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Abstract

Documents cannot be automatically classified unless
they have been represented as a collection of com-
putable features. A model is a representation of
a document with computable features. However, a
model may not be sufficient to express a document,
especially when two documents have the same fea-
tures, they might not be necessarily classified into the
same category. We propose a method for determining
the fitness of a document model by using conflict in-
stances. Conflict instances are instances with exactly
same features, but with different category labels given
by human expert in an interactive document labelling
process for training of the classifier. In our paper,
we do not treat conflict instances as noises, but as
the evidences that can reveal a distribution of posi-
tive instances. We develop an approach to the rep-
resentation of this distribution information as a hy-
perplane, namely distribution hyperplane. Then the
fitness problem becomes a problem of computing the
distribution hyperplane.

Besides determining the fitness of a model, distri-
bution hyperplane can also be used for: 1) acting as
classifier itself; and 2) being a membership function
of fuzzy sets. In this paper, we also propose the se-
lection criteria of effectiveness measuring for a model
in a process of fitness computations.

Keywords:  Document Classification; Document
Model; Document Model Fitness; Distribution Hy-
perplane; Conflict Instances.

1 Introduction

Document classification is a process of filing docu-
ments into different categories. It can benefit the
works such as Web directory constructing (e.g., for
Yahoo and Google search engines), business docu-
ment routing, and email filtering. Researches on
conventional classification tasks mainly concentrate
on improving the effectiveness of classifiers. Several
classification algorithms, such as linear least square
fit (LLSF) (Yang & Chute 1994) and support vec-
tor machine (SVM) (Joachims 1998) do achieve good
results. However, we noticed that effectiveness of
classification is determined by not only the classifi-
cation algorithms, but also the documents represen-
tation schemes, i.e., their models.
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A document model determines how a computer
recognises documents. Whenever a computer receives
documents, it decomposes the documents into vectors
of features. Then these vectors are used for further
computations of the classification tasks. But what
will happen if a document model is not good enough
to differentiate the features of different documents?
Let’s see the following example: Suppose we are gath-
ering travelling information of Java island. We have
10 documents that have the keyword “Java”. While,
some of them are about the computer language Java,
the others are about travelling on Java island. In
order to highlight the problem, we use a simplified
document model, which only has two features: occur-
rence of “Sun” and occurrence of “Indonesia”. Table
1 shows how these documents are modelled.

Document Features Travel Info
Serial No. [ Sun [ Indonesia Label
1 0 1 +
2 1 0 -
3 1 1 +
4 0 1 +
5 1 0 -
6 1 1 -
7 0 1 +
8 1 0 -
9 1 1 -
10 0 1 +

Table 1: A simplified model which shows conflict in-
stances, if the document should be filed to the “Travel
Info” category, then the label ‘+’ is assigned; other-
wise, ‘-’ is assigned.

Now, we group the records in the same document
representation to generate Table 2. Both Table 1 and
Table 2 show that document 3, 6 and 9 have the same
representation, but their labels are different given by
human expert during a training process. We call doc-
uments 3, 6, 9 conflict instances, for they are the same
in modelling but different in their labels. A classifier
learner might be confused to see those instances, for
it considers they are exactly identical, but different
classification decisions are expected. No matter what
decision classifier makes, the mistake will be unavoid-
able.

What roles do conflict instances play in classifi-
cation? They are the results of the incompleteness
of model, because some essential features are miss-
ing from the model. Conventional approaches tend
to either ignore the minor votes of conflict instances
(Quinlan 1996) or use fuzzy membership function
(Haruechaiyasak, Shyu, Chen & Li 2002) to obtain



Features Label of
Sun [ Indonesia | Documents
0 1 +:1,4,7,10

1 0 -:2,5,8
1 1 +:3 -:6,9

Table 2: Documents with the same presentation are
grouped into the same row. the number after the ‘4’
or ‘-’ sign are document serial numbers.

the possibility of the document to be filed into cer-
tain categories. We, on the other hand, consider the
conflict instances possess information of distribution,
which can be utilised to estimate the fitness of model.

Since a document model might not be suitable
for certain classification tasks, this leads to a ques-
tion: “how good can the document model fit with
the task?” Multiple models are available for docu-
ment representation in classification tasks, it would be
helpful to develop a fitness measurement to compare
the suitability between different models. Although
there are several measurements which are able to ap-
praise the degree of fitness, the measurement which
can reflect the upper bound of the effectiveness of
classifier will be useful for classification benchmark-
ing purposes. We choose the fitness as a measurement
for following reasons: (1)The measurement shows the
upper bound of the effectiveness, this implies that no
matter how hard the classifiers try, it cannot excess
the upper bound score. It is unlikely to achieve the
better results with the same model. (2) Even with the
best model, it might still have some flaws which will
lead to misclassification. In this situation, determin-
ing a good threshold will minimise the cost of mis-
classification, which means the better performance.
So for a certain model after its fitness is known, a
threshold will be able to tell a minimum expectation
such that the classification is regarded as sensible.

We present an idea of distribution hyperplane to
acquire the fitness of model. A hyperplane is a
codimension 1 vector-subspace of a vector space.
(Weisstein 2000). A distribution hyperplane is an
artificial hyperplane used to separate the positive in-
stances from negative ones in an artificial dimensional
space. FEach category has its own distribution hy-
perplane. Documents are decomposed into vectors,
which can be represented as points in a high dimen-
sional space with respect to the features of docu-
ments. The space is called a ‘model space’. Each point
of the model space can be considered as a bucket,
for it may contain multiple documents. Then we
put the documents from instance set (i.e. human-
labelled documents) into corresponding buckets. For
each nonempty bucket, we know the probability of
positive (POP). In other words, POP represents the
probability of a document in the bucket that can be
filed to the category. If there are no conflict instances
in a bucket, the POP should be either 1 (the instances
within the bucket are always filed into the category),
or 0 (the documents with this representation are never
filed into the category at all). If there are conflict in-
stances, the POP of the corresponding buckets is a
fraction number between 0 and 1. We add POP as a
new dimension to the model space, make a POP dis-
tribution space. A bucket and its POP can be plotted
in the POP distribution space as a distribution point.
Distribution points show how positive instances and
negative instances are distributed in corresponding
document representations. A distribution hyperplane
can be derived through the regression of a set of distri-
bution points, which separates the positive instances
and negative instances.

On the other hand the threshold in a distribution

space is also a hyperplane. It cuts the distribution
space into two pieces. If a distribution point is above
the the threshold, then the corresponding bucket will
be filed to the category (i.e. a positive case). How-
ever, if the POP is not 1, it implies that the possibility
of misclassification of the bucket is 1 — POP. Sim-
ilarly, distribution point that is below the threshold
indicates a negative bucket. After the computation of
misclassification, we can then get the fitness of docu-
ment model. The details of the calculation are given
in Section 4

Our goal is to determine the fitness of a model for
a given labelled corpus. The fitness is defined as the
maximum effectiveness that a classifier can achieve.
In addition to model selection, the research also con-
tributes to the following fields:

1. Model dimensionality reduction: dimensionality
reduction techniques such as Latent Semantic In-
dex (LSI) (Marcus & Maletic 2003) and Porter
stemming algorithm (Porter 1997) not only can
help to reduce the computational cost, but also
avoid the over fitting problem (Sebastiani 2002).
Our research on the model fitness will help to de-
termine how much effectiveness is improved after
the dimensionality reduction.

2. Mistake-driven learning: mistake-driven learning
approaches such as Winnow (Littlestone 1991),
Perceptron (Dagan, Karov & Roth 1997) and
Prediction-Learning-Distillation (PLD) frame-
work (Chen & Li 2004) rely on the identifica-
tion of misclassified items to learn. However,
mistake-driven learning is very sensitive to con-
flict instances. So if we can deal with conflict
instances by reducing the uncertainty that they
cause, the effectiveness of mistake-driven learn-
ing algorithms can be improved.

Moreover, our approach of distribution hyper-
plane has other interesting effects, for instance: being
utilised as a classifier or as a fuzzy set membership
function to evaluate the buckets in a model space.

The rest of this paper is organised as follows: The
background information and the problem definition
are given in Section 2 The related work is discussed
in Section 3. Our proposed approach of the distribu-
tion hyperplane is discussed in Section 4. Section 5
gives some experimental results and discussions. The
conclusion is presented in Section 6.

2 Problem Statement

2.1 Preliminary Definitions

The classification task can be considered as assigning
Boolean values to a Cartesian product of a set of
documents D and a set of categories C, which can
be represented as:

®:DxC — {1,0}, (1)

where ® denotes the true classification function that
assigns either 1 or 0 to a point (d;,¢;),d; € D,c; € C
in D x C. If d; should be filed to c;, then ® assigns a
value 1 to (d;,c;); otherwise 0 is assigned (Sebastiani
2002).

An instance for classifier training is a row 7 in the
Cartesian product D x C. It can also be represented
as: 1; = (d;,w;), where w; is the set of categories that
d; belongs to.

In order to make a document computable for its
features, we transform document d into its represen-

tation d of model M. The representation d is a vector
of weighted features d = [f1, fs, .., f], where k is the



total number of features. So the transformation can
be expressed as:

ds d =111, for s fi] (2)

According to Formula 2, d is a point (fi, f2, ..., fx)
in a k-dimensional model space. A point in the model
space is called a ‘bucket’, for it may contain several
documents. For any nonempty bucket, if it has two
instances 7, and n,, which d, = d,, but w, # w,,
then 7,, n, and all other instances in the same bucket
are conflict instances.

For each bucket, the POP is defined as:

POP — Number of positive instances in the bucket

Number of instances in the bucket

2.2 Problem Definition

Given a document set D, a category set C, and a
document model M, M can be regarded as a function
defined over D x C written as M : D x C. In general
the document set D can be grouped into a bucket set
B by M:

pL B (4)

Where for any b; € B and b; € B, b; N b; # ¢. So
a document set D is grouped as a set of overlapping
subsets B based on model M. A subset b; of B can be
obtained by b; = {d;|d; € D,j = 1,2,..k,M(d;) =
cry e € Ch

Now the problem is stated as that for a given
bucket set B, we need to:

1. Calculate the POP based on the Cartesian prod-
uct B x C for each (b;,c;)|b; € B,c; € C. The
results will form up a distribution hyperplane by
regression.

2. Determine the positive and negative ratio that a
classifier can make by applying a threshold based
on the B x C.

The fitness of model M can then be seen as a maxi-
mum value of correctness that a classifier can achieve
based on M.

3 Related Work

Document models such as binary independence re-
trieval (a.k.a bag of words) (Robertson & Jones 1976),
vector space model (Salton, Wong & Yang 1975),
Darmstadt indexing approach (Fuhr 1989), and LSI
(Deerwester, Dumais, Furnas, Landauer & Harshman
1990) have been used to represent documents. How-
ever, none of them guarantees that it can sufficiently
cover all of the relevant features, therefore, conflict
instances may be the case.

Different approaches handle conflict instances in
different ways. In rule induction such as C4.5
(Quinlan 1996), conflict examples are simply re-
moved. In the approach of rough sets (Pawlak,
Grzymala-Busse, Slowinski & Ziarko 1995), the lower
approximation (non-conflict examples) can be used
to build “certain rules”, and the rules induced from
upper approximation (conflict examples) can be used
to build “possible rules”. Lower approximation com-
pletely discards conflict examples, while upper ap-
proximation only deals with the conflict examples
that win votes for a label. Lau (Lau, Bruza &
Song 2004) utilises AGM belief to deal with data un-
certainty. Liu (Liu & Song 2003) uses fuzzy sets to

avoid the ambiguity of features and the membership
function to make classification decisions.

In those approaches, conflict instances are used
to show the uncertainty of classification results. We,
however, found a novel way to explain and utilise con-
flict instances. The next section introduces our ideas
of using conflict instances as an indicator to separate
the positively classified examples from the rest.

4 Proposed Approach

In terms of measuring the fitness of document model
over a given document corpus, the distribution of pos-
itive instances and negative instances are essential.
The distribution hyperplane, to be introduced in this
section, is developed for this purpose.

4.1 Distribution Hyperplane

A distribution hyperplane is the hyperplane that
splits positive and negative instances in a distribution
space. The following example illustrates the brief idea
of how the distribution hyperplane would look like.

Assume two features,  and y, are necessary and
sufficient to determine whether an email is a spam
or not. Feature z stands for the spam likelihood
through the key-words filtering of the content, while
y stands for the score of checking-up with a senders’
mail server. A positive decision is made if an email
filter considers the email is a spam, otherwise a neg-
ative decision is made. Table 3 shows the agree-
ment between user judgement and classifier decision
(Sebastiani 2002):

Should document d | User Judgements

be filed to ¢ Positive | Negative
Classifier | Positive TP FP
Decision | Negative FN TN

Table 3: The contingency table of user judgements
and classifier decisions.

Where

1. TP (True Positive): Classifier correctly makes
positive decisions.

2. TN (True Negative): Classifier correctly makes
negative decisions.

3. FP (False Positive): Classifier mistakenly makes
positive decisions.

4. FN (False Negative): Classifier mistakenly makes
negative decisions.

If, at the time of classification, only x were recog-
nised, y could not be seen by classifier (i.e., the model

were insufficiently defined as d = {z}), then no mat-
ter how hard would have the classifier tried, the mis-
classification would be unavoidable. In this case, the
correct classifications would be those points within
the areas of TP and TN. The incorrect classifications
would be those points within the areas of FP and FN.
Figure 1 illustrates the impact of incompleteness of
a document model. The gray area illustrates the pos-
itive instances (i.e., spams), while white area shows
the negative instances. The actual separating hyper-
plane is the hyperplane which actually separates the
positive and negative instances. In this example, the
actual separating hyperplane is z +y = 1. The actual
decision function is:
_J1r ) ifl—xz—y>0
¢ = { 0 , otherwise (5)



However, since the classifier can only see the fea-
ture x, the best result of the classifier is the separat-
ing hyperplane z = 0.5. Therefore, the classifier uses
following function to make classification decisions:

L,

¥ _{ L

To shorten the mathematical expression, we use

® :< formula > and ¥ :< formula > to represent
the decision functions of actual distribution and clas-
sifier. If the value of formula is greater or equals

0, positive decision will be made, otherwise, negative
decision.

if0.5—2>0
otherwise (6)

=
1o actual: 1-x-y=0
FP T classifier: 0.9-%=0 —
T FI
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Figure 1: Actual decision function ¢ : 1 — z — y and

classifier-generated decision function Psi : 0.5 — x
with model {z}
p
1 distribution: p=1-x
FF ™ classifier: 0.5-x=0 —
threshold (tau): p=0.5
tau
TF Fi
|:| L
a 0.5 1
X

Figure 2: Distribution hyperplane of model {z}. Dis-
tribution hyperplane p = 1 — x separates the positive
instances and negative instances. With the threshold
0.5, classifier can generate the most effective separat-
ing hyperplane: 0.5 — 2 = 0.

Figure 2 illustrates the distribution hyperplane ap-
proach. Suppose we can not access y, but we can get
the POP value p, that is, the possibility that positive
instances occur for given z. Based on POP, we can
generate the distribution hyperplane p = 1 —z, which
separates the region of positive instances (spams) for
the gray area, and the region of negative ones (not
spams) for the white area.

A threshold 7 demonstrates the user’s preference.
If p > 7, then a positive decision will be made.
In order to obtain better outcome, the threshold

T7:7 € R,0 <7 <1 should be set to:

T =

AFPP — ATN )

(Arn — Azp) + (Arp — A7)’
where /\TP:)\FP:/\TNa/\FN are the penalty for
TP,FP,TN and FP (Cooper 1973, Lewis 1995). For
example, in email filtering, FP (identify legitimate
mail as spam) is worse than FN (identify spam as le-
gitimate mail), in this case, we should set Agpp greater
than Apn. Nevertheless, if we show no special inter-
ests among TP, TN, FP, and FN, which implies
AFP = AFN, ATP = XTN = 0, therefore, 7 = 0.5.
We use this value as default if not mentioned.

Please note that the distribution hyperplane is
not always equivalent to the actual separating hyper-
plane.

4.2 Calculating the Distribution Hyperplane

A document model can be represented as a k-
dimensional space (a.k.a. model space), and each
document as a point in model space is mapped to
a bucket. We can consider the POP is the “height”
of the bucket, and plot it in a (k + 1)-dimensional
space, namely the distribution space. Let B be a set
of nonempty buckets (with document instances), then
we have |B| number of points in distribution space,
where | B| stands for the number of nonempty buckets
in B. The distribution hyperplane can be generated
with |B| by regression methods such as Linear Least
Square Fit (LLSF) or SVM (Support Vector Machine)
regression (Chang & Lin 2002). After regression, the
distribution hyperplane can be expressed as follows:

p:d}(fl:f%"';fk) (8)

where f;,1 = 1,2, ...,k are features.

In the email filter example, feature z might be split
into say, 20 buckets. The reason to split feature z is to
get the statistically significant data. It is very unlikely
that the number of instances is enough to provide
the statistically significant data for every single real
number. We compute the POP for every bucket, and
use the LLSF to get the distribution hyperplane p =
¥(xz) =1 — z with the method stated above.

4.3 Fitness of Document Model

We regard the fitness as the maximum effectiveness of
a classifier, the effectiveness measurement of a classi-
fier can be achieved. Commonly used effectiveness
measurements are: accuracy, precision-recall break
even point, F; function, and Pearson correlation.
Here we choose the Pearson correlation as the mea-
surement of fitness, which can be calculated by:

TPxTN —-FP xFN

P= /TP + FP)(TP + FN)(FP + TN)(FN + TN)’
(9)

Correlation p = 1 indicates that the model is perfectly
fit, and p = 0 indicates that the model is not fit at
all, while p = —1 means that the model is misleading.
To calculate the effectiveness, we need a document
corpus, a model and a value 7 as threshold. Firstly,
we utilise the model to decompose the documents to
the sets of features, then put documents with the
same features into the same bucket. After that, we
compute py, the POP for bucket b for each nonempty
bucket in bucket set (model space) B. We use follow-
ing formulae to obtain the values of TP, TN, FP, and

FN:
TP =73 ycpPolpy > 1)
TN = ZbEB(l _pb|pb < T) (10)
FP =3 1cp(1—pslpp > 7)
FN = ZbeB(pb|pb <)



Finally, we can put TP, TN, FP, and FN into our
effectiveness measurement function, Pearson correla-
tion, to obtain the score of model fitness.

In the email filter example, the fitness of model is
0.5.

4.4 An Example of Fitness Computation
Procedures

We use the following example to illustrate the calcu-
lation of the fitness of a model.

There are five documents in document corpus
D = dy,ds,...,ds, and three predefined categories
C = c¢1,c9,c3. Table 4 shows the classification of
(di,c;),di € D,c; € C, filed by human expert in a
training process. If d; should be filed into ¢;, then 1
is assigned, otherwise, 0 is assigned. These numbers
are regarded as the POP values as well, for 1 stands
for 100% chance that d; belongs to ¢;, while 0 stands
for there is no chance that d; belongs to c;.

Document | ¢; [ ¢ | ¢3 w
d1 1 0 1 w1 {Cl, 03}
d2 1 0 0 Wy {Cl}
d3 0 1 1 wsg : {Cg, 03}
dy 001 wy s {cs}
d5 1 0 1 Ws {Cl, 03}

Table 4: Cartesian product of D x C, with the POP
for each (d;, ¢j) pairs

Assume we utilise the document model: d =
[f1, f2], Table 5 shows how documents are represented
in the model:

Document | fi | fo
dy 111
d- 01
ds 111
dy 110
ds 111

Table 5: Documents represented by model d = [f1, fs]

Step 1: Map documents to buckets

Since d1 = dg = d5, but w1 7é w3 7£ Ws, there-
fore, dy,ds,ds are conflict instances. We put all doc-
uments into buckets, then compute the POP of the
(bm,, ¢j), by, € B pairs from the average of the POP
of the (d;,c;),d; € by, pairs. Coordinate is the posi-
tion of bucket in model space, i.e. (f1, f2). Details is
shown in Table 6.

Bucket Coordinate | ¢ cy | c3

by = {d2} (0,1) 1 0 ]o

by = {d4} (1,0) 0 0 |1

bs = {dy,ds, d5} (1,1) 0.66 | 0.33 | 1

Table 6: BxC with the POP for each (b, ¢;j), by, € B
pair. POP for each (by,, ¢;) pair is counted by average
of the POP of the (d;, ¢j),d; € by, pairs.

Step 2: Add POP as a new dimension to plot
distribution points

We add POP as a new dimension to buckets, then,
the distribution points for each category is shown in
Table 7:

Bucket c Co c3
bl (07171) (07]—)0) (07]—)0)
b2 (17070) (1707 ) (17071)
bs | (1,1,0.67) | (1,1,0.33) | (1,1,1)

Table 7: Distribution points for each category.

Step 3: Generate distribution hyperplane by
regression

One distribution hyperplane for each category can be
obtained by applying regression method over these
points. We utilise the linear least square fit regres-
sion to compute the coefficient of the distribution hy-
perplane for each category. The distribution hyper-
plane for ¢; is p = 0.67f; — 0.33f> + 0.33, for ¢» is
p=0.33f1 +033f> —0.33, for cg is p= fo — 1.

Step 4: Fill the POP of empty buckets by using
distribution hyperplane

In our example, bucket (0,0) has never appeared,
which implies it is empty. However, they might ap-
pear later. So we use the distribution hyperplane to
estimate the POP of the bucket (0,0). POP should be
always in the range between [0,1], therefore, if POP>1
, then we set POP=1; likewise, if POP < 0, then we
set POP=0. After we calculate the POP of bucket
(0,0), we can get Table 8.

Bucket Coordinate | ¢ co | c3

b = {4} (0,0) 033] 0 |0

by = {ds} (0,1) 0 0 |1

by = {dy} (1,0) 1 0 [0

bs = {d,,ds,ds} (1,1) 0.67 033 | 1

Table 8: BxC with the POP for each (by,,¢;),bm € B
pair. POP for each (b, ¢;j) pair is counted by average
of the POP of the (d;, ¢;), d; € by, pairs.

Step 5: Calculate the TP, TN, FP and FN

According to Table 8 and Function 10, if the thresh-
old 7 = 0.5 is accommodated, then we can calculate
TP, TN,FP,FN for each category, then compute over-
all scores by adding up the values of every category.
Table 9 lists the results.

cl ca | ez | Overall
TP [ 1.67| O 2 3.67
TN | 1.67 | 3.67 | 2 5.37
FP | 033 | 0 0 0.33
FN | 0.33/033]| 0 0.66

Table 9: Results of TP,TN,FP,FN calculations.

Step 6: Using the effectiveness measurement
to determine the fitness of model

With Formula 9, we can determine that fitness of the
model is 0.80. Other effectiveness measurements such



as accuracy or Fjg can also be accommodated by using
similar methods.

4.5 Other Usages of Distribution Hyperplane
The distribution hyperplane can be used in following
ways:

Classifier

For each category ¢, classification decision can be
made by the decision function ¥.(d):

w@={§ hozT

0 , otherwise

4.5.1

If ¥.(d) = 1, then d should be filed to ¢; otherwise, d
should not be filed to c.

4.5.2 Fuzzy Set Membership Function

When making classification decisions, classifier com-
putes the likelihood of a given document being filed
in to a given category, The categorisation status value
(CSV) is used to describe likelihood which is a num-
ber between 0 and 1 (Sebastiani 2002). The meaning
of CSV is exactly identical to POP. In order to ob-
tain CSV, we can consider buckets as fuzzy sets, then
POP is the degree of fuzzy membership. Therefore,

¥(d) is the membership function for the bucket cor-
responding to d.

5 Experiments and Results

In our approach, distribution hyperplane plays an
important role of fitness estimation. There are two
methods to estimate a distribution hyperplane:

1. Empirical Observation: Empirical observation is
a data preparation technique. By this method,
values of features are grouped according to class
intervals. Class mark (average of the value of
the two ends of a class interval) for each class
interval represents the value of feature of bucket.
Each distribution point from empirical observa-
tion provides an example of real data distribu-
tion, however, in high dimensional space, the em-
pirical observation may not cover whole model
space, hence, the conclusion from empirical ob-
servation might not expendable for whole model
space.

2. Regression: Regressed function is generated by
applying regression method on instances. The
regressed function can cover whole model space,
but, may not reflect the actual separating hyper-
plane.

In order to compare these methods, we calculate two
fitness scores from each method, and compare them
with the fitness score of actual separating hyper-
plane. If the fitness score from one method is closer to
the fitness score of actual separating hyperplane, the
method estimates the distribution hyperplane better.

Currently available real document corpora, such
as Reuters-21578 (Lewis 2000), do not show actual
separating hyperplane. Therefore, we generate two
artificial instance sets — ‘Linear’ and ‘Circular’ — as
measurement benchmarks.

5.1 Experiments Design

5.1.1 Instance Sets

All of the artificial instance sets have two relevant
features, f; and fo, which are generated by ran-
dom numbers between 0 and 1. A label of each in-
stance in the instance set namely Linear is determined
by the decision function ®neq, = 1 — f1 — fo. If
Drinear > 0, then positive label is assigned. Instances
without positive labels are negative instances. The
decision function for Circle instance set is ®jpeurar =
0.5 — (f1 — 0.5)2 — (f — 0.5)2. Positive label is as-
signed if ®.;pcuiqr > 0. Instances without positive
labels are negative instances. Each instance set has
40,000 instances. The original Linear instance set is
plotted as Figure 3; while the Circle instance set is
plotted in Figure 4. The light colour points are pos-
itive instances, while dark colour points are negative
ones.
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Figure 3: Original instance distribution of instance
set namely ‘Linear’ in distribution space. The colour
indicates POP values, the lighter the colour is, the
higher value the POP is.

5.1.2 Models

Two models are used to decompose instances into fea-
tures. One is a incomplete model M;, which contains
only f1, the other is a perfect model M2, which con-
tains both fi,and fs.

5.1.3 Threshold

Since we have no special interest on one of the
TP,TN,FP, and FN, threshold 7 is set to 0.5 according
to Formula 7.

5.1.4 Distribution Hyperplane Estimation

Practically, empirical observation are ‘binned’ in-
stances. ‘Bin’ is an interval into which a given data
point does or does not fall (Weisstein 1999). Since
features f1 and f, are the random real numbers, this
implies the number of buckets will be infinite if we
don’t group them together. Hence, for the reason
of statistical significance,values of feature are binned
into 10 bins. In other words, 40,000 instances are
merged into 10 buckets in incomplete model, or 100
buckets in perfect model.
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Figure 4: Original instance distribution of instance
set namely ‘Circular’ in distribution space. The
colour indicates POP values, the lighter the colour
is, the higher value the POP is.

Please note that ‘bin’ and ‘bucket’ are not the
same concept. ‘Bin’ is a statistics term which de-
notes the discretisation process of continuous value
for a feature; while ‘bucket’ is the discretisation pro-
cess for feature combination.

As for regressed function, we used LibSVM (Chang
& Lin 2001) »-SVR with RBF kernel to generate the
regressed functions from the instance sets.

5.2 Results of Experiments

We group the value of each feature into 10 bunches.
The reasons are: firstly, the number of buckets will
be greatly reduced to a computable amount; secondly,
the sizes of buckets (the number of instances in the
bucket) are large enough to reach statistical signifi-
cance.

5.2.1 Model 1: Incomplete Model

Figure 5 and 6 compare the estimated distribution hy-
perplanes to the actual separating hyperplane for the
instance set ‘Linear’. Figure 7 and 8 show the com-
parisons for the instance set ‘Circular’. All of them
are quite close to the actual separating hyperplane.

5.2.2 Model 2: Perfect Model

Figure 9 and 10 compare the estimated distribution
hyperplanes to the actual separating hyperplane for
the instance set ‘Linear’, while Figure 11 and 12 show
the comparisons for the instance set ‘Circular’. Ac-
cording to these figures, regressed distribution hyper-
planes indicate that there will be some possibility
that model 2 will lead to some misclassification be-
cause some points are within the range [0,1]. This
phenomenon shows that a perfect model’s distribu-
tion hyperplane may be distorted by a regression al-
gorithm.

5.3 Experiments Summary

With incomplete models, both regressed function and
empirical observation can make distribution hyper-
planes that are very close to actual separating hyper-
plane of POP values. However, with perfect models,

Figure 5: ‘Linear’ instances with respect to Model 1:
Empirical observation vs. actual separating hyper-

plane.
1 —
ST
= 04
O 05 1
fi

Figure 6: ‘Linear’ instances with respect to Model 1:
Regressed function vs. actual separating hyperplane.

regressed function cannot show advantages over em-
pirical observation. Those results suggest that em-
pirical observation might be a better way to provide
a feasible approximation of the actual separating hy-
perplane.

6 Conclusion

In this paper, we have discussed the fitness mea-
surement of document models in classification tasks.
Our proposed approach considers with the conflict in-
stances — a symptom of weakness of a model. The
measurement is used to tell not only the suitability
of a document model for classification purposes, but
also the upper-bound effectiveness of a classifier.
Moreover, our approach of distribution hyperplane
can be used for different purposes that are not just
for the fitness measurement. Firstly, it is classifier
independent, so we don’t have to use multiple clas-
sifiers to verify the fitness. Secondly, we can predict
the correctness of a given point in model space even
the point has never shown in instance set before. Fi-
nally, the distribution hyperplane can serve as a clas-
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Figure 7: ‘Circular’ instances with respect to Model
1: Empirical observation vs. actual separating hyper-
plane.

Figure 9: ‘Linear’ instances with respect to Model 2:
Empirical observation vs. actual separating hyper-
plane.
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Figure 8: ‘Circular’ instances with respect to Model 1:
Regressed function vs. actual separating hyperplane.

sifier, which is capable of evaluating how confident it
is about the classification decisions.

Our experiments suggest that the empirical ob-
servation is better than regressed function when we
have a great amount of instances (e.g. be 400 in-
stances per bucket). However, we might not able to
obtain enough instances for each bucket, so we are
examining and comparing the empirical observation,
interpolation methods, and regressed function in or-
der to further improve the ability to predict the POP
of empty buckets.

Furthermore, generally complex models tend to
get higher score on fitness, but cannot provide sig-
nificant advantages over the performances and effec-
tiveness (Dumais, Platt, Heckerman & Sahami 1998).
We are currently applying our techniques to address
the overfilling problem in order to provide a fair way
to compare the fitness of different types of models.
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