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Abstract 
 

Bushfires are natural disasters that occur frequently in Australia, and are associated with 

substantial economic and human costs.  Currently, methods of combating bushfire 

propagation rely predominantly on containment through the use of firebreaks; large open 

areas devoid of fuel to sustain the fire.  However, ignited embers (firebrands) are often 

carried via wind across these spaces, leading to the fire spreading to the other side.  

Additionally, accumulation of these firebrands around buildings are responsible for a vast 

majority of homes destroyed in a bushfire event.  

In this project, a novel new approach to preventing firebrand transmission is investigated.  

Fine aperture wire mesh screen barriers have been demonstrated in laboratory experiments 

to reduce the transmission of firebrand particles and prevent the subsequent accumulation 

on and ignition of flammable fuel beds.  Therefore, the concept of constructing a large, 

portable fence comprising of this mesh material is investigated; with determination of 

required parameters and specifications carried out before a prototype computational design 

was developed and validated through the use of Finite Element Analysis. 

In addition to the development of a preliminary design, an assessment criterion was 

developed in which the performance of a bushfire attenuation fence design could be 

evaluated, leading to the ability to qualitatively rank and refine designs based upon factors 

such as weight per unit length; cost per unit length and assembly time per unit length. 

Investigation into the conditions associated with both close proximity to bushfires and the 

mechanics of their propagation lead to the selection of a maximum design wind speed of 28 

m/s (100.8 km/h), a peak design temperature of 500oC and a required fence height of 10 

metres. 

Feasibility analysis on various assembly and grounding methods lead to the selection of a 

combination of temporary ground screw anchors and guy wires as method of securing the 

fence, with the maximum fence span with this configuration being 10 metres. 

Detailed design of individual fence components was then carried out, with the final design 

subjected to FEA validation under the imposed loads and conditions.  The results of the final 

design specified was then evaluated against the assessment criteria developed, with the 

estimated results being 2.64 tonnes per 100 metres and assembly time estimates of between 

25.5 to 38.7 metres per hour depending upon the assumptions used.     
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1.0 Introduction 

1.1 Project Background 
 

Bushfires are large scale fire events that occur frequently in Australia and other parts of the 

world with fuel dense forests and hot, dry climates.  They are capable of causing widespread 

destruction of property, infrastructure, livestock and in extreme events have resulted in 

dramatic loss of life; as was seen in the 2009 Black Saturday Bushfires in Victoria, which killed 

173 people and had an estimated economic impact of over a billion dollars (CFA 

2012)(Australian Institute of Criminology 2009).  With climate change anticipated to cause 

hotter and dryer conditions in bushfire prone areas, the occurrence and severity of future 

fires is likely to increase (Balston and Williams 2014).  Therefore, there is significant interest 

from many parties in developing more effective methods of controlling and containing these 

natural disasters. 

Due to the large size and intense heat generation of bushfires they cannot be directly 

extinguished through either smothering (removing available oxygen supporting combustion) 

or removing the generated heat.  Instead, firefighters aim to contain large bushfires through 

techniques such as back burning and the construction of firebreaks.  These measures are 

designed to reduce the available fuel in the path of the advancing fire, thus limiting its 

progress.  However, bushfires can and often do jump these containment lines, posing a 

serious threat to the surrounding region. 

The mechanism through which bushfires propagate and escape containment is multifaceted.  

In addition to fire spread through direct flame contact with new fuel, burning embers are 

also lifted by the fires convective effect and blown by the prevailing wind downstream of the 

main blaze.  These ‘firebrands’ land on suitable fuel beds and can ignite new spot fires; 

complicating firefighting efforts and causing containment breaches.  This phenomenon, also 

known as ‘Ember Attack’ is the primary cause of building ignition in bushfire events 

(Hashempour and Sharifian 2015).   

Further affecting bushfire propagation is the intense heat radiated off from the fire, referred 

to as Radiant Heat Flux (RHF).  The level of RHF in a large bushfire can reach as high as 100 

kW/m2, with values between 10 kW/m2 and 80 kW/m2 considered typical (Hashempour, 

Sharifian & Billingsley 2015).  Such extreme heat flux assists the bushfire spread by 

thoroughly drying out vegetation and fuel ahead of the fire, decreasing ignition time and 
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causing spontaneous combustion above certain intensity levels.  Radiant heat also prevents 

close access to the fire front, hampering combative measures.  The majority of deaths that 

occur in bushfires are as a result of being trapped in close proximity to excess RHF.   

Due to the abovementioned factors, controlling and containing bushfires is a difficult task 

fraught with danger.  This has led to interest in developing new methods of approaching 

fighting bushfires.  Recent research conducted at the University of Southern Queensland into 

a way of controlling bushfires has yielded promising results.  Small aperture wire mesh has 

been investigated for its potential to reduce windborne firebrands and shield against excess 

levels of RHF. 

The use of metal wire mesh as a protection measure against bushfires is currently used on a 

small scale.  After the 2009 Black Saturday Bushfires in Australia, the Australian Standard AS 

3959-2009, ‘Construction of buildings in bushfire-prone areas’ was revised, with one of the 

additions being the requirement of 2 mm or smaller aperture wire mesh screens to be 

installed across windows and other openings for the purpose of preventing the passage and 

subsequent accumulation of firebrands inside structures.  Other jurisdictions in areas which 

experience wildfires have similar requirements mandated.  

This project seeks to extend the concept of small aperture wire mesh as a bushfire defence 

measure through the construction of large fences using low porosity wire mesh.  By placing 

such fences in the path of the bushfire, in conjunction with firebreaks, significant attenuation 

of the major causes of fire propagation could be achieved.   Currently, there is no available 

literature on the use of fences or walls of fine wire mesh to retard bushfire attack. 
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1.2 Project Scope and Aim 
 

This project aims to further develop the concept of the use of wire mesh as a method of 

retarding bushfire progress and better protecting man-made structures from bushfire attack.  

As this idea has not been trialled in a real bushfire situation, the concept has not been shown 

to be effective as of yet, although experimental results are promising. 

As such, it is the aim of this project to investigate, through the use of computational 

simulation, the feasibility and consequently the design parameters for such a fence to be to 

be viable.  However, as the concept is untested, the primary outcome of the project is not to 

develop the most effective fence.  Rather, a design that is lightweight, easy to construct and 

requires low initial capital investment is the focus.  Such a design could then be prototyped 

and tested on a small scale, and the effectiveness of the concept tested.  As an initial trial, 

this project will focus on designing a fence capable of being erected on reasonably short 

notice without significant equipment, for the purpose of aiding the defence of a dwelling or 

individual building against bushfire attack.  

Therefore, the objectives of this project can be summarised as such: 

 Review the current research into the use of mesh screens as a barrier against fire 

embers and radiation to understand the relationship between mesh properties and 

potential fire protection properties. 

 Investigate conditions created by bushfires in order to develop an understanding of 

the environmental limitations and subsequent design limitations faced.   

 From the information compiled in the literature reviews, develop a series of design 

aims which address the factors which were identified as being important for the 

success of the bushfire fence.      

 Develop a series of assessment criteria against which any particular design can be 

evaluated to quantify its adherence to the design aims from the previous point, in 

addition to developing a framework with a relevant benchmark future projects can 

measure against. 

 Through the use of relevant engineering theory and data, evaluate the feasibility of 

various fence design options, determine the most appropriate and develop a 

preliminary computational design overview.   
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 Develop a computation model using the Finite Element Analysis Software ANSYS to 

determine design parameters such as maximum stress, deflection and support 

forces and reactions, refining and detailing the preliminary design further. 

 Evaluate the final design developed against the assessment criteria previously 

created to assess the success in which the final design met the design goals. 

 List recommendations for the direction which further work in this area should be 

directed, based upon the findings and information gained through the course of the 

research project.   

 

1.3 Project Implications and Safety Considerations 
 

Due to the nature of the area of research and the project aims; the preliminary design of a 

large mesh screen fence for use in bushfire events, there are significant implications in the 

outcome of the project to be considered.  Due to the inherent danger associated with large 

fires, the extreme environment they create, and the dangers presented by structural failure 

of such a large object, care must be taken at each stage of design to ensure no oversights 

occur. 

Thought must also be given not only to the direct factors affecting the effectiveness and 

structural integrity, but also to secondary issues that may be posed by the erection of a large 

impassable object.  For example, while it is necessary for the fence to be effective to seal 

entire sections of land with mesh screens, this will also have the negative effect of preventing 

movement from one side to the other.  This could have disastrous consequences for both 

wildlife and humans who may find themselves trapped between a fire and an impassable 

wall.  Evidently, this should be taken into consideration during the design process to ensure 

that this danger is minimized for both animals and humans alike. 

In a similar strain, the fence itself should never impair efforts to combat a bushfire.  Its 

construction should be in such a way that its presence does not interfere with the speed in 

which firefighters and their equipment can be deployed to the necessary areas. 

This project in itself however, does not pose any significant safety risks.  As the methodology 

used in testing and designing is through the use of computer modelling and FEA, there is no 

contribution of risk from any associated experimental procedures or manufacturing.  
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2.0 Literature Review 
 

This section of the report will explore the current literature available in the areas which have 

been deemed to be relevant to the design and implementation of a bushfire attenuation 

fence.  The information presented in this section should provide the reader with a fair 

understanding of the knowledge which is applied in the development of the design in later 

chapters.          

 

2.1 Conditions Inside a Bushfire 
 

In order to successfully design a fence to aid in the defence against bushfire attack, the 

conditions that the structure will likely be subjected to must be identified.  Without sufficient 

knowledge of the conditions, no useful design work can be undertaken.  

The main issue presented in developing any design for use in close proximity to a bushfire is 

the extreme temperatures which are developed at the fire front.  Elevated temperatures 

alter the mechanical properties of many materials, generally resulting in reduced stiffness 

and strength values; structural and stainless steels included.  Therefore, a maximum 

temperature likely to be reached by the materials in the fence should identified to ensure 

the structural integrity of the fence in operation. 

The heat released during a bushfire is transferred to the surroundings through two main 

methods; radiation and convection, with conduction having a near negligible effect in 

bushfires (Anderson 1969).  However, due to the large temperature difference between the 

ambient air and the flame temperatures, much of the convective heat is directed vertically.  

Because of this, convection only plays a significant role in heat transfer to objects when direct 

flame contact occurs.    

Like all heat transfer, radiation and convection is driven by a temperature difference 

between two objects (Kreith, Manglik & Bohn, 2011).  As this temperature difference 

decreases, the rate of heat transfer between them also decreases, and reaches zero when 

the objects have the same temperature.  Therefore, the maximum temperature which the 

materials in the fence could theoretically reach is equal to that of the flame temperature of 

the fire, regardless of heat transfer mechanism. 
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Research into the flame temperatures that occur in large scale bush and forest fires reveal 

that the observed temperatures are typically less than the adiabatic flame temperature 

(Poon, 2003).  Additionally, the peak temperatures recorded in any given position often only 

lasted for between 10 to 30 seconds (Poon, 2003).  Elevated temperatures remained for 

longer, on the order of around several minutes for test with higher fuel loading.  Below is a 

figure taken from the results of a test consisting of a 56 200m x 200m plot of dense 

shrubbery.  Measured heat flux during this test exceeded 7 MW/m (Poon, 2003). 

 

Figure 2-1 Graph Showing Flame Temperature vs Time for Different Heights above Ground Level in an 
Experimental Test (Poon, 2003) 

From the figure above, which shows the recorded temperature vs time at a series of heights 

above ground level, it can be seen that the flame temperature only exceeded 500oC for 

around 17 seconds, with elevated temperatures remaining around 200oC to 300oC for several 

minutes afterwards.   

Other experiments yielded similar results, with Mendez-Lopez reporting in his 2003 paper 

‘Flame characteristics, temperature–time curves, and rate of spread in fires propagating in a 

bed of Pinus pinaster needles’, that small scale trials conducted observing flame 

temperatures did not exceed 600oC for greater than 30 seconds in any test.  Additionally, the 

International Crown Fire Modelling Experiment (ICFME) conducted a large scale experiment 

using a 150m x 150m plot of 12m high Jack Pines.  They recorded that 10m away from the 

forefront, the peak heat flux reached 46 kW/m for a duration of only 20 seconds, with a heat 
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flux of above 20 kW/m only lasting on the order of 1 minute.  The figure below is shows the 

recorded heat flux vs time in the ICFME experiment.  

 

 

 

 

 

 

In the 2003 review ‘Predicting Radiation Exposure from an Advancing Bushfire Flame Front’ 

conducted by Poon, it was explained that the reason for the short duration of peak flame 

temperature in any given location is due to the rapid consumption of fine fuels such as foliage 

and small branches.  These fuels rapidly burn, releasing substantial amounts of heat quickly 

but do not last for long, whereas the denser fuels such as branches and trunks release heat 

at a slower rate.  This explanation is in agreement with the aftermath of bushfires in 

Australia, where all of the foliage and small fuels are burnt but trunks and branches remain.  

This is illustrated in the picture below. 

Figure 2-2 Measured Heat Flux vs Time for ICFME Test (Cohen, J. 2000) 

Figure 2-3 Image Showing Aftermath of a Victorian Bushfire (O’Neill, 2003) 
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From the above literature, it can reasonably be predicted that the maximum temperature 

the fence is likely to reach will always be less than the peak flame temperature.  This is based 

upon two reasons. 

Firstly, as the window of peak temperature is rather small, the fence is unlikely to have 

sufficient time in any one location to reach a steady thermal state.  Secondly, excluding 

conditions in which the flames are engulfing the fence, the surrounding air temperature is 

going to be at a lower temperature than the fence.  This will result in convective cooling of 

the fence, assisting in limiting the temperature rise of the fence. 

In order to fully characterise the thermal behaviour of the fence in a bushfire, computational 

modelling of the fence design should be performed.  To proceed with the design of the fence 

however, a conservative value will be chosen.  As figure 1 shows and the associated studies 

show, the peak temperatures of fires typically do not exceed 500oC for greater than around 

30 seconds.  Therefore, a maximum design temperature of 500oC will be selected. 

 

2.2 High Temperature Effects on Structural Steel Properties 

 

Designing a structure to reliably withstand the conditions outlined in section 2.1 above 

requires a detailed understanding of how the mechanical properties of the construction 

materials change with elevated temperature.  A literature review was then begun to identify 

suitable materials which could withstand the design temperature identified.  This quickly 

revealed that many of the lightweight type materials commonly available were unsuitable, 

either due to poor high temperature performance such as in the case of aluminium and 

common fibre composite materials, or prohibitively expensive such as in the case of various 

specialized high temperature fibre composite resins.  Remaining materials that met the 

required criteria were various grades of structural steel. 

The effects of high elevated temperatures on structural steel have been well investigated, 

primarily for the same reason as this literature review; to understand the behaviour of 

structural members in the event of a building fire.  The findings of several relevant 

documents on the mechanical properties of various grades are detailed below. 

In a 2006 paper titled ‘Behaviour of high strength structural steel at elevated temperatures’, 

Chen et. al. conducted numerous tensile test experiments on both high strength structural 
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steel and mild structural steel at temperatures ranging from 20oC up to 940oC, and compared 

their findings with the Australian, American and British Standard models of mechanical 

properties reduction in steel structures at elevated temperatures.   

The ‘high strength structural steel’ used in their testing was BISPLATE 80, a steel with a 

guaranteed minimum 0.2% Proof Strength of 690 MPa and ultimate tensile strength of 790 

MPa.  The ‘mild structural steel’ used in the paper was XLERPLATE Grade 350, with a 

guaranteed minimum yield stress of 360 MPa and ultimate tensile stress of 450 MPa.  Both 

of these steels are manufactured in Australia and are in common use in Australian 

construction, and as such are a good representation of the grades of steel actually available 

for the fence construction. 

The investigation found that the strength reduction factor (the ratio of elevated temperature 

stress divided by room temperature stress) for a 0.2% Proof Load was extremely similar for 

both the high strength steel and mild steel up to a temperature of 540oC.  A comparison of 

their results with the models used in the various standards is shown in figure 2-4 below.  Note 

the conservative nature of the AS4100 and ASCE standards in the temperature range of 

300oC to 700oC.   

 

 

 

Figure 2-4 Graph Showing Steel Strength Reduction at Elevated Temperatures (Chen et. al. 2006) 
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A more interesting result was found when the behaviour of the modulus of elasticity was 

investigated.  The reduction of the modulus of elasticity of the high strength steel was 

dependent upon whether the applied load was steady state or transient.  The steady state 

reduction factors for both the high strength and mild steels were again very similar, and were 

in fact over predicted by the models used in the standards as can be seen in figure 2-5 below. 

However, when a transient load was applied to the heated samples of the high strength steel, 

the measured modulus of elasticity reduction factor was noted to be much less than the 

steady state reduction at the same temperature.  In fact, in the region between 100oC and 

around 500oC, the reduction in the modulus of elasticity was under predicted by all of the 

models used in the standards.  Transient testing was not performed on the mild steel so it 

was not determined if this also occurs in this metal.  This can also be seen in figure 2-5 below.  

As the likely loading case of the steel used in the construction of the fence is going to be 

transient, this result should be noted and care taken to account for this effect in the design. 

 

 

Knowing the accuracy and limitations of the models used in the standards in predicting the 

reduction factors for the material properties; the equations given by the Australian Standard 

AS4100 ‘Steel Structures’, are given below: 

 

 

Figure 2-5 Figure Showing Reduction in Modulus of Elasticity at Elevated Temperatures (Chen et. al. 2006) 
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The variation of yield stress with temperature should be taken as the following: 

 

 

 

Where fy (T) is the yield stress of the steel at a given temperature ToC, fy (20) is the yield stress 

of the steel at 20oC and T is the temperature of the steel in degrees Celsius. 

The variation of the modulus of elasticity should be taken as follows: 

 

Where E(T) is the modulus of elasticity of the steel at a given temperature ToC, E(20) is the 

modulus of elasticity of the steel at 20oC and T is the temperature of the steel in degrees 

Celsius. 

 

2.3 Types of Meshes  

In Australia, the meshes used in bushfire protection applications must comply with AS 3959-

2009; which mandates an aperture size of less than 2mm and must be corrosion resistant 

(AS3959-2009).  Therefore, the most common material used in these meshes is Stainless 

Steel, usually grade 304 or 316.  These grades of Stainless Steel exhibit good corrosion, high 

temperature properties and affordable cost, making them well suited to this type of 

application. 

An assessment of the currently available suitable meshes found three main sizes.  While the 

aperture size of these meshes is less than 2mm, there is significant variation in the ‘open 
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area’, or porosity, of the meshes available (SSWM 2016).  A table showing typical dimensions 

of the types of meshes available are shown below. 

Type Nominal Aperture (mm) Wire Diameter (mm) Approx. Open Area (%) 

Low Porosity 1.64 0.9 42 

Medium Porosity 1.67 0.45 62 

High Porosity 1.23 0.18 76 

Table 2-6 Table Showing Typical Available Bushfire Mesh Sizes (SSWM 2016) 

Note that the aperture size of a mesh is different to its porosity, and meshes with large 

apertures can have low porosities and vice versa.  For example, in the available meshes 

above, the lowest aperture mesh had the largest porosity.  Mesh porosity is a measure of 

the open area of a mesh, and is a function of the mesh aperture and wire diameter.  This 

relationship is shown below. 

 𝑝 = (1 −
𝑑

𝐿
)2      2.3.1 

Where p is the mesh porosity, d is the wire dimeter and L is the span of the wires from centre 

to centre across one cell, i.e. the aperture plus the wire diameter. 

While Stainless Steel meshes are the most common type of material used for these meshes, 

other materials could also work and may offer advantages over Stainless Steel in a bushfire 

attenuation fence application, such as weight, handling and storage.  Glass fibre is one such 

example which is currently being investigated in a separate project. 

An interesting property to note which is relevant when investigating meshes comprising of 

fine wires is that the wire material strength tends to increase as the diameter of each 

individual wire decreases.  For wires made of 316L, an austenitic stainless steel, a correlation 

between wire diameter and ultimate tensile strength is shown below (Kraft, 2010). 

𝑆𝑢𝑡 = 𝐴𝑑−𝑚    2.3.2 

Where Sut is the ultimate tensile strength of the wire, A and m are material properties 

(1623.7MPa-mmm and 0.149 respectively for SS316L) and d is the diameter of the wire.  

The graph below shows the relationship between wire diameter and ultimate tensile 

strength for wires made of 316 L Austenitic Stainless steel. 
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From the graph it can clearly be seen that at a wire diameter of less than 1 mm, which all of 

the bushfire meshes listed in table 2-4 are, the ultimate tensile strength is around the order 

of 1600 to 2000 MPa.  This is a useful property, particularly in this proposed application due 

to the likelihood of large stress concentrations due to the large wind loading. 

 

2.4 Fire Retardant Properties of Wire Mesh 

 

There are two main ways in which small aperture wire mesh can act to reduce bushfire 

propagation.  These are: 

 Reducing the transmission of airborne firebrands to potential fuel beds. 

 Reducing the level of radiant heat flux that the bushfire emits, which subsequently 

reduces the amount of preheat and drying of available fuel in the path of the fire. 

The effectiveness and performance of both these are dependent upon the physical 

properties of the mesh, and are further discussed below. 

 

 

Figure 2-7 Graph Showing Strength of Stainless Steel Wire vs. Diameter (Kraft 2010) 
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2.4.1 Wire Mesh Defence Against Firebrand Transmission 
 

The creation, transfer and build-up of firebrands against flammable materials during bushfire 

events is a significant issue, and is responsible for the ignition of the majority of buildings 

lost along with contributing to the spread fire through the creation of additional spot fires 

(NIST 2016).  An image depicting a simulated firebrand attack against a building is shown 

below.  

The rationale behind using mesh screens to protect buildings and prevent the spread of 

bushfires is quite simple.  By creating a barrier in the form of a small aperture mesh screen, 

the firebrands which would normally be able to move freely and accumulate are unable to 

pass through the openings of the mesh. 

The performance of a mesh against firebrand attack is a complex phenomenon and depends 

upon wind speed, mesh geometry, average firebrand size and composition, e.g. wood, leaf, 

mulch etc.  

Several papers have been published which investigate the behaviour of different wire mesh 

configurations and sizes against various firebrand attacks.  The findings of these papers is 

discussed below. 

Figure 2-8 Image Showing a Simulated Firebrand Attack Upon a Dwelling (Insurance 
Institute for Business and Home Safety, 2016) 
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Described in a personal communication, Hashempour and Sharifian used a specially designed 

wind tunnel to test the effect of various mesh parameters, including aperture size, on the 

transmission of myrtle leaf firebrands. 

At the test wind speed of 14.5 m/s second used in the experiments, they noticed an 

interesting phenomenon.  In contrast with the expected results, the penetration ratio was 

larger than one for all the meshes tested, showing a peak value of 3.65 at a mesh aperture 

of 2.8 mm before decreasing again as the mesh openings grew larger.  

Upon reviewing their results, they identified that the cause of this effect was the fracturing 

of the approaching firebrands when they impacted upon the mesh.  Rather than remain stuck 

in place on the mesh until they had reduced in size enough to allow them to pass through 

the mesh; the typical behaviour that had been observed in earlier, lower velocity trials such 

as the one by Manzello et. al. in 2011, they found that firebrands which were structurally 

weaker or which impacted the mesh at higher speeds had a tendency to break apart into 

smaller pieces that could pass through the mesh easily.   

However, despite the presence of the mesh increasing the amount of firebrands leaving the 

mesh, they are of significantly smaller size after having passed through the mesh.  In addition 

to contributing to an earlier burn out time due to a reduction in available fuel; Ellis, in his 

2012 paper ‘review of empirical studies of firebrand behaviour’, states that the main method 

of heat transfer from glowing embers is via conduction.  Therefore, a significant reduction in 

size of the firebrands is very likely to reduce the chance of ignition of fuel beds. 

This result was confirmed by Hashempour in a secondary personal communication detailing 

further experiments into fuel bed ignition.  Hashempour described two fuel beds consisting 

of oven dried cotton cloth was positioned approximately 4.5 m away from various mesh 

screens as they were subjected to firebrand attack in a similar manner to the above study, 

although at a lower speed of 10 m/s. 

Again in this study, an increase in penetration ratio of between 1.23 to 1.28 was found to 

occur with mesh with an aperture of 1.61 mm.  However, the percentage of firebrands that 

was recorded to impact upon the fuel beds was reduced from 74.7%, the result without any 

mesh screen, to 48.0% with the 1.61 mm screen.   



Page | 27  
 

Tests with 1 mm aperture mesh yielded even greater results, completely eliminating the 

impact of any firebrands on the fuel beds in one test.  Figure 6, taken from the paper is shown 

below, revealing state of the fuel beds after one of the tests.  Image A and B was with no 

mesh, C and D was with the 1.61 mm aperture and D and E was with 1 mm aperture mesh. 

From the above results, the authors concluded that the ability of the mesh screens to reduce 

firebrand transmission was dependent upon the aperture of the mesh.  They also noted that 

the mesh alone did not completely prevent firebrands reaching the fuel beds, and that the 

mesh exhibited the best firebrand reduction when used in conjunction with a buffer zone 

clear of combustible materials, around the order of at least 4.5m; the buffer zone used in the 

study. 

Figure 2-9 Image Showing Effect of Mesh Screen Upon Firebrand Ignition of Fuel Beds (Hashempour, J., pers. 
comm.) 
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Therefore, it can be concluded that the effectiveness of the design of a bushfire attenuation 

fence at reducing firebrand transmission is likely to increase as the aperture size decreases, 

regardless of the porosity of the mesh.  As the fence is intended to be erected in clear areas, 

the requirement of a buffer zone is not a large concern, although should be noted. 

2.4.2 Wire Mesh Reduction of Radiant Heat Flux  
 

Wire mesh screens also serve to reduce the amount of radiant heat flux that is transmitted 

from the fire front.  Primarily, this is achieved by reducing the view factor of objects behind 

the mesh to the fire via the obstruction provided by the mesh wires.  

Therefore, it follows that the lower the porosity of the mesh, the greater the reduction in 

radiant heat flux that would be achieved.  This result has been verified by experimental 

models in the work of Hashempour et. al (2016).    

An interesting result that was identified in their paper ‘Experimental measurement of direct 

thermal radiation through single-layer square-cell plain woven screens’ was that the level of 

radiation measured to be passing through the mesh was actually less than that indicated by 

the porosity of the mesh.  This was attributed a ‘tunnel vision’ phenomenon.  As the incident 

angle relative to normal increases, the wires of the mesh cells come into alignment.  This 

limits the amount of radiation that can pass each mesh cell, as incident radiation outside of 

this view angle is blocked.  

Hasempour and Sharifian demonstrated, both analytically and experimentally, that for a 

simplified woven wire mesh this view angle is only a function of the mesh porosity, with low 

porosity meshes having a smaller view angle.  This indicates that the advantage of the tunnel 

vision effect in reducing radiant heat flux is more prevalent at lower porosities.  The 

experimental results of Hashempour et. al. (2016) confirms this; finding that the ‘Passing 

Ratio’ of incident radiation (the ratio of measured radiation through a mesh screen vs. 

without a screen) for each mesh porosity was always less than the porosity itself, although 

this difference was found to reduce as the porosity increased.  This is shown in figure 7 below. 
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2.5 Drag Force on Wire Mesh Screens 
 

A major issue affecting the design of such a fence is the impact of drag force on the mesh 

screen.  Due to the potential for very high wind speeds around bushfires, as mentioned in 

section 2.1, it is important to know the order of magnitude of the force that will be imposed 

on the fence by the wind loading. 

Drag force of a fluid on an object is defined as the component of force that acts on a body 

parallel to the direction of relative motion, caused by the fluids interaction with the body. 

(Fox, Pritchard, & McDonald, 2010).  Dimensional analysis shows that this force is a function 

of a bodies area relative to the flow, the density of the fluid and the velocity with which it is 

moving relative to the body.  The derived formula for calculating drag force can be found in 

any Fluid Mechanics Textbook and is presented below: 

𝐹𝐷 =  
1

2
 𝐶𝑑 . 𝜌 . 𝐴. 𝑉2    2.5.1 

Where FD is the drag force, Cd is a dimensionless number called the drag coefficient, ρ is the 

fluid density, A is the area of the body and V is the fluid velocity relative to the object.  By 

dividing both sides of this equation by the object area, an expression for the drag force per 

Figure 2-10 Graph Showing Radiation Passing Ratio vs Mesh Porosity with Predicting Function (Hashempour et. 
al. 2016) 
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unit area can be found.  This is a more useful value as it allows for easy comparison 

between meshes for design purposes.  The formula is: 

𝐹𝐷

𝐴
=  

1

2
 𝐶𝑑 . 𝜌 . 𝑉2    2.5.2 

In order to accurately calculate the drag force on the mesh screens using this formula, the 

value of the coefficient of drag for each configuration must be known.  This number is difficult 

to determine for complex shapes and is often done by experimentation or simulation.  The 

results of two papers that investigated the calculation of drag coefficients for wire mesh 

screens are examined below.            

In their 2007 paper ‘Computational Simulation of the Wind-force on Metal Meshes’, Sharifian 

and Buttsworth used the CFD package FLUENT to simulate fluid flow at various Reynolds 

numbers around meshes of different sizes.  Three mesh sizes were used, varying the 

Reynolds number between 10 and 1000.  By calculating the drag coefficients for the meshes 

in each flow and comparing them to the theoretical drag coefficient for a single cylinder of 

the same respective diameter, they found that the Cd values for the wire mesh were related 

to, but always greater than that of the single cylinder.  This was explained as a result of the 

constraining nature of the additional wires reducing the cross-sectional area available for 

airflow (Sharifian and Buttsworth 2007).   

Consequently, they showed that the larger the mesh opening, the closer the drag force 

approached that of the single cylinder.  From this, Sharifian and Buttsworth (2007) proposed 

the following correlation for the drag coefficient on a wire mesh as a function of Reynolds 

number and mesh porosity: 

𝐶𝑑 =  −0.491 +  
0.47

𝑝1.773  −  
7.49

𝑅𝑒0.661 +  
6.475

𝑝2.244𝑅𝑒0.661  2.5.3 

Where Cd is the drag coefficient, corrected for overall mesh cross-sectional area, p is the 

mesh porosity and Re is the Reynolds number for the flow.  The correlation is reported to be 

accurate to 6.5 % within the range of 10 ≤ Re ≤ 1000 and 0.27 ≤ p ≤ 0.82. 

Another paper which addresses the prediction of drag coefficient imposed on mesh screens 

due to restriction of airflow is ‘The Flow of Air Through Wire Screens’, authored by G. De 

Vahl Davis.  The paper, published in 1957, experimentally determined the drag coefficient of 

wire meshes with different porosities at different Reynolds numbers ranging from 

approximately 50 to 250. 
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Davis also noted the relationship between porosity and drag coefficient, in addition to noting 

that the Cd value begins to approach a constant value as the Reynolds number increases, 

much the same way to a cylinder in the range of 400 ≤ Re ≤ 200 000 (Fox, Pritchard, & 

McDonald, 2010).  From this he proposed the following correlation: 

𝐶𝑑 − 𝐶𝑑0 =  
55

𝑅𝑒
    2.5.4 

Where Cd is the drag coefficient of the wire mesh, Cd0 is the limit that Cd approaches as 

Reynolds number is increased, and Re is the Reynolds number of the flow through the mesh. 

To approximate Cd0, Davis assumed the flow to similar in behaviour to sudden expansion in 

a pipe flow.  By estimating the pressure difference through the momentum equation and 

neglecting viscous effects, he found: 

𝐶𝑑0 =  [
1−𝑝.𝐶

𝑝.𝐶
]

2
    2.5.5 

Where Cd0 is the limit Cd approaches, p is the porosity of the mesh and C is a contraction 

coefficient to correct for the flow through the constrained area.  Davis reports that the value 

of C was experimentally determined to be approximately 0.95, steady within the range of 

100 ≤ Re ≤ 100 000.      

In order to assess the level of agreement of these two correlations, and thus subsequently 

determine the most appropriate one to use in the estimation of drag force on the wire mesh 

screens, the drag coefficients for the three sizes of wire mesh discussed in section 2.2 was 

calculated for a series of Reynolds numbers which corresponded to a range of wind speeds 

from 1 to 28 m/s. 
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As the three charts above show, there is a reasonable level of agreement between the two 

models.  While there is significant divergence at lower Reynolds numbers, most noticeable 

for the 76% porosity mesh, this large difference begins to disappear at a Re value of between 

75 to 150.  This discrepancy at low Re values is not of great concern however.  As the drag 

force formula shows, drag force scales with the velocity squared; meaning that the greatest 

drag forces on the mesh will be encountered at high velocities and therefore higher Re 

values. 

For the 76% and 62% porosity meshes, the correlation proposed by Sharifian and Buttsworth 

shows a higher Cd value than the one by Davis in the Re range of 150 onwards, with a 
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Figure 2-12 Graph Showing Cd values for Wire Mesh from Two Different Correlations 

Figure 2-13 Graph Showing Cd values for Wire Mesh from Two Different Correlations 
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maximum percentage difference of 17.6% and 29.0% respectively at a wind speed of 28 m/s.  

However, the result of the 42% porosity shows the correlation proposed by Davis to be larger 

for Re values greater than approximately 400.  The maximum percentage difference again 

occurred at 28 m/s, and was found to be 16.1%. 

However, it should be noted that the correlation proposed by Davis was only drawing upon 

data for Reynolds numbers up to approximately 300.  Therefore, the extrapolation of the 

formula is done under the assumption that the Cd value does indeed approach a constant 

value in the 300 ≤ Re ≤ 1800 range.  Likewise, the correlation of Sharifian and Buttsworth 

was only trialled within the 10 ≤ Re ≤ 1000 range; while the range of Re for the 41% porosity 

mesh was up to 1725 for a wind velocity of 28 m/s.  

Therefore, in order to maintain a conservative approach, for any given mesh the larger of the 

two Cd values will be used when estimating the drag force.  This will ensure a greater level 

of confidence in the results of the simulations used in the design process. 

2.6 Australian Standards for Temporary Fencing  
 

Before any design work can be undertaken, any standards that are applicable to the 

proposed design need to be identified and assessed.  This will ensure that no oversights occur 

during the design process that could invalidate the outcome of the project.  The primary 

standard that has been identified as most relevant to the project is AS 4687-2007, Temporary 

fencing and hoardings.  However, it is quite obvious that the intended application for this 

standard is much smaller fences designed for typical fencing type applications.  Due to the 

requirements for effectiveness against bushfires outlined in the above sections, it is unlikely 

that all of the points mentioned below can be reliably met, although it was found to be a 

good reference to guide in the design. 

The general requirements of the standard can be summarised as follows: 

 The temporary fencing should remain stable and erect at all times. 

 Movement and assembly of the fencing should be carried out by a competent and 

trained person in compliance with the manufactures directions. 

 The design of any temporary fencing must take wind loading, impact loading and 

stability into account. 

 All temporary fences must be at least 1500 mm in height. 
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Design specific requirements listed in the standard are summarised below: 

 Fence infill materials, i.e. mesh screens must comply with their applicable Australian 

Standards. 

 The material used in for the fencing frames must comply with AS 1163; Cold Formed 

Structural Steel Products. 

 The maximum aperture, i.e. opening size of the fence infill material must be less than 

75 mm. 

 All clamps, hinges and other fittings used must comply with their relevant Australian 

Standards. 

 Bracing must be manufactured and installed on the fence when necessary to prevent 

collapse and misalignment. 

 Counterweights and base plates used should be designed for the life of the fence, 

and designed appropriately to withstand the performance requirements above. 

Also included in the standard is the testing requirements and procedures that the design of 

any temporary fencing must meet.  There are six tests that need to be performed to meet 

the requirements of the standard.  These are detailed in the following subsections. 

2.6.1 Simulated Climbing Test 

 

The temporary fencing design must be shown to 

be able to withstand the forces and moments 

imposed by a person attempting to climb the 

fence.  The standard stipulates that to test this, 

three ‘panels’ of fencing must be assembled, 

and a 65 kg load hung from the centre of the 

fence at the top, offset perpendicular from the 

fence by 400 mm.  A diagram showing the 

arrangement is shown at right.  The fence must 

be able to withstand the test for a period of 3 

minutes. 

 Figure 2-14 Diagram Showing Simulated Climbing 
Test Arrangement (Standards Australia 2009) 
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2.6.2 Impact Loading Test 

 

In this test, a single panel of the fence will be 

subjected to a series of impact tests to assess the 

fences resistance to overturning, cracking, 

excessive deflection and other methods of failure 

in the event of a sudden impact.  A 37 kg projectile 

with a kinetic energy of 150 J (2.85 m/s) must be 

impacted against four sections of the fence infill 

material, as shown in the diagram at left. 

 

For the fencing to pass the test, the infill material must not show any signs of penetration or 

cracking, failure at the joint to the frame, deflect more than 300 mm at the site of impact or 

overturn the fence. 

2.6.3 Infill Aperture Width Test 

 

To pass this test, the aperture size of the fence infill material must not allow a 76mm x 76mm 

block through.  As the mesh required to stop firebrands is many orders of size smaller, this 

test is not particularly relevant. 

2.6.4 Infill Downforce Test 

 

In this test, a downwards load of 1 kN is to be applied to the centre of the infill material and 

maintained for a minimum of 60 seconds.  For the fencing to pass the test, the infill material 

must not deflect greater than 35 mm from its original position. 

2.6.5 Wind Force Overturning Test 

 

In this final test, which is arguably the most important criteria for this particular project, the 

fence must be subjected to a simulated wind force to ensure that it does not overturn.  A 

single panel of the fencing must be subjected to the minimum calculated wind force at its 

centroid and must resist overturning. 

Figure 2-15 Diagram Showing Sites of Impact 
Testing (Standards Australia 2009) 
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The minimum wind velocity used in the calculation corresponds to the wind speed region in 

which the fence is to be deployed, and ranges from 15 m/s for region A to 24 m/s for region 

D. 

3.0 Project Methodology   
   

This chapter will examine in detail the methodology used throughout the duration of this 

project; covering aspects such as the basis of deciding the design criteria, development of 

the performance metrics against which the final design will be measured and the analysis 

methods used to validate the design.   

3.1 Development of Design Specifications 
 

Before any design work could begin, a series of decisions had to be made on how the design 

could best meet the specified project aims of: 

 Reasonable effectiveness in preventing firebrand transmission and radiant heat 

flux from an approaching bushfire. 

 Portable, lightweight construction that is capable of being assembled with minimal 

tools or machinery. 

 Fast assembly to maximize protective coverage installed prior to fire approach. 

 Low manufacture cost to create an attractive investment option. 

As with any design project, different aims are often contraindicative of one another.  In order 

to better understand the requirements posed by each design aim, the factors affecting each 

of the specific aims are examined in the relevant sections below.  Where two aims were in 

direct conflict with one another, a decision was made as to which should be prioritized.  

3.1.1 Effectiveness at Preventing Firebrand Transmission and Radiant Heat 

Flux   

 

From section 2.4 in the literature review section, it is clear that the performance of wire mesh 

against firebrand transmission depends upon the opening size of the mesh used, along with 

the actual area blocked by the fence.  This indicates that in order for the fence to 

demonstrate the best efficiency against firebrands, a mesh with a sufficiently small opening 
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size should be chosen.  Additionally, the fence should be of a such a height that lofted 

firebrands and those generated by foliage from nearby trees in a bushfire are adequately 

constrained by the mesh. 

While opening size is not necessarily related to porosity; meaning opening size is somewhat 

independent of drag, increasing the height of the fence does effect the drag force, increasing 

the frontal area of the mesh, while also shifting the centre of pressure further away from the 

base.  This would result in higher stresses in the structural members by creating a larger 

bending moment. 

In order to insure the effectiveness of the fence at limiting firebrand transmission, it was 

reasoned that the design height should be similar to that of the surrounding trees in order 

to prevent embers created in crown fires from passing over the fence.  However, as the 

primary tree type in Australia and many other parts of the world where wildfires are a serious 

concern, e.g. California, are Eucalyptus (Gum Trees); and many species of eucalyptus tree 

can grow to heights of in excess of 20 metres, it was unlikely that this could practically be 

achieved.   

In a document detailing fire risks in blue gum plantations, it was stated a fire hazard was not 

particularly posed by the trees in the plantation until around 3 to 4 years, when the trees 

were considered ‘mid rotation’ in the plantation cycle.  Trees at age 4 years had an average 

height of 7 to 9 metres and those at 6 years which posed an even greater fire hazard had an 

average height of 14 to 18 metres (Mar & Adshead, 2011).  Therefore, a minimum design 

height of 10 metres was chosen as this would offer a compromise between fire protection 

and the other listed design aims.     

Also indicated in section 2.4 is that the effectiveness of wire mesh at blocking incident radiant 

heat flux is dependent upon the porosity of the mesh used, with lower porosity meshes 

offering an increasing protection through the reducing view factor. 

However, the literature indicates that the drag force coefficient of the mesh grows quite 

substantially with decreasing porosity.  This creates an issue as higher drag forces require 

stronger supports and structural members; making the aims of high portability, lightweight 

and ease of construction difficult to realize. 

Given the evidence identified in the literature review suggesting that the main cause of fire 

spread and house fire ignition is the accumulation of firebrands and not radiant heat flux, 

the design aim of reducing firebrand transmission was given priority over that of blocking 
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radiant heat flux.  Given the short duration of the radiant heat associated with the fire front 

versus the persistent nature of the firebrands, this was considered a pragmatic approach. 

3.1.2 Portable Lightweight Construction Capable of Assembly with Minimal 

Tooling and Machinery 

 

As this method of combating bushfires is still in its infancy, the aim of this project is to 

develop a serviceable design capable of being deployed in a variety of conditions and 

locations in order to field test the concept against actual bushfire conditions.  Due to the 

often remote location of bushfires and the properties they threaten, portability and ease of 

construction are extremely important factors for allowing both testing of the overall concept 

and the defence of property.  If the concept gains sufficient evidence in actual situations to 

support its widespread use, more permanent and elaborate designs requiring a higher level 

of mechanized equipment may be justified. 

Portability in this case has been taken to mean the ability to both transport the components 

to and from the required location and assemble the design without necessitating any 

specialized vehicles, e.g. a crane or similar machine.  The vehicles that are considered to be 

readily available are those such as utes, trailers and flat-bed trucks.  Therefore, the design 

should not be larger or heavier than which would allow a reasonable sized section of fence 

to be easily carried by one of these vehicle types.     

A logical extension of the requirement for portability is the minimization of the tools or 

machinery required in the assembly of the fence.  Where possible, design decisions have 

been made to eliminate the necessity of equipment that is large, difficult to transport, 

prohibitively expensive or requiring additional infrastructure.  Permitted was hand held tools 

which could be easily be carried; powered either through individual battery packs, 

connection to a vehicle fitted with an inverter, or a small portable generator.          

Additionally, no single part of the design should be heavier than can safely be carried by a 

two-man team.  Currently, under the Australian Work Health and Safety legislation there is 

no upper limit to the weight that a person or persons can carry, stating that this depends 

upon the physical capabilities of the individuals (Worksafe Australia, 2016).  Therefore, as 

guidance on what could be considered as a reasonable weight, Piyush G. Chapla’s 2004 paper 

‘How Much Weight is Too Much for Manual Lifting: Determining a Weight Limit Guideline for 

Team-effort Lifting Tasks’ was consulted. 
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The final guidelines reported state that: up to 30.8 kg (68 lb) is the recommended maximum 

weight for a single person, between 31.3 kg to 72.6 kg (69 lb to 160 lb) is the recommended 

range for a two-person lift, between 73 kg to 90.7 kg (161 lb to 200 lb) the recommended 

maximum for 3 people and anything over 90.7 kg (200 lb) lifting in any team arrangement 

was not recommended. 

Taking the middle of the range given for the maximum two man-team lift means that a 

maximum weight limit of approximately 50 kg should be should be applied to any given part 

of the design.  However, where possible the weights of components will be minimized to 

reduce the effort required to assemble the fence. 

3.1.3 Fast Assembly to Maximize Protective Coverage Prior to Fire 

 

Due to the unpredictable and rapid way in which bushfires can develop, any defensive 

strategy must be able to respond in a quick manner to changing conditions and posed 

threats.  Therefore, the proposed design for a bushfire defence fence must be such that an 

adequate level of coverage can be established in the relatively short period between the 

issue of a bushfire alert and the approach of the fire front, without endangering those people 

installing the fence. 

This requirement is very hard to quantify as the factors affecting it are highly variable.  The 

period between the issuing of a bushfire alert to its impending approach can vary between 

hours and days.  What might be deemed an acceptable level of coverage depends upon the 

specific application for the fence.  For the defence of a single property, a perimeter of 

approximately 200 metres may suffice, while for a more organized effort for fire containment 

by firefighters may require a stretch of fencing along a firebreak of up to several kilometres. 

As this project is the first of its kind, and aims to develop a design suitable for use as a proof 

of concept, the fence design must be capable at least of being installed as a defensive 

measure for a single property; or several properties in close proximity.  This should be 

capable of being achieved within the period of a single day, at most 6 to 8 hours. 

3.1.4 Low Capital Cost to Attract Market Investment 

 

Given the financial and human costs that are associated with bushfires, significant interest is 

anticipated in wire mesh fencing as a bushfire defence strategy once its efficacy has been 

suitably demonstrated.  Given the lack of large scale testing of the concept at this stage 
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however, there may be some hesitation to invest large sums of money into such a project 

with no guaranteed success. 

The design should keep this in mind and aim to minimize costs associated with the fence 

materials, manufacture and related equipment in order to maintain appeal to investors and 

other interested parties.  This will encourage widespread testing of this bushfire defence 

concept and pave the way for more involved designs requiring higher levels of organization 

and investment.    

3.2 Development of Design Assessment Criteria 
 

Given the listing of the specific design aims above, a series of performance metrics was 

established in order to measure how well the final design met these design aims and to 

create a baseline assessment against which potential future designs could be compared.   

 

3.2.1 Efficacy of Firebrand Transmission Prevention 

 

As the primary purpose of the fence is to retard bushfire progress through reducing firebrand 

transmission into a protected zone, the fences success in performing this task is one of the 

most important performance metrics to be considered.  However, it is also one of the most 

difficult to assess at a design stage. 

This is due to the large amount of unknown variables and the untested nature of the concept.  

While empirical data exists from the preliminary trials of various sizes of wire mesh and their 

ability to reduce fuel bed ignition, all of these trials were conducted in specialized devices 

where the firebrands had no choice but pass into the mesh. 

In actual application however, the success of the fence depends upon several other factors.  

Height of the surrounding trees and lofted firebrands is a big consideration; as was 

mentioned in section 3.1.1 it is unlikely a design meeting all the aims would be of the same 

height as the surrounding foliage.  The impact this is likely to have on the performance is 

unknown and makes assessing the design difficult from a theoretical approach. 

Another unknown which could affect the performance is the potential for the creation of 

high pressure region in front of the fence due to the impeded airflow, which could result in 

an updraft carrying the firebrands up and over the fence.  This potential phenomenon has 



Page | 41  
 

not been investigated and could impact the performance of the fence.  Again, this makes 

assessing the real world performance of the design difficult from a theoretical approach. 

In view of these factors, the performance of the design against firebrand transmission will 

just be taken as the preliminary testing performance of the size and style of mesh used.  

Primarily, the percentage reduction in fuel bed ignition criteria will be used.  However, due 

to the variation in buffer zone size and other parameters in the different papers on firebrand 

transmission, this metric will simply be a qualitative ranking rather than quantitative, i.e.  a 

smaller mesh opening size will be taken to be more effective if trials show a reduction in fuel 

bed ignition spots. 

3.2.2 Efficacy of Radiant Heat Flux Reduction 

 

Assessing the performance of a design in reducing the amount of radiant heat flux from the 

fire that can pass through is more straightforward.  From the experimental work of 

Hashempour that was discussed in section 2.4.2, the passing ratio of radiation through the 

mesh can be predicted based upon the porosity.  While other factors such as the emissivity 

of the wire mesh material would affect the total amount of re-radiation from the fence, this 

factor is considered to be small compared to the incident radiation.  Therefore, the 

performance of the fence in terms of reducing radiant heat flux will be measured by the 

passing ratio of the mesh used, given in figure 7.    

3.2.3 Measurement of Portability and Weight of Design 

 

As was detailed in section 3.1.2 above, individual components of the structure need to be 

less than 50 kg per section, and compact and light enough that they can easily be transported 

by the listed vehicles.  Given that each individual part of the fence is of an acceptable weight 

to manoeuvre, the main factor affecting the portability is the total weight of material 

required. 

Therefore, the metric that has been decided upon to measure the portability of the design is 

mass per unit length.  This will allow a fair comparison between future designs of different 

construction styles and also gives useful information for the purposes of logistics and 

planning. 
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Because the primary focus of this design is on a relatively small scale assembly for the 

purpose of defending a single house or property, the units used will be tonnes per 100 

metres, units corresponding roughly to the anticipated scale of the design. 

3.2.4 Measurement of Speed of Assembly 

 

As with several of the other performance metrics discussed here, determining the speed with 

which a proposed design could be assembled is a difficult endeavour, based upon numerous 

simplifying assumptions.  However, as was discussed in section 3.1.3 the rate at which the 

fence can be assembled is an important criterion in determining the practicality and 

effectiveness of a design. 

The measurement unit which has been selected to quantify the assembly speed is metres of 

fence per hour (m/hr).  Similar to the units used in the measurement of portability, t / 100 

m, the units chosen here correspond to the anticipated rate of assembly.  Again, the chosen 

unit of metres / hour serve a practical purpose in logistics and planning as well as comparing 

different design performances.      

When the final design is assessed for speed of assembly, the procedure used will be as 

follows:  

 A list of all tasks required in the assembly of a section of the fence will be listed, and 

a reasonable estimate of the time that each task is anticipated to take will be made.  

A rationale behind each time estimate will be given to attempt to standardize the 

method of assigning the times, i.e. allow others understand the reasoning used. 

 The order of these tasks will then be examined and any task that is required to be 

completed immediately before a specific task can be begun will be recorded against 

that task, i.e. a precedence table will be created. 

 A network diagram will then be constructed from this precedence table. 

 The critical path of this network, i.e. the quickest time that the fence section can be 

assembled, is calculated.  However, should more tasks occur in parallel than workers 

assembling the fence, the additional time required to complete the extra tasks will 

be calculated and added to the total. 

 This time will then be converted to hours. 
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 The speed of assembly of the fence will then be approximated by dividing the length 

of the section of fence used in the above calculations by the time in hours to 

assemble it. 

3.2.5 Measurement of Cost 

 

The final metric used to measure the proposed design is that of cost per unit length.  Again, 

the specified length used is 100 metres, in order to maintain homogeneity with the 

portability metric.  This is calculated by dividing the cost of a section of fencing by its length 

in metres then multiplying this result by 100. 

In order to determine the cost of a section of fence, the influential factors have been 

examined.  Initial expenditure associated with creation of a bushfire defence fence can be 

broadly split into two main categories; material costs and labour costs.  These investigated 

in detail below. 

Material costs are the easiest to quantify.  Prices of materials such as wire mesh, steel 

sections etc. are readily available.  While these prices may depend upon order quantity and 

supplier, a reasonably accurate estimation of the cost can be established by determining the 

amount of material required to construct a single fence section and multiplying by a standard 

material price. 

Labour costs associated with the initial fence price are mainly due to the manufacturing 

process, which varies with the complexity of the design.  In addition, labour costs often are 

equal to or in excess of the material costs, however, manufacturing costs tend to decrease 

with an increased production volume in accordance with the economies of scale.  This makes 

estimating the manufacturing costs a difficult exercise to perform and as such was excluded 

from the scope of the project. 

3.3 Development Procedure of Fence Design 
 

The methodology used in the development of the fence design consisted of three major 

components.  These were: 

 Idea generation. 

 Feasibility analysis through fundamental calculations. 
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 Modelling and simulation using Finite Element Analysis to develop and refine the 

design. 

These three components comprised an iterative cycle through which the individual aspects 

of the final design were conceived, refined and completed.  Each component is discussed in 

further detail below. 

3.3.1 Idea Generation 

 

Idea generation is one of the most important steps in the design process, yet also the most 

difficult to quantify.  Solutions to problems can sometimes be obvious, sometimes elusive.  

The most obvious solution may not in fact be the most appropriate.  Consultation with peers 

and university staff was a major technique used in this stage of the design process. 

3.3.2 Feasibility Analysis Through Fundamental Calculations       

  

The next stage in the design methodology is assessing the feasibility of an idea.  Primarily, 

this was achieved through determining the relevant factors affecting the outcome, e.g. wind 

loading magnitude, bending stresses, overturning moment etc. and then using basic 

equations from engineering texts relating these factors to calculate the feasibility. 

The basic procedure used in this approach was as follows: 

 Identification of the appropriate formula from a reputable engineering textbook. 

 A general calculation was carried out by hand to rearrange and solve the equation 

or equations and a sample calculation performed. 

 A Microsoft Excel document was created using the general hand calculation to 

allow numerous calculations to be performed in a rapid and iterative manner. 

 These results were then compared against available data to evaluate the suitability 

of the proposed solution. 

This approach saved much time in evaluating ideas and gave a solid starting foundation for 

the next step in the design process. 

3.3.2 Modelling and Simulation Using Finite Element Analysis 

  

Once an idea had been proved feasible and an estimate of the appropriate sizing had been 

identified from the basic engineering calculation, a solid model of the proposed component 
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or assembly was created using the modelling package Autodesk Inventor.  Once drafted, the 

model was then imported into the software package ANSYS Workbench and simulated using 

the ‘static structural’ analysis; a FEA package which meshes the geometry and can simulate 

the effects of various types of contact between multiple bodies, large deformation effects 

and thermal stresses.  All of these effects are important in obtaining accurate results from 

the simulations of the models. 

4.0 Preliminary Design Parameter Development 

 

This chapter details the processes undertaken to develop an initial overarching approach to 

the design from the requirements identified in section 3.1.  Exact design parameters are 

determined from further analysis and reasoning based on relevant available literature. 

4.1 Calculation of Mesh Drag Force 

 

Basic engineering judgement clearly demonstrates that the largest issue associated with the 

construction of such a fence is the drag force that will be imposed upon the structure by the 

wind.  Due to the design limitations discussed in section 3.1, the magnitude of this wind 

loading will be the primary factor dictating the overall parameters such as fence height and 

span between supports. 

Identified in section 2.6.5, the maximum wind speed that the fence is required to withstand 

as per the Australian Standard is 24 m/s (86.4 km/h).  However, as bushfire risk increases 

with wind speed, and speeds of 100 km/h reported as contributing to the intensity Black 

Saturday fires, the design wind loading calculations presented here use 28 m/s as the wind 

speed (100.8 km/h).  This will also go some way to accounting for high speed gusts, i.e. 

dynamic loading of the fence structure, which has not been considered in the scope of this 

project. 

While there is numerous different variation of stainless steel wire mesh available on the 

market, the drag forces will only be calculated for the three typical sizes of bushfire mesh 

listed in section 2.3.  This is reasonable as it was discussed in 2.5 of the literature review that 

the drag force is largely a function of the mesh porosity.  This means that other meshes with 

slight variations in wire diameter and opening size but with the same porosity will have very 

similar drag forces, within an acceptable margin of difference.    
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To calculate the drag force per unit area, equivalent to pressure, on the mesh the drag 

coefficient of each mesh needs to be calculated.  In order to do this, the Reynolds number of 

the flow around each of the meshes has to be calculated.  It is found using the following 

formula: 

𝑅𝑒 =  
𝜌𝑉𝐷

𝜇
    4.1.1 

Where Re is Reynolds number, 𝜌 is the density of the air in kg/m3, V is the velocity of the 

airflow in m/s, D is the diameter of an individual strand of the wire used in the mesh in m 

and 𝜇 is the dynamic viscosity of the air in Pa.s.  In these calculations a value of 1.225 kg/m3 

for 𝜌 and 17.83 x 10-6 Pa.s  for 𝜇 was used (Dixson, J.C, 2007). 

These values of Reynolds number were then used to calculate the drag coefficient for each 

of the meshes at the design speed of 28 m/s.  This was done by using both of the equations 

found in the literature review and selecting the larger of the two values.  From these drag 

coefficients, the drag force per unit area was calculated using formula 2.5.2.  The results of 

the three meshes are shown in the table below. 

Diameter (mm) Mesh Porosity (%) Reynolds No. Cd Drag Force 

(N/m2) 

0.9 42 1731 2.3 1105 

0.45 62 866 0.735 353 

0.18 76 346 0.368 177 

Table 4-1 Results of Calculations of Re, Cd and Drag Force for Three Porosities of Mesh 

Examining the values for drag force per unit area of each mesh, it is apparent that the drag 

force for the 62% porous mesh is approximately twice that of the 76% porous mesh, while 

the 42% porous mesh has a drag force per square metre approximately 6.25 times that of 

the 76% porosity mesh.  The 42% porosity mesh had approximately 3.13 times larger drag 

force than the 62% mesh. 

These values for drag force are the values that were used in the next stage of the design 

process.  
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4.2 Implications of Drag Force on Fence Sizing 
 

4.2.1 Total Drag Force and Overturning Moment for Various Fence Sizes  

 

Using the drag forces for the three meshes identified in section 4.1, the total wind loading 

for a range of different fence heights and main support spans was estimated. A schematic 

demonstrating the loading configuration used in these calculations is shown below.   

 

 

 

The magnitude of the drag force acting on a single support was approximated by multiplying 

the height of the fence by the span between support to find the total mesh area effectively 

supported by a single support and then multiplying this by the drag force per unit area for 

each respective mesh.   

𝐹𝐷 = 𝑆𝑝𝑎𝑛 × 𝐻𝑒𝑖𝑔ℎ𝑡 ×
𝐷𝑟𝑎𝑔

𝑚2    4.2.1 

 

Assuming that this load was acting at the centroid of the fence, the overturning moment at 

each of the supports was also estimated.  The overturning moment for each support was 

estimated by applying this load at half the height of the fence, using the following formula. 

 

𝑂𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 =  
1

2
× 𝐹𝐷 × 𝐻𝑒𝑖𝑔ℎ𝑡  4.2.2 

 

Several tables showing the results of these calculations are presented below. 

 

Figure 4-1 Image Showing Basic Fence Configuration 
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Note however that these are simply estimates of the total drag force and moment assuming 

that 

76 % Porosity Mesh 

Fence Height 

 10 m 12 m 14 m 16 m 

Span Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

2 m 3.5 17.7 4.2 25.5 5.0 34.7 5.7 45.3 

4 m 7.1 35.4 8.5 51.0 9.9 69.4 11.3 90.6 

6 m 10.6 53.1 12.7 76.5 14.9 104.1 17.0 135.9 

8 m 14.2 70.8 17.0 102.0 19.8 138.8 22.7 181.2 

10 m 17.7 88.5 21.2 127.4 24.8 173.5 28.3 226.6 

12 m 21.2 106.2 25.5 152.9 29.7 208.2 34.0 271.9 

14 m 24.8 123.9 29.7 178.4 34.7 242.8 39.6 317.2 

16 m 28.3 141.6 34.0 203.9 39.6 277.5 45.3 362.5 

 Table 4-2 Table Showing Drag Force and Overturning Moment for Various Fence Configurations with 76% 
Porosity Mesh 

62 % Porosity Mesh 

Fence Height 

 10 m 12 m 14 m 16 m 

Span Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

2 m 7.1 35.3 8.5 50.8 9.9 69.2 11.3 90.4 

4 m 14.1 70.6 16.9 101.7 19.8 138.4 22.6 180.7 

6 m 21.2 105.9 25.4 152.5 29.7 207.6 33.9 271.1 

8 m 28.2 141.2 33.9 203.3 39.5 276.8 45.2 361.5 

10 m 35.3 176.5 42.4 254.2 49.4 345.9 56.5 451.8 

12 m 42.4 211.8 50.8 305.0 59.3 415.1 67.8 542.2 

14 m 49.4 247.1 59.3 355.8 69.2 484.3 79.1 632.6 

16 m 56.5 282.4 67.8 406.7 79.1 553.5 90.4 722.9 

Table 4-3 Table Showing Drag Force and Overturning Moment for Various Fence Configurations with 62% 
Porosity Mesh 

42 % Porosity Mesh 

Fence Height 

 10 m 12 m 14 m 16 m 

Span Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

Drag 
kN 

Moment 
kN.m 

2 m 22.1 110.5 26.5 159.1 30.9 216.6 35.4 282.9 

4 m 44.2 221.0 53.0 318.2 61.9 433.2 70.7 565.8 

6 m 66.3 331.5 79.6 477.4 92.8 649.7 106.1 848.6 

8 m 88.4 442.0 106.1 636.5 123.8 866.3 141.4 1131.5 

10 m 110.5 552.5 132.6 795.6 154.7 1082.9 176.8 1414.4 

12 m 132.6 663.0 159.1 954.7 185.6 1299.5 212.2 1697.3 

14 m 154.7 773.5 185.6 1113.8 216.6 1516.1 247.5 1980.2 

16 m 176.8 884.0 212.2 1273.0 247.5 1732.6 282.9 2263.0 
Table 4-4 Table Showing Drag Force and Overturning Moment for Various Fence Configurations with 42% 
Porosity Mesh 
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only the mesh is responsible for the drag force.  As such, they are likely to represent an 

unconservative estimate as the drag on the fence supports themselves has not been 

calculated; in addition, the drag on the mesh is likely to be slightly higher in the final design 

due to the presence of restraints to hold the mesh to the fence.  

4.2.2 Analysis of Total Drag and Overturning Moment Estimations 

 

Several trends were noticed in the estimations of drag force and overturning moment for 

each of the mesh porosities which would affect the design.  As was expected, increasing both 

the height and span of the fence increased the drag force and overturning moment.  

However, for any given support span, as the height of the fence was raised the overturning 

moment grew faster than the drag force, at an increasing rate.  This was not unexpected as 

an increase in height not only increases the area of wind loading but raises the centre of 

action of the force; as a result, the moment is proportional to the height squared. 

At a constant fence height, increasing the span between supports increased both the drag 

force and consequently the overturning moment, however, this increase was linearly 

proportional to the increase in span. 

What this means from a design perspective is that increasing the height of the fence has a 

much higher cost in regards to the design aims of high portability and speed of assembly.  

Raising the height of the fence by any given amount will require larger supports and stronger 

support footings than the same increase in support span.    

As the only potential benefit associated with increasing the height of the fence is to improve 

the performance of firebrand reduction; a relationship which is still unclear due to a lack of 

experimental data, it is more productive from a design sense to limit the height of the fence 

to maximize the support span that can be used.  A larger support span will directly 

correspond to increased portability and speed of assembly through reducing the amount of 

supports that need to be transported and assembled for any given fence length.  Therefore, 

a fence height of 10 metres, the lowest height deemed acceptable to meet the design aims, 

was selected in order to minimize the created moment and maximize the span of the fence. 
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4.3  Fence Support Footing Design Selection 
 

One of the primary challenges posed by the high level of drag force experienced by the fence 

is securing the supports firmly to the ground such that they do not slide or tip when under 

the design load; this would constitute a structural failure of the fence.  As each fence support 

is effectively supporting the area of a single span, the required reaction forces for any fence 

dimensions should be sufficient to counteract the drag force and overturning moment for 

that particular configuration, with the inclusion of an appropriate safety factor. 

Several options were investigated as methods of securing and restraining the fence supports 

into place.  These were: 

 Weighted blocks at base of fence supports. 

 Drilling post holes to bury the supports into the ground. 

 Using ground anchors to secure the fence support. 

Each of these methods were assessed for their feasibility and alignment with the design aims, 

before a decision was made.  The details of the assessment of each method is presented in 

the following sections. 

4.3.1 Use of Weighted Blocks to Secure Fence Supports 

 

The first method which was considered to secure the fence supports was the use of some 

type of weight, such as concrete blocks, at the base of each support.  This method of support 

is used in other fencing applications, such as the assembly of temporary barriers at motor 

racing street circuits; shown in the figure below. 

While it was evident that the 

required weight of these blocks 

would be large, the option was 

considered attractive due to its 

simplicity in assembly and was 

therefore investigated to determine 

if the required weight would be 

feasible amount. 

Figure 4-2 Picture Showing Use of Concrete Blocks as Fence 
Support (McGinnis 2013) 
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The mechanism through which a weighted block secures the fence support has two 

components; the reaction against the drag force and the counteraction of the overturning 

moment. 

In order to stop the fence support from sliding backwards due to the drag force, the weighted 

block relies upon the friction created between itself and the ground to stop the sliding.  

Therefore, the maximum frictional force possible in any conditions must be larger than the 

maximum design drag force, by the selected factor of safety.  This means that the lateral 

restraint capacity is dependent upon both the coefficient of friction between the block and 

ground and the weight of the block.   

Preventing the fence from tipping over however, depends upon the weight of the block as 

well as its physical geometry.  As the drag force on the fence increases, the ‘location’ at which 

the normal force from the ground acts will shift away from the centre of gravity and towards 

the rear, such that the moment created by the drag force is balanced by the moment created 

by the now offset normal force.  Therefore, the maximum moment that can be supported by 

the weighted block is the product of its weight multiplied by half of its length in the direction 

of the wind loading. 

To evaluate the feasibility using weighted blocks as a support footing, an Excel spreadsheet 

was created to calculate the weight that would be required to support each of the 10-metre-

high fence configurations from section 4.2.1 for a block with a length of 2 metres in the 

direction of wind loading.   

 This was done by taking the larger of the results from the formulas below for each fence 

configuration.  Note that a coefficient of friction between the block and the ground of 0.25 

was chosen to represent a conservative estimate for the friction between the block and the 

ground (Transportation Research Board, 2010).  

 

 

 Support Span 

Porosity 2 m 4 m 6 m 8 m 10 m 12 m 14 m 16 m 

76% 1,804 
kg 

3,609  
kg 

5,414  
kg 

7,218 
 kg 

9,023  
kg 

10,827 
kg 

12,632 
kg 

14,436 
kg 

         

62% 3,590 
kg 

7,198 
kg 

10,797 
kg 

14,396 
kg 

17,994 
kg 

21,593 
kg 

25,192 
kg 

28,791 
kg 

42% 11,266 
kg 

22,531 
kg 

33,797 
kg 

45,062 
kg 

56,328 
kg 

67,593 
kg 

78,859 
kg 

90,124 
kg 

Table 4-5 Table Showing Theoretical Mass Required to Support Fence 
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Upon reviewing the results of the required support block weights shown in the table above, 

it was immediately apparent that this method of fence restrain was unsuitable for this 

application.  The required block weight for the 76 % porous mesh with a support spacing of 

2 metres was over 1800 kg, without including a safety factor against the overturning 

moment.  Therefore, this method of support was not perused any further. 

4.3.2 Planting of Fence Supports into Ground via Post-Hole Digger 

           

The second method investigated for securing the fence supports was burying the base of the 

posts into the ground at a sufficient depth to resist the applied lateral force and overturning 

moment.  This is the typical method used in the construction of more permanent fences and 

walls.  

Digging post-holes for the supports will require the use of drilling machinery, as it is 

unfeasible to dig the necessary number of holes in the time and to the depth required.  This 

is in contrast to the design aim to minimize the amount of requisite machinery.  However, 

post hole digger attachments for tractors are readily available for a reasonable price, and are 

capable of drilling holes quite quickly.  This is in line with the design aims of assembly speed 

and cost and was therefore investigated.           

The mechanism in which this method of footing works is through the soil pressure created 

against the buried section when a force applied to the support attempts to displace the earth 

surrounding it.  Therefore, the magnitude of the support reactions that this type of footing 

can provide is dependent upon the soil properties, support size and buried depth. 

This was demonstrated by Mason, Gates and Moore in their 2012 paper ‘Determining forces 

required to override obstacles for ground vehicles’.  In this report, they derived a formula for 

the force required to push over posts buried into the ground, before conducting empirical 

testing to confirm its validity.  The derived equation is shown below. 

𝐹 =  
2𝛾𝐷𝐿

3(ℎ+
𝐿

2
)
       4.3.3 

Where F is the force required to overturn the post in Newtons, γ is the dry bulk density of 

the soil in N/m3, D is the effective diameter of the post in metres, L is the buried depth of the 

post in metres and h is the height in metres above the surface of the soil at which the 

overturning force is applied.  
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In order to evaluate the feasibility of this method of support, an Excel document using the 

above formula was created to calculate the overturning force for a variety of post support 

diameters and burial depths.  These results, shown in table 4.3.2 below, were then compared 

to the estimated wind loading for the different fence configurations in table 4.2.1. 

 Note that in these calculations, a soil specific weight of 12753 N/m3 (corresponding to a 

density of 1.3 g/cm3) was used as this represents a reasonable estimation of average soil 

density (Argonne National Laboratory, 2010). 

 

 

Comparing these results with the drag force estimates, it is clear to see that this method of 

support is unsuited to the application as it simply cannot support the drag force.  Most results 

differ by two orders of magnitude.  

While a larger and more permanent style of footing may be suitable for future designs, a 

simple backfilled post-hole is not adequate for the required load.  Consequently, further 

investigation into this method of support was not continued. 

4.3.3 Restraint of Fence Supports with Ground Anchors 

            

The third approach to restraining the fence supports investigated was using temporary 

ground anchors.  Ground anchors are devices that are driven into the earth to support large 

tensile loads; they are commonly used in the construction of towers, utility poles and other 

similar applications to tie supporting guy wires to the ground. 

Because they can typically only support a tensile load, guy wires will be necessary in a design 

which uses ground anchors to restrain the fence supports.  This is not a disadvantage, 

however, as this allows the location of the support reaction to be shifted further up the post.  

By increasing the lever arm of the support reaction, the overturning moment created by the 

drag force can be reduced substantially.  As it was the excessive size of the overturning 

moments which made the previous two methods investigated unfeasible, rather than the 

drag force itself, eliminating the moment is a definite improvement. 

 Post Diameter 

Post Depth 100 mm 200 mm 300 mm 400 mm 500 mm 

1 m 0.155 kN 0.309 kN 0.464 kN 0.618 kN 0.773 kN 

2 m 0.283 kN 0.567 kN 0.850 kN 1.134 kN 1.417 kN 

3 m 0.392 kN 0.785 kN 1.177 kN 1.570 kN 1.962 kN 

 Table 4-5 Overturning Force of Various Footing Depth and Diameter Configurations 
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Another advantage to using ground anchors is flexibility in the design.  If required, several 

anchors and guy wires can easily be used on a single support.  This allows the total load to 

be shared, meaning that larger fence support spans can be used than would be possible with 

a single anchor, likely leading to increases in assembly speed and reductions in weight.  It 

also means that in the event of poor soils, the fence design can still be safely installed, simply 

requiring additional anchors rather than being unsuitable. 

There are several different types of earth anchor design, however temporary reusable 

anchors are most commonly a ‘screw’ style.  As the name suggests, these feature a helical 

thread which is drilled into the ground.  An image showing one particular make is below.    

Due to the interaction between the soil and the anchor, 

the maximum load that a ground screw can support 

depends upon various factors such as the type of soil, size 

of the anchor, placement depth and the tensioning torque 

applied. 

While earth anchors are available in extremely large sizes, 

larger sizes typically require the use of heavy machinery 

such as an excavator or tractor with a drilling attachment 

to install and remove.  For more moderate sizes, hand-held 

hydraulic installers are available at a reasonable price, 

allowing for rapid, portable installation. 

In line with the design aims of maximizing assembly speed 

and portability, sizes of ground anchors that could be installed using such an installer were 

investigated further to determine the magnitude of load that they could support. 

Preliminary searches of available temporary ground anchor products fitting this criterion 

found that there were numerous different companies offering similar competing products.  

Not all of these firms offered estimates of the load capacity of their products, however, the 

values from those that did was in reasonable agreement, when comparing similar soil types 

and anchor sizes. 

The maximum load values that were selected for the purpose of feasibility investigation and 

subsequent design work were those taken from the website of the company ANCA Structural 

Anchors, a firm based in South Yorkshire, England.  This was because they offer a complete 

Figure 4-3 Image of Several Temporary 
Earth Anchors (Rittenhouse, 2016) 
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ground anchor solution, including ground screws, hand-held portable installers, in addition 

to an apparatus for proof testing the strength of installed anchors (ANCA, 2016).   

The nominal holding strength of their ‘System 2000’ ground anchors is given as 2000 kg (19.6 

kN), similar to that of a comparably sized anchor from Hubbell Power Systems, which has 

maximum load of 5000 lb (22.3 kN) in typically encountered soils (Hubbell, 2016). 

To assess the feasibility of using ground anchors to secure the fence posts, an Excel 

spreadsheet was made, calculating the maximum drag force that an arrangement using the 

ground anchors specified above could withstand.  As the anchors have to be loaded in 

tension to work effectively, an anchor angle of 45o to the horizontal was chosen.  The results 

are shown in table 4-3 below.  

 

Number of Load Bearing Anchors Maximum Drag Force 

1 13.86 kN 

2 27.72 kN 

3 83.16 kN 

Table 4-6 Maximum Lateral Support Force for Various Number of Ground Anchors 

From the results in the table, it can be seen that the use of ground anchors is suitable to 

secure the fence as these results overlap with several of the calculated drag forces for 

different configurations outlined in section 4.2.1.  Therefore, ground screw anchors were 

selected for use in the design. 

4.4 Support Spacing and Mesh Porosity Selection 
 

Having selected an appropriate method to secure the fence posts, the type of mesh and 

fence span and height configuration was determined.   

To ensure the structural integrity of the fence at the design conditions, a factor of safety is 

required to account for all uncertainties in the loads or supports.  However, an overly 

conservative safety factor will adversely impact upon the design aims unnecessarily.    

As the exact load capacity of the ground anchors is variable, a suitable safety factor should 

be chosen to maintain a safe margin against failure.  As detailed in the above section, soil 

type plays a major part in determining their strength.  However, the availability of the 

portable proof testing tripod with the ground anchors goes some way to reducing this 
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concern.  By testing a sample of anchors at the site of assembly, reliable values can be 

collected and additional ground anchors used if deemed necessary.  As this safety factor at 

this stage is simply assisting in determining an appropriate fence size, a safety factor of 1.5 

was chosen. 

Applying the safety factor of 1.5 to the values in table 4-3, it can be seen that with one 

anchor, a maximum drag of 9.24 kN was permissible, two anchors 18.48 kN and three 27.72 

kN.  However, it was decided that only two anchors should be nominally used in the design.  

Because anchors would have to be installed on both sides of the fence, this is a total of four 

per post.  By only specifying two, extra capacity is allowed for poor soil conditions, whereas 

is three were specified and an additional required, eight anchors would be required per post, 

simply too many. 

Comparing the results above against the drag force tables in section 4.2.1, it is clear that 42% 

porosity mesh is unsuitable, as two anchors do not even cover a 2 metre span.  Between the 

62% mesh and the 76%, the 62% mesh could have a span of approximately 5 metres whereas 

the 76% mesh could have a span of 10 metres. 

From the information outlined in section 2.4.2 of the literature review, lower porosity 

meshes blocked more Radiant Heat Flux, at an amount greater than the porosity itself would 

suggest.  However, from figure 2-7 it appears that this ‘tunnel vision’ effect is negligible in 

the range between 62% to 76% porosity. 

In light of this information, it was decided that the 76% porous mesh would be used in the 

fence design.  By using 76% mesh in the design, the fence support spacing could be doubled 

compared to that of the 62% mesh.  This would relate nearly directly to a doubling of the 

fence assembly speed; halving of the weight per unit length and also reduce material costs, 

all for the price of a 14% increase in Radiant Heat Flux transmission. 

   

4.5 Fence Construction Method Selection 
 

Another issue requiring consideration at this stage of the design process is the method of 

assembly of the fence.  As was detailed in section 3, the final design must be both portable 

and able to be assembled rapidly with minimal requirement for machinery or tooling. 
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Due to the large height of the fence, this issue is complicated.  Several different approaches 

to assembling the fence are listed below. 

 The entirety of the fence is assembled lying on the ground and then the whole fence 

is stood up as one unit. 

 Small sections of the fence such as a single support span are assembled lying on the 

ground and then stood up in segments. 

 The fence posts are assembled and stood up first, and then the mesh is strung up 

between the posts. 

 The advantages and disadvantages of each approach are detailed in the sections below, 

before a decision on the final approach to be taken is decided. 

4.5.1 Entire Fence Assembled on Ground and Erected as Single Unit  

 

The first method of fence assembly investigated was the complete assembly of the fence 

sections in position, lying on the ground such that the fence simply requires ‘standing up’ by 

rotating about its base into a vertical position. 

This method has its advantages, primarily the ease with which the fence can be assembled.  

By positioning and attaching the mesh infill material to the fence supports on the ground, 

access to the full length of the fence posts is ensured without the requirement for any lifting 

device such as a scissor lift or cherry picker.  This allows a simpler attachment method of 

attaching the mesh infill to the posts to be used. 

A major disadvantage to this approach however, is the necessity for the entire fence to be 

stood up as one unit in one step.  Because the length of mesh between each fence is fixed, 

each post has to be elevated at the same rate as the ones beside it.  If the posts are not lifted 

together, the effective length between the top of the posts will grow, straining the infill 

material and will pull the neighbouring posts out of alignment. 

This is an issue for two reasons.  Firstly, the longer the length of fence that is being stood up, 

the more people will be required, as at a minimum one person will be required per post if 

the use of machinery is excluded.  A length of 100 metres will therefore require at least 

eleven people to construct (one per fence support), which does not suit the design aims of a 

simple, fast assembly. 
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Secondly, in the event that the fence was being lifted into the direction of a substantial wind, 

the drag force imposed would likely be too great to be overcome without some type of heavy 

machinery.  Again, this does not suit the design aims specified in section 3. 

4.5.2 Assembly and Construction in Single Support Span Sections 

 

The second method investigated was similar to the first which is detailed above.  Rather than 

constructing large spans of the fence as a single unit however, this approach would 

concentrate on raising a single 10 metre span with the two supports on each end in one 

movement.  This would result in the fence design comprising of many separate 10 metre 

sections, all individual units.  

This approach retains the advantages of easy positioning and component assembly outlined 

in the above approach due to the easy access from the ground.  It also avoids the issue of 

having to raise the entire fence as a single unit, the major problem with the first approach. 

However, new issues are also posed by this method.  Firstly, due to the requirement of having 

a fence post on each end of the mesh infill being raised, a ‘doubling up’ of fence supports 

will occur on centre sections as each support is only attached to mesh on one side.  This will 

increase the total weight and assembly time of the fence, due to the requirement to 

transport and assemble more posts for the same length of fence. 

Secondly, unless the two posts from the neighbouring sections are securely joined together 

after the sections are raised, each individual fence post will require additional ground 

anchoring in the direction parallel to the fence.  This is to counteract the tendency of the 

mesh to pull the fence supports together when wind loading is applied. As the infill material 

cannot support a bending moment, equilibrium is achieved through tensile forces, and the 

shallow angle at the supports means these forces are several times larger than the applied 

load. 

These tensile forces are less of an issue when mesh is connected to both sides of the support, 

or if individual supports are used, they are securely joined to one another.  In this 

configuration, the tensile force created is either counteracted by the same tensile force from 

the neighbouring mesh section or transmitted through the infill material to the rest of the 

posts, avoiding the need for individual longways restraint on each post. 
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However, joining the two individual posts together all the way to the top securely enough to 

transmit these lateral loads from one to another is an issue due to their large height.  To 

avoid the need for lifting equipment, any joining method much be easy to implement and 

reverse remotely without introducing alignment problems.  The joints must also must be 

strong enough to adequately transmit the tensile loads; not an easy problem to solve. 

4.5.3 Fence Post Construction Followed by Hoisting Mesh     

 

The third approach to constructing the fence that was investigated was assembling and lifting 

the fence posts into position individually, before the mesh infill is hoisted into position 

between the respective posts with a separate lifting arrangement. 

Several advantages over the other methods are presented in this method of fence 

construction.  Firstly, by lifting the fence posts individually, without any mesh infill attached, 

the force required to raise each post is minimized.  This is because both the total weight 

being lifted at any point is reduced, in addition to eliminating any potential drag force on the 

mesh opposing the lifting process.  Furthermore, by hoisting the mesh infill material vertically 

between the already erected fence posts, the capability of the fence to be constructed in 

windier conditions is improved.  Barring any potential friction at the restraints, the direction 

of motion is perpendicular to the applied wind loading and as such should minimize any 

issues in construction.    

Again, this approach introduces new issues.  Obviously, by moving away from a design where 

the mesh is fixed into a set position while on the ground to a design where the mesh is 

hoisted up the post, an additional lifting mechanism is required introducing additional 

complexity along with extra weight. 

Secondly, as the mesh is being mounted onto the posts after they have been lifted rather 

than on the ground, extra care is required in the positioning of the posts to ensure that they 

are separated by the correct spacing.  If the spacing between two posts is too great, the mesh 

will be unable to be installed onto that span, and the post will have to be deconstructed and 

shifted into the correct position. 
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4.5.4 Final Fence Construction Method Selection  

   

Weighing up the advantages and disadvantages for each approach to the fence construction 

outlined in the above sections, a decision for the method to be used in the final design was 

chosen. 

The method selected was the third approach listed; assembling and constructing the fence 

posts first, before hoisting the mesh in a similar manner to a flag between the posts.  After 

consideration, it was decided that this method presented the least obstacles to 

implementation when weighted against the other options.  Therefore, further design 

decisions were made with this method of construction in mind.  

4.6 Final Design Parameter Summery 
 

Below is a table summarizing the design parameters that were determined in this chapter. 

Fence Height 10 m 

Fence Span Between Supports 10 m 

Mesh Type 76 % Porosity with 1.23 mm Aperture 

Max. Design Wind Speed 28 m/s 

Drag Force at 28 m/s 17.7 kN 

Drag Force per m2 177 N 

Support Method 19.6 kN Earth Screw Anchors 

Fence Construction Method Posts Positioned & Mesh Hoisted into Position 

Table 4-7 Summary of Design Parameters 

  

5.0 Final Design Development and Validation 
 

This chapter covers the development of the final fence design.  This includes the 

identification of factors requiring consideration in the development of the design, the 

methodology used in developing each aspect of the design and validation of the final design 

in the form of FEA analysis results. 
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5.1 Fence Post Sizing and Selection 
 

After preliminary investigations, several key factors requiring consideration in the design of 

the fence posts were identified.  These were: 

 Post material and geometry 

 Location of guy wire / ground anchor attachment points 

 Bending moment induced stress along post height 

 Buckling considerations  

 Maximum length and weight requirements 

Ultimately, the aim was to develop a design for the fence posts which was lightweight, 

portable, cheap, made from readily available steel sections and featured a good factor of 

safety at the design temperature of 500oC.  The process through which this was achieved is 

detailed in the sections below. 

5.1.1 Fence Post Material Selection 

 

The first stage of designing the fence posts was to select and size the material and geometry 

to be used as the base structure, and to identify the optimum locations to attach the guy 

cables.  The optimum design objectives of this stage of the process was to:  

 Use commonly available steel sections to ensure availability and reduce cost   

 Minimize the total weight of the posts 

 Have an acceptable factor of safety at the design temperature of 500oC 

 Keep total post deflection under design load to an acceptable level 

A review of the commonly available steel sections which could be suitable found that the 

main selection options were either Rectangular Hollow Section (RHS), Square Hollow Section 

(SHS) or Circular Hollow Section (CHS). 

After consideration of the various options, Circular Hollow Section was rejected.  It was found 

that while CHS offered the best second moment of area in all directions for a given amount 

of material, the strength was primarily required in the direction of the wind loading, and 

therefore other geometry was better suited.  It was also deemed to pose more difficulties in 

the implementation of the mesh attachment and hoisting as outlined in section 4.5. 
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Both RHS and SHS were determined to be suitable for the design of the fence posts.  

However, the final decision made was to first investigate and if possible use SHS.  This was 

done for several reasons.  Firstly, SHS provides an equal I value in both axis directions, 

providing better rigidity in both directions over RHS while maintaining a roughly similar 

weight per metre for comparable sizes.  Secondly, the equal sized faces would allow for 

easier affixing of the required guy wire attachment points and other required items. 

5.1.2 Steel Properties at 500oC 

 

Reviewing the material properties of commonly available SHS in Australia found that the 

grade of steel used in a majority of SHS sections was AS/NZS 1163 Grade C450L0 (OneSteel, 

2010).  From AS/NZS 1163, the grade C450L0 has a guaranteed minimum yield strength of 

450 MPa, with a guaranteed minimum tensile strength of 500 MPa (Standards Australia, 

2016).  The modulus of elasticity is 200 GPa.  Note that all values are with reference to room 

temperature. 

Rearranging equation 2.2 to calculate the yield stress at 500oC of C450L0 gives: 

𝑓𝑦 500 = 𝑓𝑦 20 ×
905 − 𝑇

690
 

𝑓𝑦 500 = 264.13 MPa 

For the reduction in the modulus of elasticity, the formula provided by the Australian 

Standard was not used, as it was shown to under predict the reduction under transient 

loading.  Therefore, the reduction factor read off figure 2.5 at 500o was used.  This 

corresponded to a value of 0.6, therefore: 

𝐸500 = 0.6 × 𝐸20  

 𝐸500 = 120 GPa 

As such, these are the material properties that will be used in the design case of 500oC.  
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5.1.3 Metal Fatigue Considerations 

 

In addition to considering the reduction in yield strength of the steel sections at the 

anticipated maximum design temperature of 500oC, the effect of metal fatigue resulting from 

cyclic loading should be considered.  Due to the gusty nature of wind, the stress levels in the 

fence post will constantly be rising and falling with the fluctuations of the wind velocity. 

To ensure the structural integrity of the fence over a long timeframe, the endurance limit of 

CL450L0 steel from which the SHS sections are manufactured was estimated. 

According to Juvinall and Marshek in their 2012 text ‘Fundamentals of Machine Component 

Design’, the endurance limit of a metal can be estimated using the following formula: 

𝑆𝑛 = 𝑆′𝑛. 𝐶𝐿. 𝐶𝐺 . 𝐶𝑠. 𝐶𝑇 . 𝐶𝑅   5.1.1  

Where the terms are as follows: 

 S’N is the R.R. Moore Reversed Bending Stress Endurance Limit; Juvinall and Marshek 

report that for steel this can be approximated as half of the ultimate tensile 

strength.  For a steel with an ultimate tensile of strength of 500 MPa, this 

corresponds to a value of 250 MPa. 

 CL is a load factor corresponding to the type of loading; bending loads; the major 

load type of the fencepost, have a value of 1, 

 CG is a stress gradient factor; for samples with an equivalent diameter greater than 

10 mm, this is given as 0.9 for bending loads, which is what the loading of the 

fencepost predominantly is. 

 CS corresponds the surface finish of the material.  As fatigue failure begins at the site 

of an existing crack or microscopic flaw in the material, the surface finish of the 

material affects the number of flaws present on the material for this process to 

begin (Juvinall and Marshek, 2012).  A figure showing the relationship between 

ultimate tensile strength, surface finish and the surface finish factor is shown in 

figure 5.1 below.  For a hot rolled section with ultimate tensile strength of 500 MPa, 

the surface factor is 0.68.   

 CT is a temperature factor relating to the temperature at which the metal is 

constantly subjected to.  For temperatures less than 449oC (840o F) this value is 1.  

For temperatures over 449oC an equation is provided for evaluating CT.  Despite the 

maximum design temperature of the fence being 500oC, the value for CT in 
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calculating the endurance limit will 

be taken as 1, as the vast majority 

of the cyclic loading will take place 

well under 449oC. 

 

 CR is a reliability factor 

which corresponds to an 8% 

standard deviation of the 

endurance limit.  As such, a 50% 

reliability is the mean result and 

thus has a value of 1; 90% reliability 

is 1.2875 Standard Deviations away 

from the mean and thus has a value 

of 0.897, etc. 

 

 

 

As the fence is not being designed for permanent assembly, and periodic inspection can 

easily be carried out in between fence deployments, a reliability factor of 1, corresponding 

to 50% reliability was selected. 

Substituting the values determined above into equation 5.1.1 gives the following expression: 

𝑆𝑛 = 250 × 1 × 0.9 × 0.68 × 1 × 1 

      𝑆𝑛 = 153  MPa 

While the true loading condition of the fence is more likely to conform to a combination of 

alternating load levels around a steady average level, rather than a fully reversed loading, 

uncertainty about the loading profile prohibits this further analysis.  As a conservative 

approach, keeping the maximum stress levels below the endurance limit above will most 

likely at least guarantee a 106 cycle life, effectively infinite in this application.   

Given that this value is less than the yield stress at of the steel at 500oC, the endurance limit 

above was compared against the maximum allowable stress in the design calculated using 

an appropriate safety factor, and the lower of the two values was used as the limiting stress 

level in the design of the fence post.  

Figure 5-1 Figure Showing Relationship Between Fatigue Surface 
Factor, Tensile Strength and Surface Finish (Juvinall & Marshek, 
2012) 
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5.1.4 Fence Post SHS Sizing Methodology 

 

As was discussed in section 4.2, the major problem posed by high drag forces applied at 

elevated heights is the moment produced.  Not only does this moment attempt to overturn 

the structure, it also creates significant bending stresses in the fence post material.  

In order to keep the weight of the fence post to 

a minimum, the bending moment created in the 

material must be minimized.  The most effective 

way of achieving this is to position the guy wire 

supports at varying heights up the post, 

providing restraint at several different locations 

thereby reducing the length able to develop a 

large bending moment. This approach is applied 

in the construction of tall thin structures such as 

radio towers, shown in figure 5.1 at right.   

This configuration also provides lateral restraint to reduce the occurrence of long column 

buckling.  

However, this results in a statically indeterminate loading case, as the base of the post is 

supported, with a number of separate guy wire attachment points at varying locations up 

the post. 

An investigation into available techniques for solving statically indeterminate loading cases 

revealed that the best suited method to carry out the required iterations was 2D beam 

element modelling using the ANSYS Mechanical software.  Simple beam elements 

corresponding to a given beam cross section profile and material properties could be created 

and equivalent loading and support conditions to the actual situation could be applied, giving 

the reaction forces, bending moment diagram and deflections for that particular 

configuration. 

Preliminary investigations using 2D beam analysis in ANSYS revealed little change of bending 

moment and reaction force results for different beam cross sections and Young’s Modulus.   

Figure 5-2 Image Showing Guy Wire Placement on 
Radio Tower (Zhejing Guanming Power 
Transmission Material Corp. 2016) 
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Therefore, to determine the number of ground anchors and guy wires required, the optimum 

location for the guy wire attachments to the post, and the required section size of the SHS, 

the following methodology was used. 

 A 2D beam of 10 metre length and an arbitrarily selected cross section of 200mm x 

200 mm x 5 mm thickness was modelled in ANSYS Static Structural. 

 A UDL of 1770 N/m was applied to the entire length of the beam, to model the effect 

of the maximum design wind loading on the post. 

 Fixed displacement supports were positioned on the beam to mimic the effects of 

the base and guy wire connections.  The displacement supports for the guy wires 

however only restricted the displacement of the post in the axis of the applied load. 

 Numerous simulations were run to determine the number of guy cables and 

locations which gave the most desirable reaction forces and bending moment 

distribution along the beam. 

 After determining this configuration, an appropriate size of SHS was estimated by 

calculating the maximum bending stress associated with the maximum bending 

moment for a variety of SHS sections using the following formula: 

𝜎 =
𝑀

𝑍
      5.1.3 

Where M is the maximum bending moment and Z is the Elastic section modulus for 

a given SHS section. 

 This selection was used in the design and validated through FEA simulation of a 3D 

model. 

In determining the optimum number and placement of guy wires and ground anchors to be 

used, certain criteria had to be met to ensure the viability of the design.  These are 

summarized listed below. 

 The support reaction forces at the guy wire attachments had to be less than the 

maximum allowable.  As the displacement restraints only give the horizontal reaction 

force required, the corresponding tension in the guy wire was estimated by dividing 

the horizontal reaction by the cosine of 45 degrees, as the design angle for the guy 

wires is 45o, for reasons explained below.  As the nominal pull out strength of the 

ground anchors is 19.6 kN (see section 4.3.3), applying a minimum safety factor of 

1.5 to this value gives a maximum guy wire tension of approximately 13 kN.  

Therefore, the calculated guy wire tension for a suitable configuration must be less 
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than 13 kN.  Note that 1.5 was decided to be a suitable safety factor due to the ability 

to use additional anchors if required.        

 While the base of the fence features smaller screw ground anchors to assist in 

securing it in place (see section 5.2), it was decided that they should be a redundancy 

in this particular loading configuration, as ground anchors are much weaker in lateral 

loading than in tension.  Lateral restraint from the ground anchors provide a factor 

of safety only. 

Any lateral load on the base of the fence post therefore needed to be less than the 

frictional force which would be created by the vertical components of the guy wire 

forces.  To maximize both the vertical and horizontal components of the guy lines, a 

design angle of 45 degrees was chosen.  In addition, a value for the coefficient of 

friction between the base and ground of 0.25 was chosen.  This corresponds to the 

smallest recorded value for the coefficient of friction between steel and the type of 

ground that the fence is likely to be deployed upon.  (Transportation Research Board, 

2010). 

 The maximum bending stress calculated for the selected SHS section must be either 

lower than the endurance limit calculated in section 5.1.3, or have at least a factor 

of safety of 1.5 with respect to the calculated yield strength of the material at 500oC, 

depending upon the smaller of the two.  As figure 2.4 demonstrates the formula in 

AS 4100 for yield strength reduction is conservative at 500oC, the safety factor of 1.5 

was determined to be an appropriate safety factor for the high temperature 

scenario.    

The results of the investigation process outlined above are presented in the section below. 

5.1.5 Fence Post Sizing Results 

 

Following the methodology outlined above, the optimum number of guy cable supports, guy 

wire attachment locations and SHS size was determined.  It was found that two ground 

anchors and two guy wires was the minimum required to meet the specified criteria.  Note 

that this means a total of four anchors and cables are required per post, as the two specified 

in the sizing are on the same side of the post. 

The optimum locations of guy wire attachment identified was one at a height of four metres 

and the second at a height of eight metres.  This configuration resulted in the minimum 
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bending moment at any location along the post.  A Bending Moment Diagram for this 

arrangement with an applied UDL load of 1770 N/m is shown in the figure below. 

  

In addition to the bending moment diagram, the force reactions at the base and each guy 

cable attachment was also found.  From these, the tension force in guy wire was calculated 

as described in the section above, using the following formula: 

𝑇 =
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛

cos 45
     5.1.4 

The vertical reaction from the guy wire downforce and corresponding maximum lateral 

friction value was also calculated to ensure the design criteria was met.  This was done using 

the following formulas: 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑇1. sin 45 + 𝑇2. sin 45   5.1.5 

Where Vertical Reaction is the normal force at the base of the post and T1 and T2 are the 

tensions in each guy wire, respectively.  The frictional force was calculated using: 

𝑀𝑎𝑥 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0.25 × 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛   5.1.6 

Where 0.25 is the conservative coefficient of friction selected in section 5.1.3.  The final 

results are shown in the table below: 

Horizontal Reaction of Cable 1 Attachment 7521.7 N 

Tension in Cable 1 (T1) 10637.3 N 

Horizontal Reaction at Cable 2 Attachment 7301.7 N 

Tension in Cable 2 (T2) 10326.2 N 

Vertical Reaction at Post Base 14823.4 N 

Horizontal Reaction at Base 2876.7 N 

Maximum Frictional Force with μ = 0.25 3705.9 N 

Table 5-1 Results of Inital 2D FEA Analysis of Fence Post 

Figure 5-3 Absolute Bending Moment Diagram of Fence Post with Guy Wire Supports at 4m and 8m Respectively 
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As the maximum frictional force is greater than the horizontal reaction at the base, and the 

tension in both guy lines is less than the maximum allowed of 13 kN, corresponding to the 

minimum safety factor, this configuration is suitable to use in the design.  Therefore, the 

maximum bending moment of 3540 N.m was used to size the SHS used in the fence post 

design. 

Using formula 5.1.3 to estimate the bending stress with the elastic section modulus of 

various different SHS sections taken from the OneSteel catalogue, it was found that a 100mm 

x 100mm x 2mm section was the lightest section per linear metre (6.07 kg/m) that fell within 

the required stress requirements.  With an elastic section modulus of 24.6 x 103 mm3, the 

estimated bending stress calculated was 143.9 MPa; less than both 153 MPa and 176 MPa, 

the endurance limit and the minimum required stress for a safety factor of 1.5 with respect 

to the 500oC yield strength respectively. 

To validate this selection, a 3D model of the post was created and a full FEA analysis was run, 

both at ambient conditions and 500oC, to assess the additional impact of thermal stresses 

and self-weight upon the reaction forces, maximum von-Mises stress and deflection levels. 

As the mesh attachment system had not yet been designed, simulation of the drag force 

loading was achieved by applying a uniformly distributed load corresponding to the half the 

total calculated drag force of 17700 N to each side of the post, so as to apply the load in a 

similar configuration to where the mesh will be attached.  

Similarly, as the guy wire attachments had not been designed either, simulation of the guy 

wires was achieved by a combination of displacement constraints and applied forces directly 

applied to a 20 mm x 100 mm section of the front face of the post. 

As the ground anchor/guy wire angle was to be 45o, the vertical reaction is equal to the 

horizontal reaction.  As the horizontal reaction forces at the guy wire displacement restraints 

differed slightly from the 2D predicted values, an iterative process was used, where the 

applied forces simulating the vertical load of the guy wires was set equal to the horizontal 

reaction force of the last iteration until the results stabilized. 

The results from the FEA simulations for both ambient (22oC) and maximum design 

temperature (500oC) are shown below.  Note that due to the large size of the post, only the 

areas of interest are shown, i.e. the base restraint, guy wire restraints or any other regions 

of interest.   
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Note that in the results shown below, the graphical deflection depicted has been 

considerably scaled to better show the deformed shape; the true level of deformation is 

difficult to detect on an image covering the entirety of the fence post.  

 

 

Figure 5-5 Image Showing FEA Results for Total 
Deflection of Fence Post at 22oC 

 

 

 

  

Figure 5-4 Image Showing FEA Results for Total 
Deflection of Fence Post at 500oC 
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Horizontal Reaction at Top Guy Wire 7160.5 N 

Vertical Reaction at Top Guy Wire 7160.5 N 

Total Tension in Top Guy Wire 10,126.5 N 

Horizontal Reaction at Lower Guy Wire 6895.4 N 

Vertical Reaction at Lower Guy Wire 6895.4 N 

Total Tension in Lower Guy Wire 9751.6 N 

Horizontal Reaction at Base 3644.1 N 

Vertical Reaction at Base 14604 N 

Maximum Frictional Force at Base  3651 N 
Table 5-7 Table Showing Force Reaction Results for 3D FEA Analysis of Fence Post at both 22oC and 500oC 

 

 

Figure 5-6 Image Showing FEA Results for Von-Mises Stress on Fence Post at both 22oC and 500oC 
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Several interesting results were noted during the analysis of the FEA findings shown above.  

Primarily, the stress results mirrored those of the 2D beam analysis, showing that the stress 

in the mid sections between all the supports was limited to under 70 MPa. 

However, the 3D analysis revealed the presence of significant stress concentrations 

occurring around each of the supports, with the most pronounced being at the location of 

the top guy wire connection point.  They are localized to the immediate vicinity of the 

supports however, and as such can be overcome by appropriate design of the guy wire 

attachment points.   

Another interesting result of note was that the stress levels throughout the post did not 

change between the simulations between 22oC and 500oC, despite the large change to the 

Young’s Modulus of the material.  This is because in a linear FEA analysis, stress is calculated 

using Hook’s law, which depends upon strain, Young’s modulus and Poisson’s ratio.  As the 

modulus of elasticity is used in calculating the strain, the stress remains constant over the 

temperature change.  While Poisson’s ratio does change slightly with temperature, which 

would theoretically alter the stress, this effect was found to be negligible.    

Additionally, the results for the magnitudes of the reaction forces at each support differ 

slightly from those calculated with the 2D beam analysis.  Most notable is that the horizontal 

support reaction at the base increased from 2876.7 N to 3644.1 N; an increase of 767.4 N.  

Correspondingly, this resulted in a reduction of the load at the guy wire supports, with the 

horizontal reaction at the top support decreasing from 7521.7 N to 7160.5 N; a change of 

361.2 N, and from 7301.7 N to 6895.4 N for the bottom guy wire; a change of 406.3 N. 

These changes in guy wire tensions also reduced the vertical reaction force at the base, 

however, the inclusion of gravitation force in the 3D analysis minimized this impact; the total 

reaction force only decreasing by 219.4 N. 

Recalculating the maximum frictional force that could be supplied by the interaction 

between the base and the ground, again using the coefficient of friction of 0.25, found that 

the difference between the max friction and the horizontal reaction had diminished and the 

two were roughly equal.  Therefore, this design concept is still workable, but the ground 

anchors used in the base design must be sized sufficiently to provide a considerable safety 

factor, given the uncertainty associated with the coefficient of friction estimation used. 

The deflection results for both the 22oC and 500oC revealed no major issues with the current 

selection of SHS section.  The maximum deflection in both cases occurred at the very top of 
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the post, and was relatively minor relative to the beam span.  A deflection of this magnitude 

is unlikely to compromise the fence functionality or structural integrity. 

5.1.6 Portability and Weight Requirements 

 

As was mentioned in section 5.1.5, the weight per metre of the 100 mm x 100 mm x 2 mm 

SHS section chosen for the fence post is 6.07 kg/m (OneSteel, 2016).  Multiplying this by the 

fence design height of 10 metres gives an approximate total fence post weight of 60.7 kg. 

As part of the requirement for portability, section 3.1.2 of the design methodology chapter 

stated that no part of the fence should be heavier than 50 kg, in order to allow a two-man 

team to be able to carry the fence sections comfortably.  It was also stated that the design 

of the fence should be able to be transported either on trailers attached to regular vehicles 

or flatbed trucks.   

Therefore, the fence post needs to be split into multiple sections to both reduce to weight 

of each part and to aid in the transportation of the fence.  However, while aiding in the ease 

of mobility, increasing the number of individual sections of the fence will have a negative 

impact upon the speed of assembly, as each additional piece that requires joining will slow 

down the assembly process. 

To balance these competing aims, the fence posts will split into only two separate pieces.  

This gives both sections a length of 5 metres, with an approximate weight of 30.35 kg; 19.65 

kg under the maximum allowable weight.  This also allows for the additional weight that has 

not been accounted for at this stage associated with the guy wire and mesh attachment and 

restraint systems.    

5.1.7 Joining of Fence Post Sections 

 

Due to the long length of the fencepost and the large forces applied to it, the method used 

for joining the two sections of post together is important to consider.  Primarily, the joint 

needs to have the following properties: 

 Simple and fast assembly and disassembly that can easily be performed onsite 

without requiring careful alignment of the sections or special tooling. 

 Not interfere with the other functions of the fence post such as the mesh attachment 

mechanism. 
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  Safely transmit the forces between the sections without compromising the strength 

or structural integrity of the post. 

Considering the loading condition of the fencepost, the joint will have to handle all three 

internal beam reactions of shear force, axial force and bending moment. 

In addition to the internal beam reactions above, the effect of the joint on the fence posts 

buckling load must also be considered due to its length and magnitude of axial and lateral 

loads.      

To determine the most appropriate method of joining the two sections, a review into the 

literature of connecting columns in civil construction was conducted.  Known in civil 

construction as a ‘splice’, several different methods were found to be commonly used in 

joining column sections.  Primarily, these were through a welded connection; obviously 

unsuitable in this application, through the use of bolted gusset plates on the flange and web 

of the sections, or through the use of bolted butt plates attached on the ends of the steel 

sections. 

Of these two bolted connections, the most suited to this particular application was the bolted 

butt plates, as the use of gusset plates would require plates to be positioned on all sides of 

the section, which would interfere with the installation of the mesh attachment 

arrangement.  As such, the use of butt plates to join the sections was chosen.  See figure 5.8 

for an image of this type of arrangement. 

From the review of the literature, it became evident that the 

reduction in stiffness associated with splice connections results 

in changes to the buckling resistance of a column.  As buckling is 

a major failure method in compressively loaded sections, often 

occurring at forces less than the yield stress, the impact of a butt 

plate splice on column buckling load was investigated further. 

In their 2006 paper titled ‘Experimental Tests On Spliced 

Columns for Splice Strength and Stiffness Requirements’, Snijder 

and Hoenderkamp investigated the impact upon different splice 

configurations to determine the changes to buckling load for pin ended columns. 

They report that for a butt plate splice that had been tensioned to supply a moderate 

rotational stiffness, there was a negligible effect upon the load capacity of the column 

Figure 5-8 Image of Butt Plate 
Column Splice (Snijder and 
Hoenderkamp, 2006) 
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section, even when tensile forces were present at the splice location (Snijder & 

Hoenderkamp, 2006).  Therefore, this is an acceptable type of joint to use for joining the 

sections. 

In order to appropriately size the butt plate connection, the shear and axial forces in addition 

to the bending moment at the joint location in the fencepost had to be determined. 

As the joint is to be placed at 5 metres along the post, the values of bending moment and 

shear force at that location was taken from the shear and bending moment diagrams 

produced by ANSYS in the 2D beam analysis performed on the post in section 5.1.5.  The axial 

force was simply taken as the vertical component of the top guy wire cable.  The results 

obtained are shown in the table below. 

Axial Force 7160.5 N 

Shear Force 1557.2 N 

Bending Moment 220.0 N.m 

Table 5-2 Internal Beam Reactions at Proposed Fence Post Joint 

Given that the axial force is acting in the compressive direction rather than as a tensile force, 

the bearing force of the plates will support this load; leaving only the shear force and bending 

moment that the bolts have to overcome. 

As the butt plates should not extrude past the sides of the SHS where the mesh attachment 

mechanism will be placed, the plates will need to be joined on the front and back sides of 

the fence post only.  While the major bending forces are predominately about this axis due 

to the wind loading, a total of four bolts should be used, two on each side, to offer additional 

bending support in the out of plane direction. 

Assuming that the centre to centre distance between the bolts on either side of the SHS is to 

be 150 mm, i.e. the bolt hole centres are 25 mm away from their respective side of the SHS, 

the required force to supply the couple to overcome the bending moment can be calculated 

as such: 

𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝐹 × 𝑑      5.1.7 

Therefore, the maximum force found was 1466.7 N.  As there are two bolts on each side, the 

minimum force required for each bolt to overcome the bending moment is half of this value; 

733.35 N. 
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As bolts should avoid being loaded in shear, the axial force in the bolts should be enough to 

provide sufficient frictional force to transmit the shear load.  Neglecting the contribution 

from the axial compressive load, the total bolt tension force required can be calculated using 

as follows: 

𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 = 𝜇 × 𝐹    5.1.8 

Taking a coefficient of friction of 0.2 for untreated steel surfaces, taken from teaching 

material published by the Institute for Steel Development and Growth, 2011, the force 

required is 7786 N. 

As this load is shared over all four bolts, the required force in each bolt is 1946.5 N.  As this 

force is larger than that of the bending moment requirement, this force will be used to size 

the bolts. 

According to Juvinall and Marshek in Fundamentals of Machine Component Design, the force 

from the initial tightening of a bolt is given by the equation: 

𝐹 = 𝐾 × 𝐴 × 𝑆       5.1.9 

Where F is initial tension, K is the percentage of proof strength the bolt is tightened to, A is 

the tensile strength area of the thread and S is the proof strength of the bolt.  Assuming an 

initial tension coefficient K of 0.6 to allow for possible under tightening that may occur during 

field assembly, it was found that SAE class 5.8 M10 bolts, with a tensile area of 58.0 mm2 

would provide approximately 15428 N per bolt (Juvinall and Marshek, 2012).  This gives a 

safety factor of over 7.9, and as such was selected for use in the design. 

5.1.8 Design of Guy Wire Attachment Points 

 

While overall the size of SHS chosen (100 mm x 100 mm x 2 mm) was shown to be 

appropriate for use as the fence post in the above section, the existence of significant stress 

concentrations was noted at both guy wire attachment locations; in particular, around the 

upper guy cable.   

Therefore, care had to be taken in the design of the attachment points to ensure that the 

total stress levels remained beneath the endurance limit of the steel, estimated as 153 MPa, 

as this was the lower than the allowable stress based off the 500oC yield point with a 1.5 

safety factor.   
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For full functionality of the fence, the guy wire attachment points had to meet the following 

criteria: 

 Allow for easy connection and disconnection of guy cables 

 Support a wide range of guy wire yaw angles, allowing for variation in anchor 

location placement required at changes of fence direction and ends.  

In order to allow for easy connection and disconnection, it was decided that the guy wires 

have attachment hooks at the post connection end.  As such, the post attachment assembly 

just had to consist of a ‘loop’ around which a hook could be installed. 

The further away from the post the contact point of the ‘loop’ with the hook is, the greater 

the bending moment created by the vertical component of the force is.  Therefore, to 

minimize this, the loop should be as close to the post as possible.  In order to properly size 

the opening, the required size of hook had to be determined. 

Determined using the maximum guy wire tension determined in section 5.1.5 of 10.13 kN 

and applying a safety factor of 2, the Working Load Limit (WLL) of the hooks used must be at 

least 20.3 kN.  As most hooks and lifting attachments list the WLL in tonnes, the required 

WLL of the hook is 2.07 tonnes. 

A review of available hooks similar to the intended design found an Australian company, All 

Lifting had a ‘Grade 100 Eye Sling Hook with Latch’, shown in figure 5.9 below, with a WLL of 

2.5 tonnes.   

 

The pertinent dimensions of the hook are the latch opening 

size of 28 mm, the depth around the ‘top’ of the hook 

section (shown down the bottom of the picture in figure 

5.8) of 23 mm and the thickness around the ‘top’ of 20 mm 

(All Lifting, 2016).    

Therefore, the opening size of post attachment has to at 

least be 20 mm by 23 mm, with a thickness of the main 

‘latching point’ less than 28 mm. 

For the second requirement; allowing for a wide range of yaw angles, it was determined that 

the orientation of the ‘latching point’ of the hook onto the post should be vertical, not 

Figure 5-9 Picture Showing Type of 
Hook Used for Guy Cable Attachment 
to Post (All Lifting, 2016) 
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horizontal.  Because the line of action of the force should pass straight through the hook, the 

hook must be able to rotate to align itself with the guy wire.  A horizontal latching point 

would not allow this, while a vertical one does as shown in figure 5.9 below.   

From this, a preliminary design of the 

attachment point on the fence post was 3D 

modelled, as shown in figure 5.10.  

Engineering judgement was used in the 

initial sizing, which was then subjected to 

FEA analysis in ANSYS at 22oC with the same 

loading conditions as in section 5.1.5. 

As expected, the results of the initial FEA 

revealed significantly larger stresses on the 

post directly above the attachment point than 

in the rest of the post, shown in figure 5.11. 

In order to reduce the stress levels to the levels required, the areas of high stress needed to 

be reinforced and the geometry smoothed to allow better stress ‘flow’ in the case of the 

stress concentrations.  This was done through an iterative process, where the geometry of 

the attachment point was altered and reanalysed until the stress levels fell to acceptable 

levels.  The results from the FEA performed on the initial model assisted in pinpointing the 

areas which required modification.   

Figure 5-10 Image Showing Preliminary Guy Cable 
Attachment Point Design 
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The high stresses on the SHS section directly above the attachment point, where the stress 

was approximately 220 were the most difficult to remove, and as such in the final design 

large rounds are required, extending up the post by approximately 100 mm.  Figure 5.12 

shows the final design and the result of its FEA simulation. 

While the maximum stress levels are slightly in excess of the endurance limit of 153 MPa, 

this was not taken to be an issue, as this slight increase will not significantly affect the fatigue 

life of the fence post, which is likely to reach the end of its working life before reaching the 

cycle life associated with a stress value marginally greater than the endurance limit. 

 

Figure 5-11 Image Showing Stress Levels on Initial Guy Cable Attachment Point 
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5.1.9 Evaluation of Buckling Load 

 

As was discussed in section 5.1.7 above, buckling is an important consideration in designing 

any long axially loaded column.  Therefore, the loading condition which will result in buckling 

of the fencepost should be investigated to ensure the structural integrity of the fence design. 

Classical buckling theory, first presented by Euler, uses the classical beam bending theory to 

determine the critical load at which a centrally loaded axial column will undergo buckling. 

However, Euler’s formula for column buckling is based upon the magnitude of the beam 

bending moment only arising from the compressive load multiplied by the horizontal beam 

displacement, as shown in figure 5.13 (Beer et. al.,2012).  

Figure 5-12 Image Showing Final Design and Associated FEA Results for the Guy Cable Attachment Point  
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As such it does not take into consideration the internal 

moments arising from eccentric loading, laterally applied 

loads or multiple axial loads.  Equations exist to model 

eccentric loading cases, such as the Secant formula, and 

some formulas have been developed to model buckling loads 

with the presence of a lateral point load, however, analytical 

solutions are not available for loading cases with UDL’s (Amir 

Javidinejad, 2012). 

Therefore, analysis of the critical buckling load had to be 

performed numerically.  The FEA package ANSYS supports 

this functionality, and was used in this analysis.  ANSYS 

utilizes linear elasticity in its buckling calculations, similar to the analytical approaches above, 

and as such it should be noted that this tends to produce unconservative results as 

imperfections and flaws are not accounted for (Sheldon Imaoka, 2007).       

ANSYS linear buckling works by starting with a pre stressed model from a static FEA test.  The 

loads on this model are then uniformly multiplied by a load ‘load multiplier’ progressively 

until the specified number of failure modes are identified.  To investigate the validity of this 

approach to increasing the load, several FEA simulations were run with varying wind loading.  

It was found that regardless of the wind loading on the post, the force distribution between 

the guy wire and base supports remained roughly constant.  Therefore, this ‘load multiplier’ 

is valid for this loading situation, and the load multiplier reported directly corresponds to the 

factor of safety against buckling at the maximum loading condition. 

The loading conditions used in the buckling analysis was the same as used in the 3D FEA from 

section 5.1.5, with the exception of additional displacement constraints placed on the sides 

of the post where the mesh will be attached, which act only in the out of plane direction to 

the wind loading, parallel to the mesh.  When the fence is assembled, the mesh and mesh 

attachments will serve as lateral restraints in that direction, and as such will retard buckling 

from occurring in that direction. 

Because the onset of buckling is directly related to the stiffness of the column, the buckling 

simulations were only run at 500oC, as the reduced Young’s modulus at that temperature will 

result in the lowest buckling load, giving the limiting state. 

Figure 5-13 Image Showing Free 
Body Diagram of Euler Buckling 
(Kurt Gramoll, 2016) 
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The buckling analysis conducted at 500oC revealed an interesting result.  For the first three 

buckling modes identified, the entire column did not buckle, but instead local buckling 

occurred.  The first two modes were located directly above the upper guy wire attachment 

point, at the site of the maximum identified stress in section 5.1.5, at a load multiplier of 

3.135 and 3.195 respectively.  These are shown in figures 5-14 and 5-15 below. 

This is interesting, as being above both guy cable attachments, there is no compressive load 

directly applied.  However, as this section of beam is effectively cantilevered, the bending 

stress will evidently result in local buckling at this location at that magnitude of load. 

 

   

    

  

 

 

 

However, as the section above the upper guy wire serves no major structural purpose other 

than to support the mesh above the guy cable support, this local buckling does not represent 

a complete failure of the entire fence, although should be avoided.  

The third mode induced was also local buckling of 

the post, however, this occurred just above the base 

attachment point.  This happened at a load 

multiplier of 3.412, shown in figure 5-16 below.  This 

local buckling however does likely represent a failure 

of the entire fence as a reduction in load capacity at 

this point will adversely impact the structural 

integrity of the entire fence.  

These results indicate that for this particular 

fencepost sizing and arrangement, local buckling is 

more prevalent than global buckling.  This is not 

Figure 5-15 Image Showing a Buckling Mode 
of Fence Post at 500oC 

Figure 5-14 Image Showing a Buckling Mode of 
Fence Post at 500oC 

Figure 5-16 Images Showing a Buckling Mode 
of Fence Post at 500oC 
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unsurprising; due to the selection of the lightest possible posts, the wall thickness is quite 

small with a large second moment of area, conditions generally associated with local 

buckling.  However, given that all modes of buckling occur at load multipliers of 3 or more, 

the design in its current state was deemed acceptable.  

5.2 Mesh Support and Fence Post Attachment 
 

While the drag force acting on the mesh has been estimated at 177 N/m2, the tensile force 

across the infill material will be much greater than this.  In order to support the fine wire 

mesh across the fence post span, it was decided that the mesh would be attached to wire 

cables, the cables themselves being attached to the fence posts on either end and taking the 

high tensile loading.  This approach is used in the design of wire mesh and cable net rock fall 

protection systems on cliffs and slopes, and has been shown to reduce the stress 

concentrations in the mesh (Sasiharan et. al., 2006). 

This section will detail the process through which the design of the mesh infill of the fence 

was developed and the approach taken in the development of the fence design. 

5.2.1 Mesh Attachment to Support Cables 

 

Primarily, the factor that influences the number and spacing of the mesh support cables is 

the mesh strength itself.  Due to the fact that the wind loading could come from either 

direction, the mesh needs to be attached to the support cables in such a way that equal 

support is provided in both directions. 

The first problem posed was how to attach the mesh to the cables.  The method of 

attachment has significant impacts on the levels of stress around the cable support in the 

mesh, and therefore should be properly designed to allow maximum cable support span. 

Several key considerations were identified at this stage.  These were: 

 The clamp should attach to enough individual wire strands to keep stress levels to 

an acceptable level. 

 The total clamp frontal area should also be minimized to avoid increasing the 

estimated drag level on the mesh much above what was determined in the design 

of 177 N/m2. 
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 The maximum stress produced in the mesh should be kept to below 500 MPa.  This 

stress value corresponds to a fourth of the predicted ultimate tensile strength of 

2000 MPa for the wire, as calculated using equation 2.3.2.  

A review of other mesh applications found that 

clamping the mesh was the most commonly 

implemented solution, used in applications such as 

security screen doors and windows, where large forces 

and impacts are not unexpected, shown in figure 5-15 

(Crimsafe, 2016).  Therefore, a clamping approach 

investigated as a method to restrain the mesh to the 

support cables. 

Following this criteria, an initial clamp style design was 

modelled, and an FEA analysis performed with a 

quarter model using symmetry where possible to 

reduce computational costs. 

To accurately simulate a full wind load on the mesh section without having to model a large 

area of mesh, extremely computationally expensive due to its fine size, the loading case was 

simulated as follows. 

A small width of mesh section attached to the support/restraint was modelled, comprising 

of around 6 – 8 mesh cells.  At the edges of the mesh where the modelling had been 

terminated, a displacement constraint was placed normal to the cut surface on each wire, 

simulating the restraint of the theoretically continuing wire.  Also on these cut surfaces, the 

drag force load corresponding to the supported mesh area was applied parallel to the cut 

surface, simulating the internal shear reaction which would be present in the full mesh.  

Using this approach, numerous different design geometries were trialled with differing loads 

corresponding to varying distance between clamp supports.  However, no suitable design 

was identified which could keep the stress levels entirely below the specified limit of 500 

MPa, as the transition zone between the clamped wires and unclamped produced a localized 

area of very high stress. 

To determine if this high stress was in fact detrimental to the mesh integrity, simulations 

were performed with the wires in the high stress area ‘broken’ by removing a section, 

Figure 5-17 Picture Showing Mesh Clamp 
Connection (Crimsafe, 2016) 
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simulating a failure of those particular strands.  It was reasoned that if the stress levels in the 

neighbouring wires did not experience the same increase in stress than the design was 

workable.  However, the stress concentration reoccurred, indicating a progressive ‘tearing’ 

style failure would likely occur.     

As it was noted that the peak stress zone consistently occurred at the transition from 

supported wire to unsupported, it was reasoned that if the support was continuous up the 

entire length of the mesh this concentration could be eliminated.  This was based upon the 

assumption that it was the large discontinuity between stiffness of the clamp; modelled out 

of two 2 mm steel sheet sections screwed together, and the wire mesh matrix which was 

responsible for the sudden increase in stress.  By minimizing the jump in stiffness the major 

stress concentration could be avoided. 

Taking inspiration from the way seams in fabric tend to stop the progress of tears, that is, 

fabric will tear up to the seam and then stop, a ‘seam’ of thin, narrow sheet metal was trialled 

on the mesh, running up the entire length of the modelled mesh, a 100 mm section.  A thicker 

section mimicking the support cable attachment point was positioned on the back of the 

sheet metal and an analysis performed.  While there were still significant stresses produced 

where the mesh attached to the sheet metal ‘seam’, the problematic stress concentrations 

were eliminated. 

Several trials were then performed to determine the optimum seam dimensions and 

maximum spacing of the mesh supports while keeping the stress levels below the specified 

500 MPa. 

Using this configuration, the 

optimum area per mesh 

support was determined 

through simulation to be 

0.66 m x 0.66 m, with a seam 

width of 10 mm and a 

thickness of 2 mm.  This 

corresponds to 15 strips and 

15 cables along the 10 metre 

length and height of the 

fence.   

Figure 5-18 FEA Result of Wire Mesh Restraint Using Sheet Metal Seam 
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This configuration resulted in a peak stress of 369 MPa in the mesh, illustrated in the FEA 

results from the final mesh simulation shown in figure 5-18 at right.    

Using 15 strips, each with a frontal area of 0.01 m x 10 m, the open space of the fence will 

be reduced by 1.5 m2.  Therefore, the additional drag force from this reduction needs to be 

considered.  From Fox and McDonald’s Introduction to Fluid Mechanics, the coefficient of 

drag for a square prism with an infinite aspect ratio is 2.05 for Reynolds numbers greater 

than 1000.   

Therefore, using equation 2.5.1, at 28 m/s the additional drag force was estimated to be 

1476.6 N.  This represents an 8.34 % increase from the value of the mesh alone.  While this 

is not an insignificant increase, it is well within the margin of error and safety factors used in 

the design and is therefore acceptable.  Additionally, the actual increase in drag may in fact 

be less than this, as the 1.5 m2 was initially included in the calculation of the mesh drag force. 

As the mesh needed to be securely fastened to the sheet metal seam to be effective, 

clamping was not a valid option for the entire length.  Therefore, alternative ways of 

attaching the mesh to the seam were investigated.   

The method that was found to be most appropriate from a manufacturing perspective was 

roller welding the mesh to the sheet metal.  Specialized welding equipment was found to be 

available which supported the welding of fine stainless steel wire mesh to both itself and to 

thin metal sheets, well suited to this application.  An image showing this process is shown in 

figure 5-19 below. 

         

     

 

 

 

 

As was mentioned above, the sheet metal seams will be welded along the entirety of the 

mesh, at 666 mm intervals.  To attach the cables to the seam, it was decided that small 

eyelets fitted with grub screws would be welded to the seam at the specified 666 mm 

Figure 5-19 Pictures Showing Welding of Wire Mesh to Sheet Metal (Sunstone Engineering, 2015) 
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intervals.  While the stress of the mesh is quite high, the overall force at each attachment is 

not, and as such the design of these attachments has not been detailed.  

5.2.2 Sizing of Mesh Support Cables 

 

As wire cables cannot support a bending moment, the behaviour of the cables under a 

uniformly distributed load is quite complex.  Through a literature review, it was found that 

the behaviour can be approximated using the follow formulas, which are derived from the 

cable equation (Buckholdt, 1999). 
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Where H is the tension at the midpoint of the cable, w is the magnitude of the distributed 

load, L is the linear length between cable supports, d is the ‘sag’ or displacement of the centre 

of the cable from the line connecting the supports, T is the tension at the ends of the cable 

and S is the total length of the cable. 

From equations 5.2.1 and 5.2.2, it is clear that the 

tension force experienced by the cables will be 

directly influenced by the sag in the centre of the 

span, with larger sags reducing the force.  Equation 

5.2.3 shows that the sag of the cable directly relates 

to the difference between the length of the cables and the true span between supports. 

Note that the weight of the mesh and support cables themselves will not be considered in 

the loading case.  As the mesh has a weight of 0.3 kg/m2 and support cables are in the range 

of 0.05 to 0.124 kg/m, the imposed wind loading far exceeds the contribution from the 

weight.   

While this gives a degree of control over the maximum tensile force developed by changing 

the level of ‘sag’, too much will result in the entire mesh sagging vertically when the wind is 

not at the maximum design load, which will likely be a majority of the time.  This will reduce 

the efficacy of the fence, as the effective height is reduced. 

Figure 5-20 Image Showing Physical Meaning 
of Cable Equation Variables (Engineering 
Toolbox, 2016) 
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Initial calculations showed that if minimal sag (15 mm) was allowed in the fence, the tensile 

force at the fence posts developed in each cable would be approximately 100 kN.  Evidently, 

this was unworkable, and therefore the inclusion of some amount of sag is necessary. 

To better understand this relationship between the cable extension, sag and tension, a graph 

was produced showing both the sag and cable tension force at the supports for any given 

cable elongation.  This is shown in figure 5-21 below.  Note that the additional drag force 

identified in section 5.2.1 has been included in these calculations, giving a total drag force 

per unit area of 191.8 N/m2. 

This graphical representation clearly shows that there are large reductions in tension up to 

approximately 10 mm of cable extension, where the curve begins to plateau.  This 

relationship is partially mirrored by the increase of fence sag, although less pronounced. 

From the perspective of optimizing design by minimizing both tension and fence sag, 

between 20 to 25 mm of cable extension seems to be the optimum point, after which the 

sag grows much faster than the corresponding decrease in tension. 

Given the relatively small elongation required to reduce the tension, two options are 

available for the design.  Either the support cable lengths are of fixed length around 25 mm 
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longer than the span between the fence posts, meaning there is a constant sag in the mesh 

of around 300 mm; or each cable is fitted with a spring, which would take up the slack when 

the fence is not loaded and extend to relieve the tension when under heavy wind loading. 

At a cable extension of 25 mm, the tension in the cable is approximately 5.22 kN; meaning 

that a simple extension spring would require a spring constant of 209 N/mm.  Due to the 

nature of extension springs, the maximum load is available is smaller than for compression 

springs.  As a result, a product search found no readily available extension springs with the 

required properties.  While a design could be implemented using a compression spring in a 

similar fashion to a spring scale, the costs would outweigh the benefits in this application.        

Therefore, it was decided that the design should simply have cables of fixed length.  

However, this design in particular is quite sensitive to proper spacing between the fence 

posts, requiring that the span be 10 metres exactly and the cables 25 mm longer.  As shown 

in figure 5-21, if the slack in the cable decreases to 5 mm, the tension force will increase by 

over double to 11.7 kN.  

To overcome this issue, one end of each cable will be fitted with 

a turnbuckle which in turn will be connected to the fence post 

attachment.  This will allow for greater tolerances in the spacing 

of the fence posts, necessary to enable rapid fence assembly.  

Selecting a nominal cable extension of 25 mm, the maximum 

tension in each support cable will be 5.22 kN.  From this, the size 

of cable and turnbuckle required by the design can be 

determined.  Applying a safety factor of 3 gives a required 

strength of 15.66 kN.  A product guide from ‘Nobles’, a Rigging and lifting equipment 

manufacturer, lists 6 mm diameter Grade 1570 Wire Rope Core cable as having a minimum 

breaking strength of 20.3 kN; the thinnest diameter wire to meet the requirement (Nobles, 

2010).  

Again from a ‘Nobles’ product guide, it was found that a grade ‘P’ M10 turnbuckle has a 

Working Load Limit of 0.6 tonnes; equivalent to 5.886 kN.  As the maximum design tension 

in the cable is approximately 4.76 kN, this size of turnbuckle was selected in the design.  Note 

that it is appropriate to size the WLL directly against the calculated maximum design load; 

because of the use of this equipment in lifting, a safety factor of 5 has already been included 

in the WLL (Nobles, 2010).   

Figure 5-22 Picture Showing 
Turnbuckle with Jaw and 
Eyelet Ends Similar to the one 
Specified in the Design (Lifting 
Rigging, 2015) 
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5.2.2 Design of Support Cable Post Attachment and Hoisting Mechanism 

 

As was discussed in section 4.5, the method of fence assembly decided upon features 

constructing the fence posts first, followed by hoisting the mesh up between the two 

neighbouring posts. 

Detailed above, mesh suspension and support is achieved through the use of thin wire cables 

suspended between the two fence posts.  Therefore, the method of attaching these cables 

to the posts must be done in such a way that: 

 The large tensile loads experienced by the support cables are safely transmitted 

through to the post. 

 The attachment and hoisting process is quick and can be performed safely from 

the ground. 

 Allow the mesh infill to be comprised of several different sections due to 

manufacture and portability restrictions. 

The most straightforward way in which these requirements could 

be achieved was reasoned to be the use of a sliding runner in a 

track extending up each side of the fence posts.   

In this design, each end of the mesh 

support cables is attached to a 

‘runner’; a short piece of steel ‘T’ 

section, which is then positioned 

into the ‘track’; two folded pieces of 

metal plate welded onto the side of 

the fence posts in a rectangular shape, with an opening for the 

base of the runner to protrude, shown at left in figure 5-23.  

In addition to where the mesh support cables attach, each runner is also joined by a section 

of wire cable to the runner immediately above and below it at a spacing of 666 mm; 

corresponding to the spacing between of each of the support wires.  Figure 5-25 shows an 

image of this arrangement. 

Hoisting the runners and mesh up the fence posts is then achieved through a flagpole like 

setup.  At the top of the fencepost, over both tracks a small pulley sheave will be mounted.  

Figure 5-24 Image Showing 
Track and Runner Design 

Figure 5-23 Picture of a Portable, 
Hand Operated 'Cable Puller' 
Type Winch (Harbor freight, 
2016) 
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Prior to the raising of the post while it is still horizontal on 

the ground, a wire cable connected on one end to a hand 

operated ‘cable puller’ winch (shown in figure 5-23) will be 

passed over the sheave and back down the track.  

After the fencepost is then raised and secured, the free end 

of the cable will be attached to the first runner, and winched 

up.  As the mesh is lifted, the successive runners are slotted 

into the track and drawn up until the mesh is fully raised; at 

which time the cable is secured to an eyelet on the fence 

base and the cable puller removed to be used on the next 

mesh section. 

As the only vertical loading of the mesh, support cables and 

runners is from self-weight, plus the contribution of friction 

of the runners in the tracks during lifting, the loading 

anticipated on the vertical wires connecting the runners is 

low, and as such the sizing of these cables and lifting winch 

is not critical.  For the sake of homogeneity throughout the 

design, the same cable used in the mesh support wires was 

specified. 

The sizing of the ‘T’ section used for the runner and the 

thickness of the plate used for the track however, is critical, 

as the interaction between the post, track and runner is how 

the tensile force developed by the mesh in the support 

cables is transferred into the fencepost. 

The primary reason for selecting a ‘T’ steel section for the 

runner was its well suited shape and common availability, 

thus avoiding the necessity for additional manufacturing.  A 

review of available sizes found that the smallest was 40 mm 

x 40 mm x 4 mm (Handy Steel, 2016).  This seemed ideal for 

the magnitude of loading and was therefore selected. 

To size the track, FEA analysis of various track thicknesses 

were run in a loading situation simulating the actual loading 

Figure 5-25 Image of Runner 
Hoisting Arrangement 
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cases, both at 22oC and 500oC, until the stress levels were reduced to below 153 MPa.  Note 

that in in order to keep ensure adequate strength in fire conditions, the materials specified 

for both the T section runner and the plate track was 450 Grade; maintaining homogeneity 

across the design. 

The FEA analysis was performed on a short section of the track while it was attached to a 

half model of the fencepost; with symmetry constraints applied such that an accurate 

representation of the stresses developed in the fencepost could also be ascertained, not just 

the runner and track.  Additionally, to accurately determine contact stresses between the 

runner and track, the runner and track were simulated as separate bodies in contact, rather 

than a single piece.  

The applied load was equal in magnitude to that calculated for the tensile force in the mesh 

support cables in section 5.2.2. 

After several FEA iterations, the 

design parameters found to keep the 

maximum stress below the specified 

153 MPa and also minimize deflection 

at 500oC was a runner of length 150 

mm, with a track plate thickness of 3 

mm.  The FEA results from the final 

simulation are shown in the figures 

below.  

  

Detail design drawings of this 

assembly can be found in appendices 

C and D. 

 

 

 

 

 

Figure 5-26 FEA Stress Results for Post, Runner and Track 
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Figure 5-27 FEA Deformation Results for Post, Track and 
Runner at 22oC 

Figure 5-28 FEA Deformation Results for Post, Track 
and Runner at 500oC 
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5.3 Fence Base Design 
 

The base for the fence posts serves several important functions in the design.  These are: 

 Provide a stiff and level support to evenly distribute the vertical load imposed by the 

fences weight and tension in the guy lines.   

 Provide a frame to support the fence post and post lifting jig during post raising.  

 Support the lateral drag force component acting at the fence post base. 

 Provide support for the fence post to prevent tipping in the process of raising the 

post, securing the guy wires to the ground anchors and attaching and raising the 

mesh. 

As with the other aspects of the design, weight, portability, assembly time and cost are all 

important factors.  The sections below will detail the process through which the final design 

was developed. 

5.3.1 Determination of Base Specifications 

  

In order to achieve the necessary functions outlined above, several key parameters had to 

be identified.  Primarily, these were: 

 The magnitude of the vertical loading of the fence post. 

 The magnitude of the horizontal loading at the base of the fence post. 

 The magnitude of the overturning moment on the fence post due to wind drag prior 

to guy wire and mesh installation. 

Reasonable estimates for the maximum loading caused by the post on the base in both the 

horizontal and vertical directions have been obtained from sections 5.1 and 5.2.  The 

methodology of how the magnitude of the overturning moment acting on the unsupported 

post was determined is explained below. 

Given that the major source of external loading acting upon the post during its assembly 

stage will be drag force from any wind present, the magnitude of the drag force acting on a 

100mm x 100mm SHS section was estimated. 

This was done using equation 2.5.1, the drag force equation, shown below: 

   𝐹𝐷 =  
1

2
 𝐶𝑑 . 𝜌 . 𝐴. 𝑉2    5.3.1 
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To apply this equation to the post, an appropriate coefficient of drag for the post had to be 

determined.  Note that as it is a square section, both the area and drag coefficient is the 

same for all directions, meaning that care does not have to be taken to determine the 

direction of highest drag force. 

From Fox and McDonald’s Introduction to Fluid Mechanics, the coefficient of drag for a 

square prism with an infinite aspect ratio is 2.05 for Reynolds numbers greater than 1000.  

Note that this a reasonable approximation as the actual aspect ratio of the post is 100, with 

an estimated Reynolds number of 192,370 at a wind speed of 28 m/s. 

While it is unlikely and certainly inadvisable for the construction of the fence in 28 m/s winds, 

designing for this wind speed allows for the possibility of sudden wind gusts of high velocity, 

as well as also providing additional security against unforeseen loads and incidences. 

Using the value of air density of 1.225 kg/m3 as was used in the calculation of mesh drag, 

along with the post frontal area of 1 m2, the drag force was calculated to be 984.41 N. 

To obtain an estimate of the overturning moment on the post, the drag force was 

approximated as a point load, acting at the centroid of the post, 5 metres above the base.  

While this method will slightly underestimate the moment as the drag force will cause a 

minor deflection in the post, creating an additional moment from the weight offset from 

over the centre, this deflection was found to be minor and was thus neglected. 

Therefore, the overturning moment calculated was calculated as such: 

𝑂𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑚𝑒𝑛𝑡 = 5 × 𝐹𝐷     5.3.2 

This gave a result of 4922.05 N.m.  A summary of the maximum applied loads on the base is 

presented in the table below. 

Maximum Vertical Post Loading 14604 N 

Maximum Horizontal Post Loading 3644.1 N 

Maximum Overturning Moment 4922.1 N.m 
Table 5-3 Table Showing Imposed Loads on the Fence Post Base 

 

5.3.2 Sizing of Base Ground Anchors 

 

As was discussed earlier in sections 5.1.4 and 5.1.5, it is intended that the horizontal 

component of the wind loading that acts at the base of the fencepost is balanced by the 
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frictional force between the base and the ground.  Using the lowest anticipated value for the 

coefficient of friction between steel and silty sand/gravel of 0.25 in conjunction with the 

vertical reaction of the base identified through FEA analysis also in section 5.1.5, it was found 

that the two forces are approximately equal. 

However, as the magnitude of the frictional force is subject to a high level of uncertainty due 

to factors such as variability in the coefficient of friction, decreased normal reaction force at 

the base due to improper positioning/shallow angling of the guy wires and the potential for 

sudden, dynamic type wind loading, additional ground anchors are required to secure the 

base to the ground. 

To ensure an adequate safety margin at all times, the ground anchors used must be sufficient 

to restrain the base of the fencepost against the horizontal load without any contribution 

from the aforementioned frictional force.  By designing the ground anchors to bear the 

horizontal load exactly without additional capacity, the entire fence base will have a safety 

factor of 2; measured against a conservative coefficient of friction of 0.25.  

Two approaches were identified for using ground anchors to restrain the base.  These were 

using the anchors to directly support the horizontal force by pegging them into the ground 

and being loaded in a lateral manner; or to use a similar approach to the guy cables and load 

them in tension, tying the base down and increasing the normal and thus frictional force.     

As explained in section 4.3.3; ground anchors develop most of their strength in tension only, 

and are limited in their lateral strength.  Due to this, no suppliers of screw earth anchors give 

lateral strengths of their products. 

While lateral loading is a valid approach, and simpler to execute than loading the anchors in 

tension, its difficulty to quantify means that it was not nominally selected for use in the 

design, although if demonstrated to be suitable could be substituted without issue. 

Using equation 5.1.6, with a base horizontal reaction of 3644.1 N, identified in section 5.1.5, 

the required normal reaction of the base is 14576.4 N. 

Assuming a total of four base legs, each with a ground anchor, the required tensile strength 

of each ground anchor is 3644.1 N.  Consulting load charts available from one supplier of 

suitable ground anchors, Spirafix, it was found that in class ‘7’ soils, such as soft clay and very 

soft silts, their 50 mm diameter, 630 mm long ground screw could support approximately 3.9 
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kN tensile load (Spirafix, 2016).  Therefore, four of this size anchor was specified for the base 

restraint.  The load chart used in this selection is available in appendix B.  

5.3.3 Base Geometry and Steel Section Sizing       

 

Having determined the size of the ground anchors required to restrain the base against the 

horizontal reaction, the next stage was to determine the shape and sizing of the base itself. 

The first parameter that was evaluated was the required length of the base arms away from 

the centre of the post required to support the maximum overturning moment of post caused 

by the drag force prior to mesh installation found in section 5.3.1. 

Assuming that all four legs of the base were to be equal distances away from the centre in 

all directions, and the downforce at each leg end was 3600 N; the load required for each leg 

found in section 5.3.2, the minimum perpendicular length away from the base centre of each 

leg was identified.  The value identified was 0.34 metres, meaning that the base had to have 

a minimum footprint area of at least 0.68 m x 0.68 m.   

In order to minimize the amount of material required for use in construction of the base to 

reduce the weight, several different design geometries were investigated.  Of these, an ‘X’ 

cross style design was chosen, as it was found that this used the least material to achieve the 

required footprint.  It was also found to produce lower bending moments than an ‘I’ style 

design, as the vertical load from the fencepost is supported by two beam sections rather 

than just one.  An image of the design is shown in figure 5-26. 

To reach the required base 

footprint with an ‘X’ cross, the 

base arms have to be longer than 

the perpendicular length from the 

centre, as per the Pythagorean 

theorem.  As the legs are 

separated by 90o from one 

another, it was calculated that the 

minimum leg distance was 0.48 

metres.  Doubling this value for 

the sake of redundancy against 
Figure 5-29 Image Showing 'X' Style Base Design 
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overturning gives a value of 0.96 metres, which was rounded up to an even metre.    

Similar to the methodology used in sizing the fencepost, to size the steel ‘beam’ sections of 

the base, a 2D beam analysis was performed in ANSYS, with the vertical load applied being 

taken as 14604 N as was identified in section 5.1.5.        

From this, the maximum bending moment in either beam was found to be 3658.5 N.m.  Using 

equation 5.1.3 and a maximum value of stress of 153 MPa; the endurance limit of CL450L0 

identified in section 5.1.3, a suitable size of RHS section was determined.  Note that RHS was 

selected for this application as bending is not an issue in both directions, therefore, RHS 

offers greater strength for the same weight as compared to SHS. 

With an elastic section modulus of 27.0 x 103 mm3, a 125 mm x 75 mm x 2 mm RHS section 

(6.07 kg/m) was selected, giving an estimated maximum bending stress of 135.5 MPa.  A 3D 

model was then created and subjected to a 3D FEA analysis with the same loading conditions.  

This simulation found that the peak Von-Mises stress was approximately 65 MPa.  As such, 

this sizing was selected and used in the design. 

5.3.3 Post Attachment Assembly Sizing 

 

In order for the base to fulfil its design requirements outlined at the beginning of this section, 

the assembled fencepost needs to be securely connected to the base such that loads applied 

to the post are successfully transmitted into the base and its associated restraints.  It also 

needs to be quick and easy to engage and also support the post through the lifting process. 

The simplest method devised to meet the above criteria is through the use of opposing butt 

hinge style assemblies on either side of the fencepost.  This type of arrangement was deemed 

to offer significant advantages; it is easily put together and deconstructed, all rigid body 

motion in all directions is restricted when both side are pinned, while assembly of only one 

of the hinges would create a pivot point from which to raise the post. 

As all of the loads imposed upon the post is transmitted to the base solely through the two 

hinge pins, which are loaded predominantly in shear.  This results not only in the creation of 

large shear stresses in both hinge pins but also large bearing stresses on the hinge ‘barrel’ 

sections of the post and base respectively. 
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In order to determine an appropriate size for the hinge pins and barrel sections, the 

maximum load applied to this assembly had to be determined.  Of the loads identified in 

table 5-3, the overturning moment will produce the largest forces in the connection. 

In the posts assembled state, this overturning moment will be transferred to the base 

through a force couple created by the hinges.  As these forces are developed between the 

post and base section of the hinge, the total magnitude of can be calculated using the 

following formula: 

𝑀 = 𝐹. 𝑑    2.5.4 

As the distance between the line of action of the forces is the width of the fence post, 100 

mm, the force required on each side of the fencepost was calculated as 49221 N.  This load 

is shared between the hinges on either side; therefore, the maximum force experienced by 

any one part of the hinges is half of this value, 24610.5 N. 

As mentioned above, the hinge pins are loaded in shear.  For a uniformly applied load, such 

as the horizontal or vertical reaction on the post, they would be loaded in double shear; as 

the load could be borne by both sides of the hinge.  However, in the event of the overturning 

moment, found to give the largest force, the hinge pin becomes loaded in single shear.  

Therefore, the average shear stress created in the pin can be found by: 

𝜏 =
𝐹

𝐴
       2.5.5 

Where t is the average shear stress, F is the applied force and A is the cross sectional area of 

the pin.   

In order to minimize the required diameter of hinge pins, a high strength steel was specified.  

A review of data from various steel manufactures found that grade 4140 steel is a commonly 

used material for general engineering applications requiring reasonable strength, such as 

load bearing pins.  It features a minimum yield strength of 480 MPa and minimum ultimate 

tensile strength of 700 MPa (Interlloy, 2011). 

As no data is provided as the ultimate shear strength of 4140 round bar, a value was 

estimated from the ultimate tensile strength.  Juvinall and Marshek (2012) report that for 

steel, a rough estimate of the ultimate shear strength of steel is 80 % of ultimate tensile 

strength.  Therefore, the ultimate shear strength of 4140 grade bar stock was estimated as 

560 MPa. 
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As the strength reduction factors identified in the literature review focused mainly on yield 

strength, to accommodate the reduction in strength associated with the elevated 

temperatures a safety factor of 4 was applied in calculating the required pin diameter.  It 

should also be noted that the load itself represents a good safety factor, as the forces 

associated with the overturning moment should never be experienced during a fire event, 

only during fence construction. 

Therefore, using equation 2.5.5, the required pin diameter was found to be 14.96 mm.  As 

such, a 15 mm diameter was specified for the hinge pin. 

Finally, the width of the hinge barrel sections required sizing.  As the hinge section of the 

post was specified to extend the entire width of the post to help with installation alignment, 

only the bearing area of the base hinge sections required sizing. 

As with the mesh track and runners, the hinge material specified was a 450 Grade plate, with 

a guaranteed minimum yield strength of 450 MPa.  Therefore, taking the value of yield 

reduction calculated in section 5.2.1 of 264.13 MPa, a safety factor of 2 was applied, giving 

a maximum design bearing stress of 132 MPa. 

Average bearing stress can be calculated using the following formula: 

𝜎 =
𝐹

𝑑×𝑡
          2.5.6 

Where d is the pin diameter and t is the thickness of the bearing area.  Therefore, using the 

values from above, the required thickness found was 12.43 mm.  This was rounded down to 

12 mm due to plate availability reasons.  It should be noted that this slight reduction 

increased the stress by less than 1 MPa. 

Note that as the width of the RHS sections used in the base are less than required for 

mounting the hinges, a base plate of 10 mm thickness was specified to be attached to the 

top of the base.  Detail drawing of this entire assembly attached to the base can be seen in 

appendix E. 

5.3.4 Design of Base Ground Anchoring Arrangement 

 

Identified in section 5.3.2, as a redundancy to prevent the base from sliding under the full 

design load, each arm of the base requires an additional earth anchor attachment to provide 
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a vertical downforce to supplement the normal force in the event of poor soil friction 

coefficients or improper guy wire placement. 

It was found that the easiest was to achieve this was to connect the underside of the base to 

the ground anchor with a vertical cable which could be adjusted to increase the tension.  

Theoretically, this cable should be preloaded to the specified tension of 3.64 kN; however, 

in practice, provided the initial tension is sufficient to eliminate any slack, minor sliding of 

the base will increase the tension until equilibrium is established. 

As was specified in the sizing of the mesh support cables, turnbuckles are a cheap and easy 

way of adjusting the cable length and providing the initial preload tension.  As the WLL of the 

‘P’ grade M10 turnbuckle is 5.886 kN, it was specified in the design.  Note that while a smaller 

turnbuckle would likely also be appropriate, M10 is the smallest available which is rated 

(Nobles, 2010). 

For a detailed view of the base, complete with ground attachment lugs, see appendix E. 

 

 

5.3.5 Design of Base Legs 

 

Due to the requirement to construct the fence is varying locations, consideration had to be 

given to construction on unlevel ground.  The natural solution to this problem was to specify 

adjustable length legs so the base could be levelled over sloping terrain.  As part of the design 

process, a maximum hill inclination of 20o was specified, corresponding to a gradient of 

approximately 36 %.  Basic trigonometry was used to determine the maximum variation of 

leg length required; 0.5 m. 

To achieve this, ‘telescoping’ sections of SHS were selected for the legs.  By affixing a short 

female section perpendicular to the end of each base arm, the male SHS section comprising 

the leg can be slid to the required length, where it is then secured with pins in discretely 

positioned holes in the leg. 

As the width of the RHS base arms is 75 mm, the outer telescoping SHS section attached to 

the base was also 75 mm to allow neat, easy attachment.  As the associated male section for 

the 75 mm section is 65 mm, a wall thickness of 3.5 mm was selected, as this would give a 
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total clearance of 3 mm, 1.5 mm on either side of the leg.  The leg section comprised of 65 

mm x 65 mm x 4mm, the thickness determined through FEA analysis described below. 

To prevent the legs of the fence 

from interfering with the mesh 

when the full leg length is not 

used, the orientation of the post 

to the ‘cross’ axis of the base is 

shifted by 45o, shown in figure 5-

19. 

This creates a complex loading 

situation involving the locking 

pins and the bearing area of the 

base and leg holes, as the 

transmission of the horizontal load is not normal to axes of the locking pins.  In addition, the 

distance between the base and the ground will create a moment which needs to be 

supported.   

As 15 mm diameter 4140 Grade round stock is already specified in the design, suitable for 

loads of up to 24.6 kN as demonstrated in section 5.3.3, the locking pins were specified as 

this size dependent upon FEA validation.  Note that to support the moment created by the 

height of the base, two locking pins were specified per leg. 

The applied loads used in the FEA simulation were a result of the ‘worst case’ scenario, a 

horizontal force of the design load 17.7 kN and vertical force of 14.6 kN was applied at the 

fence post attachment point.  A 3.64 kN vertical force was also applied at the ground anchor 

attachment points as discussed in section 5.3.4. 

Additionally, to best capture the behaviour at the connection between the legs and base, the 

legs and base were simulated as separate bodies in contact with a third separate body, the 

locking pin.  As such, the loading case and model closely approximates the true situation.  

The FEA results for both 22oC and 500oC are shown in the figures on the next page.  

Figure 5-30 Image Showing Orientation of Fence Base to Fence 



Page | 103  
 

 

Figure 5-31 FEA Stress Results of Fence Base Model Under Maximum Loading Conditions 

 

Figure 5-32 FEA Deformation Results of Fence Base Model at 22oC Under Maximum Loading Conditions 
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Figure 5-33 FEA Deformation Results of Fence Base Model at 500oC Under Maximum Loading Conditions 

While the maximum stress level is very large, over 800 MPa, closer investigation identified 

that this was likely an artefact of the simulation process, as it occurred on a tiny section of 

the contact between the load pin and bearing surface.  A cut section showing the area in 

question is shown in the figure below. 

This shows that the peak stress is 

coming from the corner of the leg 

and lower pin.  It was noted that the 

upper pin was not carrying any 

load, thus all the load was on the 

lower pin.  

In reality, minor localized yielding 

at the leg and lower pin would 

redistribute the load between the 

two much more evenly.  However, 

as this is a purely linear elastic simulation, this behaviour is not captured and thus a stress 

peak is caused.      

Therefore, from the results, it was concluded that the arrangement was suitable, as the 

stress levels in the SHS sections was below 153 MPa, determined to be the endurance limit, 

and only around 60 MPa on average in the pins. 

Figure 5-34 Close-up of FEA Stress Concentration in Pin 
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5.3.6     Design of Post Lifting Jig 

 

Due to the heavy weight and large height of the fence posts, mechanical assistance will be 

required to raise them into position.  However, as explained in section 3.1.3, the design aims 

preclude the use of heavy machinery. 

Several different approaches were considered for raising the fence posts, such as telescoping 

type fencepost arrangement or the use of a hand operated jack.  Ultimately, it was decided 

that the easiest approach to implement was to use a detachable winch mounted on a frame 

to hoist the post up about a pivot point on the fence base.  Figure 5-28 shows an image of 

the lifting arrangement. 

 

Comprising of a simple frame, the main post provides a lever arm for the tension force 

developed in the winch cable to create a moment on the fencepost, raising it up.  The second 

angled section balances the forces acting at the top of the main post, avoiding the generation 

of a bending moment in the main post.  As this structure is only required during post 

assembly, it has been designed to be removable, and is connected to the base through the 

use of pins. 

Because of the angle offset between the fencepost and the base arms described in section 

5.3.5 above, an additional RHS section had to be added spanning between two of the base 

arms to provide a location for the lifting post support strut to be attached.  In order to 

minimize the angle of the support strut, this additional horizontal section was positioned at 

the ends of the arms. 

Figure 5-35 Image Showing Post Winching Concept 
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In order to determine the capacity of the winch, the size of steel sections and the thickness 

of the locking pins required, in addition to the forces and reactions of the base, a basic 

calculator was developed in Excel which computed the maximum winch cable tension, main 

post compression, support strut tension, fence post pivot reactions and base ground 

reactions, based upon the mass of the fence post, the height of the lifting post and the angle 

of the support strut. 

Using a main lifting post height of 1.5 metres, a support strut angle of approximately 65o and 

a post mass of 100 kg, roughly the final weight of the assembled fencepost, the following 

results for the maximum forces during lifting were obtained: 

Winch Cable Tension 4690 N 

Support Strut Tension 3091 N 

Lifting Post Compression 10353 N 

Front Ground Reaction -3021 N 

Rear Ground Reaction 4016 N 

Table 5-4 Table Showing Results of Post Lifting Analysis 

As the maximum forces created in this configuration are less than the forces that are 

imposed on the base during operation at the maximum loading condition, this arrangement 

was selected.  Additionally, while there was a large negative reaction at the front feet of the 

base, meaning a downwards force is required, this load is well within the specified ground 

anchors capabilities. 

Converting the winch cable tension from Newtons to kilograms; the common method of 

representing winch capacity used by the industry, the required winch size was found to be 

478 kg.  This size capacity of hand winch is readily available on the market and was therefore 

a particular model is not specified here.  

The major consideration in the sizing process of the lifting jib was then ensuring that the 

large compressive force on the long, relatively unconstrained lifting post did not cause 

buckling. 

Therefore, to size the main lifting post, a required second moment of area formula was 

calculated for the post, determined through rearrangement of Euler’s column buckling 

formula, shown below (Juvinall and Marshek, 2012): 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿𝑒2      2.5.7 
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Where Pcr is the critical buckling load, E is Young’s Modulus, I is the second moment of area 

and Le is the equivalent length of the post configuration. 

In the proposed design, the bottom of the main lifting post will be pinned in place, however, 

as the top will effectively be a ‘free’ end in the direction normal to the support strut, two 

pins will be used, similar to in the base leg attachment to provide additional moment 

support. 

Therefore, the combination of a fixed and free column end corresponds to an effective length 

of twice the actual measured length (Juvinall and Marshek, 2012).  Using a value of E of 200 

GPa and critical load equal to the maximum post compression, a required I value of 47.2 x 

103 mm4 was found.  Given the small size of the result, a safety factor of 4 could be included 

for little cost; as such the specified I value for the post was 188.82 x 103 mm4.   

Nominating a SHS section for the post material, design tables were consulted, which showed 

that a 50 mm x 50 mm x 3 mm section has a second moment of area value about both axes 

of 195 x 103 mm4 (Onesteel, 2011).  After confirming buckling indeed would be the limiting 

failure mechanism by calculating the axial stress, this size was specified for the main lifting 

post. 

The method used to connect the main lifting post to the base is the same as other connection 

on the fence, using steel plate section on either side of the lifting post and locking it in place 

with two pins.  

Given that 15 mm diameter 4140 grade round bar stock has been specified for numerous 

other locking pin applications on the fence, it was again specified for the reasons of 

homogeneity throughout the design.  This is largely over designed, as this size was sized for 

the post base connection force of 24.6 kN at 500oC in section 5.3.3.  As such, the stress levels 

are not calculated here. 

Likewise, for the plate sections, in order to minimize the variation of plate sizes required in 

the design, 12 mm 450 grade plate used in the base-post hinge was also used.  Again, this is 

overdesigned for this application and thus the bearing stress is not calculated here. 

As can be seen in figure 5-28, at the top of the lifting post a pulley sheave is required to 

support the winch cable.  For a winch in the 500 kg capacity range, wire diameters of 

between 4 and 5 mm are typically used (Manutec, 2016).  The recommended minimum 

pulley to cable diameter advised to minimize bending stresses on the cable and prolong 
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service life is given as 16:1; therefore, for a 5 mm cable, the pulley diameter should be 80 

mm (Bridon, 2010).        

As the lifting jig design features the winch mounted on the support strut, the maximum force 

transmitted through the strut section will be between the fence base and the winch mount, 

where both tension forces are carried.  This gives a sum of 7781 N, and thus this value was 

used in the design calculations. 

For a purely tensile load of the above magnitude, the overall section size is not a limiting 

factor as the average stress developed is not large enough to be of concern.  The bearing at 

the pin connection to the base, in particular, was reasoned to be the area of highest stress 

and thus the section was sized in accordance. 

Again specifying a 15 mm diameter locking pin, the required section size of SHS was 

calculated with equation 2.5.6 for average bearing stress; rearranged to solve for the 

thickness associated for a maximum design stress of 150 MPa, a third of the yield stress of 

the sections. 

This gave a required wall thickness of 1.73 mm; therefore, a 35 mm x 35 mm x 2 mm SHS 

section was nominated.  35 mm x 35 mm was chosen as it would neaten the attachment of 

the support strut to the main lifting post. 

Detailed design drawings for the lifting jib are available in appendix F and G.  

6.0 Evaluation of Final Design 
 

This chapter evaluates the standing of the current design developed in the second part of 

this report against the performance criteria developed in section 3.2.  This aims to set a 

benchmark against which future designs and improvements to the current design can be 

qualitatively assessed.  
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6.1 Fence Weight Per 100 Metre Length 
 

To assess the total fence weight per 100 metres, a table of each component used in the fence 

construction, their weight, and the number used per single 10 metre span was created.  This 

is shown in table 6-1 on the following page. 

 

Component Mass Number Used 

Lower Post 50.44 kg 1 

Upper Post 50.93 kg 1 

Base 38.4 kg 1 

Base Legs 4.98 kg 4 

Guy Cable Anchors 3 kg 4 

Base Anchors 2.5 kg 4 

Mesh Support Runners 0.347 kg 32 

Mesh + Seams (Total) 42.5 kg 1 

Mesh Cables (Per cable) 1.24 kg 16 

M10 Turnbuckles 0.28 kg 20 

Mesh Hoisting Sheave 1.41 kg 2 

Table 6-1 Table of Component Weights and Quantities Used in Design 

Note that ‘one off’ components such as the post lifting jig, ground anchor installer etc. have 

not been included as their individual contribution is minimal once larger fence spans are 

considered. 

Summing the values in table 6-1 to give an approximate mass of the entire fence assembly 

per 10 metres span gives a result of 263.6 kg.  Multiplying this number by 10 gives the total 

fence weight per 100 metres, estimated here to be 2.64 tonnes per 100 m. 

6.2 Fence Assembly Procedure and Estimated Assembly Time 
 

To develop an estimate of the speed with which the current design can be assembled, the 

assessment procedure outlined in section 3.2.4 was followed.  Therefore, listed in appendix 

B is all of the tasks required for assembly of a single fence span, accompanied by estimates 

of each task time.  It should be noted that in most cases, the estimates presented are based 

upon engineering reasoning and judgement, and no actual timing of tasks has been 
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performed.  As such, the following times are a guide at best.  It was also assumed that only 

one person was working on a task at a time, unless otherwise specified. 

Summating all of the task times in appendix B indicates that the estimated total work time 

for assembling a 10 metre section of the fence is around 41 – 42 minutes.  As the fence is 

intended to be constructed by a team, ideally a four-man crew, the actual elapsed time will 

be less than this, as many of these tasks can be completed in parallel. 

Following the procedure in 3.2.4, a precedence table was developed from the list of tasks, 

and a network diagram was created; located in appendices B and C respectively. 

Using critical path analysis on the network diagram, an estimate for the assembly time for 

one fence section was obtained; a time of 23.5 minutes.  Converting this time to hours and 

dividing 10 by the result to give the assembly time in metres per hour yields a result of 25.5 

metres / hour.  Therefore, a 200 metre section of fence would take nearly 7.8 hours to 

construct. 

This seems like a poor result, however, not considered in this basic analysis of construction 

time is the requirement to continue to repeat the process for successive sections of fence. 

For example, the critical path tasks E through M take up 12.5 minutes and generally only 

require a one or two people; as such, the two workers performing task C and D have 

substantial downtime, and are somewhat underutilized in the current arrangement.  If they 

continued on to perform task A and B on the next post the assembly time would decrease 

considerably; as task B is a major bottleneck. 

To develop a second assessment of the assembly time to attempt to better utilize the 

workers, an assumption will be made that tasks A and B are pre completed, and as such 

removed from the analysis. 

This yields a critical path time of 15.5 minutes per 10 metre fence span, an 8-minute 

reduction.  Converting this to the designated unit of metres per hour gives a result of 38.7 

m/h, a 65.9 % increase in assembly speed.  At this estimate, a 200 metre fence could be 

constructed in 5.17 hours, work-breaks not included. 

Again, this result is still slightly lower than ideal, however, it represents a starting point for 

both optimization of the fence design to feature faster installation and further work studies 

and time assessments on the currently proposed method to ascertain the optimum result.  
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However, as the times listed are purely theoretical values, their usefulness is limited and 

obtaining better data is essential for further work. 

7.0 Conclusions and Recommendations for Further Work 
 

7.1 Summary of Work Undertaken 
 

As part of the requirements towards the awarding of a Bachelor of Engineering (BENH) 

degree at the University of Southern Queensland, a research project was performed 

investigating the design of a portable bushfire attenuation fence. 

The project was broadly split into three main sections: review of the current understanding 

of the performance of fine aperture wire mesh against major methods of bushfire 

propagation; Determination of appropriate parameters for the construction of a portable 

bushfire attenuation fence; and the development of a preliminary design for such a fence. 

In the first section, it was identified that fine wire mesh aids in attenuating bushfire spread 

through two major methods; reducing firebrand transmission across the mesh and reducing 

radiant heat flux from the fire front across the mesh.  Reduction in firebrand transmission 

was found to be a function of aperture size, while radiant heat flux attenuation was a result 

of porosity. 

In the second section, the requirements for a first generation bushfire defence fence were 

developed, with a strong focus on simplicity, portability and ease of construction.  

Developing on this, a criterion for assessing bushfire fence performance characteristics was 

also developed to allow evaluation of the final design as well as qualitative comparisons of 

future designs.  As such, appropriate design aims were developed, and through feasibility 

analysis using basic engineering calculations, basic parameters for the final fence design 

were determined. 

In the final major section, a design process was undertaken to develop a preliminary design 

for the manufacture of a prototype bushfire attenuation fence.  Consideration was given to 

all the factors determined to be relevant, and the design was validated through the use of 

appropriate computational analysis using the ANSYS FEA package.  As the final stage in the 

project, the fence performance metrics of weight per 100 metre span and assembly time per 

100 metre span was estimated as per the criterion developed earlier in the project. 
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7.2 Summary of Results 
 

Investigation into conditions associated with bushfires lead to the selection of a maximum 

design wind speed of 28 m/s (100.8 km/h), with a maximum peak temperature of 500oC. 

Additionally, investigation into the conditions leading to the spread of bushfires found data 

indicating that a minimum fence height of 10 metres would be required to aid in preventing 

the spread of fire across tree tops.  

Based on these results, the maximum drag force per unit area on three different types of 

bushfire mesh at 28 m/s was estimated.  Of these results, it was determined that only the 

lowest porosity mesh (76%), with a maximum drag force of 177 N/m2 could be implemented 

with any real practicality. 

Initial feasibility analysis carried out on various fence restraint methods found that of all 

investigated, only the use of ground anchors with supplementary guy wires would provide 

suitable restraint to the fence.  Basic engineering calculations based on available ground 

anchor capacities subsequently lead to the selection of a 10 metre fence height with a 10 

metre fence post support span. 

Based on calculation of strength and stiffness reduction associated with high temperatures, 

in conjunction with fatigue life calculations, a main fencepost size of 100 mm x 100 mm x 2 

mm SHS was determined and validated using FEA analysis.  A base material size of 125 mm 

x 75 mm x 2 mm was also used in the design. 

Basic computational analysis performed on the support and loading of the wire mesh found 

that and restraint of the fine mesh should be continuous along a single piece of mesh in order 

to avoid the generation of significant stress risers. 

Basic analysis of the total weight for the final design lead to an estimated mass of 2.64 tonnes 

per 100 metre span, with two different estimates for construction time per 100 metres, 

ranging from 25.5 to 38.7 metres fence per hour. 

7.3 Recommendations for Further Work 
 

From this project, it is the authors opinion that the concept of a portable bushfire attention 

fence has merit, and is both feasible and economic to implement.  However, areas which 
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were identified as lacking in available data which would aid in the development process of 

such a fence are listed below: 

 Further study and detailed investigation into required fence height for different 

applications.  In this project, a 10 metre fence height was selected, however, this 

was based off of research intended for other applications and as such the results 

have been extrapolated.  This could be divided into application as well, e.g. required 

fence height for typical home defence may be substantially lower than required for 

retarding the progress of an entire bushfire.  This would prevent overdesigning a 

fence for a given application and likely lead to optimized outcomes. 

 

 Further study is also recommended into the material properties of fine wire mesh 

under high wind loading and high temperatures.  It was predicted from prior 

research that the wires used would have a tensile strength on the order of 2000 MPa, 

however, it is uncertain the reduction that would occur at high temperatures.  

Physical testing of roller welded mesh to sheet metal is also recommended prior to 

any attempt to build the prototype design detailed here, as there were significant 

assumptions about material properties, bonding conditions and loading used in the 

mesh FEA modelling.  Thus, physical investigation and validation is highly 

recommended.  
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Appendix A 
ENG4111/4112 Research Project 

Project Specification 

For:   Bradley Fell 

Title: Design of a Dismountable Bushfire Attenuation Fence 

Major:  Mechanical Engineering 

Supervisor:  Ahmad Sharifian 

Enrolment:  ENG4111 – ONC S1, 2016 

  ENG4112 – ONC S2, 2016 

Project Aim: To identify key design parameters required for a wire mesh fence to 

withstand bushfire conditions, develop assessment criteria for 

evaluating the performance of a portable bushfire attenuation fence 

and develop a preliminary design of such a fence through 

computational modelling.  

Programme: Issue B, 19th September 2016 

 

1. Research the factors affecting the propagation behaviour of bushfires to determine 

the necessary design parameters of a portable bushfire attenuation fence for 

feasibility, practicality and effectiveness.  

2. Develop a series of assessment criteria against which any particular bushfire 

attenuation type fence can be evaluated, creating a benchmarking tool for 

prospective future designs. 

3. Through the use of relevant engineering theory and data, evaluate the feasibility of 

various fence design options, determine the most appropriate available options and 

develop a preliminary design overview.   

4. Develop a computer model of the proposed fence and through an appropriate 

simulation method identified, investigate the relationship between design 

parameters and structural loads and performance. 

5. Develop a computation model using the Finite Element Analysis Software ANSYS to 

determine design parameters such as maximum stress, deflection and support 

forces and reactions, refining and detailing the preliminary design further. 

6. Evaluate the final design developed against the assessment criteria previously 

created to assess the success in which the final design met the design goals. 

If time permits: 

7. List recommendations for the direction which further work in this area should be 

directed, based upon the findings and information gained through the course of the 

research project.   
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Appendix B 
 

 Base positioning, leg attachment and levelling:   2.5 minutes total 

 Base ground anchor installation:    2 minutes each 

 Attachment and tensioning of ground anchors to base:  2 minutes total 

 Positioning and installation of guy cable earth anchors:  2 minutes each 

 Attaching lower fence post to base with hinge pin:  0.5 minutes  

 Bolting together fence post sections:    2 minutes 

 Positioning mesh hoisting cable over pulley sheave:  0.5 minutes 

 Attaching guy cables to the fencepost:    0.5 minutes 

 Attaching lifting jig to fence base and winch cable to post: 2 minutes 

 Winching post into vertical position and pinning in place: 3.5 minutes 

 Detaching lifting jig from base:     1 minute 

 Attaching guy cables to earth anchors and tensioning:  4 minutes 

 Unrolling mesh infill and attaching runners to cable ends: 4 minutes  

 Hoisting mesh into position (requires two people):  3 minutes   

 

Task Code Task Description Predecessors 

A Base Positioning & Leg 

Attachment 

None 

B Base Ground Anchor 

Installation 

None 

C Guy Cable Ground Anchor 

Installation 

None 

D Unrolling Mesh Infill and 

Attaching Runners to 

Support Cables 

None 

E Attachment and Tensioning 

of Base Ground Anchors 

A,B 

F Attaching Lower Fence Post 

to Base Hinge Joint 

E 
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G Bolting Together Fence Post 

Sections 

F 

H Positioning Mesh Hoisting 

Cable Over Sheave 

G 

I Attaching Guy Cables to 

Fencepost 

G 

J Attaching Lifting Jib to 

Fence Base 

E 

K Winching Post into Position H,I,J 

L Detaching Lifting Jig K 

M Attaching Guy Cables to 

Earth Anchors & Tensioning  

C,K 

N Hoist Mesh Into Position D,M 
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50mm SpirafixTM Ground Anchor Load Chart
Designed &
Manufactured
In Britain

DS1412

Notes:

The above classifications are outlined in BS 5930 
with the exception of chalk and the “Sands” and 
“Clays” sections have been expanded. Also chalk is 
not covered in the ASTM classification, but for the 
purposes of predicting loads it has been assigned 
values. The range of pull out loads in strong chalks 
can be considerably higher than shown on the chart 
and field tests need to be carried out to obtain 
accurate values. 
 
The Standard Penetration Test (SPT) N values quoted 
above are in accordance with BS1377:1990 Part9, 
ASTM Standard D1586-84 and AS 1289.6.3.1-1993 

These values indicative only. For any application on-site load 
tests need to be conducted to ascertain accurate values. The 
area within the black curves represent approximately 80% of 
results (σ=1.5). 10% of possible values lie above the upper 
curve (0) and 10% below the lower curve (8).
 
The maximum load is achieved when a steadily increasing pull 
is applied to the anchor and it ruptures out of the ground. The 
ground is deemed to have failed at this point and this is called 
the Ultimate Load. Acceptable working loads of the anchor are 
up to 80% of the Ultimate Load, termed the Maximum Working 
Load, which are shown on the curves below. Above this point 
the anchor becomes unstable in the ground and is unable to 
hold the load.  

50mm Diameter SpirafixTM Vertical Maximum Working Tensile Loads

SF50-08-0490AC/C

SF50-08-0630AC/C

SF50-10-1050AC/C

SF50-10-1260AC/C

SF50-10-1540AC/C

SF50-10-0840AC/C

Basic
Soil
Type

Compaction/
Strength

Very Weak 
Weak
Moderately Weak
Moderately strong to very 
strong

Sands

Silts

Peats
 

Sand
 
 

Silts
 
 

Clay

Organic Clay
Silt or Sand
 
 
 

Sub Group

Very Loose
Loose
Compact
Cemented

Very Soft
Soft
Firm

Soft
Firm
Stiff

Firm

Spongy
Plastic

Soft
Firm
Stiff

Sandy Clay/
Sandy Silt

Silty Clay

Very Soft
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Firm
Stiff
Very Stiff
Hard

Clays
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ASTM
Class
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8

8
8

6
5
4

 

6
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6
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0
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8
5
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14-25
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8
7
6
5
3
1

0-5
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0-5
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Soil Classification
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   (N=60-250)
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5 (34-45Nm)
   (N=14-25)

6 (23-34Nm)
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7 (11-23Nm)
   (N=4-8)

8 (0-11Nm)
   (N=0-5)

ASTM
Class
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Value Nm

Typical
SPT-N
Values
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0
1
2
3
4
5
6
7
8
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