.

7.4 Putting it all Together

Once the Fundamental aspects of working with the RAW Sockets API were understood

the final program could be written. This included development of an overview of the

solution and finally implementation as a Windows Service.

7.4 Putting it all Together 62

7.4.1 Pseudocode

Listing 7.3 shows the functioning of the NAT. Obviously this is made very simple in

C#.NET by the functionality of Hashing Tables and the RAW Sockets class I wrote

which managed all of the IP header and checksum details internally.

Listing 7.3: PseudoCode for Main NAT Function

ForEach Packet

i f Packet Source = In t e r na l Network & Packet

Des t ina t i on = External Network

Packet Source = Global I n t e rn e t Address o f NAT

i f Hash Table Result = Port Number

Packet Source Port = Hash Table Result

else

Packet Source Port = New Hash Table Result

i f Packet Des t ina t i on = Global I n t e rn e t Address o f NAT

& Dest inat i on Port = Reverse Hash Table Result

Packet Des t ina t i on = Reverse Hash Table Result

Packet Des t ina t i on Port = Or i g ina l Port Number

7.4.2 A Windows Service

Listing 7.4 shows the core code required for an implementation of a Windows Service

in C#.NET. It is obvious from this code that the main points are to declare the re-

quired variables, set up some constantly looping decision making functions and clean

up any variables and persistent code when stopping the service. Attention is drawn

to the TODO: labels indicating areas where the user needs to add code. This code is

completely generated by C#.NET without any user input except to request the creation

of a Windows Service.

Listing 7.4: Implementing a Windows Service� �
using System ;
using System . Co l l e c t i o n s ;
using System . ComponentModel ;
using System . Data ;
using System . Diagnos t i c s ;

7.4 Putting it all Together 63

using System . Se rv i c eProc e s s ;
namespace WindowsService1
{

public class Se rv i c e1 : System . Se rv i c eProc e s s .
Serv iceBase

{
/// <summary>
/// Required de s i gne r v a r i a b l e .
/// </summary>
private System . ComponentModel . Container

components = null ;

public Se rv i c e1 ()
{

// This c a l l i s r e qu i r ed by the
Windows . Forms Component Designer .

In i t i a l i z eComponent () ;

// TODO: Add any i n i t i a l i z a t i o n a f t e r
the InitComponent c a l l

}
// The main entry po in t f o r the proces s
stat ic void Main ()
{

System . Se rv i c eProc e s s . Serv iceBase []
ServicesToRun ;

// More than one user Serv i c e may run
wi th in the same process . To add

// another s e r v i c e to t h i s process ,
change the f o l l ow i n g l i n e to

// c rea t e a second s e r v i c e o b j e c t . For
example ,

//
// ServicesToRun = New System .

Serv i ceProces s . Serv iceBase [] {new
Serv i ce1 () , new
MySecondUserService () } ;

//
ServicesToRun = new System .

Se rv i c eProc e s s . Serv iceBase [] { new
Se rv i c e1 () } ;

System . Se rv i c eProc e s s . Serv iceBase .Run(
ServicesToRun) ;

}
/// <summary>
/// Required method f o r Designer suppor t − do

not modify
/// the con ten t s o f t h i s method wi th the code

e d i t o r .
/// </summary>
private void In i t i a l i z eComponent ()
{

components = new System . ComponentModel
. Container () ;

this . ServiceName = ” Se rv i c e1 ” ;
}
/// <summary>
/// Clean up any re source s be ing used .
/// </summary>

7.4 Putting it all Together 64

protected override void Dispose (bool
d i spo s i ng)

{
i f (d i spo s i ng)
{

i f (components != null)
{

components . Dispose () ;
}

}
base . Dispose (d i spo s i ng) ;

}
/// <summary>
/// Set t h i n g s in motion so your s e r v i c e can

do i t s work .
/// </summary>
protected override void OnStart (string [] a rgs)
{

// TODO: Add code here to s t a r t your
s e r v i c e .

}
/// <summary>
/// Stop t h i s s e r v i c e .
/// </summary>
protected override void OnStop ()
{

// TODO: Add code here to perform any
tear−down necessary to s top your
s e r v i c e .

}
}

}� �

7.5 Chapter Summary 65

7.5 Chapter Summary

This chapter reviewed some of the significant features of C#.NET that were important

in development of the Network Address Translator. By understanding these important

concepts the development of the RAW IP Receiver and Sender could be completed.

Once this was achieved the main task was to provide an interface for accessing the

TCP/IP Header fields for updates and maintaining important information such as the

Checksum’s updated without involving the user.

The final code implementation is included in Appendix B. There are a few features of

this code that have not been discussed here. However the main outcome of this project

was a fully features packet class which can be used to receive packets completely, make

modifications and send the packet. This class has several other uses in products such

as usage meters, network bridges and routers. One important feature of this device

is that a router could exist on a network without consuming an IP address while still

offering all necessary routing features.

Chapter 8

Conclusions and Further Work

8.1 Achievement of Project Objectives

The following objectives have been addressed:

History of the Internet and Network Reference Models Understanding the mo-

tivation behind creating the Internet and the considerations made before its in-

ception, is the first step in developing any type of Internet enabled application.

The major focus was on the TCP/IP Protocol suite which is used for most Inter-

net communications. The networking hierarchy was studied in detail to determine

the contribution each layer made to the overall communication structure. Two

networking hierarchy models were presented, the TCP/IP Reference Model and

the Open Systems Interconnect (OSI) Reference Model. These models also dis-

cussed common network problems and how they can be overcome. Chapter 2

presented these important details.

Design and System Specification In Chapter 3 the reasons for key design choices

were addressed. This project was not intended to be simply thrown away at

completion and therefore, needed to adhere to strict communications standards.

It was necessary for a design methodology to be chosen to maintain the project

time line. Additionally the choice of programming language was discussed and

chosen. Although the use of C#.NET was controversial for this type of project

8.1 Achievement of Project Objectives 67

its selection was justified for the special coding features it contained.

The Internet Protocol Chapter 4 expands on a concept raised in the TCP/IP Ref-

erence Model from Chapter 2. The idea being to have the layer use a mesh of

interconnecting networks to attempt transmission of a packet from a source host

through the mesh onto another destination host. At this point Network Address

Translator (NAT) implementation begins, however Transport layers also form

part of the NAT service delivery and are discussed in Chapter 5.

The Transmission Control Protocol Chapter 5 offers greater detail on the Trans-

port Layer which defines an end-to-end connection between two hosts. The layer

provides the error control, retransmission and packet ordering expected by higher

level services.

Existing Technology Current implementations of Network Address Translators were

discussed in Chapter 6. The importance of utilizing popular features while imple-

menting new ones was also detailed. The costs associated with purchasing some

of these existing NATs were also addressed.

Implementation The concepts of C#.NET required in the implementation of a Net-

work Address Translator and other low-level Network applications were addressed

in Chapter 7. The topics ranged from a simple greeting program to complex socket

operations. Full implementation code is provided in Appendix B.

Although the overall Network Address Translator is incomplete, the major objectives

of the project have been achieved. A large amount of research was completed to un-

derstand core concepts of Internet communication protocols. Knowledge was gathered

concerning features of a chosen programming language appropriate for NAT implemen-

tation. The concepts of NAT implementation were comprehensively researched. The

code to deal with low level networking interfaces was implemented and the ability to

develop NAT in the selected language was proven.

It is anticipated that future project development could use this research and devel-

opment to implement a fully featured Network Address Translator with security and

compatibility features aspired by consumers.

8.2 Further Work 68

8.2 Further Work

The immediate future of this project requires research into problems experienced with

connection stability. The existing code supports full TCP three way handshaking how-

ever the connection then resets resulting in client and host confusion. It is suspected

that the RAW Socket code may allow the packet to also be passed to higher level layers

on the NAT Server which then rejects the connection as unestablished.

In the longer term it would be recommended to implement security and authentication

features to ensure only registered users are accessing the NAT server. This could be

coupled with packet shaping (slowing the maximum throughput of a client) or connec-

tion severing (disconnect clients with no remaining quota). Home users would prefer

features that detected expected incoming connections and attempt to compensate at

the NAT Server. If such functionality is important sequence numbers could be used to

further de-multiplex connections however this could quickly become computationally

expensive to the NAT Server and is not a guaranteed method of delivery.

Other features that would integrate well with a NAT project are Firewalls to block

unexpected or distrusted inbound connections, Proxy servers to cache web page requests

and replies and dynamic port forwarding that open NAT ports when a service such as

a Web Server starts and close the ports when the service is stopped.

Testing needs to be undertaken to determine if the NAT and other featured applications

would require a multi-threaded approach to ensure maximum user throughput. At the

time of development it was considered the development of multiple threads of control

within the application were unnecessary. Under heavy load however, a multi-threaded

applications may support more clients than a single-threaded application could handle.

References

Advanced Development Methods Inc (2004), Scrum Development Process, World Wide

Web, United States of America.

http://www.controlchaos.com/entry.htm

current May 2004.

Baran, P. (1964), Distributed Communications, RAND Corporation.

http://www.rand.org/publications/RM/RM3420/RM3420.chapter1.html

current October 2004.

Business ESolutions (2002), Project Lifecycle Models: How they differ and when to use

them, World Wide Web, Caifornia.

http://www.business-esolutions.com/islm.htm

current May 2004.

Campione, M., Walrath, K. & Huml, A. (2000), The Java Tutorial: A Short Course

on the Basics, third edn, Addison-Wesley.

Cerf, V. & Kahn, R. (1974), A Protocol for Packet Network Interconnection, Vol. COM-

22, IEEE Trans. on Commun., pp. 637–648.

Day, J. & Zimmermann, H. (1983), The OSI Reference Model, Vol. 71, The Institute

of Electrical and Electronics Engineers, pp. 1334–1340.

Feit, D. S. (1998), TCP/IP Architecture, Protocols and Implementation with IPv6 and

IP Security, second edn, McGraw-Hill.

Kahn, H. (2000), STEPWISE Project, World Wide Web, Manchester.

http://www.controlchaos.com/entry.htm
http://www.rand.org/publications/RM/RM3420/RM3420.chapter1.html
http://www.business-esolutions.com/islm.htm

REFERENCES 70

http://www.stepwise.org

current May 2004.

NAT Software (2004), NAT32 Home Page, NAT Software Germany.

http://www.nat32.com/

current October 2004.

NetcPlus Internet Solutions (2004), BrowseGate 3 NAT/Proxy server and firewall,

NetcPlus Internet Solutions.

http://www.netcplus.com/browsegate.html

current October 2004.

Perkins, C. E. (2002), RTP: Audio and Video for the Internet, Addison-Wesley, Boston.

Rijsinghani, A. (1994), Computation of the Internet Checksum via Incremental Update,

Network Working Group.

ftp://ftp.rfc-editor.org/in-notes/rfc1624.txt

current October 2004.

Roberts, L. G. (1967), Multiple Computer Networks and Intercomputer Communica-

tion, Proc. First Symp. on Operating Systems Prin., ACM.

Robison, W. (2002), Pure C#: A Code-Intensive Premium Reference, Sams Publishing.

Sharon, Y. (1999), (ootips) The Rational Unified Process, World Wide Web, United

States of America.

http://ootips.org/rup.html

current May 2004.

Srisuresh, P. & Egevang, K. (2001), Traditional IP Network Address Translator (Tra-

ditional NAT), Network Working Group.

ftp://ftp.rfc-editor.org/in-notes/rfc3022.txt

current October 2004.

Tanenbaum, A. S. (2003), Computer Networks, fourth edn, Prentice Hall PTR.

Wells, D. (2003), Extreme Programming, World Wide Web, Utah.

http://www.extremeprogramming.org/index.html

current May 2004.

http://www.stepwise.org
http://www.nat32.com/
http://www.netcplus.com/browsegate.html
ftp://ftp.rfc-editor.org/in-notes/rfc1624.txt
http://ootips.org/rup.html
ftp://ftp.rfc-editor.org/in-notes/rfc3022.txt
http://www.extremeprogramming.org/index.html

Appendix A

Project Specification

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111/4112 Research Project
PROJECT SPECIFICATION

FOR: Kevin-John BEASLEY

TOPIC: Design and Implementation of a Network Address Translator

SUPERVISORS: Dr. John Leis

PROJECT AIM: The project aims to investigate the core aspects of computer

networking and TCP/IP Sockets so an efficient and scalable
Network Address Translator (NAT) can be designed and
implemented for both home and business use.

PROGRAMME: Issue B, 1 October 2004

1. Research information on computer networking including history and
development.

2. Investigate the TCP/IP Reference Model and TCP/IP Protocols to understand

how computer networking relates to the Internet

3. Utilise RFC’s relating to NAT Functionality and Implementation.

4. Research appropriate Programming languages for Implementation of a NAT

Server, especially the availability of Sockets Programming.

5. Design appropriate sockets interfaces to enable incoming TCP/IP packets to be
captured, translated and sent. This includes updating the TCP and IP
checksums where necessary.

6. Design a simple NAT server based on the above socket interface to prove the

ability to implement NAT in the chosen language.

As time permits:

7. Improve on the NAT implementation to include more features and greater

scalability. Support more types of Transport Layer translation.

AGREED: (student) (Supervisor)

 / / / / (date)

Appendix B

Project Source Code

B.1 NATService.cs 74

B.1 NATService.cs� �
1 using System ;
2 using System . Co l l e c t i o n s ;
3 using System . ComponentModel ;
4 using System . Data ;
5 using System . Diagnos t i c s ;
6 using System . Net ;
7 using System . Net . Sockets ;
8 using System . Se rv i c eProc e s s ;
9 using Microso f t . Win32 ;

10 using System . Secur i ty ;
11 using System . IO ;
12 using System . Extended . Co l l e c t i o n s ;
13

14 namespace NAT Service
15 {
16 public class Se rv i c e1 : System . Se rv i c eProc e s s .

Serv iceBase
17 {
18 /// <summary>
19 /// Required de s i gne r v a r i a b l e and Raw Socket

c l a s s .
20 /// </summary>
21 private System . ComponentModel . Container components

= null ;
22 RawSender myRawSend ;
23 RawSender myIntRawSend ;
24 RawSender [] RawSenders = new RawSender [1 0 0] ;
25 RawSocket ExternalRawSock ;
26 RawSocket InternalRawSock ;
27 ushort [] ReservedPorts = new ushort [1 0 0] ;
28 bool [] PortinUse = new bool [1 0 0] ;
29 Bid i rHashtab le twowayhash = new Bid i rHashtab le () ;
30 string ReversedGlobalIP ;
31 string ReversedLocalIP ;
32 int numberofports ;
33

34 public Se rv i c e1 ()
35 {
36 // This c a l l i s r e qu i r ed by the Windows .

Forms Component Designer .
37 In i t i a l i z eComponent () ;
38

39 // TODO: Add any i n i t i a l i z a t i o n a f t e r the
InitComponent c a l l

40 }
41

42 // The main entry po in t f o r the proces s
43 stat ic void Main ()
44 {
45 System . Se rv i c eProc e s s . Serv iceBase []

ServicesToRun ;
46

47 // More than one user Serv i c e may run wi th in
the same process . To add

48 // another s e r v i c e to t h i s process , change
the f o l l ow i n g l i n e to

49 // c rea t e a second s e r v i c e o b j e c t . For
example ,

50 //
51 // ServicesToRun = New System .

Serv i ceProces s . Serv iceBase [] {new
Serv i ce1 () , new MySecondUserService () } ;

52 //

B.1 NATService.cs 75

53 ServicesToRun = new System . Se rv i c eProc e s s .
Serv iceBase [] { new Se rv i c e1 () } ;

54

55 System . Se rv i c eProc e s s . Serv iceBase .Run(
ServicesToRun) ;

56 }
57

58 /// <summary>
59 /// Required method f o r Designer suppor t − do not

modify
60 /// the con ten t s o f t h i s method wi th the code

e d i t o r .
61 /// </summary>
62 private void In i t i a l i z eComponent ()
63 {
64 components = new System . ComponentModel .

Container () ;
65 this . ServiceName = ” Se rv i c e1 ” ;
66 }
67

68 /// <summary>
69 /// Clean up any re source s be ing used .
70 /// </summary>
71 protected override void Dispose (bool d i spo s i ng)
72 {
73 i f (d i spo s i ng)
74 {
75 i f (components != null)
76 {
77 components . Dispose () ;
78 }
79 }
80 base . Dispose (d i spo s i ng) ;
81 }
82

83 /// <summary>
84 /// Set t h i n g s in motion so your s e r v i c e can do

i t s work .
85 /// </summary>
86 protected override void OnStart (string [] a rgs)
87 {
88 // TODO: Add code here to s t a r t your s e r v i c e

.
89 for (int i = 0 ; i <100; i++)
90 {
91 ReservedPorts [i] = 0 ;
92 PortinUse [i] = fa l se ;
93 }
94 RegistryKey key ;
95 try
96 {
97 RegistryKey softwareKey = Reg i s t ry .

LocalMachine . OpenSubKey(” Software
”) ;

98 i f (softwareKey == null)
99 {

100 EventLog . WriteEntry (”Unable to
open the r e g i s t r y Software
key f o r ’USQ NAT Project ’ ”)
;

101 return ;
102 }
103

104 key = softwareKey . OpenSubKey(”
NATUSQProj”) ;

B.1 NATService.cs 76

105 i f (key == null)
106 {
107 EventLog . WriteEntry (”Unable to

open the r e g i s t r y NATUSQProj
f o r ’USQ NAT Project ’ ”) ;

108 return ;
109 }
110 }
111 catch (ArgumentNullException argNullExp)
112 {
113 EventLog . WriteEntry (”Argument nu l l

except ion thrown ” + argNullExp .
Message) ;

114 return ;
115 }
116 catch (ArgumentException argExp)
117 {
118 EventLog . WriteEntry (”Argument

except ion thrown ” + argExp .
Message) ;

119 return ;
120 }
121 catch (IOException ioExp)
122 {
123 EventLog . WriteEntry (”IO Exception

thrown ” + ioExp . Message) ;
124 return ;
125 }
126 catch (Secur i tyExcept ion secExp)
127 {
128 EventLog . WriteEntry (” Secur i ty

except ion thrown ” + secExp .
Message) ;

129 return ;
130 }
131

132 string LocalIP ;
133 string GlobalIP ;
134 int temp = 0 ;
135 ushort t e s t p o r t = 9000 ;
136 LocalIP = key . GetValue (”LocalIP”) . ToString

() ;
137 GlobalIP = key . GetValue (”GlobalIP”) .

ToString () ;
138 string [] tempIP ;
139 tempIP = GlobalIP . S p l i t (” . ” . ToCharArray () ,4)

;
140 ReversedGlobalIP = tempIP [3] + ” . ” + tempIP

[2] + ” . ” + tempIP [1] + ” . ” + tempIP [0] ;
141 tempIP = LocalIP . S p l i t (” . ” . ToCharArray () ,4) ;
142 ReversedLocalIP = tempIP [3] + ” . ” + tempIP

[2] + ” . ” + tempIP [1] + ” . ” + tempIP [0] ;
143 numberofports = (int) key . GetValue (”

I n i t i a l P o r t s ”) ;
144 do
145 {
146 bool except ion ;
147 do
148 {
149 except ion = fa l se ;
150 try
151 {
152 myRawSend=new RawSender () ;

B.1 NATService.cs 77

153 myRawSend . StartSender (
GlobalIP , t e s t p o r t) ;

154 }
155 catch (SocketExcept ion ex)
156 {
157 i f (ex . ErrorCode == 10048)
158 {
159 except ion = true ;
160 }
161 }
162 t e s t p o r t = t e s t p o r t++;
163 }while (except ion | | myRawSend . WasError

) ;
164 RawSenders [temp] = myRawSend ;
165 ReservedPorts [temp] = (ushort) (

t e s t p o r t − 1) ;
166 } while (numberofports > temp) ;
167 myRawSend=new RawSender () ;
168 myRawSend . StartSender (GlobalIP , 9258) ;
169 myIntRawSend=new RawSender () ;
170 myIntRawSend . StartSender (LocalIP , 0) ;
171 i f (myRawSend . WasError)
172 {
173 EventLog . WriteEntry (” C r i t i c a l Error :

Socket Fa i l ed . ”) ;
174 return ;
175 }
176 i f (myIntRawSend . WasError)
177 {
178 EventLog . WriteEntry (” C r i t i c a l Error :

Socket Fa i l ed . ”) ;
179 return ;
180 }
181 string IPStr ing=” 10 . 1 0 . 1 0 . 1 0 ” ;
182 IPHostEntry HosyEntry = Dns . Resolve (Dns .

GetHostName ()) ;
183 i f (HosyEntry . AddressLis t . Length > 0)
184 {
185 foreach (IPAddress ip in HosyEntry .

AddressLi s t)
186 {
187 IPStr ing=ip . ToString () ;
188 }
189 }
190

191 ExternalRawSock=new RawSocket () ;
192 ExternalRawSock . Star tSocket (LocalIP , 0 ,

true) ;
193 ExternalRawSock . PacketArr iva l += new

RawSocket . PacketArrivedEventHandler (
Externa lDataArr iva l) ;

194 i f (ExternalRawSock . ErrorOccurred)
195 {
196 EventLog . WriteEntry (” C r i t i c a l Error :

Socket Fa i l ed . ”) ;
197 return ;
198 }
199 InternalRawSock=new RawSocket () ;
200 InternalRawSock . Star tSocket (GlobalIP , 0 ,

true) ;
201 InternalRawSock . PacketArr iva l += new

RawSocket . PacketArrivedEventHandler (

B.1 NATService.cs 78

In t e rna lDataArr iva l) ;
202 i f (InternalRawSock . ErrorOccurred)
203 {
204 EventLog . WriteEntry (” C r i t i c a l Error :

Socket Fa i l ed . ”) ;
205 return ;
206 }
207 ExternalRawSock . KeepRunning = true ; //Want

to r e c i e v e a l l incomming packe t s .
208 ExternalRawSock .Run () ;
209 InternalRawSock . KeepRunning = true ;
210 InternalRawSock .Run() ;
211 }
212

213 private void In t e rna lDataArr iva l (Object sender ,
PacketArgs e)

214 {
215 IPAddress t e s t , t e s t 2 ;
216 t e s t = new IPAddress ((e . source)) ;
217 t e s t 2 = new IPAddress (e . d e s t i n a t i on) ;
218 i f ((e . d e s t i n a t i on == (uint) ((System . Net .

IPAddress . Parse (ReversedGlobalIP) .
Address))) && (e . t c pde s t i n a t i on == 9258)
)

219 {
220 ulong returnaddr ;
221 returnaddr = (ulong) twowayhash .

ReverseLookup ((ulong) ((e .
d e s t i n a t i on << 16) + e .
t cpd e s t i n a t i on)) ;

222 e . d e s t i n a t i on = (uint) (returnaddr >>
16) & 0xFFFFFFFF;

223 e . t c pd e s t i n a t i on = (ushort) (returnaddr
& 0xFFFF) ;

224 myIntRawSend . send (e) ;
225 i f (! myIntRawSend . WasError)
226 {
227 // I f adding a debuging mode

repor t t h a t a l l went w e l l .
228 }
229 else
230 {
231 EventLog . WriteEntry (”Error :

Return Packet Fa i l ed . ”) ;
232 }
233 }
234 }
235

236 private void Externa lDataArr iva l (Object sender ,
PacketArgs e)

237 {
238 IPAddress t e s t , t e s t 2 ;
239 t e s t = new IPAddress ((e . source)) ;
240 t e s t 2 = new IPAddress (e . d e s t i n a t i on) ;
241 i f (e . source == (uint) ((System . Net . IPAddress .

Parse (ReversedLocalIP) . Address)))
242 {
243 i f (e . t c pde s t i n a t i on == 80)
244 {
245 int s e l e c t p o r t = −1;
246 for (int i = 0 ; i<numberofports −

1 ; i++)

B.1 NATService.cs 79

247 {
248 i f (PortinUse [i] == fa l se)
249 s e l e c t p o r t = i ;
250 break ;
251 }
252 i f ((s e l e c t p o r t == −1) && (

PortinUse [s e l e c t p o r t] ==
true))

253 {
254 EventLog . WriteEntry (”

I n s u f f i c i e n t Ports
Al located . ”) ;

255 //Replace t h i s l i n e wi th
code to dynamica l ly
a l l o c a t e more por t s in
f u t u r e .

256 return ;
257 }
258 else
259 {
260 PortinUse [s e l e c t p o r t] =

true ;
261 // Even tua l l y need t imers

to rec la im c l o s ed
por t s .

262 //Only working wi th one
hos t a t t h i s time so
automatic reuse w i l l
occure .

263 }
264 twowayhash [((e . source << 16) + e

. t cpsource)] = (ulong) (((
uint) (System . Net . IPAddress .
Parse (ReversedGlobalIP) .
Address) << 16) +
ReservedPorts [s e l e c t p o r t]) ;

265 e . source = (uint) ((System . Net .
IPAddress . Parse (
ReversedGlobalIP) . Address)) ;

266 e . t cpsource = ReservedPorts [
s e l e c t p o r t] ;

267 myRawSend . send (e) ;
268 i f (! myRawSend . WasError)
269 {
270 //Debug mode w i l l r epor t

s u c e s s f u l t r a n s l a t i o n
here .

271 }
272 else
273 {
274 EventLog . WriteEntry (”Error

: Cannot Transmit
Packet . ”) ;

275 }
276 }
277 }
278 }
279

280 /// <summary>
281 /// Stop t h i s s e r v i c e .
282 /// </summary>
283 protected override void OnStop ()
284 {

B.1 NATService.cs 80

285 // TODO: Add code here to perform any tear−
down necessary to s top your s e r v i c e .

286 ExternalRawSock . KeepRunning = fa l se ;
287 InternalRawSock . KeepRunning = fa l se ;
288 }
289 }
290 }� �

B.2 RawSocket.cs 81

B.2 RawSocket.cs� �
1 // RawSocket Class
2
3

4 namespace NAT Service
5 {
6 using System ;
7 using System . Net ;
8 using System . Net . Sockets ;
9 using System . Runtime . I n t e r opSe rv i c e s ;

10
11

12 [StructLayout (LayoutKind . Exp l i c i t)]
13 public struct IPHeader
14 {
15 [F i e l dO f f s e t (0)] public byte ip verIHL ; //IP

Version (4 b i t s) + IHL (Header Length) (4 b i t s
)

16 //IHL of 5 i n d i c a t e s no op t i ons . IHL of 15
i n d i c a t e s 40 by t e s o f op t i ons .

17 [F i e l dO f f s e t (1)] public byte i p t o s ; //Type o f
Serv i c e + Empty (2 b i t s)

18 [F i e l dO f f s e t (2)] public ushort i p t o t a l l e n g t h ; //
Tota l Packet Length

19 [F i e l dO f f s e t (4)] public ushort i p i d ; //Unique IP
ID

20 [F i e l dO f f s e t (6)] public ushort ip DFMFoffset ; //
Empty (1 b i t) + Don ’ t Fragment (1 b i t) + More
Fragments (1 b i t) F lags + Of f s e t (13 b i t s)

21 [F i e l dO f f s e t (8)] public byte i p t t l ; //Time To
Live

22 [F i e l dO f f s e t (9)] public byte i p p r o t o c o l ; //
Protoco l (TCP, UDP, ICMP, Etc .)

23 [F i e l dO f f s e t (10)] public ushort ip checksum ; //IP
Header Checksum

24 [F i e l dO f f s e t (12)] public uint i p s r c add r ; //
Source IP Address

25 [F i e l dO f f s e t (16)] public uint i p de s taddr ; //
Des t ina t ion IP Address

26 // IP Options go here but s ince we don ’ t know i f
any e x i s t we won ’ t i n c l ude them here .

27 }
28

29 [StructLayout (LayoutKind . Exp l i c i t)]
30 public struct TCPHeader
31 {
32 [F i e l dO f f s e t (0)] public ushort t c p s r c po r t ;

//Source TCP Port Number .
33 [F i e l dO f f s e t (2)] public ushort t cp de s tpo r t ;

// Des t ina t ion TCP Port Number .
34 [F i e l dO f f s e t (4)] public uint t cp sequence ; //TCP

Sequence Number
35 [F i e l dO f f s e t (8)] public uint tcp acknowledgement ;

//TCP Acknowledgement Number ;
36 [F i e l dO f f s e t (12)] public byte t cp heade r l eng th ; //

TCP Header Length (4 b i t s) + Empty (4 b i t s)
37 [F i e l dO f f s e t (13)] public byte t c p f l a g s ; //Empty

(2 b i t s) + URG (1 b i t) + ACK (1 b i t) + PSH (1
b i t) + RST (1 b i t) + SYN (1 b i t) + FIN (1 b i t)

38 [F i e l dO f f s e t (14)] public ushort tcp windows ize
; //TCP Window S i z e

39 [F i e l dO f f s e t (16)] public ushort tcp checksum ; //
TCP Checksum

B.2 RawSocket.cs 82

40 [F i e l dO f f s e t (18)] public ushort t cp u rg en tpo in t e r ;
//TCP Urgent Pointer

41 // TCP Options go here but s ince we don ’ t know i f
any e x i s t we won ’ t i n c l ude them here .

42 }
43 public class PacketArgs : EventArgs
44 {
45 public PacketArgs (byte [] buf) // I n i t i a l i s e .
46 {
47 int message length ;
48 int IHL ;
49 //IPHeader ∗ head = (IPHeader ∗) f i x e d b u f ;

// Assign IP Header from re c i e v e b u f f e r .
50 // t h i s . p ro t t ype = head−>i p p r o t o c o l ;
51 this . MainHeader = new IPHeader () ;
52 //Array . Copy(buf , 0 , t h i s . MainHeader , 0 , 20)

;
53 this . MainHeader . ip verIHL = buf [0] ;
54 this . MainHeader . i p t o s = buf [1] ;
55 this . MainHeader . i p t o t a l l e n g t h = (ushort) ((

buf [2] << 8) + buf [3]) ;
56 this . MainHeader . i p i d = (ushort) ((buf [4] <<

8) + buf [5]) ;
57 this . MainHeader . ip DFMFoffset = (ushort) ((

buf [6] << 8) + buf [7]) ;
58 this . MainHeader . i p t t l = buf [8] ;
59 this . MainHeader . i p p r o t o c o l = buf [9] ;
60 this . MainHeader . ip checksum = (ushort) ((buf

[1 0] << 8) + buf [1 1]) ;
61 this . MainHeader . i p s r c add r = (uint) ((buf [1 2]

<< 24) + (buf [1 3] << 16) + (buf [1 4] <<
8) + buf [1 5]) ;

62 this . MainHeader . i p de s taddr = (uint) ((buf
[1 6] << 24) + (buf [1 7] << 16) + (buf [1 8]
<< 8) + buf [1 9]) ;

63 IHL = (this . MainHeader . ip verIHL & 0x0F) ;
64 i f (IHL > 5)
65 {
66 this . IPOptions = new byte [(IHL − 5) ∗

4] ;
67 Array . Copy(buf , 20 , this . IPOptions , 0 ,

(IHL − 5) ∗ 4) ;
68 }
69 switch (this . MainHeader . i p p r o t o c o l)
70 {
71 case 6 :
72 this .TCPHead = new TCPHeader () ;
73 this .TCPHead . t c p s r c po r t = (

ushort) ((buf [IHL ∗ 4] << 8)
+ buf [IHL ∗ 4 + 1]) ;

74 this .TCPHead . t cp de s tpo r t = (
ushort) ((buf [IHL ∗ 4 + 2] <<
8) + buf [IHL ∗ 4 + 3]) ;

75 this .TCPHead . tcp sequence = (
uint) ((buf [IHL ∗ 4 + 4] <<
24) + (buf [IHL ∗ 4 + 5] <<
16) + (buf [IHL ∗ 4 + 6] <<
8) + buf [IHL ∗ 4 + 7]) ;

76 this .TCPHead . tcp acknowledgement
= (uint) ((buf [IHL ∗ 4 + 8]

<< 24) + (buf [IHL ∗ 4 + 9]
<< 16) + (buf [IHL ∗ 4 + 10]

B.2 RawSocket.cs 83

<< 8) + buf [IHL ∗ 4 + 11]) ;
77 this .TCPHead . t cp heade r l eng th =

buf [IHL ∗ 4 + 1 2] ;
78 this .TCPHead . t c p f l a g s = buf [IHL

∗ 4 + 1 3] ;
79 this .TCPHead . tcp windows ize = (

ushort) ((buf [IHL ∗ 4 + 14]
<< 8) + buf [IHL ∗ 4 + 15]) ;

80 this .TCPHead . tcp checksum = (
ushort) ((buf [IHL ∗ 4 + 16]
<< 8) + buf [IHL ∗ 4 + 17]) ;

81 this .TCPHead . t cp u rg en tpo in t e r =
(ushort) ((buf [IHL ∗ 4 + 18]
<< 8) + buf [IHL ∗ 4 + 19]) ;

82 i f (this . t cpheader l ength > 5)
83 {
84 this . TCPOptions = new byte

[(TCPHead .
t cp heade r l eng th − 5)
∗ 4] ;

85 Array . Copy(buf , (IHL ∗ 4)
+ 20 , this . TCPOptions ,

0 , (TCPHead .
t cp heade r l eng th − 5)
∗ 4) ;

86 }
87 message length = this . MainHeader .

i p t o t a l l e n g t h − (IHL ∗ 4) −
(this . t cpheader l ength ∗ 4) ;

88 this . RemainingData = new byte [
message length] ;

89 Array . Copy(buf , (IHL ∗ 4) + (
this . t cpheader l ength ∗ 4) ,
this . RemainingData , 0 ,
message length) ;

90 break ;
91 default : //For any o ther packe t s (i f

implmented) copy ev e ry t h in g a f t e r
the IP Header as data .

92 message length = this . MainHeader .
i p t o t a l l e n g t h − (IHL ∗ 4) ;

93 this . RemainingData = new byte [
message length] ;

94 Array . Copy(buf , IHL ∗ 4 , this .
RemainingData , 0 ,
message length) ;

95 break ;
96 }
97 }
98

99 private UInt16 incrementalchecksum (UInt16 o r i g i n a l
, UInt16 updated)

100 {
101 Int32 cksum = Convert . ToInt32 (((˜ (UInt16)

this . checksum) & 0xFFFF)) ;
102 cksum += Convert . ToInt32 (((˜ (UInt16) o r i g i n a l

) & 0xFFFF)) ;
103 cksum += Convert . ToInt32 (updated) ;
104 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
105 cksum += (cksum >> 16) ;
106 return (UInt16) ((˜ cksum)) ;
107 }

B.2 RawSocket.cs 84

108

109 private UInt16 incrementalTCPchecksum (UInt16
o r i g i n a l , UInt16 updated)

110 {
111 Int32 cksum = Convert . ToInt32 (((˜ (UInt16)

this . tcpchecksum) & 0xFFFF)) ;
112 cksum += Convert . ToInt32 (((˜ (UInt16) o r i g i n a l

) & 0xFFFF)) ;
113 cksum += Convert . ToInt32 (updated) ;
114 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
115 cksum += (cksum >> 16) ;
116 return (UInt16) ((˜ cksum)) ;
117 }
118

119 /∗ pu b l i c s t a t i c UInt16 calcchecksum (Byte [] bu f f e r
, i n t s i z e)

120 {
121 Int32 cksum = 0;
122 i n t counter ;
123 counter = 0;
124 whi l e (s i z e > 0)
125 {
126 UInt16 va l = (ushor t) ((b u f f e r [counter]

<< 8) + bu f f e r [counter +1]) ;
127 cksum += Convert . ToInt32 (va l) ;
128 counter += 2;
129 s i z e −= 2;
130 }
131 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
132 cksum += (cksum >> 16) ;
133 re turn (UInt16) (˜ cksum) ;
134 }∗/
135

136 public byte ve r s i on
137 {
138 get {return (byte) ((this . MainHeader .

ip verIHL & 0xF0) >> 4) ;}
139 s e t
140 {
141 ushort temp = (ushort) ((this .

MainHeader . ip verIHL << 8) + this .
MainHeader . i p t o s) ;

142 this . MainHeader . ip verIHL = (byte) ((
this . MainHeader . ip verIHL & 0x0F)
+ ((va lue & 0x0F) << 4)) ;

143 this . checksum = incrementalchecksum (
temp , (ushort) ((this . MainHeader .
ip verIHL << 8) + this . MainHeader .
i p t o s)) ;

144 }
145 }
146

147 public byte IHL
148 {
149 get {return (byte) (this . MainHeader . ip verIHL

& 0x0F) ;}
150 s e t
151 {
152 ushort temp = (ushort) ((this .

MainHeader . ip verIHL << 8) + this .
MainHeader . i p t o s) ;

153 ushort t cp l ength = (ushort) (this .
t o t a l l e n g t h − (this . IHL ∗ 4)) ;

B.2 RawSocket.cs 85

154 this . MainHeader . ip verIHL = (byte) ((
this . MainHeader . ip verIHL & 0xF0)
+ (value & 0x0F)) ;

155 this . checksum = incrementalchecksum (
temp , (ushort) ((this . MainHeader .
ip verIHL << 8) + this . MainHeader .
i p t o s)) ;

156 this . tcpchecksum =
incrementalTCPchecksum (tcplength ,
(ushort) (this . t o t a l l e n g t h − (this .
IHL ∗ 4))) ;

157 }
158 }
159

160 public byte TOS
161 {
162 get {return (byte) ((this . MainHeader . i p t o s)

>> 2) ;}
163 s e t
164 {
165 ushort temp = (ushort) ((this .

MainHeader . ip verIHL << 8) + this .
MainHeader . i p t o s) ;

166 this . MainHeader . i p t o s = (byte) ((va lue
& 0xFF) << 2) ;

167 this . checksum = incrementalchecksum (
temp , (ushort) ((this . MainHeader .
ip verIHL << 8) + this . MainHeader .
i p t o s)) ;

168 }
169 }
170

171 public ushort t o t a l l e n g t h
172 {
173 get {return this . MainHeader . i p t o t a l l e n g t h ;}
174 s e t
175 {
176 ushort temp = this . MainHeader .

i p t o t a l l e n g t h ;
177 ushort t cp l ength = (ushort) (this .

MainHeader . i p t o t a l l e n g t h − (this .
IHL ∗ 4)) ;

178 this . MainHeader . i p t o t a l l e n g t h = value
;

179 this . checksum = incrementalchecksum (
temp , this . MainHeader .
i p t o t a l l e n g t h) ;

180 this . tcpchecksum =
incrementalTCPchecksum (tcplength ,
(ushort) (this . MainHeader .
i p t o t a l l e n g t h − (this . IHL ∗ 4))) ;

181 }
182 }
183

184 public ushort ID
185 {
186 get {return this . MainHeader . i p i d ;}
187 s e t
188 {
189 ushort temp = this . MainHeader . i p i d ;
190 this . MainHeader . i p i d = value ;
191 this . checksum = incrementalchecksum (

temp , this . MainHeader . i p i d) ;
192 }

B.2 RawSocket.cs 86

193 }
194

195 public bool DF
196 {
197 get { i f ((this . MainHeader . ip DFMFoffset & 0

x4000) == 0) return fa l se ; else return
true ; }

198 s e t
199 {
200 ushort temp = this . MainHeader .

ip DFMFoffset ;
201 i f (va lue)
202 this . MainHeader . ip DFMFoffset =

(ushort) (this . MainHeader .
ip DFMFoffset | 0x4000) ;

203 else
204 this . MainHeader . ip DFMFoffset =

(ushort) (this . MainHeader .
ip DFMFoffset & 0x3FFF) ;

205 this . checksum = incrementalchecksum (
temp , this . MainHeader .
ip DFMFoffset) ;

206 }
207 }
208

209 public bool MF
210 {
211 get { i f ((this . MainHeader . ip DFMFoffset & 0

x2000) == 0) return fa l se ; else return
true ; }

212 s e t
213 {
214 ushort temp = this . MainHeader .

ip DFMFoffset ;
215 i f (va lue)
216 this . MainHeader . ip DFMFoffset =

(ushort) (this . MainHeader .
ip DFMFoffset | 0x2000) ;

217 else
218 this . MainHeader . ip DFMFoffset =

(ushort) (this . MainHeader .
ip DFMFoffset & 0x5FFF) ;

219 this . checksum = incrementalchecksum (
temp , this . MainHeader .
ip DFMFoffset) ;

220 }
221 }
222

223 public ushort Of f s e t
224 {
225 get {return (ushort) (this . MainHeader .

ip DFMFoffset & 0x1FF) ;}
226 s e t
227 {
228 ushort temp = this . MainHeader .

ip DFMFoffset ;
229 this . MainHeader . ip DFMFoffset = (

ushort) ((this . MainHeader .
ip DFMFoffset & 0x7E00) + (value &
0x1FFF)) ;

230 this . checksum = incrementalchecksum (
temp , this . MainHeader .
ip DFMFoffset) ;

231 }

B.2 RawSocket.cs 87

232 }
233

234 public byte TTL
235 {
236 get {return this . MainHeader . i p t t l ;}
237 s e t
238 {
239 ushort temp = (ushort) ((this .

MainHeader . i p t t l << 8) + this .
MainHeader . i p p r o t o c o l) ;

240 this . MainHeader . i p t t l = value ;
241 this . checksum = incrementalchecksum (

temp , (ushort) ((this . MainHeader .
i p t t l << 8) + this . MainHeader .
i p p r o t o c o l)) ;

242 }
243 }
244

245 public byte Protoco l
246 {
247 get {return this . MainHeader . i p p r o t o c o l ;}
248 s e t
249 {
250 ushort temp = (ushort) ((this .

MainHeader . i p t t l << 8) + this .
MainHeader . i p p r o t o c o l) ;

251 this . MainHeader . i p p r o t o c o l = value ;
252 this . checksum = incrementalchecksum (

temp , (ushort) ((this . MainHeader .
i p t t l << 8) + this . MainHeader .
i p p r o t o c o l)) ;

253 //Could muck around updat ing the TCP
checksum here but why bo ther s ince
p ro t o co l != 6 doesn ’ t have a TCP

header anyway .
254 }
255 }
256

257 private ushort checksum
258 {
259 get {return this . MainHeader . ip checksum ;}
260 s e t { this . MainHeader . ip checksum = value ;}
261 }
262

263 public uint source
264 {
265 get {return this . MainHeader . i p s r c add r ;}
266 s e t
267 {
268 ushort temp = (ushort) ((this .

MainHeader . i p s r c add r & 0xFFFF0000
) >> 16) ;

269 ushort temp2 = (ushort) (this .
MainHeader . i p s r c add r & 0x0000FFFF
) ;

270 this . MainHeader . i p s r c add r = value ;
271 this . checksum = incrementalchecksum (

temp , (ushort) ((this . MainHeader .
i p s r c add r & 0xFFFF0000) >> 16)) ;

272 this . checksum = incrementalchecksum (
temp2 , (ushort) (this . MainHeader .
i p s r c add r & 0x0000FFFF)) ;

273 this . tcpchecksum =
incrementalTCPchecksum (temp , (

B.2 RawSocket.cs 88

ushort) ((this . MainHeader .
i p s r c add r & 0xFFFF0000) >> 16)) ;

274 this . tcpchecksum =
incrementalTCPchecksum (temp2 , (
ushort) (this . MainHeader . i p s r c add r
& 0x0000FFFF)) ;

275 }
276 }
277

278 public uint de s t i n a t i on
279 {
280 get {return this . MainHeader . i p de s taddr ;}
281 s e t
282 {
283 ushort temp = (ushort) ((this .

MainHeader . i p de s taddr & 0
xFFFF0000) >> 16) ;

284 ushort temp2 = (ushort) (this .
MainHeader . i p de s taddr & 0
x0000FFFF) ;

285 this . MainHeader . i p de s taddr = value ;
286 this . checksum = incrementalchecksum (

temp , (ushort) ((this . MainHeader .
i p de s taddr & 0xFFFF0000) >> 16)) ;

287 this . checksum = incrementalchecksum (
temp2 , (ushort) (this . MainHeader .
i p de s taddr & 0x0000FFFF)) ;

288 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this . MainHeader .
i p de s taddr & 0xFFFF0000) >> 16)) ;

289 this . tcpchecksum =
incrementalTCPchecksum (temp2 , (
ushort) (this . MainHeader .
i p de s taddr & 0x0000FFFF)) ;

290 }
291 }
292

293 public ushort t cpsource
294 {
295 get {return this .TCPHead . t c p s r c po r t ;}
296 s e t
297 {
298 ushort temp = this .TCPHead . t c p s r c po r t

;
299 this .TCPHead . t c p s r c po r t = value ;
300 this . tcpchecksum =

incrementalTCPchecksum (temp , this .
TCPHead . t c p s r c po r t) ;

301 }
302 }
303

304 public ushort t cpd e s t i n a t i on
305 {
306 get {return this .TCPHead . t cp de s tpo r t ;}
307 s e t
308 {
309 ushort temp = this .TCPHead .

t cp de s tpo r t ;
310 this .TCPHead . t cp de s tpo r t = value ;
311 this . tcpchecksum =

incrementalTCPchecksum (temp , this .
TCPHead . t cp de s tpo r t) ;

312 }

B.2 RawSocket.cs 89

313 }
314

315 public uint tcpsequence
316 {
317 get {return this .TCPHead . tcp sequence ;}
318 s e t
319 {
320 ushort temp = (ushort) ((this .TCPHead .

tcp sequence & 0xFFFF0000) >> 16) ;
321 ushort temp2 = (ushort) (this .TCPHead .

tcp sequence & 0x0000FFFF) ;
322 this .TCPHead . tcp sequence = value ;
323 this . tcpchecksum =

incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead . tcp sequence
& 0xFFFF0000) >> 16)) ;

324 this . tcpchecksum =
incrementalTCPchecksum (temp2 , (
ushort) (this .TCPHead . tcp sequence
& 0x0000FFFF)) ;

325 }
326 }
327

328 public uint tcpacknowledgement
329 {
330 get {return this .TCPHead . tcp acknowledgement

;}
331 s e t
332 {
333 ushort temp = (ushort) ((this .TCPHead .

tcp acknowledgement & 0xFFFF0000)
>> 16) ;

334 ushort temp2 = (ushort) (this .TCPHead .
tcp acknowledgement & 0x0000FFFF) ;

335 this .TCPHead . tcp acknowledgement =
value ;

336 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
tcp acknowledgement & 0xFFFF0000)
>> 16)) ;

337 this . tcpchecksum =
incrementalTCPchecksum (temp2 , (
ushort) (this .TCPHead .
tcp acknowledgement & 0x0000FFFF))
;

338 }
339 }
340

341 public byte t cpheader l ength
342 {
343 get {return (byte) ((this .TCPHead .

t cp heade r l eng th & 0xF0) >> 4) ;}
344 s e t
345 {
346 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

347 this .TCPHead . t cp heade r l eng th = (byte)
((va lue & 0x0F) << 4) ;

348 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .

B.2 RawSocket.cs 90

TCPHead . t c p f l a g s)) ;
349 }
350 }
351

352 public bool tcpUGR
353 {
354 get { i f ((this .TCPHead . t c p f l a g s & 0x20) ==

0) return fa l se ; else return true ; }
355 s e t
356 {
357 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

358 i f (va lue)
359 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s | 0
x20) ;

360 else
361 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s & 0
x1F) ;

362 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s)) ;

363 }
364 }
365

366 public bool tcpACK
367 {
368 get { i f ((this .TCPHead . t c p f l a g s & 0x10) ==

0) return fa l se ; else return true ; }
369 s e t
370 {
371 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

372 i f (va lue)
373 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s | 0
x10) ;

374 else
375 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s & 0
x2F) ;

376 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s)) ;

377 }
378 }
379

380 public bool tcpPSH
381 {
382 get { i f ((this .TCPHead . t c p f l a g s & 0x08) ==

0) return fa l se ; else return true ; }
383 s e t
384 {
385 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

B.2 RawSocket.cs 91

386 i f (va lue)
387 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s | 0
x08) ;

388 else
389 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s & 0
x37) ;

390 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s)) ;

391 }
392 }
393

394 public bool tcpRST
395 {
396 get { i f ((this .TCPHead . t c p f l a g s & 0x04) ==

0) return fa l se ; else return true ; }
397 s e t
398 {
399 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

400 i f (va lue)
401 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s | 0
x04) ;

402 else
403 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s & 0
x3B) ;

404 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s)) ;

405 }
406 }
407

408 public bool tcpSYN
409 {
410 get { i f ((this .TCPHead . t c p f l a g s & 0x02) ==

0) return fa l se ; else return true ; }
411 s e t
412 {
413 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

414 i f (va lue)
415 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s | 0
x02) ;

416 else
417 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s & 0
x3D) ;

418 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s)) ;

B.2 RawSocket.cs 92

419 }
420 }
421

422 public bool tcpFIN
423 {
424 get { i f ((this .TCPHead . t c p f l a g s & 0x01) ==

0) return fa l se ; else return true ; }
425 s e t
426 {
427 ushort temp = (ushort) ((this .TCPHead .

t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s) ;

428 i f (va lue)
429 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s | 0
x01) ;

430 else
431 this .TCPHead . t c p f l a g s = (byte) (

this .TCPHead . t c p f l a g s & 0
x3E) ;

432 this . tcpchecksum =
incrementalTCPchecksum (temp , (
ushort) ((this .TCPHead .
t cp heade r l eng th << 8) + this .
TCPHead . t c p f l a g s)) ;

433 }
434 }
435

436 public ushort tcpwindow
437 {
438 get {return this .TCPHead . tcp windows ize ;}
439 s e t
440 {
441 ushort temp = this .TCPHead .

tcp windows ize ;
442 this .TCPHead . tcp windows ize = value ;
443 this . tcpchecksum =

incrementalTCPchecksum (temp , this .
TCPHead . tcp windows ize) ;

444 }
445 }
446

447 private ushort tcpchecksum
448 {
449 get {return this .TCPHead . tcp checksum ;}
450 s e t { this .TCPHead . tcp checksum = value ;}
451 }
452

453 public ushort tcpurgent
454 {
455 get {return this .TCPHead . t cp u rg en tpo in t e r ;}
456 s e t
457 {
458 ushort temp = this .TCPHead .

t cp u rg en tpo in t e r ;
459 this .TCPHead . t cp u rg en tpo in t e r = value

;
460 this . tcpchecksum =

incrementalTCPchecksum (temp , this .
TCPHead . t cp u rg en tpo in t e r) ;

461 }
462 }
463

464 // p r i v a t e by t e p ro t t ype ;

B.2 RawSocket.cs 93

465 public IPHeader MainHeader ; // Since I wrote methds
f o r acce s s ing t h i s i t shou ld r e a l l y be

p r i v a t e .
466 // But I don ’ t have time to dea l wi th the changes

t h i s r e qu i r e s or to wr i t e s im i l a r methods f o r
the

467 //TCP header .
468 public TCPHeader TCPHead ;
469 public byte [] IPOptions ;
470 public byte [] TCPOptions ;
471 public byte [] RemainingData ;
472 // pu b l i c i n t aca lcu la tedchecksum ;
473 public UInt32 t e s t 1 ;
474 public UInt32 t e s t 2 ;
475 }
476

477 public class RawSender
478 {
479 private bool e r r o r i n s e nd ;
480 private stat ic int l e n s end bu f ; //Max packe t s i z e

f o r send .
481 byte [] s end bu f byt e s ; //Data to send .
482 private Socket sender = null ; // Socket to send v ia

.
483 public ushort t ruecheck ;
484 public ushort reportedcheck ;
485

486 public RawSender () //Constructor
487 {
488 e r r o r i n s e nd=fa l se ;
489 l e n s end bu f = 65535; //Can ’ t send a l a r g e r

packe t . Windows would crash out .
490 s end bu f byte s = new byte [l e n s end bu f] ;
491 }
492

493 public void StartSender (string IP , int port)
494 {
495 sender = new Socket (AddressFamily .

InterNetwork , SocketType .Raw,
ProtocolType . IP) ;

496 sender . Blocking = fa l se ;
497 sender . Bind (new IPEndPoint (IPAddress . Parse (

IP) , port)) ;
498 i f (SetSenderOption ()==fa l se) e r r o r i n s e nd=

true ;
499 }
500

501 public void ShutdownSender ()
502 {
503 i f (sender != null)
504 {
505 sender . Shutdown (SocketShutdown . Both) ;
506 sender . Close () ;
507 }
508 }
509

510 private bool SetSenderOption ()
511 {
512 bool r e t v a l u e = true ;
513 try // .NET Except ion hande l ing
514 {
515 sender . SetSocketOption (

SocketOptionLevel . IP ,
SocketOptionName . HeaderIncluded ,
1) ;

B.2 RawSocket.cs 94

516 sender . SetSocketOption (
SocketOptionLevel . Socket , System .
Net . Sockets . SocketOptionName .
ReuseAddress , 1) ;

517 // sender . SetSocketOpt ion (
Socke tOpt ionLeve l . IP ,
SocketOptionName . SendBuffer ,
100000) ;

518

519 // i n t FIONBIO = unchecked ((i n t) 0
x0004CB34) ;

520 // i n t FIONBIO = unchecked ((i n t)
2147772030) ;

521 // by t e [] IN = new by t e [4]{1 , 0 , 0 , 0} ;
522 // by t e []OUT = new by t e [4] ;
523 // See h t t p ://msdn . micro so f t . com/

l i b r a r y / d e f a u l t . asp? u r l=/ l i b r a r y /
en−us/winsock /winsock / w s a i o c t l 2 .
asp f o r d e t a i l s .

524 // i n t r e t c ode = sender . IOControl (
FIONBIO, IN , OUT) ; // r e c e i v e a l l
IP packe t s on the network .

525 // r e t c ode = OUT[0] + OUT[1] + OUT[2]
+ OUT[3] ; //Check t ha t opera t ion
suceeded .

526 // i f (r e t c ode != 0) r e t v a l u e = f a l s e ;
// I f not re turn error .

527 }
528 catch (SocketExcept ion)
529 {
530 r e t v a l u e = fa l se ; // I f any o f the

above caused an except ion , re turn
an error .

531 }
532 return r e t v a l u e ;
533 }
534

535 public bool WasError
536 {
537 get // Let main program check f o r e r ro r s .
538 {
539 return e r r o r i n s e nd ;
540 }
541 }
542

543 public stat ic UInt16 calcchecksum (Byte [] bu f f e r ,
int s i z e)

544 {
545 Int32 cksum = 0 ;
546 int counter ;
547 counter = 0 ;
548 while (s i z e > 0)
549 {
550 UInt16 va l = (ushort) ((bu f f e r [counter]

<< 8) + bu f f e r [counter +1]) ;
551 cksum += Convert . ToInt32 (va l) ;
552 counter += 2 ;
553 s i z e −= 2 ;
554 }
555 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
556 cksum += (cksum >> 16) ;
557 return (UInt16) (˜ cksum) ;
558 }
559

B.2 RawSocket.cs 95

560 public UInt16 TCPChecksum(Byte [] bu f f e r , int s i z e
, int IHL)

561 {
562 byte [] b i g g e r bu f f e r ;
563 int l ength = s i z e − (IHL ∗ 4) + 12 ;
564 // t h i s . e r ro r occur red = f a l s e ;
565 i f (l ength%2 == 1)
566 {
567 // t h i s . e r ro r occur red = true ;
568 l ength++;
569 }
570 b i g g e r bu f f e r = new byte [l ength] ;
571 // b i g g e r b u f f e r [0] = b u f f e r [1 2] ;
572 Array . Copy(bu f f e r , 12 , b i g g e rbu f f e r , 0 , 8) ;
573 b i g g e r bu f f e r [8] = 0 ;
574 b i g g e r bu f f e r [9] = 6 ;
575 b i g g e r bu f f e r [1 0] = (byte) (((s i z e − (IHL ∗ 4)

) & 0xFF00) >> 8) ;
576 b i g g e r bu f f e r [1 1] = (byte) ((s i z e − (IHL ∗ 4))

& 0x00FF) ;
577 Array . Copy(bu f f e r , IHL∗4 , b i g g e rbu f f e r , 12 ,

s i z e − (IHL ∗ 4)) ;
578 Int32 cksum = 0 ;
579 int counter ;
580 counter = 0 ;
581 while (l ength > 0)
582 {
583 UInt16 va l = (ushort) ((b i g g e r bu f f e r [

counter] << 8) + b i g g e r bu f f e r [
counter +1]) ;

584 cksum += Convert . ToInt32 (va l) ;
585 counter += 2 ;
586 l ength −= 2 ;
587 }
588 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
589 cksum += (cksum >> 16) ;
590 return (UInt16) (˜ cksum) ;
591 }
592

593 public void send (PacketArgs args)
594 // (IPHeader MainHeader)
595 {
596 int message length ;
597 ushort mychecksum ;
598 // i n t t e s t = MainHeader . ip verIHL ;
599 // l i s tBox1 . Items .Add(source + ” \ t

” + de s t i n a t i o n) ;
600 s end bu f byte s [0] = args . MainHeader .

ip verIHL ;
601 s end bu f byte s [1] = args . MainHeader . i p t o s ;
602 s end bu f byte s [2] = (byte) ((args . MainHeader .

i p t o t a l l e n g t h & 0xFF00) >> 8) ;
603 s end bu f byte s [3] = (byte) (args . MainHeader .

i p t o t a l l e n g t h & 0x00FF) ;
604 s end bu f byte s [4] = (byte) ((args . MainHeader .

i p i d & 0xFF00) >> 8) ;
605 s end bu f byte s [5] = (byte) (args . MainHeader .

i p i d & 0x00FF) ;
606 s end bu f byte s [6] = (byte) ((args . MainHeader .

ip DFMFoffset & 0xFF00) >> 8) ;
607 s end bu f byte s [7] = (byte) (args . MainHeader .

ip DFMFoffset & 0x00FF) ;

B.2 RawSocket.cs 96

608 s end bu f byte s [8] = args . MainHeader . i p t t l ;
609 s end bu f byte s [9] = args . MainHeader .

i p p r o t o c o l ;
610 // Don ’ t c a l c u l a t e checksum ye t . We want to

check both ways u n t i l we are c e r t a i n i t
works .

611 s end bu f byte s [1 0] = 0 ;
612 s end bu f byte s [1 1] = 0 ;
613 s end bu f byte s [1 2] = (byte) ((args . MainHeader

. i p s r c add r & 0xFF000000) >> 24) ;
614 s end bu f byte s [1 3] = (byte) ((args . MainHeader

. i p s r c add r & 0x00FF0000) >> 16) ;
615 s end bu f byte s [1 4] = (byte) ((args . MainHeader

. i p s r c add r & 0x0000FF00) >> 8) ;
616 s end bu f byte s [1 5] = (byte) (args . MainHeader .

i p s r c add r & 0x000000FF) ;
617 s end bu f byte s [1 6] = (byte) ((args . MainHeader

. i p de s taddr & 0xFF000000) >> 24) ;
618 s end bu f byte s [1 7] = (byte) ((args . MainHeader

. i p de s taddr & 0x00FF0000) >> 16) ;
619 s end bu f byte s [1 8] = (byte) ((args . MainHeader

. i p de s taddr & 0x0000FF00) >> 8) ;
620 s end bu f byte s [1 9] = (byte) (args . MainHeader .

i p de s taddr & 0x000000FF) ;
621 // t h i s . MainHeader . i p s r cadd r = (u in t) ((bu f

[1 2] << 24) + (bu f [1 3] << 16) + (bu f [1 4]
<< 8) + buf [1 5]) ;

622 int IHL = (args . MainHeader . ip verIHL & 0x0F)
;

623 i f (IHL > 5)
624 {
625 Array . Copy(args . IPOptions , 0 ,

s end buf bytes , 20 , (IHL − 5) ∗ 4)
;

626 }
627 mychecksum = calcchecksum (send buf bytes , (

s end bu f byt e s [0] & 0x0F) ∗4) ;
628 s end bu f byte s [1 0] = (byte) ((args . MainHeader

. ip checksum & 0xFF00) >> 8) ;
629 s end bu f byte s [1 1] = (byte) (args . MainHeader .

ip checksum & 0x00FF) ;
630 i f (args . Protoco l == 6)
631 {
632 s end bu f byte s [a rgs . IHL ∗ 4] = (byte)

((args .TCPHead . t c p s r c po r t & 0
xFF00) >> 8) ;

633 s end bu f byte s [a rgs . IHL ∗ 4 + 1] = (
byte) (args .TCPHead . t c p s r c po r t & 0
x00FF) ;

634 s end bu f byte s [a rgs . IHL ∗ 4 + 2] = (
byte) ((args .TCPHead . t cp de s tpo r t &
0xFF00) >> 8) ;

635 s end bu f byte s [a rgs . IHL ∗ 4 + 3] = (
byte) (args .TCPHead . t cp de s tpo r t &
0x00FF) ;

636 s end bu f byte s [a rgs . IHL ∗ 4 + 4] = (
byte) ((args .TCPHead . tcp sequence &
0xFF000000) >> 24) ;

637 s end bu f byte s [a rgs . IHL ∗ 4 + 5] = (
byte) ((args .TCPHead . tcp sequence &
0x00FF0000) >> 16) ;

B.2 RawSocket.cs 97

638 s end bu f byte s [a rgs . IHL ∗ 4 + 6] = (
byte) ((args .TCPHead . tcp sequence &
0x0000FF00) >> 8) ;

639 s end bu f byte s [a rgs . IHL ∗ 4 + 7] = (
byte) (args .TCPHead . tcp sequence &
0x000000FF) ;

640 s end bu f byte s [a rgs . IHL ∗ 4 + 8] = (
byte) ((args .TCPHead .
tcp acknowledgement & 0xFF000000)
>> 24) ;

641 s end bu f byte s [a rgs . IHL ∗ 4 + 9] = (
byte) ((args .TCPHead .
tcp acknowledgement & 0x00FF0000)
>> 16) ;

642 s end bu f byte s [a rgs . IHL ∗ 4 + 10] = (
byte) ((args .TCPHead .
tcp acknowledgement & 0x0000FF00)
>> 8) ;

643 s end bu f byte s [a rgs . IHL ∗ 4 + 11] = (
byte) (args .TCPHead .
tcp acknowledgement & 0x000000FF) ;

644 s end bu f byte s [a rgs . IHL ∗ 4 + 12] =
args .TCPHead . t cp heade r l eng th ;

645 s end bu f byte s [a rgs . IHL ∗ 4 + 13] =
args .TCPHead . t c p f l a g s ;

646 s end bu f byte s [a rgs . IHL ∗ 4 + 14] = (
byte) ((args .TCPHead . tcp windows ize
& 0xFF00) >> 8) ;

647 s end bu f byte s [a rgs . IHL ∗ 4 + 15] = (
byte) (args .TCPHead . tcp windows ize
& 0x00FF) ;

648 s end bu f byte s [a rgs . IHL ∗ 4 + 16] = 0 ;
649 s end bu f byte s [a rgs . IHL ∗ 4 + 17] = 0 ;
650 s end bu f byte s [a rgs . IHL ∗ 4 + 18] = (

byte) ((args .TCPHead .
t cp u rg en tpo in t e r & 0xFF00) >> 8) ;

651 s end bu f byte s [a rgs . IHL ∗ 4 + 19] = (
byte) (args .TCPHead .
t cp u rg en tpo in t e r & 0x00FF) ;

652 i f (args . t cpheader l ength > 5)
653 {
654 Array . Copy(args . TCPOptions , 0 ,

s end buf bytes , (args . IHL ∗
4) + 20 , (args .
t cpheader l ength − 5) ∗ 4) ;

655 }
656 message length = args . t o t a l l e n g t h − (

args . IHL ∗ 4) − (args .
t cpheader l ength ∗ 4) ;

657 Array . Copy(args . RemainingData , 0 ,
s end buf bytes , (args . IHL ∗ 4) + (
args . t cpheader l ength ∗ 4) ,
message length) ;

658 }
659 else
660 {
661 message length = args . t o t a l l e n g t h − (

args . IHL ∗ 4) ;
662 Array . Copy(args . RemainingData , 0 ,

s end buf bytes , (args . IHL ∗ 4) ,
message length) ;

B.2 RawSocket.cs 98

663 }
664 // sender . SendTo(s end bu f b y t e s , args .

t o t a l l e n g t h , System . Net . Socke t s .
Socke tF lags . None , new IPEndPoint (args .
d e s t i na t i on , 0)) ;

665 i f (mychecksum == args . MainHeader .
ip checksum)

666 {
667 i f (args . Protoco l == 6)
668 {
669 mychecksum = TCPChecksum(

send buf bytes , a rgs .
t o t a l l e ng th , args . IHL) ;

670 e r r o r i n s e nd = fa l se ;
671 s end bu f byte s [a rgs . IHL ∗ 4 +

16] = (byte) ((args .TCPHead .
tcp checksum & 0xFF00) >> 8)
;

672 s end bu f byte s [a rgs . IHL ∗ 4 +
17] = (byte) (args .TCPHead .
tcp checksum & 0x00FF) ;

673 this . t ruecheck = mychecksum ;
674 this . r eportedcheck = args .

TCPHead . tcp checksum ;
675 sender . Blocking = fa l se ;
676 // sender . BeginSendTo
677 sender . Connect (new IPEndPoint ((

long) args . d e s t i na t i on , args .
t c pd e s t i n a t i on)) ;

678 while (! sender . Connected)
679 {
680 }
681 /∗whi l e (sender . Block ing)
682 {
683 }∗/
684 sender . Send (send buf bytes , 0 ,

a rgs . t o t a l l eng th , System . Net
. Sockets . SocketFlags . None) ;

685 // sender . SendTo(s end bu f b y t e s ,
args . t o t a l l e n g t h , System . Net
. Socke t s . Socke tF lags . None ,
new IPEndPoint (args .
d e s t i na t i on , args .
t c p d e s t i n a t i o n)) ;

686 }
687 else
688 {
689 this . t ruecheck = 0 ;
690 }
691 }
692 else
693 {
694 e r r o r i n s e nd = true ;
695 }
696 }
697

698 }
699

700 public class RawSocket
701 {
702 private bool e r r o r o c cu r r ed ;
703 public bool KeepRunning ; //Keep r e c i e v i n g packe t s ?
704 private stat ic int l e n r e c e i v e b u f ; // S i z e o f

r e c i e v e b u f f e r .

B.2 RawSocket.cs 99

705 byte [] r e c e i v e bu f b y t e s ; // Buf fer f o r packe t s .
706 private Socket socke t = null ; // Socket f o r

r e c i e v i n g .
707 public UInt16 checksum1 ;
708 public UInt16 checksum2 ;
709

710 public RawSocket () //Constructor
711 {
712 e r r o r o c cu r r ed=fa l se ;
713 l e n r e c e i v e b u f = 65535; // Abso lu te maximum

IP packe t s i z e .
714 // Be c a r e f u l o f Buf fer Overruns . WIndows

won ’ t r e c i e v e a packe t t h a t v i o l a t e s
t h i s number .

715 r e c e i v e bu f b y t e s = new byte [l e n r e c e i v e b u f
] ;

716 }
717

718 public void Star tSocket (string IP , int port , bool
promiscuous)

719 {
720 socke t = new Socket (AddressFamily .

InterNetwork , SocketType .Raw,
ProtocolType . IP) ;

721 socke t . Blocking = fa l se ;
722 socke t . Bind (new IPEndPoint (IPAddress . Parse (

IP) , port)) ;
723 // socke t . Bind (new IPEndPoint (IPAddress . Parse

(”202 .173 .149 .32”) , 0)) ;
724 i f (SetSocketOption (promiscuous)==fa l se)

e r r o r o c cu r r ed=true ;
725 }
726

727 public void ShutdownSocket ()
728 {
729 i f (socke t != null)
730 {
731 socke t . Shutdown (SocketShutdown . Both) ;
732 socke t . Close () ;
733 }
734 }
735

736 private bool SetSocketOption (bool promiscuous)
737 {
738 bool r e t v a l u e = true ;
739 try // .NET Except ion hande l ing
740 {
741 socke t . SetSocketOption (

SocketOptionLevel . IP ,
SocketOptionName . HeaderIncluded ,
1) ;

742 i f (promiscuous)
743 {
744 byte [] IN = new byte [4] { 1 , 0 , 0 ,

0} ;
745 byte []OUT = new byte [4] ;
746 int SIO RCVALL = unchecked ((int)

0x98000001) ; // Contro l code
f o r SIO RCVALL documented

on MSDN.
747 // See h t t p ://msdn . micro so f t . com

/ l i b r a r y / d e f a u l t . asp? u r l=/
l i b r a r y /en−us/winsock /
winsock / w s a i o c t l 2 . asp f o r

B.2 RawSocket.cs 100

d e t a i l s .
748 int r e t c ode = socket . IOControl (

SIO RCVALL, IN , OUT) ; //
r e c e i v e a l l IP packe t s on
the network .

749 r e t c ode = OUT[0] + OUT[1] + OUT
[2] + OUT[3] ; //Check t ha t
opera t ion suceeded .

750 i f (r e t c ode != 0) r e t v a l u e =
fa l se ; // I f not re turn error
.

751 }
752 }
753 catch (SocketExcept ion)
754 {
755 r e t v a l u e = fa l se ; // I f any o f the

above caused an except ion , re turn
an error .

756 }
757 return r e t v a l u e ;
758 }
759

760 public bool ErrorOccurred
761 {
762 get // Let main program check f o r e r ro r s .
763 {
764 return e r r o r o c cu r r ed ;
765 }
766 }
767

768 public stat ic UInt16 calcchecksum (Byte [] bu f f e r ,
int s i z e)

769 {
770 Int32 cksum = 0 ;
771 int counter ;
772 counter = 0 ;
773 while (s i z e > 0)
774 {
775 UInt16 va l = (ushort) ((bu f f e r [counter]

<< 8) + bu f f e r [counter +1]) ;
776 cksum += Convert . ToInt32 (va l) ;
777 counter += 2 ;
778 s i z e −= 2 ;
779 }
780 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
781 cksum += (cksum >> 16) ;
782 return (UInt16) (˜ cksum) ;
783 }
784

785 public UInt16 TCPChecksum(Byte [] bu f f e r , int s i z e
, int IHL)

786 {
787 byte [] b i g g e r bu f f e r ;
788 int l ength = s i z e − (IHL ∗ 4) + 12 ;
789 // t h i s . e r ro r occur red = f a l s e ;
790 i f (l ength%2 == 1)
791 {
792 // t h i s . e r ro r occur red = true ;
793 l ength++;
794 }
795 b i g g e r bu f f e r = new byte [l ength] ;
796 // b i g g e r b u f f e r [0] = b u f f e r [1 2] ;
797 Array . Copy(bu f f e r , 12 , b i g g e rbu f f e r , 0 , 8) ;
798 b i g g e r bu f f e r [8] = 0 ;

B.2 RawSocket.cs 101

799 b i g g e r bu f f e r [9] = 6 ;
800 b i g g e r bu f f e r [1 0] = (byte) (((s i z e − (IHL ∗ 4)

) & 0xFF00) >> 8) ;
801 b i g g e r bu f f e r [1 1] = (byte) ((s i z e − (IHL ∗ 4))

& 0x00FF) ;
802 Array . Copy(bu f f e r , IHL∗4 , b i g g e rbu f f e r , 12 ,

s i z e − (IHL ∗ 4)) ;
803 Int32 cksum = 0 ;
804 int counter ;
805 counter = 0 ;
806 while (l ength > 0)
807 {
808 UInt16 va l = (ushort) ((b i g g e r bu f f e r [

counter] << 8) + b i g g e r bu f f e r [
counter +1]) ;

809 cksum += Convert . ToInt32 (va l) ;
810 counter += 2 ;
811 l ength −= 2 ;
812 }
813 cksum = (cksum >> 16) + (cksum & 0 x f f f f) ;
814 cksum += (cksum >> 16) ;
815 return (UInt16) (˜ cksum) ;
816 }
817

818 private void Receive (byte [] buf , int l en)
819 {
820 // by t e t emp pro toco l =0;
821 // u in t temp vers ion=0;
822 // u in t t emp ip s rcaddr =0;
823 // u in t t emp ip de s taddr =0;
824 // shor t t emp srcpor t =0;
825 // shor t t emp ds tpor t =0;
826 // IPAddress temp ip ;
827

828 UInt16 RecievedChecksum ;
829 byte temp1 , temp2 ;
830 RecievedChecksum = (ushort) ((buf [1 0] << 8) +

buf [1 1]) ;
831 temp1 = buf [1 0] ;
832 temp2 = buf [1 1] ;
833 buf [1 0] = 0 ;
834 buf [1 1] = 0 ;
835 i f (calcchecksum (buf , (buf [0] & 0x0F) ∗4) ==

RecievedChecksum)
836 {
837 buf [1 0] = temp1 ;
838 buf [1 1] = temp2 ;
839 int IHL = (buf [0] & 0x0F) ;
840 i f (buf [9] == 6) //This causes us to

on ly r e c i e v e TCP packe t s which i s
f i n e f o r now .

841 {
842 temp1 = buf [IHL ∗ 4 + 1 6] ;
843 temp2 = buf [IHL ∗ 4 + 1 7] ;
844 RecievedChecksum = (ushort) ((

temp1 << 8) + temp2) ;
845 buf [IHL ∗ 4 + 16] = 0 ;
846 buf [IHL ∗ 4 + 17] = 0 ;
847 i f (TCPChecksum(buf , (ushort) ((

buf [2] << 8) + buf [3]) , IHL)
== RecievedChecksum)

848 {

B.2 RawSocket.cs 102

849 buf [IHL ∗ 4 + 16] = temp1 ;
850 buf [IHL ∗ 4 + 17] = temp2 ;
851 PacketArgs e ;
852 e=new PacketArgs (buf) ;
853 OnPacketArrival (e) ;
854 }
855 checksum1=TCPChecksum(buf , (

ushort) ((buf [2] << 8) + buf
[3]) , IHL) ;

856 checksum2 = RecievedChecksum ;
857 }
858 //PacketArgs e ;
859

860 // f i x e d (by t e ∗ f i x e d b u f = buf)
861 //{
862 //IPHeader ∗ head = (IPHeader ∗)

f i x e d b u f ; // Assign IP Header
from re c i e v e b u f f e r .

863 //e=new PacketArgs (bu f) ;
864 // head−>i p p r o t o c o l , ((u in t) (head−>

ip verIHL & 0x0F) << 2) ∗ 4
865 //Array . Copy(buf , 0 , e . MainHeader , 0 ,

20) ;
866

867 //e . MainHeader = head ;
868 //e . SubHeader = f i x e d b u f [((u in t) (head

−>ip verIHL & 0x0F) << 2) ∗ 4] ;
869 /∗e . HeaderLength=(u in t) (head−>

ip verIHL & 0x0F) << 2 ; //Header
Length from IHL (b i t s 5−8) .

870

871 t emp pro toco l = head−>
i p p r o t o c o l ;

872 sw i t ch (t emp pro toco l)
873 {
874 case 1 : e . Pro toco l=”ICMP

: ” ; break ;
875 case 2 : e . Pro toco l=”IGMP

: ” ; break ; //Don ’ t
need IGMP in NAT

876 case 6 : e . Pro toco l=”TCP: ” ;
break ;

877 case 17: e . Pro toco l=”UDP
: ” ; break ;

878 d e f a u l t : e . Pro toco l= ”
UNKNOWN”; break ;

879 // See h t t p ://www. iana . org
/ ass ignments / pro toco l−
numbers f o r d e t a i l s .

880 } // Use t h i s in f u t u r e ve r s i on
to prope r l y decode TCP or
ICMP headers .

881

882 t emp vers ion =(u in t) (head−>
ip verIHL & 0xF0) >> 4 ; //
Version from verIHL (b i t s
1−4) .

883 e . IPVersion = temp vers ion .
ToString () ;

884

885 t emp ip s rcaddr = head−>
i p s r cadd r ; //Decode IP
addres se s to s t r i n g s .

886 t emp ip de s taddr = head−>
i p d e s t a dd r ;

B.2 RawSocket.cs 103

887 temp ip = new IPAddress (
t emp ip s rcaddr) ;

888 e . Orig inat ionAddress =temp ip .
ToString () ;

889 temp ip = new IPAddress (
t emp ip de s taddr) ;

890 e . Des t inat ionAddress = temp ip .
ToString () ;

891

892 // This i s a very bad idea as i t
d e f e a t s the purpose o f

s epe ra t e IP and TCP l a y e r s .
893 // Wil l reprogram i t l a t e r when

suppor t i s added f o r t o t a l
r e co gn i t i on o f TCP header .

894 // Would cause problems i f IP
Options were used . (Could
use e . HeaderLength to f i x)

895 t emp srcpor t = ∗(shor t ∗)&
f i x e d b u f [e . HeaderLength] ;

896 t emp ds tpor t = ∗(shor t ∗)&
f i x e d b u f [e . HeaderLength +2];

897 e . Or ig ina t ionPor t=IPAddress .
NetworkToHostOrder (
t emp srcpor t) . ToString () ;

898 e . Des t ina t ionPor t=IPAddress .
NetworkToHostOrder (
t emp ds tpor t) . ToString () ;

899

900 e . PacketLength =(u in t) l en ;
901 e . MessageLength =(u in t) l en − e .

HeaderLength ;
902

903 e . Rece iveBuf fer=buf ;
904 Array . Copy(buf , 0 , e .

IPHeaderBuffer , 0 , (i n t) e .
HeaderLength) ;

905 Array . Copy(buf , (i n t) e .
HeaderLength , e . MessageBuffer
, 0 , (i n t) e . MessageLength) ; //
Copy remaining data to
message b u f f e r s . ∗/

906 //}
907

908 //OnPacketArrival (e) ; // Ca l l
p roce s s ing f unc t i on s .

909 }
910 }
911

912 public void Run()
913 {
914 IAsyncResult ar = socket . BeginReceive (

r e c e i v e bu f by t e s , 0 , l e n r e c e i v e bu f ,
SocketFlags . None , new AsyncCallback (
Ca l lRece ive) , this) ;

915 }
916

917 private void Cal lRece ive (IAsyncResult ar)
918 {
919 int r e c e i v ed by t e s ;
920 r e c e i v ed by t e s = socket . EndReceive (ar) ;
921 Receive (r e c e i v e bu f by t e s , r e c e i v ed by t e s) ;
922 i f (KeepRunning) Run() ; //Keep r e c i e v i n g

more packe t s .
923 }

B.2 RawSocket.cs 104

924
925

926 public delegate void PacketArrivedEventHandler (
927 Object sender , PacketArgs args) ;
928

929 public event PacketArrivedEventHandler
PacketArr iva l ;

930

931 protected virtual void OnPacketArrival (PacketArgs
e)

932 {
933 i f (PacketArr iva l != null)
934 {
935 PacketArr iva l (this , e) ;
936 }
937 }
938 }
939 }� �

B.3 BidirHashtable.cs 105

B.3 BidirHashtable.cs� �
1 using System ;
2 using System . Co l l e c t i o n s ;
3 // us ing System . Runtime . S e r i a l i z a t i o n ;
4

5 namespace System . Extended . Co l l e c t i o n s
6 {
7 /// <summary>
8 /// Bid i rHash tab l e i s a simple , b i d i r e c t i o n a l data

s t r u c t u r e
9 /// des igned around Hash tab l e s and accessed l i k e a more

robus t Hashtab le .
10 /// I n t e r n a l l y i t j u s t con ta ins two ha s h t a b l e s :
11 /// one maps from key to value , the o ther maps from

va lue to key .
12 /// Lookup in e i t h e r d i r e c t i o n i s qu i ck ;
13 /// changes take tw ice as long s ince two Hash tab l e s are

accessed .
14 /// Forward lookup i s j u s t through the [] as in

Hashtab le .
15 /// Reverse lookup i s through ReverseLookup () .
16 /// Adding and s e t t i n g e lements i s done wi th forward

syntax i d e n t i c a l to
17 /// in Hashtab le , but both i n t e r n a l Hash tab l e s are

a f f e c t e d .
18 /// </summary>
19 public class Bid i rHashtab le : IDic t ionary , ICo l l e c t i on ,

IEnumerable ,
20 IC loneab le
21 {
22 private Hashtable m htFwd = null ;
23 private Hashtable m htBkwd = null ;
24

25 /// <summary>
26 /// Just c r ea t e a Two−Way Hash Table .
27 /// </summary>
28 public Bid i rHashtab le ()
29 {
30 m htFwd = new Hashtable () ;
31 m htBkwd = new Hashtable () ;
32 }
33

34 /// <summary>
35 /// Somewhat s im i l a r to a Copy Constructor in C++
36 /// </summary>
37 public Bid i rHashtab le (ID i c t i ona ry d i c t)
38 {
39 m htFwd = new Hashtable () ;
40 m htBkwd = new Hashtable () ;
41

42 foreach (object key in d i c t . Keys)
43 {
44 this [key] = d i c t [key] ;
45 }
46 }
47

48 /// <summary>
49 /// Use an e x i s t i n g Hash Table and map the r e v e r s e

lookups .
50 /// </summary>
51 private Bid i rHashtab le (Hashtable ht , byte

bytDummyIndicatesAttach)
52 {

B.3 BidirHashtable.cs 106

53 m htFwd = ht ;
54 m htBkwd = new Hashtable () ;
55

56 foreach (object key in ht . Keys)
57 {
58 m htBkwd [ht [key]] = key ;
59 }
60 }
61

62 public int Count { get { return m htFwd . Count ; } }
63 public bool I sSynchron ized { get { return m htFwd .

I sSynchron ized ; } }
64 public object SyncRoot { get { return m htFwd .

SyncRoot ; } }
65 public void CopyTo(
66 Array array ,
67 int index
68)
69 {
70 m htFwd . CopyTo(array , index) ;
71 }
72

73 public void CopyValuesTo (
74 Array array ,
75 int index
76)
77 {
78 m htBkwd . CopyTo(array , index) ;
79 }
80

81 public void Add(object key , object va l)
82 {
83 m htFwd .Add(key , va l) ;
84 m htBkwd .Add(val , key) ;
85 }
86

87 public void Remove(object key)
88 {
89 object va l = m htFwd [key] ;
90 m htFwd . Remove(key) ;
91 m htBkwd . Remove(va l) ;
92 }
93

94 public void Clear ()
95 {
96 m htFwd . Clear () ;
97 m htBkwd . Clear () ;
98 }
99

100 /// <summary>
101 /// Forward lookup or s e t .
102 /// </summary>
103 public object this [object key]
104 {
105 get { return m htFwd [key] ; }
106 s e t
107 {
108 i f (m htFwd . ContainsKey (key))
109 {
110 m htBkwd . Remove(m htFwd [key]) ;
111 }
112 m htFwd [key] = value ;
113 m htBkwd [value] = key ;
114 }

B.3 BidirHashtable.cs 107

115 }
116

117 /// <summary>
118 /// Reverse Lookup works at normal ha s h t a b l e

speeds .
119 /// </summary>
120 public object ReverseLookup (object va l)
121 {
122 return m htBkwd [va l] ;
123 }
124

125 public bool I sF i x edS i z e
126 {
127 get { return m htFwd . I sF ix edS i z e ; }
128 }
129

130 public bool IsReadOnly
131 {
132 get { return m htFwd . IsReadOnly ; }
133 }
134

135 /// <summary>
136 /// Do Not Use t h i s , shou ld be made p r i v a t e in

f u t u r e .
137 /// </summary>
138 public ICo l l e c t i o n Keys
139 {
140 get { return m htFwd . Keys ; }
141 }
142

143 /// <summary>
144 /// Do Not Use t h i s , shou ld be made p r i v a t e in

f u t u r e .
145 /// </summary>
146 public ICo l l e c t i o n Values
147 {
148 get { return m htFwd . Values ; }
149 }
150

151 public bool Contains (object key)
152 {
153 return m htFwd . Contains (key) ;
154 }
155

156 public bool ContainsValue (object va l)
157 {
158 return m htBkwd . Contains (va l) ;
159 }
160

161 IEnumerator IEnumerable . GetEnumerator ()
162 {
163 return m htFwd . GetEnumerator () ;
164 }
165

166 IDict ionaryEnumerator ID i c t i ona ry . GetEnumerator ()
167 {
168 return m htFwd . GetEnumerator () ;
169 }
170

171 public object Clone ()
172 {
173 Bid i rHashtab le bh = new Bid i rHashtab le () ;
174 bh . m htFwd = (Hashtable) m htFwd . Clone () ;
175 bh . m htBkwd = (Hashtable) m htBkwd . Clone () ;
176 return bh ;

B.3 BidirHashtable.cs 108

177 }
178

179 #reg ion Exp l i c i t conver s i on to / from Hashtable
180 public stat ic expl ic it operator Bid i rHashtab le (

Hashtable ht)
181 {
182 return new Bid i rHashtab le (ht) ;
183 }
184

185 public stat ic expl ic it operator Hashtable (
Bid i rHashtab le bd)

186 {
187 return (Hashtable) bd . m htFwd . Clone () ;
188 }
189 #endreg ion
190

191 #reg ion Access to private Hashtables
192 /// <summary>
193 /// Gives d i r e c t acces s f o r debugg ing on ly .
194 /// </summary>
195 public Hashtable ForwardHashtable
196 {
197 get { return m htFwd ; }
198 }
199

200 /// <summary>
201 /// Gives d i r e c t acces s f o r debugg ing on ly .
202 /// </summary>
203 public Hashtable BackwardHashtable
204 {
205 get { return m htBkwd ; }
206 }
207

208 /// <summary>
209 /// Make a copy to change wi thout caus ing bugs in

t h i s
210 /// two−way hash t a b l e .
211 /// </summary>
212 public Hashtable BackwardHashtableClone
213 {
214 get { return (Hashtable) m htBkwd . Clone () ;

}
215 }
216 #endreg ion
217

218 #reg ion Attach and Rever seDi rec t i on
219 /// <summary>
220 /// Reverse the hash t a b l e . Lookups are in

oppo s i t e d i r e c t i o n s .
221 /// </summary>
222 public void Rever seDi rec t i on ()
223 {
224 Hashtable htTemp = m htFwd ;
225 m htFwd = m htBkwd ;
226 m htBkwd = htTemp ;
227 }
228

229 public stat ic Bid i rHashtab le Attach (Hashtable ht)
230 {
231 return new Bid i rHashtab le (ht , (byte) 0) ;
232 }
233 #endreg ion
234 }
235 }� �

B.4 ProjectInstaller.cs 109

B.4 ProjectInstaller.cs� �
1 using System ;
2 using System . Co l l e c t i o n s ;
3 using System . ComponentModel ;
4 using System . Conf igurat ion . I n s t a l l ;
5 using Microso f t . Win32 ;
6 using System . Secur i ty ;
7 using System . IO ;
8 using System . Windows . Forms ;
9 using System . Se rv i c eProc e s s ;

10 using System . Diagnos t i c s ;
11

12 namespace NAT Service
13 {
14 /// <summary>
15 /// Summary d e s c r i p t i o n f o r P r o j e c t I n s t a l l e r .
16 /// </summary>
17 [RunIn s ta l l e r (true)]
18 public class P r o j e c t I n s t a l l e r : System . Conf igurat ion .

I n s t a l l . I n s t a l l e r
19 {
20 private System . Se rv i c eProc e s s .

S e r v i c eP r o c e s s I n s t a l l e r
s e r v i c eP r o c e s s I n s t a l l e r 1 ;

21 private System . Se rv i c eProc e s s . S e r v i c e I n s t a l l e r
s e r v i c e I n s t a l l e r 1 ;

22

23 /// <summary>
24 /// Required de s i gne r v a r i a b l e .
25 /// </summary>
26 // p r i v a t e System . ComponentModel . Container

components = nu l l ;
27 private EventLog eventLog ;
28

29 public P r o j e c t I n s t a l l e r ()
30 {
31 // This c a l l i s r e qu i r ed by the Designer .
32 In i t i a l i z eComponent () ;
33 eventLog = new EventLog () ;
34

35 // TODO: Add any i n i t i a l i z a t i o n a f t e r the
InitComponent c a l l

36 }
37

38 /// <summary>
39 /// ove r r i d e the i n s t a l l method to s e t up the

in format ion .
40 /// a l l t h a t s c r ea t e here i s a r e g i s t r y key . I t

shou ld be noted t ha t t h i s f unc t i on
41 /// can ’ t be debugged so catch a l l p o s s i b l e

e x c ep t i on s
42 /// </summary>
43 /// <param name=”i I n s t a l l D a t a”></param>
44 public override void I n s t a l l (ID i c t i ona ry

i I n s t a l lDa t a)
45 {
46 try
47 {
48

49 /// must c a l l base c l a s s i n s t a l l f i r s t
50 base . I n s t a l l (i I n s t a l lDa t a) ;
51

52 /// j u s t c r ea t e the key the gu i par t
o f the code w i l l s e t i t

B.4 ProjectInstaller.cs 110

53 RegistryKey reg = Reg i s t ry .
LocalMachine . OpenSubKey(” Software
” , true) ;

54 i f (reg == null)
55 {
56 eventLog . WriteEntry (”Error

t ry ing to i n s t a l l ’USQ NAT
Project ’ ”) ;

57 return ;
58 }
59

60 RegistryKey scheduleKey = reg .
CreateSubKey (”NATUSQProj”) ;

61

62 i f (scheduleKey == null)
63 {
64 eventLog . WriteEntry (”Error

t ry ing to i n s t a l l ’USQ NAT
Project ’ ”) ;

65 return ;
66 }
67

68 reg . Close () ;
69 }
70 catch (ArgumentNullException argNullExp)
71 {
72 eventLog . WriteEntry (”Error with the

argument subkey ” + argNullExp .
Message) ;

73 }
74 catch (Secur i tyExcept ion secExp)
75 {
76 eventLog . WriteEntry (”Error the user

does not have ac c e s s permis s ion ”
+ secExp . Message) ;

77 }
78 catch (IOException ioExp)
79 {
80 eventLog . WriteEntry (”Error the

r e g i s t r y key i s c l o s ed ” + ioExp .
Message) ;

81 }
82 catch (UnauthorizedAccessException unExp)
83 {
84 eventLog . WriteEntry (”Error the user

does not have ac c e s s permis s ion ”
+ unExp . Message) ;

85 }
86 catch (ArgumentException argExp)
87 {
88 eventLog . WriteEntry (”Error in the

i n s t a l l data format ” + argExp .
Message) ;

89 }
90 catch (Exception exp)
91 {
92 eventLog . WriteEntry (”A problem

occured with the i n s t a l l ” + exp .
Message) ;

93 }
94

95 return ;
96 }
97

B.4 ProjectInstaller.cs 111

98 /// <summary>
99 /// ove r r i d e the u n i n s t a l l method and remove the

r e g i s t r y key
100 /// </summary>
101 /// <param name=”i I n s t a l l D a t a”></param>
102 public override void Un in s t a l l (ID i c t i ona ry

i I n s t a l lDa t a)
103 {
104 try
105 {
106 i f (i I n s t a l lDa t a == null)
107 {
108 eventLog . WriteEntry (”Error

unable to u n i n s t a l l the
app l i c a t i o n ’USQ NAT Project
’ ”) ;

109 }
110 else
111 {
112 base . Un in s t a l l (i I n s t a l lDa t a) ;
113

114 Reg i s t ry . LocalMachine . OpenSubKey
(” Software ” , true) .
DeleteSubKeyTree (”
NATUSQProj”) ;

115

116 }
117 }
118 catch (ArgumentException argExp)
119 {
120 MessageBox . Show(”Error in the i n s t a l l

data format ” + argExp . Message) ;
121 }
122 catch (I n s t a l lEx c ep t i on instExp)
123 {
124 MessageBox . Show(”A problem occurred

with the i n s t a l l ” + instExp .
Message) ;

125 }
126

127 return ;
128

129 }
130

131 #reg ion Component Des igner generated code
132 /// <summary>
133 /// Required method f o r Designer suppor t − do not

modify
134 /// the con ten t s o f t h i s method wi th the code

e d i t o r .
135 /// </summary>
136 private void In i t i a l i z eComponent ()
137 {
138 this . s e r v i c e P r o c e s s I n s t a l l e r 1 = new System .

Se rv i c eProc e s s . S e r v i c eP r o c e s s I n s t a l l e r ()
;

139 this . s e r v i c e I n s t a l l e r 1 = new System .
Se rv i c eProc e s s . S e r v i c e I n s t a l l e r () ;

140 //
141 // s e r v i c eP r o c e s s I n s t a l l e r 1
142 //
143 this . s e r v i c e P r o c e s s I n s t a l l e r 1 . Account =

System . Se rv i c eProc e s s . ServiceAccount .
LocalSystem ;

B.4 ProjectInstaller.cs 112

144 this . s e r v i c e P r o c e s s I n s t a l l e r 1 . Password =
null ;

145 this . s e r v i c e P r o c e s s I n s t a l l e r 1 . Username =
null ;

146 //
147 // s e r v i c e I n s t a l l e r 1
148 //
149 this . s e r v i c e I n s t a l l e r 1 . ServiceName = ”

Schedu l e rSe rv i c e ” ;
150 this . s e r v i c e I n s t a l l e r 1 . StartType = System .

Se rv i c eProc e s s . ServiceStartMode .
Automatic ;

151 //
152 // P r o j e c t I n s t a l l e r
153 //
154 this . I n s t a l l e r s . AddRange(new System .

Conf igurat ion . I n s t a l l . I n s t a l l e r [] {
155 this

.
s e r v i c eP r o c e s s I n s t a l l e r 1
,

156 this
.
s e r v i c e I n s t a l l e r 1
})
;

157

158 }
159 #endreg ion
160 }
161 }� �

B.5 NATControl.cs 113

B.5 NATControl.cs� �
1 using System ;
2 using System . Drawing ;
3 using System . Co l l e c t i o n s ;
4 using System . ComponentModel ;
5 using System . Windows . Forms ;
6 using Microso f t . Win32 ;
7 using System . Data ;
8 using System . Net ;
9

10 namespace NAT Sett ings Appl icat ion
11 {
12 /// <summary>
13 /// Summary d e s c r i p t i o n f o r Form1 .
14 /// </summary>
15 public class NATSetup : System . Windows . Forms . Form
16 {
17 private System . Windows . Forms . Label I n t e r na l ;
18 private System . Windows . Forms . Label l a b e l 7 ;
19 private System . Windows . Forms . Label l a b e l 8 ;
20 private System . Windows . Forms . Label l a b e l 9 ;
21 private System . Windows . Forms . TextBox

Interna lSubnet4 ;
22 private System . Windows . Forms . TextBox

Interna lSubnet3 ;
23 private System . Windows . Forms . TextBox

Interna lSubnet2 ;
24 private System . Windows . Forms . TextBox

Interna lSubnet1 ;
25 private System . Windows . Forms . Label l ab e l 1 0 ;
26 private System . Windows . Forms . Label l ab e l 1 1 ;
27 private System . Windows . Forms . GroupBox groupBox1 ;
28 private System . Windows . Forms . GroupBox groupBox2 ;
29 private System . Windows . Forms .ComboBox ExternalIP ;
30 private System . Windows . Forms .ComboBox In t e rna l IP ;
31 private System . Windows . Forms . Button NATOkButton ;
32 private System . Windows . Forms . Button

NATCancelButton ;
33 private System . Windows . Forms . Label l a b e l 1 ;
34 private System . Windows . Forms . TextBox NumberofPorts

;
35 /// <summary>
36 /// Required de s i gne r v a r i a b l e .
37 /// </summary>
38 private System . ComponentModel . Container components

= null ;
39

40 public NATSetup ()
41 {
42 //
43 // Required f o r Windows Form Designer

suppor t
44 //
45 In i t i a l i z eComponent () ;
46

47 //
48 // TODO: Add any cons t ruc t o r code a f t e r

In i t i a l i z eComponent c a l l
49 //
50 }
51

52 /// <summary>
53 /// Clean up any re source s be ing used .
54 /// </summary>
55 protected override void Dispose (bool d i spo s i ng)

B.5 NATControl.cs 114

56 {
57 i f (d i spo s i ng)
58 {
59 i f (components != null)
60 {
61 components . Dispose () ;
62 }
63 }
64 base . Dispose (d i spo s i ng) ;
65 }
66

67 #reg ion Windows Form Des igner generated code
68 /// <summary>
69 /// Required method f o r Designer suppor t − do not

modify
70 /// the con ten t s o f t h i s method wi th the code

e d i t o r .
71 /// </summary>
72 private void In i t i a l i z eComponent ()
73 {
74 this . I n t e r na l = new System . Windows . Forms .

Label () ;
75 this . l a b e l 7 = new System . Windows . Forms . Label

() ;
76 this . l a b e l 8 = new System . Windows . Forms . Label

() ;
77 this . l a b e l 9 = new System . Windows . Forms . Label

() ;
78 this . Interna lSubnet4 = new System . Windows .

Forms . TextBox () ;
79 this . Interna lSubnet3 = new System . Windows .

Forms . TextBox () ;
80 this . Interna lSubnet2 = new System . Windows .

Forms . TextBox () ;
81 this . Interna lSubnet1 = new System . Windows .

Forms . TextBox () ;
82 this . l a b e l 1 0 = new System . Windows . Forms .

Label () ;
83 this . l a b e l 1 1 = new System . Windows . Forms .

Label () ;
84 this . groupBox1 = new System . Windows . Forms .

GroupBox () ;
85 this . I n t e rna l IP = new System . Windows . Forms .

ComboBox() ;
86 this . groupBox2 = new System . Windows . Forms .

GroupBox () ;
87 this . ExternalIP = new System . Windows . Forms .

ComboBox() ;
88 this . NATOkButton = new System . Windows . Forms .

Button () ;
89 this . NATCancelButton = new System . Windows .

Forms . Button () ;
90 this . l a b e l 1 = new System . Windows . Forms . Label

() ;
91 this . NumberofPorts = new System . Windows .

Forms . TextBox () ;
92 this . groupBox1 . SuspendLayout () ;
93 this . groupBox2 . SuspendLayout () ;
94 this . SuspendLayout () ;
95 //
96 // In t e rna l
97 //

B.5 NATControl.cs 115

98 this . I n t e r na l . Locat ion = new System . Drawing .
Point (32 , 32) ;

99 this . I n t e r na l .Name = ” In t e r na l ” ;
100 this . I n t e r na l . S i z e = new System . Drawing . S i z e

(64 , 16) ;
101 this . I n t e r na l . TabIndex = 14 ;
102 this . I n t e r na l . Text = ”IP Address ” ;
103 this . I n t e r na l . TextAlign = System . Drawing .

ContentAlignment . MiddleRight ;
104 //
105 // l a b e l 7
106 //
107 this . l a b e l 7 . Locat ion = new System . Drawing .

Point (192 , 72) ;
108 this . l a b e l 7 .Name = ” l ab e l 7 ” ;
109 this . l a b e l 7 . S i z e = new System . Drawing . S i z e

(8 , 16) ;
110 this . l a b e l 7 . TabIndex = 21 ;
111 this . l a b e l 7 . Text = ” . ” ;
112 //
113 // l a b e l 8
114 //
115 this . l a b e l 8 . Locat ion = new System . Drawing .

Point (160 , 72) ;
116 this . l a b e l 8 .Name = ” l ab e l 8 ” ;
117 this . l a b e l 8 . S i z e = new System . Drawing . S i z e

(8 , 16) ;
118 this . l a b e l 8 . TabIndex = 20 ;
119 this . l a b e l 8 . Text = ” . ” ;
120 //
121 // l a b e l 9
122 //
123 this . l a b e l 9 . Locat ion = new System . Drawing .

Point (128 , 72) ;
124 this . l a b e l 9 .Name = ” l ab e l 9 ” ;
125 this . l a b e l 9 . S i z e = new System . Drawing . S i z e

(8 , 16) ;
126 this . l a b e l 9 . TabIndex = 19 ;
127 this . l a b e l 9 . Text = ” . ” ;
128 //
129 // In te rna lSubne t4
130 //
131 this . Interna lSubnet4 . Locat ion = new System .

Drawing . Point (200 , 72) ;
132 this . Interna lSubnet4 . MaxLength = 3 ;
133 this . Interna lSubnet4 .Name = ” Interna lSubnet4

” ;
134 this . Interna lSubnet4 . S i z e = new System .

Drawing . S i z e (24 , 20) ;
135 this . Interna lSubnet4 . TabIndex = 18 ;
136 this . Interna lSubnet4 . Text = ”” ;
137 //
138 // In te rna lSubne t3
139 //
140 this . Interna lSubnet3 . Locat ion = new System .

Drawing . Point (168 , 72) ;
141 this . Interna lSubnet3 . MaxLength = 3 ;
142 this . Interna lSubnet3 .Name = ” Interna lSubnet3

” ;
143 this . Interna lSubnet3 . S i z e = new System .

Drawing . S i z e (24 , 20) ;
144 this . Interna lSubnet3 . TabIndex = 17 ;
145 this . Interna lSubnet3 . Text = ”” ;
146 //
147 // In te rna lSubne t2

B.5 NATControl.cs 116

148 //
149 this . Interna lSubnet2 . Locat ion = new System .

Drawing . Point (136 , 72) ;
150 this . Interna lSubnet2 . MaxLength = 3 ;
151 this . Interna lSubnet2 .Name = ” Interna lSubnet2

” ;
152 this . Interna lSubnet2 . S i z e = new System .

Drawing . S i z e (24 , 20) ;
153 this . Interna lSubnet2 . TabIndex = 16 ;
154 this . Interna lSubnet2 . Text = ”” ;
155 //
156 // In te rna lSubne t1
157 //
158 this . Interna lSubnet1 . Locat ion = new System .

Drawing . Point (104 , 72) ;
159 this . Interna lSubnet1 . MaxLength = 3 ;
160 this . Interna lSubnet1 .Name = ” Interna lSubnet1

” ;
161 this . Interna lSubnet1 . S i z e = new System .

Drawing . S i z e (24 , 20) ;
162 this . Interna lSubnet1 . TabIndex = 15 ;
163 this . Interna lSubnet1 . Text = ”” ;
164 //
165 // l a b e l 1 0
166 //
167 this . l a b e l 1 0 . Locat ion = new System . Drawing .

Point (24 , 72) ;
168 this . l a b e l 1 0 .Name = ” l abe l 1 0 ” ;
169 this . l a b e l 1 0 . S i z e = new System . Drawing . S i z e

(72 , 16) ;
170 this . l a b e l 1 0 . TabIndex = 22 ;
171 this . l a b e l 1 0 . Text = ”Subnet Mask” ;
172 this . l a b e l 1 0 . TextAlign = System . Drawing .

ContentAlignment . MiddleRight ;
173 //
174 // l a b e l 1 1
175 //
176 this . l a b e l 1 1 . Locat ion = new System . Drawing .

Point (32 , 32) ;
177 this . l a b e l 1 1 .Name = ” l abe l 1 1 ” ;
178 this . l a b e l 1 1 . S i z e = new System . Drawing . S i z e

(64 , 16) ;
179 this . l a b e l 1 1 . TabIndex = 23 ;
180 this . l a b e l 1 1 . Text = ”IP Address ” ;
181 this . l a b e l 1 1 . TextAlign = System . Drawing .

ContentAlignment . MiddleRight ;
182 //
183 // groupBox1
184 //
185 this . groupBox1 . Contro l s . AddRange(new System .

Windows . Forms . Control [] {
186 this . Inte rna l IP ,
187 this . l abe l7 ,
188 this . l abe l8 ,
189 this . l abe l9 ,
190 this . Interna lSubnet3 ,
191 this . Interna lSubnet2 ,
192 this . Interna lSubnet4 ,
193 this . l abe l10 ,
194 this . Interna lSubnet1 ,
195 this . I n t e r na l }) ;
196 this . groupBox1 . Locat ion = new System . Drawing

. Point (56 , 24) ;
197 this . groupBox1 .Name = ”groupBox1” ;

B.5 NATControl.cs 117

198 this . groupBox1 . S i z e = new System . Drawing .
S i z e (264 , 104) ;

199 this . groupBox1 . TabIndex = 32 ;
200 this . groupBox1 . TabStop = fa l se ;
201 this . groupBox1 . Text = ” In t e r na l I n t e r f a c e ” ;
202 //
203 // In te rna l IP
204 //
205 this . I n t e rna l IP . Locat ion = new System .

Drawing . Point (104 , 32) ;
206 this . I n t e rna l IP .Name = ” Int e rna l IP ” ;
207 this . I n t e rna l IP . S i z e = new System . Drawing .

S i z e (120 , 21) ;
208 this . I n t e rna l IP . TabIndex = 23 ;
209 //
210 // groupBox2
211 //
212 this . groupBox2 . Contro l s . AddRange(new System .

Windows . Forms . Control [] {
213 this . ExternalIP ,
214 this . l a b e l 1 1 }) ;
215 this . groupBox2 . Locat ion = new System . Drawing

. Point (56 , 152) ;
216 this . groupBox2 .Name = ”groupBox2” ;
217 this . groupBox2 . S i z e = new System . Drawing .

S i z e (264 , 104) ;
218 this . groupBox2 . TabIndex = 33 ;
219 this . groupBox2 . TabStop = fa l se ;
220 this . groupBox2 . Text = ”External I n t e r f a c e ” ;
221 //
222 // ExternalIP
223 //
224 this . ExternalIP . Locat ion = new System .

Drawing . Point (104 , 32) ;
225 this . ExternalIP .Name = ”ExternalIP ” ;
226 this . ExternalIP . S i z e = new System . Drawing .

S i z e (120 , 21) ;
227 this . ExternalIP . TabIndex = 31 ;
228 //
229 // NATOkButton
230 //
231 this . NATOkButton . Locat ion = new System .

Drawing . Point (64 , 328) ;
232 this . NATOkButton .Name = ”NATOkButton” ;
233 this . NATOkButton . TabIndex = 34 ;
234 this . NATOkButton . Text = ”Ok” ;
235 this . NATOkButton . Cl i ck += new System .

EventHandler (this . NATOkButton Click) ;
236 //
237 // NATCancelButton
238 //
239 this . NATCancelButton . Locat ion = new System .

Drawing . Point (216 , 328) ;
240 this . NATCancelButton .Name = ”NATCancelButton

” ;
241 this . NATCancelButton . TabIndex = 35 ;
242 this . NATCancelButton . Text = ”Cancel ” ;
243 this . NATCancelButton . Cl i ck += new System .

EventHandler (this . NATCancelButton Click)
;

244 //
245 // l a b e l 1
246 //

B.5 NATControl.cs 118

247 this . l a b e l 1 . Locat ion = new System . Drawing .
Point (64 , 280) ;

248 this . l a b e l 1 .Name = ” l ab e l 1 ” ;
249 this . l a b e l 1 . S i z e = new System . Drawing . S i z e

(128 , 24) ;
250 this . l a b e l 1 . TabIndex = 39 ;
251 this . l a b e l 1 . Text = ”Number o f Ports to Use :

” ;
252 this . l a b e l 1 . TextAlign = System . Drawing .

ContentAlignment . MiddleRight ;
253 //
254 // NumberofPorts
255 //
256 this . NumberofPorts . Locat ion = new System .

Drawing . Point (200 , 280) ;
257 this . NumberofPorts .Name = ”NumberofPorts” ;
258 this . NumberofPorts . S i z e = new System . Drawing

. S i z e (112 , 20) ;
259 this . NumberofPorts . TabIndex = 38 ;
260 this . NumberofPorts . Text = ”10” ;
261 //
262 // NATSetup
263 //
264 this . AutoScaleBaseSize = new System . Drawing .

S i z e (5 , 13) ;
265 this . C l i e n tS i z e = new System . Drawing . S i z e

(376 , 382) ;
266 this . Contro l s . AddRange(new System . Windows .

Forms . Control [] {
267 this . l abe l 1 ,
268 this . NumberofPorts ,
269 this . NATCancelButton ,
270 this . NATOkButton ,
271 this . groupBox2 ,
272 this . groupBox1 }) ;
273 this .Name = ”NATSetup” ;
274 this . Text = ”NAT Setup and Control ” ;
275 this . Load += new System . EventHandler (this .

NATSetup Load) ;
276 this . groupBox1 . ResumeLayout (fa l se) ;
277 this . groupBox2 . ResumeLayout (fa l se) ;
278 this . ResumeLayout (fa l se) ;
279

280 }
281 #endreg ion
282

283 /// <summary>
284 /// The main entry po in t f o r the a p p l i c a t i o n .
285 /// </summary>
286 [STAThread]
287 stat ic void Main ()
288 {
289 Appl i ca t ion .Run(new NATSetup ()) ;
290 }
291

292 private void NATSetup Load (object sender , System .
EventArgs e)

293 {
294 IPHostEntry HosyEntry = Dns . Resolve (Dns .

GetHostName ()) ;
295 i f (HosyEntry . AddressLis t . Length > 0)
296 {
297 foreach (IPAddress ip in HosyEntry .

AddressLi s t)

B.5 NATControl.cs 119

298 {
299 ExternalIP . Items .Add(ip . ToString

()) ;
300 In t e rna l IP . Items .Add(ip . ToString

()) ;
301 }
302 }
303 }
304

305 private void NATCancelButton Click (object sender ,
System . EventArgs e)

306 {
307 Appl i ca t ion . Exit () ;
308 }
309

310 private void NATOkButton Click (object sender ,
System . EventArgs e)

311 {
312 /// s a f t e t y check ing code
313 i f (In t e rna l IP . Se l e c t ed Index == −1 &&

ExternalIP . Se l e c t ed Index == −1)
314 {
315 MessageBox . Show(”You must s e l e c t an

In t e r na l and External IP address ”
) ;

316 return ;
317 }
318 i f (! ((System . Convert . ToInt32 (NumberofPorts .

Text) >= 1) && (System . Convert . ToInt32 (
NumberofPorts . Text) <= 60000)))

319 {
320 MessageBox . Show(”You must ente r a

number o f por t s to use . Current ly
Min = 1 and Max = 60000”) ;

321 return ;
322 }
323 /// Edit the Reg i s t r y .
324 RegistryKey reg = Reg i s t ry . LocalMachine .

OpenSubKey(” Software ” , true) .
OpenSubKey(”NATUSQProj” , true) ;

325 i f (reg == null)
326 {
327 MessageBox . Show(”Error unable to

c r e a t e the r e g i s t r y key ’USQ NAT
Project ’ ”) ;

328 return ;
329 }
330 reg . SetValue (”LocalIP” , In t e rna l IP . Text) ;
331 reg . SetValue (”GlobalIP” , ExternalIP . Text) ;
332 reg . SetValue (” I n i t i a l P o r t s ” , (NumberofPorts

. Text)) ;
333

334 Appl i ca t ion . Exit () ;
335 }
336 }
337 }� �

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter Introduction
	Overview of the Dissertation

	Chapter Network Reference Models
	Chapter Overview
	Networking History
	The Open Systems Interconnection Reference Model
	The Physical Layer
	The Data Link Layer
	The Network Layer
	The Transport Layer
	The Session Layer
	The Presentation Layer
	The Application Layer

	The TCP/IP Reference Model
	The Host-to-Network Layer
	The Internet Layer
	The Transport Layer
	The Application Layer

	Chapter Summary

	Chapter Design Specification
	Chapter Overview
	Design Methodology
	Extreme Programming
	Scrum
	Feature Driven Development
	STEPWISE
	Rational Unified Process
	Waterfall Models

	Programming Language
	Visual Basic.NET
	ASP.NET
	C
	C++/Visual C++.NET
	Java
	C'43.NET

	Chapter Summary

	Chapter Internet Protocol
	Chapter Overview
	IP Functionality
	Looking at an IP Header
	Fragmentation
	IP Addresses
	Subnets
	Classless InterDomain Routing

	Network Address Translation
	Overview of NAPT
	Address Binding
	Address Unbinding
	Header Manipulation
	Incremental Checksum Adjustment
	ICMP error packet modifications
	FTP Support
	Using IP Options
	Recommendations for Private IP Address Range
	Privacy and Security
	Fragmented Packets

	IPv6
	Chapter Summary

	Chapter Transmission Control Protocol
	Chapter Overview
	TCP Functionality
	Addressing
	Reliability
	Congestion Control
	Connection Management

	Data Connections
	Three Way Handshaking
	Simultaneous Open
	Active Close
	Passive Close

	User Datagram Protocol / Real-Time Transport Protocol
	Chapter Summary

	Chapter Existing Network Address Translators
	Chapter Overview
	Windows
	NAT32E
	BrowseGate 3 NAT/Proxy server and firewall

	Linux
	IP Masquerading
	IP Tables

	Chapter Summary

	Chapter Network Address Translator Implementation
	Chapter Overview
	C'43.NET Basics
	Using Sockets
	Application Programming Interface
	Windows Sockets
	Advanced Socket Control

	Putting it all Together
	Pseudocode
	A Windows Service

	Chapter Summary

	Chapter Conclusions and Further Work
	Achievement of Project Objectives
	Further Work

	References
	Appendix Project Specification
	Appendix Project Source Code
	NATService.cs
	RawSocket.cs
	BidirHashtable.cs
	ProjectInstaller.cs
	NATControl.cs

